Fignatianal Observatory.

BULLETIN No. LXXIX.

SUMMARY OF PROMINENCE OBSERVATIONS FOR THE SECOND HALF OF THE YEAR 1925.

In purstance of the programme of work adopted since 1st January 1923 under the auspices of the International Astronomical Union, all observatories taking spectroheliograms of the Sun have been asked to co-op srate with the Kodaikanal Observatory by supplying copies of their photograplis on those clays when the Kodaikanal records are imperfect or wauting. In response to our requirements for the second half of the year 1925 , Mount Wilson Observatory supplied prominence plates for 40 days and $\mathrm{H} a$ disc plates for 38 days; Meudon Observatory supplied K_{s} disc plates for 34 days and H (disc plates for 31 days and Yerkes Observatory sent prominence plates for 7 days. Eight prominence plates and $7 \mathrm{H} / 4$ disc plates taken by Mr. Evershed at his observatory at Ewhurst, Surrey, Fngland during the last three months of the year were also received.

When only incomplete or imperfect photographs for any clay are available from more than one observatory, the best photograph is chosen as representing the solar activity of that day after weighting it according to its quality, and the remaining photographs are ignored.

The mean daily areas and numbers of prominences during the half-year are given below. The means are corrected for incomplete or imperfect observations, the total of 181 days when plates were available being reduced to 151 effective days.

North South	...	$\begin{aligned} & \cdots \\ & \ldots \end{aligned}$	\cdots		$\begin{aligned} & \ldots \\ & \ldots \end{aligned}$	$\begin{gathered} \ldots \\ \ldots \end{gathered}$	\ldots	Mcan daily areas (square minutes).$318$$308$	Mean daily numbers.$840$$8: 34$
						Total	...	620	16.74

Compared with the previous half-year, areas have increased by 24 per cent the increase being more marked in the southern hemisphere. In the case of numbers, there is a slight decrease in the northern hemisphere, and an increase of 10 per cent in the southern.

For comparison with bulletins issued prior to the co-operation of other observatories, the means based on Kodaikanal photographs alone are also given, 141 days of observation being counted as 118 effective days.

		Mean daily areas (square minutes).		Mean daily numbers.
North (Kodaikanal photographs only)	\cdots	$3 \cdot 46$	8.83
South do.	\cdots	\ldots	$3 \cdot 42$	$8 \cdot 75$
	Total	...	6.88	17:58

The distirbution of the prom nences n latitude is represented n the following dagram on which the full line 1 ves the mean danly areas and th broken line tle mean dally numb ra for ench zone of 5 of latitude The ordmates represent tenths of a square m nute of arc for the full line and numbers for the b oken l ne Compared with the prev ous half year there has been a dec ease of activty near 45 wh ch s more muke l in the northein hemispheie than in the southein Tl max mum of activity in the higher latitudes has advanced about 10 towards tle poles

The monthly quarterly and half yeaily areas and numbers and mean height and mean extent of the prominences on photographs from all the co or erating observatories are given in Table l lhe unit of area is 1 square minute of arc The mean height 18 derived by adding together the greatest heights reached by
individual prominences and dividing by the total number of prominences observed; the mean extent is derived by adding together the lengths of the base on the chromosphere of individual prominences and dividing by the total number of prominences.

Table I.-AbStradt For the second half of 1925.

Months.	Number of days (effective	Areas.	Numbers.	Daily Means.		Mean height	Mean extent.
				Areas.	Numbers.		
1925						*	。
July	2312	137•	379	5.9	161	$36 \cdot 4$	522
August	221	$124 * 2$	390	5.5	17.3	37×2	4:73
September	281	$178 \cdot 6$	484	$6 \cdot 3$	17.0	38.9	$5 \cdot 30$
October	27	$192 \cdot 1$	477	71	17.7	$34 \cdot 8$	$5 \cdot 31$
November	23	127*	368	55	160	41.3	4.57
December	$26{ }^{3}$	185:)	430	69	$16 \cdot 1$	43×2	5.82
Third quarter	74	440%	1253	60	169	87%	$5 \cdot 10$
Fourth quarter	$76{ }^{3}$	505.2	1275	16.5	$16 \cdot 6$	$41^{\prime 2}$	$5 \cdot 27$
Second half-year	151	945%	2528	63	16.7	39.5	518'

Distribution elust anud uest of the S'un's axis.
Both areas and numbers were in excess in the western hemisphere as will be seen from the following table :-

1925 July to December.	East.	West.	Percentage East.
Total number observed	1242	1246	$49 \cdot 1$
Total areas in square minutes	$446^{\circ} 2$	494'6	47"2

Metallic prominences.
Twenty-nine matalic prominences were observed during the half-year. Their details are given below :-

Table II.-List of Metallic prominfeobs observed at Kodaikanal, July to December 192j.

