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Abstract 

Atomic and molecular processes in astronomical objects have profound implications. 

Many of those objects in which certain atomic and molecular species have been de­

tected are the sites for evolution of stellar envelopes and star formations. Measure­

ments of atomic and molecular line intensities are powerful diagnostic tools for the 

exploration of many astrophysical processes. Accurate calculations of energy levels, 

lifetimes of states, oscillator strengths and shapes of the atomic and molecular tran­

sition lines are often necessary to understand those processes. Rigorous treatments 

of atomic and molecular many-body effects are necessary for accurate calculations 

of these quantities. Such calculations have become important with the advent of 

high resolution spectrographs used in several ongoing missions for solar and stellar 

projects. Even improved experimental data are not adequate for them. Forbidden 

lines, which is one of the important features in this thesis work, are difficult to mea­

sure. Here we have employed various many-body approaches to calculate electronic 

properties of some atoms, ions and molecules which have astrophysical importance. 

Both non-relativistic and relativistic studies have been performed using perturbative 

and non-perturbative approaches. 

Effective valence shell Hamiltonian (HV) theory, one of the most advanced non­

relativistic approaches to multireference many-body perturbation theory (MBPT) 

is used to calculate binding energies (energy relative to first ionization threshold), 

excitation energies, oscillator strengths and transition probabilities of neutral car­

bon and calcium. The same method is used for calculating ground state energy 

difference between the cyclic and linear isomers of propynlidyne (C3H), as well as 

their harmonic vibrational frequencies, ionization potentials, electron affinities, ex­

cited state energies, dipole moments and oscillator strengths, some of which have not 

been reported before. One of the most important forbidden transitions, magnetic 

quadrupole transitions for Be-like ions are calculated using the multiconfiguration 

Dirac-Fock met.hod, which is a self consistent variational relativistic many-body 

method. The leading relativistic correction to the Coulomb interaction known as 

the Breit interaction is included in these calculations using first-order perturbation 

theory. The \v('ak allowed transitions of Mg II are accurately computed using one of 



the most powerful non-perturbative size-extensive approaches, the coupled cluster 

(CC) method. A new approach to generate the Dirac-Fock (DF) orbitals using finite 

basis set expansions is developed. These DF orbitals are used in the CC calculations 

to achieve high accuracies for various electronic properties of atoms. 
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Chapter 1 

Introduction 

________ .. -;;.::;;:.;;...;.:;a;,:~;:,:;"" 

1.1 Atomic and Molecular Processes in 

Astrophysics 

Almost all of our knowledge of the distant universe reaches us in the form of pho­

tons. Therefore, atomic and molecular spectroscopic data are essential components 

of research in astronomy and astrophysics. There has been a long history of inti­

mate connections between astrophysics and atomic/molecular spectroscopy. Prior 

to 1962, The Astrophysical Journal was (~xplicitly subtitled "Au International Re­

view of Spectroscopy and Astronomical Physics". The accuracy with which physical 

conditions in objects studied by astronomers can be inferred from spectroscopic ob­

servations ucppuus directly on the breadth and precision of the data available for 

atoIllic and Illolecular processes. In addition, reliable spectroscopic data are re­

quired for models of photon driven physical and chemical processes; and models of 

the steady state properties of astronomical objects that absorb and emit photons 

[1, 2, 3]. Tlw increasing astronomical techniques and theoretieal models in astro­

physics continually create new demands for important data on atomic and molecular 

properties. 

The quantitative distribution of the atomic and molecular d('Illtmts in the universe 

is a. classical problem in cosmochemistry [4] and astronomy. As far as it was possible 

1 
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to test the hypothesis, the chemical composition of our part of the galaxy seems to 

be representative of that of the observable part of the astronomical universe [5]. 

Given an equivalent width, an oscillator strength value of the transition line of a 

particular element and an astrophysical model in a certain astronomical region, one 

can derive an abundance of that element in that region [6, 7]. Abundances derived 

from the technique of spectral synthesis can no more be accurate than the system 

of physical inputs. used in the theoretical calculation, like oscillator strengths. At 

the outset, let us enumerate the reasons why we are interested in the abundances of 

the atomic and molecular elements: 

1. We would like to know the primordial composition of the solar system and 

its relation to the present composition of the Earth and other planets. Such 

data might throw some light on vexing problems connected with the origin 

and chemical history of the Earth [8]. 

2. A knowledge of the composition of the local part of our galaxy is needed for the 

construction of models of the Sun and stars, and for a complete understanding 

of physical and chemical processes taking place in the stellar atmospheres and 

the interstellar medium (ISM) [9]. 

3. The observed abundance distribution of elements, and particularly of the in­

dividual nuclides, enable us to test the hypotheses that have been proposed 

for element forma.tion. 

Qua.ntitative analysis of the spectra of the astronomical sources and of the processes 

that populate the atomic and molecular energy levels that give rise to emission and 

absorption by these sources, require accurate data on transition frequencies (or dif­

ferences of energies of initial and final states of the transitions) and probabilities, 

ionization cross sections, electron impact excitations, deactivation, photoionization 

and photo detachment cross sections, radiative and dielectronic recombination and 

radiative attachment rate coefficients and cross sections for heavy particle collisions 

involving charge transfer. For molecules, processes such as radiative association, 

rotational and vibrational excitation, ion-molecule and neutral-particle chemical 

reactions, dissociative recombination, photo dissociation and collision induced ab-
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sorption must be quantitatively described. Much of these data are not available in 

literature [3]. 

The resonance lines of neutral and singly ionized lighter atoms are possible to ob­

serve through the earth's atmosphere, but for most of the abundant atoms and ions 

the first excited level with different parity from the ground state lies above 33000 

cm- i . Therefore, their resonance lines occur at wavelengths .A < 3000 A. This large 

separation of the lowest levels also means that many of the strongest permitted 

lines in the spectra of planetary nebula and diffuse nebulae occur at ultraviolet 

(UV) wavelengths. 

Therefore, in the last one decade we have seen the deployment of powerful new satel­

lite instruments for astronomical UV spectroscopy and unprecedented concomitant 

growth in the quality and variety of astronomical spectroscopic data [10]. Becaus~ 

space astrophysics missions are conspicuous engineering efforts, instrument signals 

are sometimes equated with scientific success. However, critical attention to the 

scientific data is needed. Robust experimental and theoretical programmes in lab­

oratory astrophysics are required to optimize mission planning and, ultimately, to 

transform returned spectroscopic data into scientific knowledge through calibration, 

analysis and interpretation. 

The far UV line spectra of stars were observed first with rockets. But the equivalent 

widths were rather large, probably because of blending with stellar lines. Now 

with Hubble Space Telescope (HST) and Far Ultraviolet Spectroscopic Explorer 

(FUSE) operating in orbit, we have new source of high quality spectroscopic data 

[11, 12, 13, 14]. The actual ranges arc 1090 to 1700A for Echelle-A and 1700 to 

3100A for Echelle-B of HST spectrographs. But below 1150A the sensitivity is 

low. FUSE complements HST spectrograph in UV range. Certainly the sorting of 

interstellar lines which overlap in velocity is done best with a small aperture. 

The identification of molecules in interstellar space has profound implications. Many 

of the clouds in which molecules have been detected are the sites of star formation. 

The measurements of molecular line intensities are powerful diagnostic tools for 

the exploration of the physics of gravitationally collapsing interstellar clouds [15]. 

The energy and ionization balance of an interstellar cloud are significantly modified 
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by the presence of molecules and the chemical evolution of the cloud affects in an 

essential way the dynamical history of the collapse. 

Fortunately, many of the analyses of laboratory spectra now provide more than 

adequate accuracy on wavelengths for the investigation of the best possible HST 

data. In most modern work physicists and chemists have calculated wavelengths 

from the energy levels, which have been derived from the measurements of many 

different transitions. But, accuracy is not much adequate in the far ultraviolet region 

where FUSE yields best data. 

A reasonable goal for interstellar abundances is 10- uncertainties within ±O.l dex so 

that it is desirable to know oscillator strengths (f-values) to ±O.03 dex. Accurate 

f-values particularly important when one combines lines of different strengths from 

the same ion to obtain the curve of growth of the interstellar cloud or compares. 

profiles to determine the amount of saturation. The f-values for many resonance 

lines now have this accuracy, but numerous important ones still have only poor 

measurements or rough theoretical estimates available and a few do not have even 

these. 

In brief, we can list why accurate wavelength, energy level and oscillator strength 

data are needed for astrophysical studies: 

1. Identification of overlapping weak lines in astronomical spectra and disentan­

glement of their blends; 

2. To study stellar convection, macro- and micro-turbulence, rotation, supernovae 

and nebulae; 

3. To correct and improve the accuracies of known atomic a.nd molecular energy 

levels and find previously unknown atomic energy levels; 

4. Important predictions of forbidden transitions which are the best source to 

study nebulae, circumstellar and supernova remnants; 

5. To support stellar atmospheric models, where millions of atomic and molecular 

lines of thousands of species are used. 

In order to calculate excitation energies and oscillator strengths for atomic and 

molecular systems, it is necessary to use many-body theory. 
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1.2 Many-Body Theory of Atoms and Molecules 

The development in modern many-body theory based on quantum mechanics took 

place in the early 1950's. The stimulus for this was provided by the training of 

numerous theorists in the techniques of field theory. In this area, the theorists had 

become familiar with high order perturbation methods, handling of divergences, 

renormalization and Feynman diagrams. 

Many-body theory probably has had its greatest success in applications to atoms. 

Molecular calculations are much more difficult, because in molecules one not only 

takes into account interactions among electrons of a particular atom, but also in­

teractions of the electron-electron, electron-nucleus and nucleus-nucleus of different 

atoms. 

In atoms, the electron densities and kinetic energies are large, particularly in heavy 

atoms, as a result of the dominance of the nuclear field. The simple atomic or 

molecular picture, that physiCists and chemists have of electrons occupying orbitals 

is in reality an approximation, sometimes a very good one but nevertheless, an ap­

proximation - the independent particle model (IPM) (also called Hartree-Fock (HF) 

approximation). In this model electrons are assumed to move independently of each 

other in an average field due to the nucleus and the other electrons. The IPM and 

the variational principle then lead to the (unrestricted) Hartree-Fock equation. The 

HF approximation is important not only for its own right but also as a starting point 

for more accurate approximations, which include the effects of electron correlation. 

A few of the computational methods of atomic and molecular processes bypass the 

HF approximation, but most do not. All the methods, described in this thesis use 

the HF approximation as the staring point. 

The study of atomic and molecular structure has been traditionally divided into 

two separate approaches : a) ab initio and b) semiempirical. In this thesis, we have 

employed various many-body ab initio methods to calculate electronic properties of 

some atoms, ions and molecules which are of astrophysical importance. 

The first quantitative application of the many-body perturbation theory (MBPT) to 

atomic structure was by Kelly in 1963-64 who calculated properties of ground and 

excited states of several light atoms [16, 17, 18]. Such calculations were probably not 
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feasible much earlier because of large computational requirements. Kelly found that 

perturbation methods usually converged rather slowly even in atoms of simple struc­

ture unless selective diagrams whose summation was used to obtain energy shifts 

and the excited orbitals were optimally chosen. The following non-relativistic and 

relativistic studies have been performed using perturbative and non-perturbath'e 

approaches. 

Effective valence shell Hamiltonian (HV) theory is one of the most advanced non­

relativistic approaches to ab initio multireference many-body perturbation theory 

(MR-MBPT) [19]. Given a set of one-electron orbitals which is partitioned into 

core, valence and excited orbitals, it is possible to transform the original Schrodinger 

equation for the effective valence shell Hamiltonian. HlJ is defined in such a way that 

it depends explicitly only upon the valence orbitals. However, since HV is formally 

exact, its diagonalization reproduces the same valence state energies which result 

from the solution of the full Schrodinger equation for those states within the given 

orbital basis. 

HV is a novel alternative to configuration interaction (CI) calculations for studying 

the role of electron correlation. It combines the most desirable features of the MBPT 

and the multiconfigurational self-consistent field (MCSCF) approaches. The second 

order HlJ calculations have demonstrated the remarkable fact that it is possible to 

use the same HV effective integrals for all charged species of the same valence sys­

tem simultaneously. Third order calculations provide accurate results for a variety 

of atomic and molecular properties. We shall employ the HV method to calculate 

various electronic properties of neutral open shell carbon and closed shell calcium. 

We shall investigate the effectiveness of the multireference structure and the method 

of tackling non-dynamical correlations of the HV method by applying to astrophys­

ically important C3 H radicals. 

A relativistic theory is required for the description of atoms and molecules whenever 

their orbital electrons probe regions of space with high potential energy near the 

atomic nuclei. Primary effects of a relativistic description include changes to spa­

tial and momentum distributions, spin-orbit interactions, quantum electrodynamic 

corrections such as the Lamb shift and vacuum polarization. Secondary effects in 
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many-electron systems arise from shielding of the outer electrons by the distribu­

tions of electrons in penetrating orbitals; they change orbital binding energies and 

dimensions and so modify the order in which atomic shells are filled in the lower 

rows of the Periodic Table. Relativistic atomic and molecular structure theory can 

be regarded as a simplification of the fundamental description of quantum electro­

dynamics (QED). An understanding of the Dirac equation, its solutions and their 

numerical approximation, are essential material for studying many-electron systems 

here. 

I 

Non-relativistic theories are appropriate for light atoms or ions. Due to various 

nuclear processes (like the r process) heavier elements become abundant in the 

astronomical objects. Also, only allowed transitions can be calculated with the non­

relativistic theory. Extremely hot environments of the stars (for instances, corona 

of the Sun, planetary nebulae etc) show abundances of highly stripped ions. With 

the advent of many high resolution spectrographs, observations of weak or forbidden 

transition lines become possible and they are of great astrophysical interest. Many 

astrophysical phenomena like, coronal heating, evolution of many chemical composi­

tions on the stellar envelope, determination of the type of chemistry in the planetary 

nebulae precursor's envelope are believed to be explained largely by these forbidden 

lines. There are some approaches based on the relativistic corrections to the non­

relativistic Hamiltonian that are available in the literature, have been extensively 

used. Full fledged relativistic approaches are being used by various research groups 

[20j. 

The multiconfiguration Dirac-Fock (MCDF) approach [21] is the relativistic coun­

terpart of the multiconfiguration Hartree-Fock (MCHF) method [22]. This is a 

self-consistent variational many-body method which takes into account the electron 

correlation to a large extent with a rather small number of orbitals. In the MCDF 

method there is a choice of optimization procedures. There are in principle two dif­

ferent ways of allowing the calculation to minimize energy. The average level type 

calculations use the weighted sum of the diagonal Hamiltonian matrix elements for 

the energy state specified. The optimal level (OL) scheme minimizes the energy for 

one state (level). The OL scheme can be extended to include several levels in an 
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energy functional that contains weights for the states under consideration, this is 

referred to as an extended optimal level (EOL) calculation. The latter method is 

computationally preferable. The relativistic two-electron operator cannot be written 

down in closed form. In Quantum Electrodynamics (QED), the interaction between 

two electrons can be expressed as a series expansion. The leading correction to the 

Coulomb interaction is known as the Breit interaction. This corrections of the ener­

gies of the atomic states can be included using first-order perturbation theory. The 

magnetic quadrupole transition of Beryllium-like ions, which were calculated earlier 

for a few ions with low atomic number using relativistic correction methods, will be 

calculated in this thesis with MCDF-EOL approach to investigate the implications 

of the method described above. 

