Fadatianal obsexvatory.

BULLETIN No. XC.

SUMMARY OT PROMINENCE OBSERVATIONS FOR THE FIRST HALF OF THE YEAR 1930.

In pursuanco of the programme of work adopted since lst January 1923 under the anspices of the International Astronomical Union, all observatories taking spectrohelograms of the sun have been asked to co-operate with the Kolaikanal Observatory by supplying copies of their photographs on those days when the Kodarkanal recorls are imperfect or wanting. In response to our requirements for the first half of the year 1930, the Mount Wilson Observatory supplied calcium (K_{23}) prominence plates for 28 days and Ha dise plates for 14 days, Mcudon Ohservatory suppled calcuum $\left(\mathrm{K}_{3}\right)$ dise plates for nine days and $\mathrm{H} a$ disc plates for thirteen days; the Pitch Hill Observatory (Mr Evershed's) at Ewhurst, Surres, England, supplied two Ha prominence plates and two $\mathrm{H} a$ dise plates.

When only incomplete or imperfect photographs for anv day are available from more than one observatory, the best photograph is chosen as ropresenting the solar activity of that day after weighting it according to its quality, and the remaining photographs are ignored

Calcivin promunences at the lumb
The moan daily areas anil numbers of prominences photographed during the half-year by means of the K line of calcium aro given below. The means are corrected for incomplete or imperfect observations, the total of 179 days for which plates were available being reduced to $166 \frac{1}{2}$ effective days.

$$
\begin{array}{cccccccccc}
\text { Mean darly areas } \\
\text { North } & \ldots & \ldots & \ldots & \ldots & \ldots & & & & \\
\text { (square minates). }
\end{array} \begin{gathered}
\text { Mean dally } \\
\text { numbers }
\end{gathered}
$$

Compared with the previous half-year prominence activity has increased in the northern hemisphere and decreased in the southern. So far as areas are concerned the decrease in the south is exactly compensated by the increase in the north, leaving the total unchanged from those for the first and second halves of 1929. As regarls numbers the decroase in the southern hemisphere preponderates giving a nett decrease in the total of $10^{\circ} 3$ per cent below that for the second half of 1929.

For comparison with bulletins issued prior to the co-operation of other observatories, the means based on Kolaikanal photographs alone are also given, 158 days of observation being counted as 145 effective

The distribution of prominences in latitude is represented in the following diagram, in which the fall line gives the mean daily areas and the broken line the mean daily numbers for each zone of 5° of latitude. The ordinates represent tenths of a square minute of arc for the full line and numbers for the broken line. In the northern hemisphere the distribation is similar to that in the previous half year although the activity is, greater ; in the southern hemisphere there is a notable decrease in activity in the region 35° to 70°

The monthiy, quarterly and half-yearly areas and numbers, and the mean height and mean extent of the prominences on photographs from all co-operating observatories are given in Table I. The unit of area is one aquare mirute of arc. The mean height is derived by adding together the greatest heights reached by individual prominences and dividing by the total number of prominences observed; the mean extent is derived. by adiding together the-lengths of the base on the chromosphere of individual prominences and dividing by the total number of prominences.

Table I.-Abstract for the first half of 1930.

Months.	$\begin{gathered} \text { Number } \\ \text { of days } \\ \text { (effective). } \end{gathered}$	Areas	Numbers	Dally means		Mean height.	Mean extent
				Areas	Numbers.		
1930						"	\bigcirc
Januany	$28 \frac{1}{2}$	1443	324	$5 \cdot 1$	$11 \cdot 4$	384	74
Tebiuary ...	$27{ }^{\text {a }}$	154.5	312	$5 \cdot 6$	112	387	71
March	269	1255	362	$4 \cdot 7$	137	$33 \cdot 7$	$5 \cdot 9$
Aprıl	$28 \frac{1}{2}$	1471	322	$5 \cdot 2$	113	343	71
May	29	$163 \cdot 2$	342	56	11.8	336	68
June	264	91.8	262	$3 \cdot 5$	10.0	$30 \cdot 8$	61
Fust, quarter	82	$424 \cdot 3$	998	$5 \cdot 1$	121	36.8	68
Second quarter	838	4021	926	48	111	330	67
First half-year ..	166\%	8264	1,924	5.0	116	350	67