The metallic prominences enumerated above were distributed in latitude as follows : -

	$11^{\circ}-20^{\circ}$	$21^{\circ}-30^{\circ}$	$31^{\circ}-40^{\circ}$	$\underset{\text { Mean }}{\text { latitude. }}$	Extreme latitudes.	
$\begin{array}{lllll}\text { North ... } & . . & . . & . . \\ \text { South ... } & \text {.. . }\end{array}$	4 4	10 7	3 1	$24^{\circ} \cdot 1$ $24^{\circ} \cdot 2$	$14^{\circ} \cdot 5$ and 35° 16° and $38^{\circ} \cdot 5$	

Thirteen were in October and 9 in December. Ten were on the east limb and 19 on the west.

Displacements of the hydrogen lines.
Particulars of the displacements observed in the chromosphere and prominencas are given in the following table :-

Table III.-Displacements of Hydrogen Tines.

Date.	Hour I.S.T.				Displacement.			Remarks.
					Red.	Violet.	Both ways.	
1925	н. M.	-	0		A.	A.	A.	
September $\begin{gathered}1 \\ \\ \\ 1 \\ 1 \\ 1 \\ 1 \\ 2\end{gathered}$	945	68		E	$0 \cdot 5$			
	948	31		E		0.5		At top.
	912	27		W	1			Do.
	$10 \quad 50$	30		W	$0 \cdot 5$			At base.
	8	${ }^{38}$		W			2	
	$\begin{array}{ll}9 & 4 \\ 9 & 14\end{array}$	70.5		$\frac{\mathrm{E}}{\mathrm{E}}$	Slight			
	$\begin{array}{rr}9 & 14 \\ 9 & 2\end{array}$		71.5	$\underset{W}{\mathrm{~W}}$	Do. Do.			
	913	20		$\underset{\text { E }}{ }$	Do.			
	858		34	W	1			At top.
	$\begin{array}{ll}9 & 15 \\ 8 & 42\end{array}$	59.5	20	$\stackrel{W}{W}$	1			25 A 4 th 96 mm .
	8 8 8	695	30.5	W		Slight		di base. Do.
	840	55		W		Do,		Do.
	820	64		$\stackrel{\text { E }}{ }$	Slight			
	88	88.5		$\underset{W}{W}$	Slight	Slight		
	8 8 8 8		25	E	Do.			
	850	81		E	1.			
	91	22		$\stackrel{\text { E }}{ }$	1			At top.
	858	18		W	1			Do.
	916	78		$\underset{\mathrm{W}}{\mathrm{E}}$	Slight	1		
	8 8 8	19		W	8	1		To red at top; to violet at base. At top.
	99	18		W	4			Do.
	928	20			${ }^{2}$	1		To red at top; to violet at base.
	8 8 8	68 24		$\underset{\mathrm{W}}{\mathrm{E}}$	0.5			
	8 11 115	24		W	1	1		Attop,
	100	12		W	1			Do.
	$\begin{array}{ll}9 & 12 \\ 88\end{array}$		24	W	4			Do.
	8 9 9	60 38		W		Slight		
	856		21	$\underset{\sim}{W}$	0			at top.
	1016		28	W	1			
	$\begin{array}{ll}9 & 7\end{array}$	72.5		E		Slight		
	$\begin{array}{lr}9 & 8 \\ 9 & 12\end{array}$	69 15		$\underset{\mathrm{E}}{\mathrm{E}}$	Slight	2		
	846	42		W	2			At top.
	$10 \quad 10$	14.5		E	2			
		19.5		W	2	1		Tored at top; to violet at base.
	856	23		W	2			At top.
	840	72.5		W		Slight		
	$\begin{array}{rrr}9 & 7 \\ 8 & 54\end{array}$	61 13		$\underset{\text { E }}{\text { W }}$	${ }_{0}^{1}$			At base.
	8	42		E	1			At bop.
	846	19		W	1			At top.
	836	26		W	1			Do.
	$9{ }^{9} 2$		16.5	W		Slight		Do.
	850	30		W		0%		
	$\begin{array}{ll}9 & 8 \\ 9 & 8\end{array}$	42 48		$\underset{\mathrm{E}}{\mathrm{E}}$		1		At top.
	88	23 30		$\stackrel{\mathrm{E}}{\mathrm{W}}$	${ }_{1}^{1} 5$	2		To red at base ; to violet at top.
	940	35		E	1			At top. Do.
	955		14	E	1	2		To red at base ; to violet at top.
	935	20^{5}		E		0.5		At top.
	9 9 9 2	18.5 24		E	0.5	$1 \cdot 5$		To red at base ; to violet at top.
	844	81		W	Slight			To red at dase; to violet at top.
	858	58		E		Slight		
	858	53		$\underset{\mathrm{E}}{\mathrm{E}}$		Do.		
	8 9	11	13	$\underset{\text { E }}{ }$	${ }_{0}$	1		To red at kise it to riol it top
	956		25	W	1			To red at base ; to violet at top.
	922	54.5 axis		E	Slight	1		At top.
	920	axis		...	Slight			