The most common type of configuration interaction (CI) calculation includes all 

singly and doubly excited configurations with respect to a reference configuration. 

These CI calculations are sometimes supplemented by a Davidson correction [23] for 

the fact that the variational treatment with singles and doubles is not size consis­

tent. Couple Cluster (CC) theories provide an alternative means for incorporating 

single and double excitations, but, at the expense of more involved computations, 

they are explicitly size consistent and do not require Davidson type corrections. 

This method is one of the successful many-body non-perturbative approaches for 

quantitative studies on atomic systems. It was developed by Coester and Kiimmel 

[24, 25] in 1958-60 and adopted a form which is useful for quantum chemistry by 

Cizek, Paldus and co-workers [26, 27, 28, 29]. It can be viewed as a closed-form set 

of equations which may be used to sum certain categories of MBPT diagrams to 

all orders [30]. This has the advantage that order dependence is removed from the 

computation and certain invariance properties are present which are not normally 

applied to a finite-order method. This method has been extended to the relativistic 

regime in the last decade. The cluster expansion of the wave functions in the CC 

representation provides the size-extensivity of the computed energies in a straight 

forward manner. The non-relativistic CC has been applied with great success to a 

wide variety of problems including a host of molecular systems. The relativistic ver­

sion of the CC has become practical only recently [31]. That is because the angular 
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reduction of the CC equations is rather complex, and the number of cluster ampli­

tudes and the computational effort are several times larger than in the corresponding 

non-relativistic approximation. Therefore, the most sought improved ab initio cal­

culations for the unexpectedly weak 38 - 4p doublet transitions of Mg+ system can 

be investigated with this fully ab initio non-perturbative relativistic approach. 

1.3 Organization of Thesis 

In this thesis, we have employed various many-body approaches to calculate elec­

tronic properties of some atoms, ions and molecules which are of astrophysical im­

portance. Both non-relativistic and relativistic studies have been performed using 

perturbative and non-perturbative approaches. In Chapter 2, we discuss the non­

relativistic perturbative HV approach to calculate various electronic properties of 

neutral carbon and calcium. Both the above mentioned neutral atoms have im­

mense astrophysical importance and have strongly interacting configurations. In 

our work we show how the multireference HV approach handles these configurations 

and yields accurate results of their electronic properties. 

Relativistic effects are prominent for heavier elements. The MCDF is discussed in 

the first section of Chapter 3. In this chapter, we calculate magnetic quadrupole 

transitions for beryllium-like ions for which accurate transition probability calcula­

tions are extremely useful in astrophysical interpretations. Finite basis set expan­

sions can be used to solve the single particle Dirac-Focl( equations. The conventional 

approach using the Gaussian-type orbitals (GTOs) is tedious and does not always 

produce results of desired accuracy. In the next section of Chapter 3, we develop a 

new approach using the numerical wavefunctions (obtained froIll Dirac-Fock (DF) 

calculations in the MCDF framework) for occupied and a few low lying unoccupied 

orbitals; and GTOs for remaining high lying orbitals. This approach has large im­

plications, specially, for the highly correlated methods, like, coupled cluster (CC) 

method which we will be using to investigate the electronic properties of singly ion­

ized magnesium atom. Also this new method of generating orbitals will be useful 

to calculate electronic properties like hyperfine transitions, where the accuracy of 

the core orbital wavefunctions is very important. The unexpectedly low strength 
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of 38 - 4p doublet transitions of Mg+ in various calculations has compelled us to 

calculate these transitions using the ab initio powerful non-perturbative many-body 

approach, the CC method. In last section of Chapter 3, we will investigate how all 

order perturbation nature of the method yields accurate electronic properties and 

the effect of highly excited reference space on them. 

The understanding of hydrocarbon synthesis in interstellar clouds provides a stim­

ulus for studying the hydrocarbon radical C3H and its isomers. Here the ground 

and excited state properties of the l- and c-C3H radicals are computed through the 

third order HV method for both HV optimized geometries, as well as for the ex­

perimental and MP2/6-31G(d,p) optimized geometries for comparison discussed in 

Chapter 4. Several harmonic vibrational frequencies are obtained as a by-product 

of the optimization procedure. 

In the last chapter, we summarize the important conclusions of this thesis and 

describe future work that may be beneficial for a deeper understanding of the nature 

of the methods we have used. 
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Chapter 2 

Non-relativistic Many-Body 

Calculations of Atomic Properties 

of Astrophysical Interest 

- _________ IIlIPCc;::,;;:n:.::..:.:. ~~ :.~'·!m"I __________ _ 

2 .1 Introduction 

Two widely used perturbative methods to obtain accurate solutions of the time 

independent Schrodinger equation are Rayleigh-Schrodinger (RSPT) and Brillouin­

Wigner (BWPT) perturbation theories. They have been applied quite successfully 

to the calculation of energy levels in many systems for which a reasonable zeroth 

order approximation is provided by a single reference function. Examples of such 

applications to ordinary (non-many-body) systems are well known and can be found 

in textbooks [1]. On the other hand, many-body systems, such as open shell ground 

and excited states of atoms, finite nuclei with particles beyond a doubly magic core, 

transition states on potential surfaces, and excited states of molecular systems, 

have degenerate or quasi-degenerate zeroth order states which must be described 

with multireference determinantal wave functions.' Generalizations of perturbation 

theory to these cases are known as degenerate perturbation theory (DPT) and quasi­

degenerate perturbation theory (QDPT). Some theories [2, 3,4, 5,6] are developed as 

perturbation expansions for the eigenfunctions and eigenvalues of the Hamiltonian 

13 
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H, and others [7, 8, 9, 10] are formulated in terms of an effective Hamiltonian 

Heff , where the total eigenspace of unperturbed Hamiltonian is divided into model 

space (P-space) and complementary space (Q-space). Here we discuss the Hef! 

method. The dimension d of the space P in which HefJ is defined is small, in 

general and the d eigenvalues of Ref! are identical to the d eigenvalues of H. Thus, 

the effective Hamiltonian calculations offer an interesting alternative to variational 

calculations because they avoid the problem of diagonalizing large matrices and d 

energies are obtained simultaneously from a single calculation. Since order by order 

expansions may not always converge well and sometimes may even diverge, effectiYe 

Hamiltonian methods also been formulated using methods that are, in principle, 

exactj for example, iterative schemes [11, 12, 13]. 

Similar transformations may also be applied to an arbitrary time-independent op­

erator A, producing an effective operator Aef! in the model space P. Aeff gives 

exact expectation values and transition moments of A between the eigenfunctions 

of H corresponding to those of Heff . In the effective Hamiltonian formalism, the 

model space is chosen to include the required configurations and other configurations 

which are strongly interacting with them to obtain good convergence in ab initio 

calculations of atomic energy levels and molecular potential surfaces [14, 15, 16], for 

instance. Two general categories of partitioning are called Mollcr-Plesset (MP) and 

Epstein-Neslwt (EN) partitionings. The generalized MP partitioning utilizes a "sum 

over orbitals" treatment, whereas the generalized EN partitioning pursues a "sum 

over states" formulation in constructing the unperturbed Hamiltonian, Ho. Different 

potentials ma.y be utilized to construct Ho, and a. wide range of potentials have been 

chosen [17, 18] with varying degrees of success. Unfortunately, both MP and EN 

partitionings arc unsuitable for rnultireference MBPT (MR-MBPT) computations, 

as they often generate divergent perturbative expansions for reasons explained by 

Chaudhuri and Freed [19]. 

To improve both the perturbative convergence and the serious intruder state prob­

lems in several MR-MBPT methods, Freed and co-workers [20, 21, 22] use multiple 

Fock operators to obtain the valence orbitals. All reference space orbitals and or­

bital energies a.re obtained from V(N-l) potentials, thereby providing a good first 
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order approximation to the low lying excited states and thus minimizing the work 

left for the perturbation expansion. When applied to larger reference spaces, the 

valence orbital energies are then forced to be degenerate. The form of the diagonal 

Ho in the forced degeneracy the HV method is given by 

Nc N" N. 

Ho = L €ca~ac + tv L atav + :E €ea!ae (2.1) 
c II e 

where c, 'v and e stand for core, valence and excited orbitals. The average valence 

orbital energy €~ is obtained from the original set of valence orbital energies by the 

democratic averaging, 

(2.2) 

with Nv the number of valence orbitals defining the complete reference space. The 

forced degeneracy condition introduces a diagonal perturbation oV = €V - €~ that 

starts to contribute in third order. The magnitude of oV directly depends upon 

the spread of the original valence orbital energies (':11 before averaging. In fact, some 

third order computations with small, quasi-degenerate valence spaces do not require 

valence orbital energy averaging. 

Effective Hamiltonians and effective operators are used to provide a theoretical jus­

tification and, when necessary, corrections to the semi-empirical Hamiltonians and 

operators of many fields. In such applications, Ho may, but does not necessarily, 

correspond to a well defined model. When the effective Hamiltonian formulation is 

applied to many-body problems, the zeroth order Hamiltonia.n Ho is usually rep­

resented as a sum of one-particle operators that are defined in terms of a set of 

one-particle functions. These functions are called spin-orbitals or simply orbitals 

in atomic and molecular physics. The orbitals are divided into core, valence or 

active, and excited orbitals. The model space configurations are characterized by 

having all core orbitals occupied and all excited orbitals empty. If these model space 

configurations include all possible ways of distributing the active electrons into the 

valence orbitals, the model space is called "complete". Proofs have been given for 

the existence of a fully linked perturbation expansion for some types of effective 

Hamiltonian in a complete model space [9, 23, 24]. However, some model space 

configurations can cause a wide spread in the eigenvalues of Ho, potentially leading 
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to serious convergence problems. In many cases the number of configurations in 

a complete model space can be prohibitively large. To alleviate these problems, 

Hose and Kaldor have suggested the use of an "incomplete" model space defined 

by retaining only the "important" configurations of the complete model space [25]. 

Much work has been done using incomplete model space, and there are now several 

different schemes for selecting the configurations. Many of theses alternatives are 

computationally convenient [26]. In this part of the thesis work we employ the third 

order H1I method to calculate the various electronic properties of neutral carbon and 

calcium. 

2.2 Theory 

Perturbative methods proceed by first partitioning the exact Hamiltonian H into a 

zeroth order part Ho and the perturbation V 1 

H = Ho + V, (2.3) 

where Ho contains all one-electron Fock operators. The Schrodinger equation for the 

unperturbed Hamiltonian (Ho) is taken as providing a complete set of eigenfunctions 

l<I>i) with corresponding eigenvalues Ef, i.e., the unperturbed eigenfunctions satisfy 

the zeroth oreler equation, 

(2.4) 

The eigenfunctions of Ho can be divided into two complementary subspaces, defined 

by two projectors P and Q, where the reference space projector is 

d 

P = L I <I>i)(<I>iI =:L ~ (2.5) 
i=l 

and the projector for the orthogonal complement of P is 

00 

Q = 1 - P = L lq,j)(<I>j 1= :L Qj (2.6) 
j=d+l j 

The subspace P of dimension d is variously called the reference or model space, while 

its orthogonal complement is formed from the remaining zeroth order eigenvectors 

and is called the complementary or virtual space. 
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The reference space functions l'lr?) are defined as the projections of the exact eigen­

functions IWi) on the reference space, 

(2.1) 

Alternatively, the exact eigenfunctions l'lri ) may be determined from the model space 

functions Iw?) with the aid of the wave operator Ok, 

(2.8) 

Using the definitions of P, Q and il, the exact Schrodinger equation can be expressed 

as 

(2.9) 

where the effective Hamiltonian Hell is given by 

Hel! = PHOP. (2.1O) 

An expression for 0 is obtained by projecting the Bloch equation (Hrl = ilP HeIlP) 

on the virtual space (Q) from left 

Q[il, Ho]P = Q[Vn - nV]p. (2.11) 

An order by order expression for il (and hence He! I) can he derived by expanding 

n as 

o = 1 + n(l) + n(2) + ... (2.12) 

and then substituting n into Eq. (2.11), yielding 

n-l 
[n(n), Ho]P = (Vn(n-l) - L n(m) Vil(n-m-l))p, (2.13) 

m=l 

where n(n) is the nth order contribution to the wave operator. The matrix element 

of the (n+l)st order contribution to the effective Hamiltonian He!1 is then obtained 

by inserting n(n) into Eq. (2.13) to produce 

(2.14) 

The wave operator n in the equations above depends upon the model function on 

which it operates,i.e., n is a state or ket dependent wave operator. Further, the 
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above derivation of He!! assumes that n satisfies intermediate normalization (i.e.~ 

P0P = P), which, in fact, is not mandatory [27, 28]. 

The HV method gives the unique lowest-order approximation of He!!, 

H V = PHP + ~ 2:]P(¢)VQ(E¢ - Ho)-lQVP(¢') + h.c.] 
2 ¢,q;' 

(2.15) 

where P(¢) is the projector onto the valence space basis function ¢ and h.c. denotes 

the Hermitian conjugate of the preceding term. The computations of excitation 

energies proceed to the next order (third) in V. 

The matrix elements of an operator D are transformed by the HV theory into 

where DV is effective valence shell operator which is computed from D by 

DV = PDP + ~ L[P(¢)VQ(Eq; - HO)-lQDP(¢') + h.c.] 
2 ¢,¢' 

(2.16) 

(2.17) 

Many body theory techniques can be applied to reduce the above expressions (2.16) 

and (2.17) to represent the matrix elements of DV in the valence orbital basis. 

The resulting equations may be written alternatively in terms of core-, one-, two-, 

... electron valence shell operators D~, Di, DYj, "', respectively, in the operator 

representation, 

D V = D V + '" D1! + ~ '" D1!, + '. . . (2.18) 
c ~ z 2 ~ ZJ ' 

Z Z,J 

where D is a dipole operator, DV is an effective dipole operator that acts only on the 

P-space. It should be noted that although dipole operator is a one-electron operator, 

two-electron effective terms DYj appear in the nontrivial lowest order perturbation 

expansion of Eq. (2.17). This non-classical two electron term is necessary to obtain 

accurate dipole transition moments. Fig. 2.1 shows typical one- and two-body 

diagrams that are zeroth and first order in V. 

In the actual computation, the effective Hamiltonian HV is first diagonalized to 

obtain the desired eigenvalues and eigenfunctions. The latter are then used to 

compute expectation values and transition moments of some operator D. In the 

length gauge, the absorption oscillator strength (I) is defined as: 

fi-+! = 2~EI('I(!ILrklwi)12 
k 

(2.19) 

where 6.E = E, - Ei is the transition energy, (W,lrlwi) is the transition moment. 
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Figure 2.1: Typical one and two body HV dipole diagrams. Here, the line going 
up (down) refers to virtual (core) orbital. The valence orbitals are represented by a 
line with a double arrow and a line with an arrow inside a circle, can be a valence 
or virtual orbital. 

2.3 Properties of neutral carbon 

Atomic data of neutral carbon are one of the most important set of parameters in 

the area of observational astronomy because of the ample abundances of carbon 

throughout the universe. Moreover, the determination of the relative population of 

carbon atoms provides one of the best tools for studying solar phenomena, stellar 

atmospheres and interstellar media. The inability of experimentalists to produce 

some of the requisite high resolution data has inspired theoretical computations 

to fill the void. O:,er the past few years, considerable effort has been devoted to 

red uce the discrepancies between the experimental and the theoretically predicted 

transition energies and oscillator strengths. Notably, Nussbaumer el al [29] were 

quite successful in reducing the error of the predicted transition energies from few 

thousand cm -1 to a few hundred cm -1. However, their estimated oscillator strengths 

for the most important 2p -+ 38 and 2p -+ 48 transitions are unacceptably low 

compare to the empirical values [30]. 