Distribution east and west of the sun's axis.
Unhke the previous half-ycar, at the east limb there is an excess of areas but a defect of numbers as will be seen from the following tablo:-

1930 January to June.		East.	West.	Percentage East			
Total number observed	\ldots	\ldots	\ldots	\ldots	905.0	$1,018.0$	4706
Total aroas in square mumutes	\ldots	\ldots	\ldots	4216	404.8	5102	

Hydrogen prominences.
During the half-year, photographs of the prominences in hydrogen light were taken in this observatory on 146 days which were comnted as $137 \frac{1}{2}$ effective days. The mean danly areas in square minutes of are of hydrogen prominences are given bolow :-

					Mean darly areas (square minutes)	
North (Kodaikanal photographs only)		1:22
South (lo.)	. .	-•	..	-	...	$1 \cdot 00$
				Total	.	2.22

The H a areas are only 42 per cent of the calcium areas. Compared with the previous half-year H a areas show a decrease of 13.3 per cent. The curve of distribution of $\mathrm{H} a$ prominences in latitude is similar to that of calcium prominences. As in the case of calcium prominences the northern hemisphere now shows a greater activity than the southern, the ratio of the northern areas to the southern being $1 \cdot 22$ and 145 for $\mathrm{H} a$ 1-A
and K prominences, respectively. It is thus seen that the northern preponderance is more marked in K prominences than in H a prominences, the opposite being the case in the previous half-year.

Metallic prominences.
Thirty-one metallic prominences were observed during the half-year. Their details are given below :-

Table II.-List of mbtallio plomingnoes observad at Kodaikanal, January to June 1930.