Date.	$\begin{aligned} & \text { Hour } \\ & \text { I.S.T. } \end{aligned}$	Latitude.		Limb.	Displacement.			Remarks.
		North.	South.		Red.	Violet.	Both ways.	
1925	II. M.	-	c		A.	A.	A.	
October	93		27.5	W	1			At top
	9) 24		24	E		0.5		
	920		34	E	1			At base.
	9 9 9		37 16	$\underset{\mathrm{W}}{\mathrm{E}}$	Slight			Do.
	34	14.5		W	$1{ }^{\text {a }}$	1		To red at top ; to violet at base.
	8 5-5	30		W		15		
	8 5.t	25		W	1.			
	8 8 9	77		$\underset{\text { W }}{\text { W }}$	Slight			
	(1) 24		43	$\stackrel{\text { W }}{ }$	Do. Do.			
	(9) 45	27		E	Do.			At base.
	96	38		W	$0 \cdot 5$			Do.
	9	83.5		W	Slight			
	850	19)		W	Do.			At top.
November		54		E	Slight			
	9	15		E		1		
	8 8 8 8 12		17 25	W	Slight			At base.
	(9) 5	37		E	Slight	Slight		To red at top ; to violet at base.
	855		12	W		$0 \cdot 5$		
	852	30		W		Slight		
	11		23	W	$0 \cdot 5$			At top.
		20.		E	2	1		Do.
	$10 \quad 2$	245°		$\underset{\mathrm{E}}{\mathrm{E}}$		Slight		Do.
	$\begin{array}{rr}10 & 1 \\ 9 & 50\end{array}$	30		E		Slight		At base.
	$\begin{array}{ll}9 & 50 \\ 9 & 47\end{array}$		64	$\underset{\sim}{W}$		1		At base. Do.
	98		25	W	1			
	$\begin{array}{ll}9 & 4 \\ 8 & 4\end{array}$		7	$\underset{W}{W}$	Slight			
	$\begin{array}{rr}8 & 58 \\ 10 & 17\end{array}$	${ }_{265}^{18}$		W	$0 \cdot 5$			At top.
\|December $\begin{gathered}1 \\ \\ \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 11 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{gathered}$			78	E	Slight			
	914	18		W	Do.			
	$\begin{array}{rr}9 & 10 \\ 10 & 4\end{array}$	${ }^{62} 5$		W		0.5		
	$\begin{array}{rrr}10 & 4 \\ 10 & 31\end{array}$	${ }_{36}^{27}$		W	$\stackrel{1}{2}$			To red at top; to violet at base.
	$10 \quad 27$	21		E	1.5			
	107		68	$\underset{W}{\text { E }}$	1			
	1045		87	W	1	2		At base.
	9 9 28	69 38		E		0.5		
	916		19	W	1			
	$\begin{array}{ll}8 & 56 \\ 9 & 32\end{array}$	77 30		$\stackrel{\mathrm{E}}{\mathrm{E}}$	1.5	1.5		
	9.38		20	E		1.5		Al base.
	938		${ }_{2}^{27}$	$\underset{\sim}{\text { E }}$	3 1			
	9 9 9	17		W	$1 \cdot 5$			At top.
	9	21		W		0.5		At base.
	9 2 9 9	39		$\underset{\mathrm{E}}{\mathrm{W}}$	4	0.5		Do.
	9 92	20		E	2	1		$\left.{ }_{\text {At top. }}^{\text {Do. }}\right\}$ seen in $\mathrm{D}_{1}, \mathrm{D}_{2}$ also.
	940		20	E	4	$1 \cdot 5$		To red at base ; to violet at top.
	$\begin{array}{rr}9 & 15 \\ 10 & 28\end{array}$	30	3i)	W		1		Do.
	950	25		E	1			
	914	23		W	1.	0.5		Tored at top; to violet at base.
	$\begin{array}{rr}9 & 11 \\ 9 & 3\end{array}$	39 65		W	1			Do.
	91	70		W	1			Do.
	920	33		E		3		Do.
	920	26		$\underset{\mathrm{E}}{\mathrm{E}}$	2	1.5		At base.
	9 9	$\stackrel{23}{36}$		$\stackrel{\mathrm{E}}{\mathbf{W}}$	1			Do.
	$\begin{array}{ll}9 & 4 \\ 9 & 2\end{array}$	29 50		$\underset{W}{W}$		15		At base.
	9	50		W	1			