The difficulty in accurately estimating transition energies and oscillator strengths 

of the atom arises mainly due to the following reasons: (a) the precise computation 

of transition energies and oscillator strengths requires a balanced description of the 

ground and excited states, (b) the use of inadequate basis leads to difficulties in 

describing the excited states and an unbalanced treatment of dynamical correlation 



2.3.1 :Basis set and reference space 20 

and polarization effects. The problems due to basis set inadequacy can be removed 

partially by increasing the basis for small and moderate sized atomic and molecular 

systems. Here, size-consistency [48] of the theory plays an important role in handling 

the proper treatment of electron correlation and by that way it treats properly the 

differential correlation energies of the interacting (initial and final states) zeroth 

order states. It ensures that the state energies scale linearly with the number of 

electrons in a rigorous way. 

Many correlated many-body methods, including coupled cluster theory [31], gener­

ally treat the excited state of neutral carbon as a double electron attachment to 

the closed shell doubly ionized atom (M+2 + 2e -+M) . Such approaches use overly 

contracted atomic orbitals from positive ions for computing the transition moment 

of the neutral system. These orbitals yield an incorrect description of the excited 

state of neutral carbon atom. 

We have improved the reliability of the theoretically predicted neutral carbon excita­

tion energies and oscillator strengths (for non-relativistically allowed transition) for 

a wide range of configurations. The computations are performed employing the ef­

fective valence shell Hamiltonian (HV) method, proposed by Freed and collaborators 

[32]. The HV method has been found to be quite successful in accurately assigning the 

electronic spectrum of atomic and complex molecular systems, such as conjugated 

polyenes and inorganic molecules [33, 34,35, 36]. By virtue of being a multireference 

configuration approach, the HV method incorporates the non-dynamical correlation 

(correlation internal to the valence orbitals) necessary to describe open-shells and, 

hence, the method possesses distinct advantages over the traditional single reference 

many-body perturbation theory. The present computations for neutral carbon rein­

force our prior assertions that the HV method provides a useful alternative scheme 

for the calculations of atomic properties. 

2.3.1 Basis set and reference space 

The appropriate selection of the basis set, orbitals and the model space are difficult 

but most essential task in all ab initio many body methods-, because the perturbative 

convergence of a finite order calculation strongly depends upon these factors. A 
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prior knowledge of the system of interest may reduce the computational effort to 

find an optimal basis set and reference space, otherwise some trial and error is 

required to achieve this goal. The present computations use a rather large basis 

for carbon atom constructed from the (12s6p3d2f)/[5s4p3d2f] PVQZ correlation 

consistent set of Dunning [37], augmented by one polarized d-function ((d = 0.75) 

and two s- ((s=0.0230 and 0.0055), two p- ((p=0.0210 and 0.0049) and two d diffuse 

functions ((d=O.0150 and 0.0032), yielding a 81-contracted Gaussian type orbitals 

(CGTO). Although Slater type orbitals (STO) are more appropriate for atomic 

calculations, the CGTOs are more convenient and compensated for the inadequacy 

by the addition of more basis functions. Here we have used D2h symmetry. 

The reference space of multi reference many-body perturbation theory (MR-MBPT), 

is constructed as follows: First, the orbital space is divided into "core" (doubly 

occupied in all reference space configurations), "valence" (partially occupied in the 

reference space configurations) and "virtual" orbitals (unoccupied in all reference 

space configurations). The electrons present in the valence orbitals are distributed 

over the valence orbitals in all possible ways to generate complete reference space 

and thereby to ensure the size-extensivity of the computations. An obvious choice of 

the occupied valence orbitals for atomic carbon is the 28 and 2p orbitals since these 

are the outermost orbitals that have same principal quantum number. However, 

in the perturbative computation of some high lying Rydberg states of interest, the 

inclusion of 28 orbital in the valence space introduces numerical instabilities of the 

perturbative expansion because of the wide zeroth order energy gap between the 28 

and 2p orbitals and the forced degeneracy imposed in Ho upon the reference space. 

The forced degeneracy for a {2s, 2p} valence space would produce a large diagonal 

perturbation in V that disrupts the convergence of the perturbative expansion. To 

avoid this numerical instability, we consider 2p as the only valence orbital that is 

occupied (partially) in the single determinantal approximation in the ground state. 

This choice of reference space precludes transitions involving excitations from 28 

orbitals, but our focus here is upon generating accurate estimation of oscillator 

strengths for 2p -+ kv transitions where k designates orbitals with principal quantum 

number 3 or 4 and v indicates symmetries. The excited kv orbitals are unoccupied 
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in the ground state configuration and retermed as unoccupied valence orbitals. The 

inclusion of both 28 and kv Rydberg orbitals in the reference space would lead to 

numerical instability due to the presence of intruder states. 

The selection of the unoccupied valence orbitals is based on the excited state(s) 

of interest. For example, the 38, 3p, 48 and 4p unoccupied valence orbitals are 

included in the reference space designed for computing the 2p2, 2p3s, 2p3p, 2p4s 

and 2p4p excitation energies. (Although the 3d orbital is nearly degenerate with 

3p and 48 orbitals, and it contributes to the ground state, but the contribution of 

the 3d orbital is insignificant for the 2p3p and 2p4p excited states). On the other 

hand, the computation of the 2p3d excited states requires the inclusion of the 3d 

orbital in the valence space. However, in this case, 4p orbital is not retained in the 

valence space (i) to reduce the size of the reference space and (ii) to minimize the 

computation labor. The omission of the 4p orbital from the latter reference space 

is permissible because the contribution of the 4p orbital to the 2p3d excited state is 

negligible. 

2.3.2 Results 

Table 2.1 compares selected excitation energies, computed by the HV method with 

experiment [38] and with other correlated ab initio calculations [29, 31]. It includes 

a series of Is22s22p4p Rydberg states that have not been treated previously by 

accurate ab initio methods. This table clearly demonstrates that both superstruc­

ture (SS) and coupled cluster based on similarity transformed equation of motion 

(STEOM-CC) method overestimate the excited state energies to a greater extent 

than the close coupling and the HV method. Both the STEOM-CC and SS calcu­

lations exhibit deviations from experiment that steadily increases with the energies 

of the excited states. However, the relative performance of STEOM-CC approach 

far surpasses that of the SS method, even though both treatments use C+2 orbitals 

instead of neutral orbitals which are more appropriate for these calculation. [The 

C+2 orbitals are used in the STEOM-CC and SS approach for convenience.] The 

STEOM-CC scheme begins with the closed coupling calculation for the closed shell 

Be-like configuration (ls228 2 ) of C+2 and then two electrons are added to com-
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pute the excitation energies of neutral carbon [the STEOM-CC calculations employ 

contracted Gaussian type orbitals (CGTO) [39]]. Hence, it is not surprising that 

8TEOl\'1-CC provides a poorer estimate of the excited state energies as compared 

to the HV calculations which uses neutral carbon orbitals for treating all the excited 

states. The overall accuracy of the closed coupling and HV excitation energies are 

roughly similar, although majority of the low lying and some of the high lying states 

are better estimated by the HV method, wherever comparisons are available (like 

2p4p states are not calculated by Nussbaumer et al [29]). 

Table 2.2 displays the oscillator strengths for 2p ~ 38 and 2p ~ 48 transitions as 

obtained from the experiment, observed as well as from the HV, closed coupling 

and 8S calculations [29]. Also we present the same transitions reported by Luo 

and Pradhan [40] in the framework of the opacity project [41] using closed coupling 

method and the 88 method [42] based on CI ab initio calculation for comparison. vVe 

find that both the closed coupling and the 8S schemes underestimate the observed 

oscillator strengths. The 8S method offers better estimate to the observed value 

of the oscillator strengths for the 2p ~ 38 transition than the other approaches, 

but for 2p ~ 48 transition is underestimated. [Note that, oscillator strength is 

a product of transition energy and the square of the transition moment (see Eq. 

2.19). Since, the transition energy of 2p ~ 38, produced from the closed coupling 

method, is close to the experiment, its small computed oscillator strength compared 

to the observed value probably indicates an underestimate in the 2p ~ 38 transition 

moment.]. The HV computation provides closer to observed oscillator strengths for 

both the 2p -4 38 and 2p ~ 48 transitions probably indicating that the 2p -4 38 

and 2p -4 48 !-Iv transition moments may be more accurate than those from the ec, 
88 and other techniques. 

Table 2.3 displays our computed oscillator strengths for the transitions from ground 

e P) state and excited states to excited states transitions and compares with the 

calculations of Nussbaumer et al [29] and with experiment. We have found that 

our HV f-values for the transitions 2p3s ~ 2p4p are in excellent agreement with 

the experimental values, and also we do not find the constant difference in f-values 

between the theoretical values and experimental measurements as mentioned by 
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Table 2.1: Excitation energies (in Rydberg) of C I. 

Terms State Labs.a Closed SS STEOM-CC HV 

Coupling 
2S22p2 3p 0.0000 0.0000 0.0000 0.0000 0.0000 

iD 0.0926 0.0953 0.1057 0.0992 0.0930 
is 0.1970 0.2101 0.2479 0.2036 0.2034 

2S22p3s 3p 0.5499 0.5457 0.5896 0.5498 0.5545 
ip 0.5646 0.5613 0.6075 0.5659 0.5644 

2S22p3p Ip 0.6272 0.6256 0.6659 0.6174 0.6271 
3D 0.6351 0.6335 0.6733 0.6365 0.6346 
3S 0.6444 0.6427 0.6830 0.6512 0.6450 
3p 0.6501 0.6489 0.6899 0.6527 0.6504 
iD 0.6614 0.6603 0.7024 0.6784 0.6636 
IS 0.6739 0.6727 0.7155 0.7019 0.6662 

2s22p4s 3p 0.7117 0.7081 0.7495 0.7094 
Ip 0.7136 0.7097 0.7522 0.7120 

2S22p3d iD 0.7076 0.7052 0.7454 0.7126 
3D 0.7133 0.7108 0.7513 0.7132 
IF 0.7153 0.7127 0.7541 0.7149 
ip 0.7172 0.7143 0.7563 0.7154 
3p 0.7225 0.7214 0.7609 0.7156 

2s22p4p lp 0.7338 0.7319 
3D 0.7361 0.7340 
3S 0.7391 0.7366 
3p 0.7411 0.7402 
iD 0.7451 0.7448 
is 0.7495 0.7467 

a: [38], b: [29], c: [31] 

Table 2.2: Oscillator strengths of C I for tile ground 2p2(3 P) ~ excited 2p3s(3 P) 
and 2p4se P) transitions. 

Terms Lab. Observedc Nussbaumer et ald Lpe Hibbert! HV 

CC SS 

2p2e P) -+ 2p38e P) 0.14u 0.191 0.139 0.162 0.147 0.118 0.165 

2p2(3 P) -+ 2p4se P) 0.049b 0.035 0.022 0.019 0.022 0.022 0.023 

a : [43], b : [44], c : [30], 

d: [29], e : [40] J : [42] 
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Table 2.3: Oscillator strengths of C I for the ground --T excited states and excited 
states --T excited states transitions. 
Initial State Final State A(A) 
state Multi. state Multi. Labs. CO SS HV 

2S22p2 
3p 2S22p3s 3p 1657.2 0.14 0.139 0.162 0.165 
ID 2S22p3s lp 1930.1 0.123 0.114 0.111 0.145 
1S 2S22p3s Ip 2478.6 0.050 0.086 0.085 0.072 
3p 2S22p4s 3p 1280.4 0.049 0.022 0.019 0.023 
ID 2s22p4s Ip 1467.4 0.014 0.010 0.023 
IS 2S22p4s Ip 1763.9 0.003 0.010 0.008 

2S22p3s 
Ip 2s22p3p Ip 14542.5 0.267 0.278 0.402 
3p 2S22p3p 3D 10693.4 0.677 0.507 0.526 0.535 
3p 2S22p3p 3S 9639.7 0.141 0.107 0.111 0.336 
3p 2S22p3p 3p 9086.8 0.712 0.356 0.374 0.460 
Ip 2S22p3p ID 9405.7 0.391 0.624 0.657 0.527 
Ip 2S22p3p IS 8335.1 0.103 0.117 0.122 0.475 

2S22p3p 
Ip 2s22p4s Ip 10541.2 0.135 0.051 0.011 0.126 
3D 2S22p4s 3p 11886.1 0.161 0.159 0.205 
ID 2S22p4s Ip 17448.6 0.250 0.226 0.325 
IS 2s22p4s Ip 22906.6 0.515 0.690 0.400 

2S22p3s 
:lp 2S22p4p 3p 4771.0 0.013 0.013 
3p 2S22p4p 3D 4892.4 0.005 
'Jp 2S22p4p 3S 4832.5 0.007 
Ip 2s22p4p IS 4933.7 0.004 0.070 
Ip 2S22p4p ID 5053.6 0.008 0.018 
Ip 2S22p4p Ip 5381.9 0.006 0.002 

a : References are in Nussbaumer & Storey(1984) for excitation from ground states 

and in Lambert(1968) for excitation from excited states b : Nussbaumer & 

Storey(1984) 
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(Continued from the previous page) 

Initial State Final State -\(A) 

state Multi. state Multi. Labs. CC S8 HV 

2S22p4s 

3p 2S22p4p 3p 31250.5 0.501 

3p 2S22p4p 3D 37316.4 0.592 

3p 2S22p4p 3S 33650.9 0.934 

Ip 2s22p4p IS 25568.6 0.956 

Ip 2S22p4p ID 29151.3 0.679 

Ip 2S22p4p Ip 44978.6 0.481 

2S22p2 

3p 2S22p3d 3D 1277.5 0.090 0.094 0.094 0.040 

ID 2S22p3d ID 1481.8 0.013 0.012 0.011 

ID 2S22p3d Ip 1459.0 0.006 0.010 0.006 

IS 2s22p3d Ip 1751.8 0.078 0.132 0.132 0.030 

2S22p3p 

Ip 2s22p3d ID 11330.3 0.671 0.678 0.957 

Ip 2S22p3d Ip 10123.9 0.300 0.331 0.339 

3D 2S22p3d 3D 11641.3 0.143 0.141 0.191 

3D 2S22p3d 3p 10421.6 0.0003 0.00003 0.043 

3S 2S22p3d 3p 11664.2 0.463 0.564 0.571 

3p 2S22p3d 3D 14416.0 0.687 0.694 0.706 

3p 2s22p3d 3p 12591.1 0.265 0.304 0.319 

iD 2s22p3d ID 19722.0 0.114 0.112 0.174 

ID 2S22p3d Ip 16333.9 0.001 0.013 0.002 

IS 2s22p3d Ip 21023.2 0.591 0.380 0.386 

a : References are in Nussbaumer & 8torey(1984) for excitation from ground states 

and in Lambert(1968) for excitation from excited states b : Nussbaumer & 

Storey(1984) 
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Lambert [45] earlier. 

Although experimental data are not available for most of the transitions from ground 

to excited states and for the excited to excited states. We strongly hope our pre­

dicted values will aid in observing those transitions. 

2.4 Properties of Neutral Calcium 

Atomic transition lines of neutral calcium were first found in solar spectrum as 

early as the middle of the nineteenth century, when the 4227 A line was identified 

along with the famous singly ionized Hand K lines [46]. Neutral calcium lines have 

also been observed in all types of stellar and interstellar spectra, even like late-type 

of dwarf stars. The crude abundance of Ca I ()'6717.7 A) has been observed in Am 

Binaries [47]. To confirm those identifications and to find new lines one has to depend 

on atomic experimental data or computational data based on theoretical models of 

the calcium atom. The abundances of neutral calcium in these astronomical bodies 

depend on the oscillator strengths of those lines, which come from the excitation 

energies of various levels and transition moments among those levels. 