Date		$\begin{aligned} & \text { Time. } \\ & \text { I.ST. } \end{aligned}$	Base.	Latitude.		Limb.	Height.	Lines.
				North	Sonth.			
1930.		н. M.	0	-	-		*	
January	17	$10 \text { b5 }$	3	205		E	15	$4924 \cdot 1,5016,5018 \cdot 6, b_{4}, b_{\mathbf{8}}, b_{2}, b_{1}, 5316 \cdot 8,5363, D_{\mathbf{2}}$ D, 6677 .
	20	843	7	105		W	10	${ }_{49244.1}{ }_{667}, 5016,50186, b_{4}, b_{3}, b_{2}, b_{2}, 5916 \cdot 8,5363, D_{2}, D_{1}$,
	28	$9 \quad 9$	2		19	E	15	$4924 \cdot 1,50186_{1}, b_{4}, b_{8}, b_{31}, b_{1}, 5234 \cdot 8,5276 \cdot 0,5316 \cdot 8$, 5363 D 7065
	30	100		245		E	15	
	31	$\begin{array}{ll} 9 & 19 \\ 9 & 18 \end{array}$	2	$\begin{aligned} & 15 \cdot 5 \\ & 20 \end{aligned}$		$\stackrel{\mathbf{W}}{\mathbf{W}}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$49241,5016,50186, b_{4}, b_{3}, b_{2}, b_{2}, 5316 \cdot 8, D_{d}, D_{1}, 6677$. $4924 \cdot 1,5016,50186, b_{4}, b_{3}, b_{2}, b_{1}, 5316^{\circ} 8, D_{3}, D_{1}$, 6677.
Febraary	$\begin{array}{r} 2 \\ 14 \\ 16 \end{array}$	$\begin{array}{lr}9 & 20 \\ 9 & 28 \\ 9 & 5\end{array}$	3 3	$19 \cdot 5$	9 $18 \cdot 5$	$\begin{aligned} & \mathrm{E} \\ & \frac{\mathrm{E}}{\mathrm{~W}} \end{aligned}$	${ }_{15}^{25}$	$b_{4}, b_{2_{1}}, b_{2}, b_{1}, D_{2,} D_{2}$. Frant. $b_{4}, b_{8}, b_{2}, b_{1}, D_{2}, D_{1}$ Faint. $4924.15016 .50186, b_{4} \quad b_{b}, \quad$ b $234 \cdot 8,5276 \cdot 2$
					185			
	20	910	2		11	W	15	$4924 \cdot 1,5016,50186, b_{4}, b_{3}, b_{2}, b_{1}, 5198 \cdot 9,5208 \cdot 8,5234 \cdot 8$, $5268 \cdot 8,5270 \cdot 6,5276 \cdot 0,5276 \cdot 2,5284 \cdot 2,5316 \cdot 8,5328 \cdot 1$,
	23	938			125	E	10	$4924 \cdot 1,5016,5018 \cdot 6, \mathrm{~b}_{4}, \mathrm{~b}_{9}, \mathrm{~b}_{2}, \mathrm{~b}_{2}, 52348,5276 \cdot 0,5316 \cdot 8$, $5363, D_{2}, D_{1}, 6677,7065$.
Maxah	1				13	E	10	$4924 \cdot 1,5016,5018 \cdot 6, b_{4}, b_{3}, b_{21}, b_{1}, 52348,5276 \cdot 2,5316 \cdot 8$, 5363, $D_{2}, D_{1}, 6677,7065$.
		941	1		$16 \cdot 5$	E	10	$4924 \cdot 1,5016,5018 \cdot 6, b_{4} b_{\mathrm{s}}, \mathrm{b}_{\mathrm{g}}, \mathrm{b}_{\mathrm{l}}, 52348$, , $2776 \cdot 2$, $5316 \cdot 8,5363, \mathrm{D}_{2}, \mathrm{D}_{1}, 6677,7065$.
	14	9 9 9 124	7	05	$17 \cdot 5$	W	20 30	$4924 \cdot 1,50186, b_{4}, b_{2}, b_{2}, b_{1}, 5316 \cdot 8, D_{2}, D_{2}, 6677$. $\mathrm{b}_{4}, \mathrm{~b}_{\mathrm{a}_{1}}, \mathrm{~b}_{2}, b_{1}, \mathrm{D}_{2}, \mathrm{D}_{1}$ Faint.