Date.	$\begin{aligned} & \text { Hour } \\ & \text { I.S.T. } \end{aligned}$	Latitude.		Limb.	Displacement.			Remarks.
		North.	South.		Red.	Violet.	Both ways	
1925	H, M.	。	-		A.	A.	A.	
Jecember 21	855.	84		W		0.5		
22	9 8 8	22		E	1			At base.
22	850	${ }_{34}^{23}$		W	Slight			Over middla of prominence
24	910	83		E		Slight		Over midde of prominence
24	942	26		W	1	Sligh		At top.
25	930		36	W	0.5			Do.
25	920		25	W		$0 \cdot 5$		At base.
26	857		27	W		2		
26	858	14		W	1			
26	852	26		W	05			
31 31	$\begin{array}{ll}9 & 45 \\ 9 & 38\end{array}$	355	23	$\underset{\mathrm{E}}{\mathrm{E}}$		1 4		At top. ${ }_{\text {at top }}$ (6 A at 9 h 36 mm
31	98		87	$\frac{4}{4}$	$0 \cdot 5$			

The total number of displacements was 202 and they were distributed as follows:-

Latitude.				North.		South.	
$1^{\circ}-30^{\circ}$. 76		410	
$31^{\circ}-60^{\circ}$ 34		11	
$61^{\circ}-90^{\circ}$ 30		11	
			Total	... 140		62	
East limb	86
West limb	\cdots	\cdots...	\ldots	...	115
Pole	1
					Total	...	202

One hundred and twenty-four displacements were towards the red, 76 towards the violet and 2 both ways simultaneonsly.

Reversals and displacements on the Sun's disc.
Two handred and eighteen bright reversals of the $H a$ line, 94 dark reversuls of the D_{3} line and 62 displacements of the $\mathrm{H} \boldsymbol{l}$ line werc observed during the half-year. Their distribation is given below :-

				North.	South.	East. ${ }^{\text {P }}$	West.
Bright reverssals of $\mathrm{H} a$	\ldots	\ldots	\ldots	132	86	95	123
Dark reversals of D_{3}	\ldots	\ldots	\ldots	59	35	45	49
Displacements of $\mathrm{H} a$	\ldots	\ldots	\ldots	34	28	24	38

Three-quarters of the number of displacements were towards the red.

Prominences projected on the disc as absorption markings.

Photographs of the Sun's dise in Ha light were available from all the co-operating observalorics for a total of 179 days, which were connter as $172 \ddagger$ effective days. The mean daily areas of $\mathrm{H} c$ absorption markings (corrected for foreshortening) in millionths of the Sun's visible hemisphere and the mean daily numbers are given below:-

These fisures indicate an increase of about 70 per cent compared with the previous half-year.
For comparison wath balletins issued prior to the co-operation of other olservatories, the means based on Kodaikanal photographs alone are also given, $1 \mathscr{2}()$ days of observation being counted as $113 \frac{1}{2}$ effective days.

			Mean daily areas.	$\begin{gathered} \text { Mean } \\ \text { daily } \\ \text { numbers. } \end{gathered}$
North (Kodaikamal photographs only)	...	\cdots	1928	15%
South do.	1241	102
	Total	...	3169	254

The distribation of the mean daily areas in latitude is shown in the following diagram. The diagram shows two maxima at 30° and 600°, but in the southern hemisphere the second naximum is not so well developed.

As in the case of prominences at the limb, the activity is in excess in the western hemisphere, the percentage east being 48.23 for areas and 48.76 for numbers.

Thanks are due to the co-operating observatories for the photographs supplied by them.

The Observatory, Kodatkanal, 20th July 1926.

T. ROYDS,

Director, Kodaikanal and Madras Observatories.