The accuracy of the computed excitation energy depends mostly upon the quality of 

the unoccupied valence orbitals to which excitation occurs. The traditional choice 

of some unoccupied valence orbitals from a ground state self-consistent field (SCF) 

computation introduces VN orbitals that are best suited for describing negative 

ions and not the low-lying excited states. Thus, the valence orbitals those are not 

occupied in the ground state SCF should be taken as more representative orbitals 

suitable for the excited states. One possible choice emerges from restricted single 

excitation configuration interaction (CIS) procedure [49], where excitations are only 

permitted from the highest occupied orbitals. A simpler and often equivalent ap­

proach involves using improved virtual orbitals (IVOs) [32] in the HV valence space 

or reference space. Here, the IVOs are generated by single orbital SCF optimization 

in which the Fock operator is defined by promoting an electron" from the highest 

occupied orbital to the orbital being optimized, while all the previously determined 

orbitals are kept frozen. Alternatively this can be accomplished by a unitary trans­

formation [50]. The IVO orbital energies obtained through this way are lower than 
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those evaluated from the traditional SCF procedure due to the absence of an ex­

tra coulomb operator in the former one. For example, HV calculation for neutral 

calcium atom, the two-orbital (4s, 4p) minimal reference space is produced by the 

sequence 

(1) Is22s22p63s23p64s2 11 So 

(2) [IS22s22p63s23p64s1]4pl 13 PI 

The first step is a SCF calculation for the ground state and step two requires only a 

single orbital optimization in which the orbitals shown in square brackets are frozen 

as those determined in the previous steps i.e. in step (1). The excited orbitals are 

then obtained by diagonalizing the 11 So state Fock operator in the orbital space 

complementary to the union of the core and reference spaces. 

Successful HV computations for Mg-like ions [51J and neutral carbon have stimulated 

us to try this scheme for neutral calcium atom (Ca I) and, in this section, we present 

the theoretically computed excitation energies, binding energies (energy relative to 

first ionization threshold) and oscillator strengths and transition probabilities of 

Ca I for a wide range of configurations (non-relativistically allowed transitions). 

Section 2.4.1 briefly describe the computational details. The computed results and 

discussions are presented in Section. 2.4.2. 

2.4.1 Computational Details 

The method of the selection of basis set and the valence space is same as discussed 

in Section 2.3.1 for neutral carbon. We employ a variety of basis sets and reference 

spaces to study their effect on the computed excitation energies through the third 

order HV method. 

We emphasis that there exist a significant difference in the choice of both orbitals 

and orbital energies between the HV method and the traditional MR-MBPT scheme 

[1, 9, 18, 32, 53, 54, 55, 56]. In MR-MBPT method all orbitals and orbital energies 

are obtained from a single V N Fock operator (the ground state Fock operator), and, 

therefore all orbitals (core, valence and excited) and their energies are evaluated from 

a V N potential. The unoccupied reference orbitals are, therefore, more appropriate 

for describing negative ion states than for low lying excited states of interest. On 
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the other hand, the HV method determines the unoccupied reference space orbitals 

and their energies as improved virtual orbitals (IVOs) from a F N - 1 potential. The 

unoccupied reference space orbital energies are much lower than those evaluated 

from FN potential due to the absence of an extra coulomb operator in the former. 

After the HV valence orbital energies are computed in this above mentioned fashion, 

the reference space orbitals are replaced by their democratic average to eliminate (or 

reduce) the convergence difficulties. The valence orbital energy averaging process in­

troduces an additional diagonal perturbation [32] which appears in the perturbation 

expansion from third order onwards discussed in section 2.1. 

Fig. 2.2 plots the variation of the correlation energy (Ethird - EHF ) as a func­

tion of basis set obtained from 14V reference space computation (described later), 

where we find that the correlation energy decreases substantially as the number of 

basis function increases from 49 to 73. The variation in correlation energy then 

slows down with further increase in the basis set. Here, we employ a moderate 

size Calcium basis (to reduce the computational effort without sacrificing the accu­

racy) which is constructed from the (12s9p5dj5s4pld) contracted Gaussian basis of 

Dobbs and Hehre [57], augmented by one polarized d-function ((d = 0.100) and two 

s ((s=O.Ol1, 0.0056), one d ((d=0.0416) and three f ((,=3.0, 1.5 and 0.75) diffused 

functions and this yields a 73 contracted Gaussian type orhitals(CCTO). [ Some 

third order HV calculations have also been performed with 87 CCTO (generated by 

adding few s, p and d functions to 73 basis set). Here we have used D2h symmetry. 

Since the perturbative convergence of the computed excitation energies and oscilla­

tor strengths for this set are close to the smaller one (73 CCTO), we only report 

the smaller basis set (73 CCTO) HV results.] 

The valence orbitals are selected on the basis of their orbital energies (to avoid the 

near degeneracies among the reference and virtual space states) and on their relative 

importance in properly describing the excited states of interest, i.e, in providing 

an accurate first order description to minimize the perturbative corrections. This 

selection is almost mandatory in all MR-MBPT method to mitigate the so called 

intruder-state problem [58] that arises due to the near degeneracy of the reference 

and virtual space states and their relative ordering [59]. The reference space must 
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Figure 2.2: Variation of third order HV (with 14V reference space) correlation 
energy as a function of basis set. 

include the 4s (the outermost occupied orbital) and the 4p (lowest lying unoccupied 

orbital) for describing the lowest lying states of 8 and P multiplets which arises from 

4s -+ 4p transition. [Note that the ground state (80 ) of neutral Calcium atom is 

mostly dominated by [Ar]4s2 (91%) and [Ar]4p2 configuration state functions (CSFs) 

[60].] Therefore, the minimal reference space contains only the 4s and 4p orbitals 

with two active electrons in the active space. Since, a minimal reference space 

{4s, 4p} provides an inadequate description of excited states (CSFs [Ar]4s4p (80%) 

and [Ar]4p3d (16%) contribute 96% to the first excited singlet state of P symmetry 

[60]) and, moreover, since our states of interest are not only the lowest lying but the 

higher lying too, we extend the valence space carefully to avoid the near-degeneracy 
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of the reference and virtual space states as much as possible in order to reduce the 

perturbative convergence problem. Thus, our first extended valence space is made 

of ~s, 4p, 5s and 5p orbitals (called 8V, according to D2h symmetry p orbitals has 

symmetry with respect to three axis, i.e., Px, py and pz). Although the computed 

transition energies obtained from 8V reference space matches favorably well with the 

experiment and other correlated calculations for the low lying excited states of 8 and 

P muitiplets, it fails to provide an acceptable transition energies for D multiplets as 

well as the high lying excited states of 8 and P multiplets, e.g., 3180 ,4180 , 21 P etc. 

The origin of this discrepancy can be traced back from the earlier work of Vaeck et al 

[60] who showed that the 3180 excited states of neutral Calcium is mainly described 

by the CSF [Ar]4868 (94%) whereas for 4180 excited state the major contribution 

comes from the CSFs [Ar]487s (10%), [Ar]4p2 (45%) and [Ar]3d2 (38%), respectively. 

Since, the orbitals 3d, 68 and 78 are not included in 8V HV reference space, it is 

expected that these excited states will be poorly described in HV method and so their 

transition energies. Similar arguments also apply to the transition energies of D and 

F multiplets. Therefore, in order to improve the accuracy of the above mentioned 

problematic excited states it is necessary to include the 3d, 68 and 78 orbitals. 

Unfortunately, little leeway exists in extending the valence space by including the 

78 orbital alone because these orbitals are near degenerate to 4d, 4/, 6p and 7p 

orbitals, respectively. Inclusion of 4d, 4/, 68, 6p, 78 and 7p orbitals in the reference 

space will, of course, improve the first order description of the excited states, but 

it will severely affect the perturbative convergence due to the presence of intruder 

states and large diagonal perturbation that appears from third order onwards due to 

the valence orbital degeneracy condition. [Note that, as the number of valence space 

orbitals increases, the quasi-degeneracy among the valence orbitals decreases sharply 

with a consequent increase in the diagonal perturbation.] Moreover, the presence of 

large number of valence orbitals in the reference space will reduce the computational 

efficiency of the post Hartree-Fock calculation. Therefore, an optimal set of valence 

orbital space is required which will neither reduces the computational efficiency of 

the post- Hartree Fock calculation nor introduces serious convergence problem at 

least at low order. Based on the earlier work of Vaeck et alan neutral Calcium atom, 
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we construct the complete active HV reference space (to ensure the size-extensivity) 

by allocating the two-active electrons of 48 orbitals among 48, 4p, 3d, 58, 5p and 68 

(14V) in all possible way. Some typical results obtained from a series of third order 

HV calculations with varying reference are depicted in Figs. 2.3 and 2.4 which 

display the variation of third order HV excitation energies and oscillator strengths 

as a function of the valence space, respectively. Figs. 2.3 and 2.4 indicates that 

the accuracy of the computed transition energies and oscillator strengths sharply 

increases with the increasing size of the valence space. 
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Figure 2.3: Variation of third order HV (with 14V reference space) 482 -t 4858eS) 
transition energy as a function of number of valence orbitals in the reference space. 
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2.4.2 Results and Discussions: 

The third order HV binding energies (energy relative to the first ionization poten­

tial) are compared with the experimental data and with other theoretical values 

which were obtained by using multiconfiguration Hartree-Fock (MCHF) [60], C1 

[61], Spline-Galerkin (SG) [62] and model-potential (MP) methods [63] in Table 

2.4. This table clearly demonstrates that the accuracies of our calculations of the 

third order HV binding energies for singlets (average deviation ~855 em -1) are bet­

ter than those of the MCHF (average deviation:::::: 1027 cm- I ) and C1 calculations 
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(average deviation ~ 11 03 cm -1) though the number of configurations used in the 

latter calculations are much larger than ours. This demonstrates the power of the 

MR-MBPT approach in general and the HV method in particular. This approach 

is computationally more efficient than the MCHF and CI methods, since it includes 

strongly interacting configurations in the model space and relating weakly interact­

ing configurations which lie in the complementary space are treated perturbatively. 

The SG and MP calculations for the binding energies are in general in better agree­

ment with experimental than ours. Table 2.4 clearly indicates that our results are 

consistently better than those obtained by the C1 method. For example, for the 

triplet states the average deviation for our calculations is 1061 cm-1 while for the 

CI calculations it is 2026 em-I. This suggests that the HV method treats the dif­

ferential correlation more accurat~ly than the MCHF and CI methods. Despite the 

fact that the HV method provides accurate estimate of the binding energies for most 

of the excited states, it fails to produce accurate binding energy for the 418 excited 

states (deviates by 2711.5 cm-1 from experiment). The underlying reason for this 

large deviation in the estimated binding energy of the 418 excited state becomes 

transparent when we analyze the composition of the 418 excited state in terms 

of CSFs. The MCHF calculation of Vaeck et al and other calculations show that 

this particular singlet excited state is multiconfiguration in nature, where the major 

contribution comes from the CSFs [Ar]4p2 (46%), [Ar]3d2 (39%), [Ar]4s7s (10%), 

[Ar]4s2 (1.9%) and [Ar]4d2 (1.6%). Since 4d and 78 orbitals are not included in the 

HV reference space in order to maintain the quasi-degeneracy of the valence orbital 

and enhance the perturbative convergence rate, this particular excited state (418) is 

inaccurately described in the HV method, and hence, is poorly estimated. Inclusion 

of -ld, 4f, 6p, 7 sand 7p orbital in the valence space will definitely improved the first 

order description of the 418 excited state, but the perturbative convergence and 

the accuracy of high order MBPT (third order) may deteriorate due the presence 

of large number of intruder states and huge diagonal perturbation which exerts an 

opposing force to the perturbative convergence. 
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Table 2.4: Low-lying binding energies (in em-I) of Ca I. 

Terms States Expt.[l] MCHF[2] CI[3] SG[4] MP[5] Hl' 

Singlet States 

482 IS 49306.0 47649.0 47600.5 48930.31 49278.3 48420.28 

4858 IS 15988.7 15729.3 15720.5 15935.28 15966.5 15989.32 

4868 IS 8615.5 8277.6 8270.5 8599.40 8536.0 7625.89 

4p2 IS 7519.7 6709.7 6585.1 7887.13 7606.2 10231.19 

484p Ip 25653.7 24689.2 24667.6 25472.25 25720.66 

485p Ip 12574.3 12160.1 12143.3 12683.80 12127.36 

483d ID 27456.3 24869.2 24404.7 27478.99 27365.8 26123,48 

4p2 ID 8586.1 7402.9 8802.75 8992.11 

Triplet States 

4858 3S 17766.0 17461.4 17765.7 17590.5 

4868 3S 8831.2 8714.0 8831.1 8355.2 

484p 3p 34042.5 34076.7 34851.67 33986.6 

4s5p 3p 12740.3 12570.2 12899.61 12334.3 

4p2 3p 10797.7 11120.1 11675.8 

3d2 3F 5811.7 835.7 5811.6 5381.1 

3d4p 3F 13474.2 10797.9 14032.06 12244.7 

483d 3D 28948.9 24293.0 28096.19 27413.2 

3d4p 3p 9967.6 7148.3 9866.51 7392.3 

3d4p 3D 11073.1 6881.8 8218.1 

[l]Reference [67], [2] Reference [60], [3] Reference [61], [4] Reference [62], [5] Refer-

ence [63] 

Table 2.5 compares the first few excitation energies obtained through third order HV 

calculation with MCHF and CI values as well as experimental data. Like binding 

energies, here, we also find that all the low lying excited states transition energies 

are in excellent agreement with experiment while there exists a small but non-

negligible error in the estimation of the high lying states. We do expect this trend 

from the binding energy calculation as well as from previous HV computation on 

Mg-like ions [51]. As explained before, it is the 4d,78 orbitals whose absence in the 
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valence orbital space inaccurately describes the 41S excited states and, hence, poorly 

estimates this transition energy. Likewise, absence of 4d, 41, 6p and 7p orbitals affect 

the computation of high lying excited states for P, D and F multiplets. For instance~ 

it is shown by Vaeck et al that the major contribution to the 21 D and 31 D excited 

states comes from the CSF [Ar]4s4d, while CSF [Ar]4s41 contributes about 80% to 

the 11 F excited state. Since, we have not included these orbitals (4d, 41 and 7s) in 

our reference space, the above mentioned excited states are expected to be poorly 

described and so their state energies. We have also estimated excitation energy for 

3d2(lG) state (46422.8 em-I). There is no experimental data available for that, but 

our result is in fair agreement with Brage and Fischer's [62] result (46164.24 cm- I ), 

and Laughlin and Hansen's result (46075.4 cm-1) [63]. 

Since a wide variety of reference space are used in the present calculation, it is 

important to study the low order convergence behavior of the different choices. \\re 

have demonstrated the importance of 3d orbital in the calculation. In table 2.6, 

we present the results obtained from a typical 13V (defined below) third order HV 

computations where the computed transition energies are cloSt, to the experiment 

but the relative order of the singlet and triplet excited states are incorrect. 

As pointed out by Vaeck et al that the low-lying excited S multiplet states of Ca I are 

dominated by the CSFs [ArJ4sns, we construct a HV reference space by allocating 

two active electrons of 4s orbital among 4s, 4p, 5s, 5p, 6s, 6p and 7s (13V) orbitals. 