	15	1010				E	10	4924:1, $5016,50186, b_{4}, b_{s}, b_{s}, b_{1}, 52348,5276^{\circ} 2$, $5316.8,5363, \mathrm{D}_{2} \mathrm{D}_{1}$.
		$10 \quad 10$	1	$26 \cdot 5$		E	10	$4924 \cdot 1,5016,5018 \cdot 6, b_{4}, b_{8}, b_{2}, b_{1}, 5234 \cdot 8, \quad 5276 \cdot 2$, $53168563 D_{2} D_{1}$
		1025	1	13.5		W	${ }^{6}$	$4924 \cdot 1,5018 \cdot 6, b_{4}, b_{8}, b_{2}, b_{1}, 52348,5276 \cdot 2,5316 \cdot 8$, $5363, \mathrm{D}_{2}, \mathrm{D}_{3}$.
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{array}{rr} 10 & 6 \\ 9 & 8 \\ 9 & 2 \end{array}$	1 3 3	18.5	$\begin{aligned} & 29 \cdot 5 \\ & 115 \end{aligned}$	$\begin{gathered} \underset{W}{W} \\ \stackrel{\rightharpoonup}{W} \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \\ & 30 \end{aligned}$	$b_{6}, b_{3}, b_{2}, b_{1}, D_{2}, D_{1}$. $b_{4}, b_{2}, b_{2}, b_{1}, 5316,8, D_{2}, D_{1}$. $50186, b_{4}, b_{8}, b_{2}, b_{1}, 5276-2,5316-8, D_{2}, D_{2}$.
April	1 8 8	12 12 9	3 7	13.5	215	$\stackrel{\mathrm{E}}{\mathrm{~W}}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$b_{4}, b_{9}, b_{2}, b_{1}, 53168, D_{2}, D_{1}, 6677$. $4924 \cdot 1,5018 \cdot 6, b b_{4}, b_{3}, b_{3}, b_{1}, 5234 \cdot 8,5276 \cdot 2,5316^{\prime} 8$, 5363.0 D D
	14	840	4	12		W	20	$4924 \cdot 1,5016,5018 \cdot 6, b_{4}, b_{2}, b_{2}, b_{1}, 5234 \cdot 8,5276 \cdot 2,53168$, $5563^{\circ} 0, D_{2}, D_{1}$.
	$\begin{aligned} & 18 \\ & 20 \end{aligned}$	$\begin{array}{ll}9 & 2 \\ 9 & 0\end{array}$	3 2 2	$\underset{9}{18 \cdot 5}$		W	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	
May	$\begin{array}{r} 5 \\ 18 \\ 22 \\ 81 \\ \hline 81 \end{array}$	$\begin{array}{r} 843 \\ 8 \\ 8 \\ 1026 \\ 10 \\ 10 \\ \hline 20 \end{array}$	3 4 4 2 1	${ }_{275}^{15}$	$\frac{175}{15}$	$\begin{aligned} & W \\ & \mathbf{W} \\ & \frac{\mathrm{E}}{\mathrm{E}} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 10 \end{aligned}$	$5018 \cdot 6, b_{\iota}, b_{2}, b_{2}, b_{1}, 5276 \cdot 2,5316 \cdot 8, D_{2}, D_{1}, 7065$. $50186, b_{4} b_{4} b_{m}, b_{11} 5234 \cdot 8,5276 \cdot 2,5316 \cdot 8, D_{1}, D_{1}$ $4924 \cdot 1,50186, b_{4}, b_{2}, b_{3}, b_{2}, 5316{ }^{\circ} 8,5363, D_{2}, D_{1}, 667 \%$, $b_{4}, b_{2}, b_{2}, b_{12} D_{2}, D_{1}$.
- fune	5	$8{ }^{\prime} 5$	3	105		W		4924 $\left.1,5016,5018 \cdot 6, b_{4}, b_{31} b_{3}, b_{1}, 5316 \cdot 8, ~ 5388,1\right)_{3}$ - $\mathrm{D}_{1} 6677$.