D t		${ }_{18 \mathrm{H}}^{\text {¢ }}$	1 ttd		Imb	D place m t			R
			N rth			R d	$\nabla 1 t$	B tlw y	
1925			842223233458386			A	A		
Jec mb							0		
	22				$\stackrel{\mathrm{E}}{\mathrm{W}}$				
	$\begin{aligned} & \frac{2}{28} \\ & 23 \end{aligned}$	85 850 9			$\stackrel{\text { W }}{\text { F }}$	$\mathrm{Sl}_{3} \mathrm{ght}$			O lill fp
	$\begin{aligned} & 23 \\ & 24 \\ & 24 \end{aligned}$	$\begin{array}{ll} \\ 9 & 10 \\ 9 & 10\end{array}$			$\stackrel{\mathrm{E}}{\mathrm{W}}$	1	Sl ght		4tt I I
	$\begin{aligned} & 24 \\ & 25 \end{aligned}$	$\begin{array}{ll}9 \\ 9 & 32 \\ 9 & 30\end{array}$		${ }^{36}$	$\stackrel{W}{W}$	05			
	$\begin{aligned} & 25 \\ & 25 \\ & 26 \end{aligned}$	9 8 8 87		$\begin{aligned} & 25 \\ & 27 \end{aligned}$	W		-		
	$\begin{aligned} & 26 \\ & 26 \\ & \hline 26 \end{aligned}$	88 863 863	14		$\stackrel{W}{W}$	${ }_{0}$			
	$\begin{aligned} & 26 \\ & 31 \\ & 31 \end{aligned}$	$\begin{array}{ll}8 & 52 \\ 9 & 45\end{array}$	$\begin{aligned} & 26 \\ & 355 \end{aligned}$		W		1		At t p
	${ }^{31}$	$1+33$ 1838		${ }_{8}^{23}$	$\underset{\mathrm{E}}{\mathrm{E}}$	05	4		

The total number of dsplacements was 20 and thes were distribute l as f 11 ww -

L titud		N 地		S th	
1-30		7		± 11	
$31-60$		34		11	
$61-90$		30		11	
	Total	140		12	
East 1 mb					$8 i$
West limb					11,
Pole					1
			Tt tur		212

One houdred and twenty fori d splacements were towards the sed 71 towarik th villimilin ways smaltaneonsly

Reversals and displacements on the Stun 4 disc
Two hondred and eaghteen bnght reversals of the $H a$ lue 94 dark reversals of the 15 lin int b^{9} displacements of the $\mathrm{H} a$ line were observed during the half year Therr chatribution is givin $\mid 1 \mathrm{w}$

	V th	S th	East	W t
Bright rev rsals of Ha	139	41	15	123
Dark reversals of D_{9}	,	35	45	4)
Displacements of H a	34	88	2	

Three-quarters of the number of displacements were to waids the ied

Prominences projected on the dise as absorption markengs

Photographs of the Suns dise in $\mathrm{H} a$ light were avalable from all the co operating hin rist urs
 markangs (corrected for foreshortening) in milhonthe of the Suns visible hemisphele anl the murululs numbers are given below -

North
 S uth

	$\underset{\substack{\text { Moan } \\ \text { dareas } \\ \text { areas }}}{\text { Mas }}$	$\begin{gathered} \mathrm{M}_{\mathrm{M}}^{\mathrm{al}} \\ \text { daily } \\ \text { numbert } \end{gathered}$
	1917	144
	1223	38
Total	3140	242

These firures indicate an increase of about 70 per cent comparel with the previous half-year.
For comparison with bulletins issued prior to the co-operation of other observatories, the means based on Kodaik:mal photographs alone are also given, 120 days of observation being counted as $113 \frac{1}{2}$ effective days.

			Mean daily areas	$\begin{gathered} \text { Mean } \\ \text { daily } \\ \text { numbers. } \end{gathered}$
North (Kodaikanal photograplys only)	...	\ldots	1928	$15 \cdot$
South do.	\ldots	...	1241	102
	Total	...	3169	$25 \cdot 4$

The distribution of the mean daily areas in latitude is shown in the following diagram. The diagram shows two maxima at 31° and $6\left(1^{\circ}\right.$, but in the sothern hemisphere the second maximum is not so well developed.

As in the case of prominences at the limb, the activity is in excess in the western hemisphere, the percentage east being 48.23 for areas and 48.76 for numbers.

Thanks are due to the co-operating observatories for the photographs supplied by them.

The Observatory, Kodatkanal, 20th July 1926.
r. ROYDS,

Director, Kodailanal and Madras Observatories.