The computed third order HV transition energies are collected in Table 2.6 and 

compared with experimental data. From Table 2.6 we find that the E 23S > E3 1S 

and E33S > E,ps instead of E 23S < E31S and E33S < E41S' This incorrect ordering 

of the excited states of S multiplets most probably arises due to absence of the 3d 

orbital in valence space, because this peculiar problem does not arise in our 14V HV 

calculation where orbital 3d is included in the valence space. 
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Table 2.5: Third order HV excitation energies (in Rydberg) for S, P, D and F 
multiplets of Ca 1. 
Terms State Expt.[I] 5E[2] 8E[3] 8E(HV) 

S-multiplets 

482 IS 0.000 0.000 0.00000 0.00000 

4858 3S 0.28741 0.01276 0,00646 

4858 IS 0.30361 0.01289 0.01310 0.00807 

4868 3S 0,36883 0.01447 0.00373 

4868 IS 0.37079 0.01218 0,01239 0.00095 
4p2 IS 0.38078 0.00733 0,00702 0,03298 

P-multiplets 

484p 3p 0,13813 0.01489 0.00620 

484p Ip 0.21553 0.00651 0.00655 0.00867 

485p 3p 0,33305 0,01377 0,00421 

485p Ip 0.33711 0.01398 0.01400 0,00638 
4p2 3p 0,35052 0.01808 0,01567 

3d2 3p 0.44231 0,02162 0.00266 

3d4p 3p 0,35845 0.01018 0.01542 

3d4p Ip 0.33472 0.05740 0.09362 

D-multiplets 

3d48 3D 0.18543 0.02696 0.00600 

3d48 ID 0.19911 0.01155 0.01226 0,00407 

3d5s 3D 0.43264 0.01491 
4p2 ID 0.37106 0.01176 

3d4p 3D 0.34864 0.01770 

3d4p ID 0.32655 0.00464 

F-multiplets 

3d4p 3F 0.32637 0.00328 

3d4p IF 0.36941 0.04254 

3d2 3F 0.39630 0,00409 

6.= I Ecalc.-Eexpt. I 
[1] Reference [38], [2] Reference [60], [3] Reference [61] 
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Table 2.6: Transition energies (in Rydberg) for S multiplets of Ca I, obtained from 
third order HV method using 13V (48,58, 6s, 78, 4p, 5p, 6p) valence space. 

Terms State Expt. HV 

4s6s 38 0.36883 0.368218 

4s6s 18 0.37079 0.368004 

4s78 38 0.40078 0.400079 

4s7s 18 0.40348 0.396437 

Effective dipole operator calculations have also been performed to compute the 

transition probability and oscillator strengths of states. These calculations take the 

matrix element of the second-order effective dipole operator between the HV eigen­

vectors as determined by the third order calculations. While our estimated oscillator 

strengths and transition probabilities for ground ~ excited states (low-lying) are 

reasonably close to the MCHF, CI and experimental data, oscillator strengths for the 

excited~excited state transition are somewhat off (see Table 2.7 and 2.8). The infe­

rior quality of the oscillator strengths and probabilities for the ground to high-lying 

excited state and excited~excited state can be anticipated because the reference 

space lacks important configurations like [Ar]4s7s, [Ar]4s4d etc., that not only con­

tributes to energies but also exert a strong influence on dipole properties [51]. [Note 

that oscillator strength and transition probability depends upon the transition en­

ergy and transition moment. Therefore, an error in the estimation of either of the 

two can yield a poor value for transition probability and oscillator strength.] The 

accuracy of the transition energies, oscillator strengths and transition probabilities 

for the ground to high-lying excited states and excited to excited states may be 

enhanced by including important CSFs in the reference space, and, research in this 

direction is in progress. 

We have seen that our result for the), 6717.7 A line (i.e., 4s3d e D) to 4s5p (IP) 

transition) is in good agreement with the experimental values for both the excitation 

energy and the transition dipole moment. So the observed crude abundances of 

neutral calcium [47] arise most probably because of some other property of the Am 

binaries which is presently not well understood. 
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Table 2.7: Third order HV Oscillator Strengths for S, P, D and F multiplets of 
0nI. 

ansition Multi- Wave- Expt.[l] MCHF[2] Cl[3] HV 

plet length 

2 -+ 484p IS _1 P 4227.9 1.75 1.89 1.820 1.74824 

2 -+ 485p IS _1 P 2722.5 0.0009 0.0174 0.00101 0.00734 

58 -+ 4s5p IS _1 P 29288.1 0.9968 0.926 1.03968 

4p -+ 4858 Ip _1 S 10346.6 0.3975 0.118 0.34376 

4p -+ 4868 Ip _1 S 5869.2 0.0029 0.0009 0.07591 

5p -+ 4868 Ip _1 S 25260.0 0.6567 0.168 0.93595 

4p -+ 4p2 1p _1 S 5514.5 0.17 0.4449 0.120 0.25685 

5p -+ 4p2 1p _1 S 19783.7 0.0211 0.0153 0.02999 

4p -+ 4858 3p _3 S 6123.9 0.121 0.156 0.4508 

4p -+ 4868 3p _3 S 3958.2 0.0248 0.187 0.0524 

3d -+ 485p 3D _3 P 6163.1 0.076 0.0407 0.030 

3d -+ 4s4p 1D _1 P 55473.3 0.0007 0.0014 0.00017 

3d -+ 4s5p 1D _1 P 6717.7 0.049 0.0916 0.0585 0.04237 

3d -+ 4p3d 3D _3 P 5271.7 0.15 0.201 0.46996 

3d -+ 4p3d 3D _3 D 5596.0 0.23 0.346 0.36092 

3d -+ 4p3d 3D_3 F 6465.6 0.42 0.364 0.29119 

3d -+ 4p3d 1D _1 P 4526.9 0.075 0.0585 0.28348 

3d -+ 4p3d ID _1 F 5350.9 0.1087 0.0925 0.08844 

4p -+ 4p2 3p _3 P 4303.7 0.377 0.529 0.4756 

4p -+ 4p2 Ip _1 D 5859.1 0.57 0.4706 0.550 0.31677 

2 --;. 3d4p ID_IF 0.4998 0.00008 0.05281 

jompiled by Wiese et al [68]. [Estimated uncertainty is ~ 10-50%.], [2]Reference 

, [3] Reference [61], 



2.4.2:Results and Discussions : -10 

Table 2.8: Transition probabilities (in 108sec-l) computed through third Ht: 
method for S, P, D and F multiplets of Ca 1. 

Transition Multi- Wave- Expt.[l] HV 

plet length 

4s2 -+ 4s4p IS _1 P 4227.9 2.18 2.011 

4s2 -+ 485p IS _1 P 2722.5 0.0027 0.022 

4s4p -+ 4p2 Ip _1 S 5514.5 1.1 2.64 

4s4p -+ 4858 3p _3 S 6123.9 0.354 1.452 

4s4p -+ 4868 3p _3 S 3958.2 0.175 0.392 

4s3d -+ 485p 3D_3 P 6163.1 0.19 0.698 

4s3d -+ 485p ID _1 P 6717.7 0.12 0.102 

4s3d -+ 4p3d 3D_3 P 5271.7 0.50 1.758 

4s3d -+ 4p3d 3D_3 D 5596.0 0.49 0.886 

4s3d -+ 4p3d 3D _3 F 6465.6 0.53 0.348 

4s3d -+ 4p3d ID _1 P 4526.9 0.41 1.923 

4s4p -+ 4p2 3p _3 P 4303.7 1.36 1.586 

4s4p -+ 4p2 Ip _1 D 5859.1 0.66 0.353 

[1] Compiled by Wiese et al [68]. [Estimated uncertainty is ~ 10-50%.] 

Table 2.9: Variation of third order ground state correlation energy (in a. u.) as a 
function of reference space. 

Correlation contribution No. Reference space orbitals 

from SR-MBPT(OV) 4V lOV 14V 

Core-Core -0.27166 -0.27166 -0.27166 -0.27166 

All Electron -0.33179 -0.32201 -0.31174 -0.30808 

Core-Valence + Valence-Valence 0.0 -0.05034 -0.04200 -0.03664 

[l]Approximatc contribution of 48 valence orbital to the ground state correlation 

energy is -0.060128 a.u. 
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Table 2.9 displays the contribution to the correlation energy arising from the core­

core, core-valence plus valence-valence and all-electron interactions. Unlike the core­

core correlation energy computation, it is not straight forward in our MR-MBPT 

approach to separate out the core-valence and valence-valence contributions and \ve 

therefore only quote the sum total of those two contributions which can also be 

obtained by subtracting the core-core contribution from the all-electron correlation 

energy. It is evident from Table 2.9 that the correlation contribution from core­

valence and valence-valence decreases with the increasing dimension of the reference 

space. This variation in the correlation energy (core-valence plus valence-valence) is 

simply a consequence of the imposition of the valence orbital degeneracy condition. 

It can be easily shown that the forced valence orbital degeneracy condition enlarges 

the gap between the core and valence orbital energies which increases with the 

increasing size of the non-degenerate reference space [59, 641. Consequently, the 

correlation contribution from core-valence and valence-valence interactions decreases 

with increasing size of the reference space. 

It has been observed that the second order HV computations often overestimate/ un­

derestimate the state energies, and this eventually is counterbalanced by the third 

order HV contributions. Thus, the low order perturbative convergence of the HV 

method sometimes exhibits an oscillatory pattern that arises mainly because of the 

valence orbital energy averaging procedure, especially when the zeroth order or­

bital eigenspectrum is highly non-quasidegenerate. For example, the error in the 

computed 48 -+ 4p resonant transition energy rapidly drops from 35%-+2.5% as 

the perturbation order increases from 1 --+ 3. But for non-resonant transition the 

perturbative convergence shows somewhat oscillatory behavior. This type of con­

vergence pattern is quite common and has also been observed in earlier calculations 

where the triplet state is described more accurately than the singlet state with a 

minimal reference space HV computation. Systematic increase of the valence space, 

for instance, the inclusion of the 3d and 68 orbitals in the reference, improves the 

low order perturbative convergence of the HV method and that way it reduces the 

error in the computed third order excitation energy from 8.5% to 3.5% for resonance 

transition and from 10.7% to 3.17% for non-resonant transition without sacrificing 
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the second order accuracy of transition energy, which. is small compared to the 

above. The inclusion of the 3d and 68 orbitals not only improves the accuracy of 

HV transition energies but also improves the oscillator strengths. 

We reiterate that the use of large valence space may provide a very good first 

order description for excited states of interests but eventually it may destroy the 

perturbative convergence because it involves a trade-off. The success of the HV 

method largely depends upon the relative importance of the competing factors. The 

large reference space provides a better first order description of the state of interest, 

and, thereby accelerates convergence rate, while the diagonal perturbation that rises 

from the orbital averaging procedure destroy the perturbative convergence. Thus, 

care should taken during the selection of the reference space. In fact, the success 

of the HV scheme lies largely on the appropriate selection of the valence space, a 

process that requires some trial and searching and priori knowledge of the most 

important configurations. 

2.5 Conclusion 

The effective valence shell Hamiltonian method is applied to compute the excitation 

energies and oscillator strengths for C I and Ca 1. The HV energies and wavefunctions 

are computed through third order and the effective dipole operator, pV, evaluated 

through second order. The accuracy of the computed low-lying and some high-lying 

excited state energies, binding energies, oscillator strengths, first ionization potential 

calculated for Ca I demonstrate the power of the method. Many excitation energies 

and oscillator strengths are in agreement with experiment for C I (some have good 

agreement with observations) and other highly correlated theoretical calculations. 

The present H V computations for C I strongly suggest the use of multiple reference 

spaces for the excited states computations because of the different nature of corre­

lation in various classes of excited states. This work highlights a number of unique 

and desirable features of the HV method. For instance, the HV calculations for Ca I 

provide uniform accuracy for most excited states than is obtained with some other 

schemes, such as the MCHF and CI methods. 

The present calculations suggest that a minimal reference space is sufficient for the 
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accurate estimation of the excitation energies of the triplet states, while a large 

reference space is necessary to treat the singlet states. Since our computations have 

covered a wide range of reference spaces, it might be possible to use different set of 

reference spaces for excited states of different symmetry. This kind of approach has 

been found to be quite successful in generating potential energy surfaces [65]. 

On the whole the HV method improves the agreement between theory and experi­

ment, but a number of problem still remain. It has been argued over the past few 

years that the ever present intruder states can affect the numerical stabilities of the 

large scale HV calculations. However, this assumption has been dispelled by the 

extensive studies of the convergence behavior [64, 65, 66]. It should be emphasized 

that a large (complete) reference invariably leads to the situation where the zeroth 

order eigenspectrum of the reference space overlaps with that of the virtual space 

states, i.e., the large (complete) reference space MR-MBPT computations must ul­

timately become plagued by the intruder states, and, consequently yield divergent 

pertubative expansion. However, when pursuing a large scale low order perturbative 

computation, we generally neither know nor care whether the series is truly conver­

gent or not, since this information has no practical value. The HV approach uses 

physical and mathematical consideration to produce acceptable accurate results in 

low order. The present computations for neutral carbon and calcium reinforces our 

prior assertions that this method can be used as a useful alternative scheme for the 

calculations of atomic properties. 

References 

[1] 1. Lindgren and J. Morrison, Atomic Many-Body Theory, Springer-Verlag,NY 

(1982) 

[2] A. Messiah, Quantum Mechanics, (Wiley, NY, 1962), Vol. II, pp. 698-700. 

[3] J. O. Hirschfelder, Int. J. Quantum Chern., 3, 731 (1969). 

[4] H. J. Silverstone, J. Chem. Phys., 54, 2325 (1971) 

[5] J. O. Hirschfelder and P. R. Certain, J. Chern. Phys., 60, 1118 (1974) 



References 

[6] H. J. Silverstone and R. K. Moats, Phys. Rev. A, 23, 1645 (1981) 

[7] C. Bloch, Nuc!. Phys., 6, 329 (1958) 

[8] J. des Cloizeaux, Nucl. Phys., 20, 321 (1960) 

[9] B. H. Brandow, Rev. Mod. Phys., 39, 771 (1967) 

[10] V. Kvaniscka, Czech. J. Phys., B24, 605 (1974) 

[11] Y.S. Lee and K. Suzuki, Phys. Lett., 91B, 173 (1980) 

[12] K. Suzuki and S. Y. Lee, Prog. Theory. Phys., 64, 2091 (1980) 

[13] Ph. Durand, J. Phys. Lett., 43, L461 (1982) 

[14] U. Kaldor, Phys. Rev. A, 38, 6013 (1988) 

[15] Ph. Durand and J. P. Malrieu, Adv. Chern. Phys., 67, 321 (1987) 

[16] G. Jolicard and M. Y. Perrin, Chern. Phys., 123, 249 (1988) 

[17] D. M. Silver and R.J. Bartlett, Phys. Rev. A.,13, 1 (1976) 

[18] D. M. Silver, S. Wilson and R.J. Bartlett, Phys. Rev. A.,16, 477 (1977) 

[19] R. K. Chaudhuri and Karl F. Freed, J. Chern. Phys., 107, 6699 (1997) 

[20] x.-C. Wang and K. F. freed, J. Chern. Phys., 86, 2899 (1987) 

[21] R. L. Graham and K. F. Freed, J. Chern. Phys., 96, 1304 (1992) 

[22] .T. P. Finley and K. F. Freed, J. Chern. Phys., 102, 1306 (1995) 

[23] 1. Lindgren, J. Phys. B, 7, 2441 (1974) 

[24] P. Westhaus, Int. J. Quantum chern., 87, 463 (1973) 

[25] G. Hose and U. Kaldor, J. Phys. B, 12, 3827 (1979); Phys. Scripta, 21, 357 

(1980), Chern. Phys. 62, 469 (1981), J. Phys. Chern., 86, 2133 (1982) 

[26] G. Hose, in: Many-body Methods in Quantum Chamistru, U. Kaldor(ed.) 