The distrıbution of metallic promınences "was as follows:-

		$1^{\circ}-10^{\circ}$	$11^{\circ}-20^{\circ}$	$21^{\circ}-30^{\circ}$	$31^{\circ}-40^{\circ}$	Mean latatude.	Exireme latitudes
Nor th	\cdot	\cdot	4	10	4	\ldots	$17^{\circ} 0$
South	\cdot	1	10	2	\ldots	$16^{\circ} 3$	$0^{\circ} 5$ and $30^{\circ} 5$

Sixteen were on the east limb and 15) on the west limb.
Displacements of the hydrogen lines.
Particulars of the displacoments observed in the chromosphere and prommences are given in the following table:- -

Table IIT. --Displacements of the hydrogen lines, January to June 1930

Date		$\begin{aligned} & \text { Hour } \\ & \text { IST. } \end{aligned}$	Latitude.		Limb.	Displacement.			Remarks.	
		North	South	Red.		Violet.	Both ways.			
1930.			II M	-	-		A	A	A.	
March	1	$\begin{array}{ll}9 & 32 \\ 9\end{array}$		29			1		At top.	
		$\begin{array}{cc}9 & 1 \\ 8 & 58\end{array}$	10	23	$\stackrel{\mathrm{E}}{\mathrm{W}}$	${ }_{0}^{1}$			At base.	
	8	104		10	W	0.5	1		Tored at top	
	9	101	2		E	1			At base	
		$\begin{array}{ll}9 & 54 \\ 9\end{array}$	6		W	1	05		To red at top, to volet at base	
	13	9 9 9 11	14	7	$\underset{W}{W}$		1.		At base	
	14	933	26		E		1		At top, extends over 4° from 12° to 16°. At top.	
		936		315	E	1			Do.	
				20	W		25		At base	
	15	$10 \quad 38$	70		E		1		Do	
	16	$\begin{array}{ll}8 & 37 \\ 9\end{array}$	825		E	2			At top.	
	17		25		E	05			Do	
		850	715		W	Slight			At base	
		9 49 10		9	W		1		No prominence	
	$\stackrel{21}{22}$	$\begin{array}{rr}10 & 55 \\ 9 & 24\end{array}$	25 19		W	05	1		At tor.	
	23	9 12	11		W		1		Do.	
	28	921	18		W		15		Do	
	29	$10 \quad 16$		14	W		Slight		Do	
Aprıl	1	1222	14		E	1			At top.	
	2	921	25		E		05		Do.	
	4	${ }^{9} 6$		31	E		1		Do	
		$\begin{array}{ll}10 & 33 \\ 10 & 33\end{array}$	11 9		$\underset{ \pm}{\text { E }}$		1	1	${ }_{\text {Do. }}^{\text {Do }}$	
				$74 \cdot 5$	E	1			No prominence	
	7	858		${ }^{6}$	W		1		At base	
	9	$10 \quad 15$		45	W	2			On prominence, extends from $3^{\text {n }}$ to 6°	
	110	$10 \quad 15$		77\%	W		1		At top	
	11			16	W	05				
	12	9 8 8		30	W		$1 / 5$ 05		At base Do	
		8 8 8 8 14	129		$\underset{\sim}{\text { E }}$	1	05		Do At top.	
	15	10 18		30	E	1	05		At base	
	17	850	825	30	E	1			At top	
	18	848	1.3		W	$0 \cdot 5$			Do ${ }^{\circ}{ }^{\circ}$	
	20			295	E	1			At top, extends over 9° from 25° to 34°	
				10	W	1.5	1.		To violet at base	
	21	9 9	9		$\stackrel{\mathrm{W}}{\mathrm{E}}$		2		At top. At top, extends orer 3° from 23° to	
	2			24.5		1.5			Att top, extends over 3° from 23° to	
		928		295	E	1				
					W	Slight			At top.	
		$9 \quad 5$	435		W		05		Do	
	25	936		26	W		1.5		Do	
	26	918		7	W	2		1	At base	
		919		5	W			1	At base	
May	1	935		14	E	1			At top.	
	2		405		$\underset{\sim}{\text { E }}$			Slight		
		$\begin{array}{lc}9 & 10 \\ 9 & 8\end{array}$	29		$\underset{W}{W}$		1		At top.	
	5			40	W				At top.	
	11	$10 \quad 59$		14	W	0.5			Do.	
	12	8	26		W	0.5			Do.	
	16	925		11	$\underset{\sim}{\text { E }}$			$\stackrel{1.5}{\text { Slught }}$		
	17	846	51		W			Slight	At base.	
	20	$\begin{array}{ll}8 & 43 \\ 88 & 49\end{array}$	$\stackrel{9}{4}$		$\underset{\mathrm{E}}{\mathbf{E}}$		05		Do	
		852		2	W	05	1		At top	
	22	${ }^{9} 44$	77.5		$\underset{\sim}{\mathbf{F}}$	05		0.5	At top	
		10 10		31	$\underset{\mathrm{E}}{\mathrm{E}}$		15		At top.	

Date		Hour IS T	Latitude		Limb	Displacement			Reinalks	
		North	South	Red		Violet	Both wrys			
May			H M		-		A	A	A	
	22	955	32		W	1	15		To red at top to violet at base	
	25	$8 \quad 50$	11		E	05			At base	
	29	948		11	W	Slight			At top	
		916	26		W	05			Do	
	30	924	8		W	15			Do	
		97	45		W		1		Do	
	31	912		69	E		1		Do	
June	2		12		W	15			At top	
		100	16		W	05			At base	
		$\begin{array}{ll}9 & 12 \\ 8 & 55\end{array}$	115		W	25				
	6 12	$\begin{array}{rr}8 & 55 \\ 9 & 5\end{array}$	15 145		$\stackrel{\text { W }}{\text { W }}$	Slight	Slight		At base	
	17	$\begin{array}{lr}9 & 5 \\ 9 & 15\end{array}$			E	05			At bnse	
	1	9 19 11		31	W	15	05		Do	
	24	$11 \quad 42$	12		W	15				
		1140	245		W		15		At base, extencis over 8° from 29° to 26	

The total nomber of dusplacements was 197 as against 250 in the previous half-year and their distribution was as follows -
Latitude
$1^{\circ}-30^{\circ}$
$31^{\circ}-60^{\circ}$
$61^{\circ}-90^{\circ}$

East limb
West limb
$\begin{array}{ccc} & \text { North } & \text { South } \\ & 88 & 58 \\ & 20 & 14 \\ & \text { Total } & \frac{11}{119} \\ & \frac{-78}{95}\end{array}$
Total $\quad \underline{197}$

Reversals and drsplacements on the sun's dusc
Three handred and sixteen bright reversals of the Hallne, 306 dark reversals of D_{s} line and 30 drsplacements of the $\mathrm{H} a$ lune were observed during the half year Their distribation is given below -

	North	South	Easi	West
Bright reversals of $\mathrm{H} \boldsymbol{a}$	196	120	168	148
Dark reversals of D	192	114	161	145
Displacements of $\mathrm{H} a$	19	11	15	15

Twenty one dısplacements were towards the red, 4 towards the nolet and 5 both ways simultaneously
Prominences projected on the dusc as absorption markengs
Photographs of the sun's dise in Hallght were available from Kodaikanal and the co-operating observatories for a total of 177 days, which were counted as $174 \frac{4}{4}$ effective days The mean dauly areas of H a absorption markings (corrected for foreshortenung) in millionths of the san's visible hemisphere and their mean dauly numbers are given below -

	Mean darly areas	Mean dally numbers	
North		2,266	1423
South	2,031	1007	
		$\overline{103}$	$\overline{2430}$

The above show an morease of about 22 per cent in areas and a decrease of about 48 per cent in numbers compared with the previous half-year. The preponderance of activity has now shifted back again to the northern hemisphere.

For comparison with bulletins issued prior to the co-operation of other observatories, the means based on Kodarkanal photographs alone are also given, 156 days of observation being reckoned as $149 \frac{3}{4}$ effective days.

		$\begin{aligned} & \text { Mean daily } \\ & \text { areas } \end{aligned}$	Mean dauly numbers.
North (Kodaikanal photographs only)	..	2,180	1406
South (do.)	.	1,963	996
	Total	. 4,143	24.02

The distribution of the mean dally areas in latitude is shown in the followng daagram. The distribution is similar to that of the previous half-year except that the secondary maximum near 50° has disappeared in the southern hemisphere.

The areas as well as numbers are almost equally divided between the eastern and western hemispherea, the percentage east being $50^{\circ} 1$ for both.

When the data for the areas of absorption markings were begun in Kodaikanal Observatory Bulletin No. XXIX it was considered that the projected areas should be corrected for the curvature of the sun's surface by maltiplying by the secant of the angular distance of the marking from the centre of the sun's disc. This practice has been continued up to the present although it has been known for a long time that the projected areas do not actually vary according to such a law. The correction hitherto applied must therefore, sooner or later, be dropped. Since the law of variation of the projected areas has not yet been established it seems preferable to give the projected areas themselves without applying any correction. Until the effect of this change becomes clear the areas corrected as hitherto will continue to be given in future bulletins along with the uncorrected areas. Below are given the uncorrected projected areas for the first and second halves of 1920 and the first half of 1930 .

Mean daly areas
(uncorrected for foreshortening).

North South	...	\cdots		$\begin{array}{cc} & \text { Jan.-June. } \\ & 1929 . \\ \text {.. } & 1,319 \end{array}$		$\begin{gathered} \text { July-Dec. } \\ 1929 \\ 1,069 \end{gathered}$	$\begin{gathered} \text { Jen._June. } \\ 1930 . \\ 1,307 \end{gathered}$
			...				
	1,288	1,408	1,191
			Total	-	2,607	2,477	2,498

Compared with the corrected areas the uncorrected areas amount to $58^{\circ} 3$ per cent, $58^{\circ} 9$ per cent and $58^{\circ} 1$ per cent respectively of the corrected areas for these half-years. The curves of distribution in latitude are not much affected but it is not expected that this will hold when there is high latitude activity.

Thanks are due to the co-operating observatories for the photographs sapplied by them.

[^0]
[^0]: Kodatkanai,
 24th February 1931.

 T. ROYDS,
Director, Kodaikanal and Madras Observatories.