(Springer-verlag, Berlin) p.43 (1989) 



References 

[27] D. Mukherjee, Proc. Ind. Acad. Sci., 96, 145 (1986) 

[28] D. Mukherjee, Chern. Phys. Lett., 125, 207 (1986) 

[29] H. Nussbaumer and P.J. Storey, Astron. €3 Astrophys., 140, 383 (1984). 

[30] K.S. de Boer and D.C. Morton, Astron. Astrophys., 71, 141 (1979) 

[31] M. Nooijen and R.J. Bartlett, J. Chem. Phys., 107, 6812 (1997) 

45 

[32J K. F. Freed, in Lecture Notes in Chemistry, edited by U. Kaldor (SpringeL 

Berlin, 1989), Vol. 52, p. 1, and references therein. 

[33] Chaudhuri R.K., Mudholkar A., Freed K.F., Martin C.H. and Sun H., J. Chern. 

Phys. 106, (1997), 9252 and references therein. 

[34] Lee Y. S., Sun R., Sheppard M.G. and Freed K. F., J. Chern. Phys. 73, (1980), 

1472. 

[35] Lee Y.S., Sun H., Freed K.F. and Hagstrom S.A., Bull. Korean Chern. Soc. 7, 

(1986), 262. 

[36] Sun H. and Freed K.F., J. Chern. Phys. 88, (1988), 2659. 

[37] T.R. DUilIling(Jr.), J. Chern. Phys., 90, 1007 (1989) 

[38] C. E. Moore, Atomic Energy Levels (NSRDS-NBS(U.S.) 35) (PUBLISHER, 

ADDRESS, 1971). 

[39] A. Sadlcj, Theor. Chim. Acta, 79, 123 (1991). 

[40] Luo D. and Pradhan A.K., 1989, J. Phys. Mol. Opt. Phys., 22, 3377. 

[41] M.J. Seaton, Y.Yu, Mihalas and A.K. Pradhan, Mon. Notes R. Astron. Soc.: 

266, 805 (1994) 

[42] Hibbert A., Biemont E., et al1993, A&AS, 99, 179. 

[43] J. Bromander, Phys. Scr., 4, 61 (1971) 

[44] M.-C. Poulizac, M. Druetta and P. Ceyzeriat, J. Q.S.R. T .. 11, 1087 (1971) 



References 16 

[45] Lambert D.L., 1968, MNRAS, 138, 143. 

[46] E. Gibson, The Quiet Sun (NASA, Washington D.C., 1973). 

[47] 1. K. Iliev and J. Budaj, ASP Conference Series, M.A.S.S. 108, 283 (1996). 

[48] R. J. Bartlett, Ann. Rev. Phys. Chern. 32,359 (1981). 

[49] R. K. Chaudhuri and K. F. Freed (unpublished). 

[50] J. F. Finley and K. F. Freed, J. Chern. Phys. 102, 1306 (1995). 

[51] R. K. Chaudhuri, B. P. Das, and K. F. Freed, J. Chern. Phys. 108, 2556 (1998). 

[52] Sonjoy Majumder, R. K. Chaudhuri and B. P. Das, proccd. of 6th Intl. Collo­

quium on Atomic Spectra and Oscillator Strengths for Astrophysical and Labora­

tory Plasmas, Aug. 9-18, ed . .1. Tatum, pp. 99 (1998). 

[53] M. A. Haque and D. Mukherjee, Pramana 23, 651 (1980). 

[54] J. P. Malrieu, P. Durand, and J. P. Daudey, .1. Phys. A 18, 809 (1985). 

[55] B. O. Roos, K. Andersson, M. P. Fulschcr, P. -A. Malmqvist, L. Seeeano-Andcrs, 

K. Pierloot and M. Merchan, Adv. Chern. Phys. 93, 219 (1996) and rcfcrcIlcm; 

therein. 

[56] K. Hirao, Int . .1. Quantum Chern. 826, 517 (1992). 

[57] K. D. Dobbs and W. J. Hehre, .1. Comput. Chern. 7,359 (1986). 

[58] T. H. Schucan and H. A. Weidenmuller, Ann. Phys. (N.Y.) 73, 108 (1972); ibid 

76, 483 (1973). 

[59] R. K. Chaudhuri and K. F. Freed, J. Chern. Phys. 107, 6699 (1997), and 

references therein. 

[60] N. Vaeck, M. Godefroid, and J. E. Hansen, .1. Phys. B 24, 361 (1991). 

[61] J. Mitroy, J. Phys. B 26, 3703 (1993). 

[62] T. Braga and C. F. Fischer, Physica Scripta 49, 651 (199.1). 



References 47 

[63] C. Laughlin and J. E. Hansen, J. Phys. B 29, L441 (1996). 

[64] J. P. Finley, R. K. Chaudhuri, and K. F. Freed, Phys. Rev. A 54, 343 (1996). 

[65] R. K. Chaudhuri, J. P. Finley, and K. F. Freed, J. Chern. Phys. 106, 4067 

(1997). 

[66] J. P. Finley, R. K. Chaudhuri, and K. F. Freed, J. Chern. Phys. 103, 4990 

(1995). 

[67] J. Sugar and C. Corliss, J. Phys. Chern. Ref. Data 14 Suppl. 2,51 (1985). 

[68] W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities 

(NBS NSRD-22) (U.S. Govt. Printing Office, Washington, DC, 1966), Vol. 2. 



Chapter 3 

ab initio Relativistic Studies of 

Excitation Energies and Oscillator 

Strengths in Atomic Systems 

.. " :·'c·~,;::.:::~m\U _________ • 

3.1 Introduction 

Various nuclear processes (like the r process) in astronomical objects are responsi­

ble for acquiring an abundance of heavier atoms and ions in their envelope and the 

ISM as mentioned in chapter 1. For most of these systems, the low lying orbitals 

probe regions of space with high potential energy near the atomic nuclei. Relativis­

tic theory is required for the description of the electronic structure of these systems. 

Relativistic many-body theory is more complex than non-relativistic theory as it 

is inherently an infinite-body system, since one has to consider different quantum 

electrodynamic dfccts. There is an added difficulty because the relativistic many­

body problem is also a multi-time problem. Each particle must have its proper time, 

and thus a Hamiltonian formalism is a priori not possible. This is the cause of the 

retardation effect, due to the finiteness of the speed of light. However, it is only in 

the case of a Hamiltonian formalism that powerful many-body methods have been 

developed. To solve this problem there are in general two possibilities. One can 

handle the full problem of bound states Quantum Electrodynamics (QED), .write 

48 
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all possible Feynman diagrams to a given order in the perturbation expansion and 

evaluate the energy shift that will include some correlation, relativistic effects and 

radiative corrections, if one goes at least to second order in fine structure constant. 

The problem is that such an approach is too complex and difficult, except for high-Z 

two-electron ions. Another, less rigorous, approach is to derive an effective no-pair 

Hamiltonian where retardation effects are taken into account and pair creation is 

suppressed to avoid including effects that can be handled, only in proper QED [1, 2]. 

One can use this Hamiltonian, which is however not Hermitian because of the re­

tardation term, for calculating correlation and relativistic effects. QED corrections 

can then be introduced with care, to avoid counting some terms twice. Such a pro­

gram has been partly carried for few-electron systems, using the Multiconfiguration 

Dirac-Fock method (MCDF), which is the exact analogue of the Multiconfigura­

tion Hartree-Fock method, using the relativistic, no-pair Hamiltonian as a starting 

point, in place of the Breit-Pauli Schrodinger equation. Also, the spin-orbit inter­

action Hamiltonian which is responsible for the intermediate coupling transitions 

is in-built in the Dirac-Fock Hamiltonian, unlike in the non-relativistic case, where 

one has to consider relativistic correction as a perturbation. 

The idea of forbidden transitions has its root in the concept of the Ritz combination 

principle, which states that the measured frequencies of all observed spectral lines 

can be expressed as the difference of two term frequencies. The fact that for any 

system not all the possible differences of the known terms arc observed initially 

led to a separation of the possible radiative transitions into allowed and forbidden 

types. The following well-known selection rules for electro-magnetic decay, which 

provide a time-tested basis for this separation, predate quantum mechanics and were 

originally based on the classical electromagnetic theory applied to the vector model 

of the atom. In the table below, we have shown the selection rules for electric dipole 

and magnetic quadrupole (M2) transitions which we have used for our calculations 

in this chapter. 

Because of the low transition rate associated with the M2 radiative decay, such a 

transition is generally observed only in an environment of ultralow density, where 

the collision rate is comparably low. But, activity in these transitions, especially 
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Table 3.1: Selection rules for allowed electric dipole (El) transition and forbidden 
magnetic quadrupole (1\12) transition 

Electric Dipole (E1) 

t:::.J = 0,±1 

(0 14 0) 

Lllvf = 0, ±1 

(0140 

when .6.J = 0) 

Parity Change 

One electron jumping, 

with Lli = ±1 

LlS = ° 

Magnetic Quadrupole (M2) 

t:::.J = 0,±1,±2 

( ° 14 0, 

1/2 1+ 1/2, ° 14 1) 

LlM = 0, ±l, ±2 

Parity Change 

Lll = 0, ±1 (0 14 0) 

LlS = ±1 

emission from the low levels, has been stimulated by two developments. First, the 

realization that along the isoelectronic sequence, there is a very rapid increase with 

the atomic number Z of the rate associated with the forbidden transition. Hence, the 

need for a collision-free environment becomes much less critical at high Z. Second, the 

proliferation of devices capable of producing highly ionized heavy atoms. Examples 

of such devices are the low-inductance vacuum spark, high-power lasers, plasma 

sources and heavy-ion accelerators. The beam-foil technique has been of particular 

value in these studies, since transition rates can easily be measured by time-of-flight 

techniques. 

To a good approximation, the free electrons form a Maxwellian distribution of en­

ergies, characterized by an electron temperature Te. The electron temperature is 

insensitive to density, but sensitive to excitation of these forbidden lines as it is the 

most important thermal balance mechanism (in particular energy loss) in nebulae 

[3]. An immediate question is why these forbidden lines attain great strength in 

gaseous nebulae as compared with permitted lines, particularly those of H and He. 
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The answer lies partly in the vast extent of a nebular plasma and partly in the 

structures of energy level diagrams. 

First, we must know how the lines are produced. Recombination and cascade cer­

tainly will not suffice as then we would observe lines arising from high levels as well 

as these low levels. Note that the metastable levels lie a few eV above the ground 

level. The energy of the average electron in the plasma is of the order of an eV. 

Some electron will have energies of 2 to 4 eV, a few may have energies to 5 or 7 

eV, but none will have energies of, say, 20 eV. Hence, there will be a supply of 

electrons capable of exciting atoms to the metastable levels. Once in an excited 

level, they may escape by superelastic collisions or by the emission of a forbidden 

line. The total number of emissions per second will be NnA, where Nn is the occu­

pancy number in the upper level and A = Ln Ann is the sum of Einstein coefficients 

to the lower levels. In the first part of this chapter we consider an important but 

rarely touched forbidden transition, i.e. magnetic quadrupole transition for ions of 

beryllium isoelectronic sequence using the MCDF method. 

The Dirac-Coulomb or Dirac-Coulomb-Breit equation may be solved to a: good ap­

proximation by the coupled cluster (CC) method delineated in following sections. 

Approximate one-electron solutions to these equations, known as Dirac-Fock (DF) 

or Dirac-Fock-Breit equations may be obtained by the self-consistent-field(SCF) pro­

cedure or by matrix mechanics using particular type of basis. The very important 

correlation part in the relativistic regime may be calculated by coupled cluster (CC) 

method described in section 3.4. In that section we have calculated various allowed 

transitions among the doublet states of Mg+ ion using the CC method. The solu­

tions of the CC methods depend on the solutions of DF equations to a large extent. 

In section 3.3 we shall develop a new basis set expansion approach to calculate the 

OF orbitals in the framework of GTO with the same accuracy of the numerical 

solutions of them at least for occupied and low lying virtual orbitals. 



3.2:Magnetic Quadrupole transitions for ions of Be-sequence using the MCDF Approach 52 

3.2 Magnetic Quadrupole transitions for ions of 

Be-sequence using the MCDF Approach 

The possibility that magnetic quadrupole radiation might have astrophysical sig­

nificance for atomic .transitions, which satisfy the selection rule 6.S = 1, was first 

pointed out by Mizushima [4]. Ions of the beryllium isoelectronic sequence, in par­

ticular, ions with low atomic number, have proved to be rich resources for studying 

the low solar transition region. The diagnostic possibilities of this sequence were 

first noted by Munro et at. [5] and Jordan [6], and they have been investigated 

in subsequent studies [7, 8, 9, 10, 11, 12]. The presence of strong lines that yield 

a density diagnostic, coupled with many experimental measures or theoretical es­

timations of their intensities in the sun, has provided an impetus to both atomic 

and solar studies. One or more of the ultraviolet transitions of this sequence have 

been observed as well in the spectra of planetary nebulae [13, 14], quasi-stellar ob­

jects [15] and both hot and cool stars [16, 17, 18, 19]. These lines are useful in 

the spectral diagnostics of those astronomical objects ( for example, the ratio of 

C/O for most of the PN can be safely approximated by CIll/OIlI [20)). There is 

no question that density variations are observed on the surface of the sun, but the 

determination of the a.bsolute values of these variations requires atomic parameters 

with more accuracy than available, specially, where experimental results are absent. 

The abundance of carbon and oxygen also determines the type of chemistry in the 

PN precursor's envelope, whether carbon-rich or oxygen-rich. Because of the lack 

of data about the properties of the forbidden lines of highly ionized atoms, insuf­

ficient attention was given to their applications to astronomical objects, like hot 

stars or nebulae etc. A compr0iwIlsive modeling of a star's internal structure needs 

a precise estimate of the radiative transitions of atoms and ions. The evolution of 

these ions on the stellar surfaec could have an influence on the evolution of the star. 

PN and low-density interstellar medium (ISM) exhibit many of the forbidden lines 

in emission, which infer the abundances of these ions [14]. Even if, in dense ISM, 

these forbidden lines are seen for highly ionized atoms. In a way t.hese tell about the 

abundances of these elements in galaxies, which helps the study of galactic chemical 

evolution. M2 transitions in highly ionized systems occur in ultraviolet and visible 
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emission band. Therefore, high resolution spectrographs of satellites can observe 

these lines and they need these data as precisely as possible. 

Since the strengths of the forbidden transitions are rather weak, it is difficult to 

determine their rates accurately. The accuracies ofthe computed excitation energies 

and transition rates depend largely on a balanced treatment of the correlation effects, 

an adequate size of the orbital basis and the quality of the valence orbitals. The 

Multiconfiguration Dirac-Fock (MCDF) method is the relativistic counterpart of 

Multiconfiguration Hartree-Fock (MCHF) theory. Our calculations of the magnetic 

quadrupole transition probabilities of the beryllium-like ions are calculated with the 

MCDF method based on the extended optimal level (EOL) approximation described 

in the next subsection. In those calculations, the corrections of the energies of the 

atomic states due to the Breit interaction are included using first-order perturbation 

theory. 

Jonsson and Froese Fischer [21] have done calculations for doubly ionized car­

bon with the MCDF-EOL method followed by relativistic-configuration-interaction 

(RCI) calculation. They have used a different set of orbitals for the initial and fi­

nal states. There are a few other calculations for these transitions [22, 23, 24, 25]; 

the majority of those have used the intermediate coupling approach. Garstang has 

shown that in the non-relativistic limit the magnetic quadrupole transition proba­

bilities are approximately proportional to the square of the electric dipole matrix 

element [22]. However, it was shown by Lin et <-11. [26] that this approximation is not 

quite accurate. They had calculated this line for a few ions of the Be-isoelectronic 

sequence using a semi-empirical model potential. The Z-expansion method used by 

Laughlin [27] appears to be a rough estimate, and its accuracy is uncertain. In the 

present work we have used a fully relativistic one-electron Hamiltonian and supple­

mented it by the two-electron Coulomb and Breit terms. To ensure the convergence 

for each of the applied models and to estimate the error, the calculation is performed 

stepwise. The strong Z-dependence (approximately ex: Z8 [28]) of M2 transitions is 

known and also its relativistic nature becomes important near Z = 17 [22]. We 

have used the relativistic expression for the magnetic quadrupole moment and the 

General Relativistic Atomic Structure Package (GRASP) [29] for our computations. 
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3.2.1 Theory ( MCDF-EOL) 

The Hamiltonian for an N-electron atom is written in atomic units as 

N N 
H = LHi + L V(lri - rjl) (3.1) 

i=l i,jji<j 

where ri's are the positions of the i-th particle. Hi is the Dirac Hamiltonian of i-th 

particle defined as 

(3.2) 

where Vnuc is the potential due to the nucleus. V is an operator representing the 

electron-electron interaction 

(3.3) 

where 

(3.4) 

and Aij = AiAj is an operator projecting onto the one-electron positive energy states, 

to avoid introducing unwanted pair creation effects. Here Wij is the energy of the 

photon exchanged between the electrons and ai are Dirac matrices. The first term 

in the correction to the Coulomb interaction is the magnetic interaction and the rest 

represents retardation. Since this potential contains differences of electron binding 

energies (Wij) the Hamiltonian is 110 longer Hermitian. Those binding energies can 

easily be evaluated in the single-configuration case with the help of the Koopman's 

theorem, but arc not defined for virtual orbitals in the MCDF case. More-over 

this potential is gauge dependent. Here it is written in the Coulomb gauge, which 

has been shown to be the best one because spurious contributions appears in other 

gauges can be canceled out only by re-summation of infinite classes of diagrams. 

There is also a debate on whether to use the full retardation term as in eq.(3.4) or 

the Breit interaction, which is truncated to contain only of the order up to (wIj ) as 

the complete interaction seems to lead to larger QED corrections to the electron­

electron interactions. 
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In the MCDF code only the first term of eq.(3.4) is taken for calculation. One can 

call it is a Dirac-Coulomb Hamiltonian. Later we will discuss how the Breit term is 

taken into account. The atomic wave function for N electrons is obtained by soh-ing 

the equation 

Hw(II, J, M) = Ew(II, J, M) (3.5) 

where II is the parity, J is the total angular momentum eigenvalue and M is the 

eigenvalue of its projection on the z axis. 

In the MCDF method, the trial wave function is taken to be a linear combination 

of configuration state functions (CSFs) : 

n 

Iw(Il, J, 1\1)) = L cr<I>r(I1, J, M) (3.6) 
r::l 

The CSFs are eigenfunctions of the parity, total angular momentum j2 and Jz. The 

CSFs are expressed as a linear combination of Slater determinants of Dirac spinors, 

N"I 

<p r (D,.1, M) = L dilDi) (3.7) 
i::l 

where IDi ) is a determinantal wave function built from single particle states. and 

its coefficients, di '8 are obtained by requiring that the CSFs are eigenstates of J2 

and its projection ./z. The variational principle is used to determine the radial wave 

functions and the mixing coefficients Cr self-consistently. The energy functional that 

is minimized is given by 

E(r = J 1.J!~HWadT = Lc;(o:)Hr.~c8(a) = clHc(r 
r,s 

(3.8) 

in the matrix notation where the Hamiltonian matrix element is defined by 

(3.9) 

Keeping the orbitals fixed, the variation of the energy functional Eo. with respect to 

the mixing coefficients with the normalization condition (wo.lwa) = 1 yields 

(3.10) 
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i.e. Co is an eigenvector of the Hamiltonian with eigenvalue Eo.. 

Self-consistent field (SCF) equations are obtained by requiring that energy functional 

should be stationary when subject to variations in the radial functions (Pa, Qa) such 

that the orbitals form an orthonormal set. Consider the energy functional: 

(3.11) 
a a,bja;r:b 

with 

Eopt = ~ d~Hrr + ~ drsHrs (3.12) 
r r,Sjr;r:s 

where tia = 'Er d~qa(r) is the generalized occupation number for orbital a and dr 

(r = 1, ... , n), the real coefficients, depends on the configuration mixing coefficients, 

are chosen so that 'Er a;. = 1. The detailed descriptions of all the terms are given in 

the appendix following to this section. The Lagrange multipliers Ea and Eab ensure 

the normalization and orthogonality conditions respectively. 

The extended optimal level (EOL) approximation of the MCDF approach is an 

extension of the well known optimal level (OL) version [35]. For the latter case, 

Eopt = Eo. yields dr = cr(a) and drs = cr(a)cs(a) so that the wave function and 

mixing coefficients are optimum for the state a. In the EOL approach, optimization 

is done on a sum of energies 'Ei E(ad, i = 1,"', nL, where nL < n, and for that 

case 

(3.13) 

so that 

[ 
1 nL 1 t 

dr = - ~ c;(ai) 
nL i=l 

(3.14) 

1 nL 

drs = - ~ er(ai)cs(ai) 
nL i=l 

(3.15) 

The relativistic two-electron operator is shown in eq.(3.4). As we see from that 

equation the interaction between two electrons can be expressed as a series expan­

sion. The first term is the Coulomb interaction and the leading correction to it is 

known as the I3reit interaction [30, 31, 32]. It is linear in the fine structure constant. 
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In the present work, we consider the Breit interaction as a first-order perturbation. 

We have used the expressions given by Grant and McKenzie to evaluate the Breit 

contributions [33]. The Hamiltonian matrix is constructed and diagonalized to es­

timate the mixing coefficients for the required atomic states (Eq. 3.10). Starting 

with these values of the mixing coefficients, the SOF equations are solved to ob­

tain new estimates for the orbitals. This process is repeated until self-consistency 

is achieved. The eigenvalues and orbitals obtained in this way are used to calculate 

different atomic properties. The magnetic quadrupole emission coefficient is given 

by the expression [34] 

1 ~ 2 
A.Ji = -[J] L..J 2rrl('J!JIM2I Wi)1 

f M;,M f 

(3.16) 

where [j] = 2j + 1. The matrix element of the magnetic quadrupole operator, M2, 

with respect to initial (IWi))and final (IWf») wave functions can be written in terms 

of OSF as : 

(W flM21 Wi) = :E Cr fCsi(<I>rIM21<ps) (3.17) 
7'8 

where 

(3.18) 
ab 

The expression for this single matrix element is 

(3.19) 

and 

(3.20) 

and 

(3.21) 

P and Q are the large and small components of the wavefunctions respectively and 

J L is the spherical Bessel function of order L. 
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3.2.2 Results and Discussions 

We have employed the MCDF approach in the EOL approximation to calculate 

excitation energies and the magnetic quadrupole transition rates for selected ions 

of the beryllium sequence. The advantage of this approach is that it is capable 

of taking into account a large class of electron correlation effects with a relatiyely 

small number of virtual orbitals. The intermediate coupling method was used to 

calculate magnetic quadrupole transition probabilities for a few Be-like ions [23, 

24, 25]. In this method, different basis sets are used for the diagonalization of 

the different parts of the Hamiltonian. The Coulomb part is diagonalized with 

respect to the L8 coupled basis, whereas the spin-orbital part with respect to JJ 

coupled basis. For Z:::;12 Froese Fischer et a1. [36] have used this approach in the 

framework of the multiconfiguration Hartree-Fock method supplemented by the the 

Breit-Pauli corrections (MCHF+BP approach). There is a small difference between 

those results and ours, mainly because of the choice of the orbital basis and the 

incomplete treatment of the relativistic effects in their approaches. OUf calculated 

excitation energies are in better agreement with the experimental values (whereyer 

available) than the other calculations. The superiority of the MCDF-EOL method 

(with the Breit interaction) over the MCHF+BP method is obvious from table 3.2 

(MCHF+BP excitation cnergies data are taken from Froese Fischer's web page: 

http:( jwww.vllsc.vanderbilt.edu/cff/cff.html).This table shows the percentage of 

the differences of the calculated excitation energies from the experimental values. 

The accuracy is much better in the case of the IvICDF-EOL method and it steadily 

improves for higher Z valucs. 

Our computations consist of scveral steps. We start with the Dirac-Fock (DF) 

calculation, aIld then optimize the two 282 (ISO) and 2s2pe p2) states (levels) with 

respect to stationary criteria (sec Eq. 3.13). In each of the following steps, one new 

orbital (to avoid the problem of computational convergence) is added to the old set 

and optimization is done on the required sum of the state energies using that basis. 

In our EOL calculations we have optimized the lowest five energy states (i.e. nL==5 

in (3.13)). 

Since we are interested in optimizing the 2S2 (1 So) and 2s2PC P2) states, \ve have 
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chosen CSFs which contribute to these two states. As the states are of opposite 

parities, only those CSFs will contribute which have the same parity and total 

angular momentum as either one of the above two states. Our orbital basis is 

constructed from Is, 2s, 3s, 4s, 2p, 3p, 4p, 3d, 4d and 4f orbitals. The CSFs are 

constructed by taking all the possible excitations from the Is and 2s orbitals to the 

other virtual orbitals apart from quadrupole excitations to the 4d and 4f orbitals. 

The convergence of the MCDF orbitals is significantly improved as the value of Z 

increases. In table 3.3, we give the contributions of the Breit interaction to the 

excitation energies. As expected they increase with 2. This leads to a significant 

change in the M2 transition rates as they are proportional to the fifth power of 

the excitation energies. The effect of Breit interaction on the excitation energies is 

plotted for various ionized atoms in figure 3.1. This figure shows that the calculation 

gives very good agreement with the NIST tabulated values for the excitation energies 

when the Breit interaction is taken into consideration. 

In Table 3.4, we have presented the excitation energies of the 2s2p 3 P2 state from 

the ground states for different Z-values. The standard values are taken from NIST 

online database and in a few cases, where there are some differences between our 

calculated excitation energies and the standard values, we compare our results with 

the unpublished data ofR.L.Kelly (indicated as :j:). For Z values of 35,40,45,50 and 

55 there is no data available in the literature. Table 3.4 shows excellent agreement 

between our calculations and the NIST data. For low Z ions, the difference between 

the standard valucs and our calculated values is on average <50 em-l, which is well 

wi thin the limit of the former. We can improve these calculations, if we consider 

some more orbitals in the active space, but that is computationally expensive and 

can create convergencc problems. In our calculation there is a change in the ordering 

of ls22p~ e So) and lS22s12p~(3 P2) states for highly ionized Be-like atoms (2==45, 
2" 2 2 

50 and 55). This is because of the rather large contraction of the 2Pl orbital for 
2 

ions with largp Z. 

Unlike the allowed electric dipole transition between 182 282 (1 So) and ls22s2p(1 Pd 
states, the most important contributions to the M2 transition between ls2282 (1So) 

and Is22s2pe P'2) do not come from the Hartree-Fock configurations. In the latter 
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Figure 3.1: The effect of Breit interaction on the excitation energies 

case one of tlw dominant contributions comes from the matrix element 

for all the ions. Table 3.5 shows how this contribution changes with the value of Z. 

This contribution decreases as the value of Z increases. 

In Table 3.6, transition decay rates are given from 2s2p 3 P'l state to the ground 

state. It is ch~ar that all the calculations are in fairly good agreement. The small 

discrepancies are due to the way in relativistic and the man~'-electron effects are 

incorporated ill the different methods. Most of the other calcula,tions have used rel­

ativistic corrections to the non-relativistic interaction Hamiltonian term to obtain 

the magnetic quadrupole moment operator. For doubly ionized carbon, Jonsson and 

Froese Fischer [21] have calculated the same transition probability with the MCDF­

EOL+RCI mdhod (with the Breit interaction and biorthogonal basis set). There 

is very good agreement between our result and theirs. Our result agrees with their 



3.2.2:Results and Discussions 61 

Table 3.2: Comparison of the percentage of differences of calculated excitation 
energies from experimental values between the AICHF+BP and MCDF+B (first 
order correction) methods 

======================== 
Z MCHF+BP MCDF+B 

6 

7 

8 

9 

10 

0.287 

0.231 

0.187 

0.219 

0.284 

0.119 

0.075 

0.057 

0.057 

0.029 

result (they also have calculated transition probability using the observed transi­

tion energy) if we use the standard excitation energy value for the M2 transition 

probability calculation. So, the small discrepancy is mainly due to the details of the 

optimization of the orbitals. As expected for low Z-ions, our results are not different 

from all the other results obtained using relativistic corrections. But for heavier ions 

the discrepallci('s arc larger. M2 transition probabilities arc not available for many 

of the highly ionized atoms. 
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Table 3.3: Contributions of the Breit interaction to the excitation energies ( in 
cm- 1) 

Z contributions to ~E 

6 19.84 

7 35.93 

8 59.11 

9 91.28 

10 131.67 

11 185.67 

12 253.70 

13 340.02 

14 443.40 

15 570.07 

17 895.77 

18 1090.02 

19 1322.64 

20 1593.19 

22 2247.92 

26 4117.06 

28 5363.68 

30 6903.70 

35 12047.52 

40 19560.90 

45 30095.86 

50 44362.98 

55 63024.75 
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Table 3.4: Excitation Energies (in cm- 1) from the ground state. 

Z 2s2p (3 P2) 

NIST EOL 

6 52447.11 52509.6 

7 67416.3 67467.1 

8 82385.3 82432.7 

9 97437 97493.2 

10 112704 112736.7 

11 128218 128247.4 

12 144091 144117.4 

13 160429 160439.9 

14 177318 177320.6 

15 194856 194861.8 

17 232660+ 232410.5 

18 252683 252688.1 

19 274090+ 274143.4 

20 296950 296933.5 

22 347240 347200.8 

26 471780 471784.7 

28 549500 549579.8 

30 640-170 640263.8 

3G 938933.4 

40 1373896.5 

45 1995158.4 

50 2864042.8 

55 4054174.1 

t From Kelly's unpublished work (http)/physics.nist.gov/cgi-bin(AtData/main-

asci ) 

Table 3.5: (1 s2.s3.s3Pt e P2) IA1211s2s3pt3p~ (180 ) matrix element values for differ­
ent Z 

Z Value 

6 1.15736 (-2) 4: 

16 4.12406 (-3) 

28 2.23929 (-3) 

40 1.50165 (-3) 

50 1.17056 (-3) 

t The notation ~(j3) implies O! x lOiS 
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Table 3.6: Trallsition rate (ill sec-1) from 2s2p(3 P2) to the ground state. 

Z A(A) EOL MCHF Glass Others 

+BP 

6 1906.7 5.176(-3) 5.193(-3) 5.261(-3) 5.139a ,5.215(-3)b 

7 1483.3 1.147(-2) 8.772(-3) 1.161(-2) 1.13(-2)C 

8 1213.8 2.152(-2) 1.602(-2) 2.171(-2) 2.17( _2)C 

9 1025.7 3.633(-2) 2.897{-2) 3. 700( -2) 

10 887.0 5.720(-2) 5.235(-2) 5.838(-2) 5.76(-2)C 

11 779.7 8.572(-2) 7.997(-2) 

12 693.9 1.239(-1) 1.177(-1) 1.269(-1) 1.25(-1)C 

13 623.3 1. 745( -1) 

14 563.9 2.410(-1) 2...160(-1) 4.8d ,2.38(-1)C 

15 513.2 3.281(-1) 

16 466.5 4.461(-1) 4.55(-1)C 

17 430.3 5.906(-1) 

18 395.7 7.858(-1) 7.993(-1) 

19 364.8 1.0423 

20 336.8 1.3804 1.405 1.41 (! 

22 288.0 2.4234 

24 244.8 4.433 

26 21U) 7.6459 7.930 7.69 c,10.2d 

28 181.9 1.3824( 1) 13.8c 

30 156.2 2.5289(1) 

35 106.5 1.1899(2) 

40 72.8 5.8742(2) 

45 50.1 2.8789(3) 

50 34.9 1.3675(4) 

55 24.7 6.2006(4) 

a: [21], b : [25], c : [24], d : [27] 
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3.3 Relativistic DF orbitals generation: A new 

approach using finite basis set expansion 

There has been an increased interest in solving the Dirac equation for many-electron 

atoms using the method of finite basis set expansion (FBSE) [37]. It has been 

found [38] that with kinetic balance condition imposed upon the basis set, Dirac­

Fock self consistent field (DF-SCF) calculations can be performed on many-electron 

atoms using techniques similar to nonrelativistic methods. The imposition of the 

kinetic balance relation [39] between the large and the small components of the 

basis functions is one of the main features of the success of this approach, which in 

essence can be regarded as using the proper boundary condition for the orbitals. It 

was shown that Gaussian-type orbitals (GTOs) can give rise to a natural description 

of the relativistic wave functions within a finite nucleus [40]. 

A large number of atomic and molecular calculations adopt a pragmatic approach 

to the selection of basis sets. The quality of a particular basis set is determined 

by physical con!-Jiderations and numerical tests. The accuracies of the orbital wave­

functions obtained from the numerical computations are rather high. Our aim is 

to obtain DF orbitals using FBSE approach atleast to that accuracies. The art 

of selecting tlH' basis set lies in the experience gained in previous studies and the 

requirements of a particular prop(~rty. Since it is beyond the scope of the present 

work to discuss this a.spect, we refer the review article by Carsky and Urban [41] 

and the references therein. The most important feature of the pnSE method in the 

GTO framework is to d.etermine the appropriate exponential pa.rameter (exponent), 

which largely determines the quality of the wavefunctions. 

Large basis set.s can be efficiently generated by utilizing the c.oncept of an even­

tempered Gaussian basis set (ET-GTO)[42]. While Matsuoka and co-workers [43] 

used well-tempered finite Gaussian basis set in computing DF energies, Mohanty 

and Clementi [37] employed geometric-type exponent for the Gaussian primitives 

[44] with kinetic balance condition between the large and small component spinors 

and OF energies of orbitals are compared to the corresponding numerical OF val­

ues [45]. Chaudhuri and co-workers [46] have developed a numerical procedure to 

solve the atomic relativistic OF -SCF equations using the finite universal basis set 
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expansion (FUBSE) method. They generate the large- and small-component part 

of the radial wave functions on a grid using the FUBSE procedure. The one- and 

two-electron radial integrals are evaluated numerically to avoid the complicated an­

alytical expressions of their direct and exchange radial integrals. This procedure 

provides an easy way to reduce the nb(nb + 1)/2 operations to ne operations in DF­

SCF computation (nb and nc correspond to the total number of basis functions and 

occupied orbitals, respectively) and thereby reduces the computational time of the 

:relativistic self-consistent-field calculations for heavy atoms. 

In our present work we have generated the orbitals using a hybrid approach. We use 

the above mentioned DF -SCF method through the finite universal or even-tempered 

basis set expansion to generate the wavefunctions of all the orbitals. Among those 

orbitals, all the occupied and a few low lying unoccupied single particle wave func­

tions are replaced by the corresponding single particle wave fUllctions obtained from 

the numerical procedure [45]. The details of this procedure are described in next 

section. In that section we explain how the remaining orbitals are constructed. The 

importance of this type of basis set is to achieve highly accurate wave functions 

for the orbitals of the atoms. For a complete basis set, it is immaterial how one 

generates them. But we will see in Section 3.3.2 that for a truncated finite basis 

set our approach generates better single particle wave functions. We have employed 

wavefunctions of the single particle orbitals obtained using the Gaussian basis and 

the new approach in the ab initio coupled-cluster (CC) method (explained in Sec­

tion 3.4.1) to calculate IP, EE and a few oscillator strengths of Mg+ and Ca+ ions. 

The CC method is strongly dependent on the choice of basis set to calculate various 

electronic properties of atoms and ions. We compare these results in that section. 

3.3.1 Method of Calculation 

Relativistic Hartree-Fock calculations using the basis set expansion method on atoms 

was initiated by Kim [47] and followed by many investigators [48]. Since this meth­

ods can be applied to heavy atoms and ions relativistic treatment is necessary for 

getting true cncrgies and wavefuctions. So one starts with the Dirac Fock Hamilto-
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nian given by 

(3.22') 

where VDF is defined in appendix-A consisting of direct and exchange parts. To first 

approximation we write the general wavefunction 1'It) to be single determinant liP) 

can be expressed in terms of single particle orbitals l4>i)S by 

(3.23) 

Here the single particle orbital is expressed in terms of spinors with Pi as large 

component and Qi as small component, 

X~imi } 

X-Kimi 

(3.2-1) 

where P and Q are radial parts and xs' are spin-angular parts of the components. 

These radial components are expanded in terms of Gaussian basis functions 

where Ci~ and C~ arc the expansion coefficients of large and small components. 

The above DHF orbitals arc generated using a hybrid scheme [-16] by solving the DF 

equation through pseudo-eigenvalue approach where basis fUIlctions are defined on 

a grid and the one- and two-electron radial integrals are evaluated numerically. The 

large and small components of the radial wavcfunctions are expressed as the linear 

combination of Gaussian Type Orbitals (GTOs). 

The GTOs arc of the form given by 

g . - rk • . e-air2 
z,k - (3.25) 

where k i =l,2,3, ... for s,p,d,,,. type functions respectively. The even-tempered basis 

set has exponent of the form 

D:i = D:i-l . (3, i = 1, ... , Nisym (3.26) 

where N isym is the number of basis functions for a given symmetry and 0:0 ,(3 are 

the parameters specified for the Gaussian orbitals of the particular symmetry. The 
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large component g~ of the single particle basis is expanded as 

and the small component g~ is related with 9~ by the kinetic balance condition giYen 

by relation : 

s s ( d K) L 
9n = eN dr + -:;: 9n (3.27) 

where C~ and C~ are the normalization constants of large and small components 

of the basis functions. 

For a system with nc closed shell occupied orbitals, we use a Gaussian basis to soh'e 

the DF equation for closed shell core, which can be written for single particle orbital 

(3.28) 

where t = 2:i CC~i·Pi + (f3i - 1)mc2 + Vnuc . 

The solution of this eigen value equation produces occupied and unoccupied orbitals 

for each symmetry: 

{ ¢h, cih, ... , ¢1,i'lI rn , 1> i'lI rn +l' ... , ¢N· }. 
'c Ttc "11 m 

where n~sym is number of occupied orbitals of the given symmetry. 

In the present method, we obtain the occupied and a few low lying unoccupied 

orbitals of each symmetry as numerical orbitals generated from GRASP [49] code. 

The numerical orbitals are denoted as 

where nisym is the number of numerical orbitals used for 1;sym-th symmetry. Since 

part of the orbitals are got numerically and part arc analytically using two different 

methods, the orbitals will not be orthogonal among these two partial sets. So one 

obtains new unoccupied orbitals {¢n;.lIm +l, ... , ¢NiSym} by the Schmidt orthogonal­

ization procedure as defined as 

nisym+k- 1 

l'tPniSym+k) = l¢niSym+k) - L l1,bm) (7,bm I ¢niSy",+k) (3.29) 
m=l 

where, k goes from 1 to (Nisym - nisym)' By this procedure the new partial set 

nf virtual orbitals are made orthogonal to the numerical orbitals and among each 
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other. It is not convenient to use this basis as such in certain types of many-body 

calculations, since the new virtual orbitals are not got by the diagonalization of the 

DF Hamiltonian and hence they are not DF orbitals. 

The Hamiltonian given in eq. (3.22) is then diagonalized only in the unoccupied 

space {'!jJnioym+ 1, •.. , '!jJN' _} where the unoccupied DF orbitals {'¢n' . +1'· .. , '!jJN'. } ... lSY.... losym s.sym 

are expressed as a linear combination of the Schmidt orthogonalized unoccupied 

orbitals as given below. 
N 

1'!jJ~) = L bkl!'!jJI) 
l=n+l 

The coefficients bkl are obtained by the above mentioned diagonalization and they 

are used for the generating of the new unoccupied DF singles particle orbitals which 

are orthogonal to the numerical orbitals and to themselves. This method has been 

extended to the open shell atoms by starting with a open shell Gaussian code [50]. 

3.3.2 Results and Discussion 

In this section we discuss our calculations of some of the properties of Mg+ and 

Ca+ using the new basis. We employ the coupled cluster calculations using orbitals 

obtained from the analytical FBSE method and our new approach; and compare 

the values of the IP, EE and oscillator strength properties obtained from these 

calculations \vith the corresponding experimental values. The basis is generated 

with a closed shell potential (V(N -I)) and defined on a grid. The number of basis 

GTOs used in each symmetry for both the systems is given in table 3.7. Since we are 

using a finite basis set, in practice, by changing suitably the exponents of the GTOs 

and the number of basis in each symmetry, one tries to get the bound DF orbitals as 

close as possible to the numerical DF orbitals [43]. But it is difficult to satisfy that 

for all the bound orbitals obtained analytically by changing the parameters. So, one 

of the best approaches to achieve the above purpose for all the occupied and a few 

low lying virtual orbitals is to use the new method explained ill section 3.3.1. 

Table 3.7: Number of basis used for each symmetry to calculate DF energies and 
wavefunctions of Mg+ and Ca+. 

s(1/2) p(1/2) p(3/2) d(3/2) d(5/2) £(5/2) f(7/2) g(7/2) g(9/2) 

30 25 25 25 25 20 20 15 15 
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We have used a large even-tempered Gaussian basis with a o =O.OI(for Mg+) , O.00725(for 

Ca+) and {3= 2.90 (for Mg+), 2.73 (for Ca+) for all the symmetries and obtained \vaye 

functions of relativistic orbitals. Table 3.8 and 3.9 show the comparison between DF 

energies of the bound orbitals calculated using the analytical FBSE method with 

the corresponding values using the new approach for Mg+ and Ca+ systems. Only 

bound orbitals are given in these tables and they are the numerical orbitals for the 

new method (showed in table 3.10). The agreement between the occupied and a few 

low lying unoccupied orbital energies using two different methods are good. But as 

we see from table 3.8 and 3.9, some of the higher lying orbitals deviate considerably 

from numerical ones. 

The above basis is employed to calculate the IP and EE of the above mentioned sys­

tems using the Coupled Cluster Singles and Doubles with partial triples (CCSD(T)) 

[51, 52] method. In order to reduce the amount of memory needed for the CCSD(T) 

calculations we restrict an upper bound in energy for all single particle orbitals of s-: 

Pl/2-, P3/2- symmetries by 1500 a.u., d 3/ 2-, d5/2-, f5/ 2-, f7(2- symmetries by 500 a. u .. 

and g7/2, g9(2 symmetries by 5 a. u. for Mg+; and for Ca+ S-, Pl/2-, P3/2- symmetries 

by 1000 a.u., d:I/ 2-, dS(2-, f5/ 2-, f7/ 2-, g7/2, g9/2 symmetries by 500 a.u .. This is done 

to reduce the memory used in these computations. All the core orbitals are excited 

for these calculations. The basis orbitals used for the coupled cluster calculation for 

each symmetry with the number of numerical orbitals used are given in Table 3.10. 

Using the coupled cluster wave functions the IP and EE for the low lying levels were 

calculated using the two bases. 

Table 3.11 shows the IP values for Mgt and Ca+. Table 3.12 shows EE values for 

Mg+. It is clearly seen that the higher excited orbitals or states obtained by using 

analytical Gaussian basis do not have as good agreement with the experimental 

values as obtained from our new basis. This may be due to the fact that the 

higher excited orbitals were not generated that accurately using analytical Gaussian 

basis. The importance of the use the new approach is clear from figures fig. 3.2 

and fig. 3.3. The percentage of errors of both the IP and EE of Mg II show the 

necessity of llsing new basis. If one adjusts the exponents of the basis functions, 

it is possible to generate better basis with better agreement with experimental IP 
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and EE values (this work will be easier, if one uses even-tempered basis). This is 

not very important if new method is used. In some cases both the approach shm\' 

comparable accuracy. This may be mere coincidence, as the results obtained using 

new approach show uniform accuracy. If we look at the overall results, the calculated 

results obtained from the new basis generation method are in better agreement with 

experimental results than those obtained from analytical basis. This picture will be 

more convincing if we check properties of heavier atoms using both the approaches. 

Table 3.8: Tile comparison of DF bound orbitals' energies for J\,1g+ calculated b.,' 
using the new method and the analytical method. 

Orbital Orbital Energies{au) 

(new method) ( analytical) 

Is -49.864752462 -49.870881301 

2s -4.4964660926 -4.4976610628 

3s -0.54140221084 -0.54136243689 

4s -0.23172649438 -0.23156611955 

58 -0.12864892397 -0.12788140758 

2p{1/2) -3.0133544114 -3.0135872135 

3p{I/2) -0.38407140353 -0.38397409949 

4p(I/2) -0.18339057979 -0.18292597631 

5p{I/2) -0.10769454545 -0.10561870733 

2p{3/2) -3.0017458178 -3.0020865461 

3p{3/2) -0.38365982565 -0.38356761821 

4p{3/2) -0.18325079248 -0.18278440143 

5p{3/2) -0.10763095091 -0.10553127977 

3d{3/2) -0.22481498153 -0.22459405689 

4d{3/2) -0.12647690494 -0.12516420657 

5d{3/2) -0.080845062906 -0.065246507339 

3d{5/2) -0.22481875059 -0.22459789211 

4d{5/2) -0.12647920923 -0.1251666121-:1 

5d(5/2) -0.080846385635 -0.065251272585 

4f{5/2) -0.12501099191 -0.12474809116 

5f{5/2) -0.080008914239 -0.078323201197 

4f(7/2) -0.12501046628 -0.12474755971 

5f(7/2) -0.080008654577 -0.078322867613 

5g(7/2) -0.080000373656 -0.0796286927-12 

6g(7/2) -0.055555838092 -0.038809791027 

5g(9/2) -0.080000203355 -0.0796285220-11 

6g(9/2) -0.055555739590 -0.038809441027 
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Table 3.9: The comparison of DF bound orbitals' energies for Ca+ calculated b ..... 
using the new method and the analytical method. 

Orbital Orbital Energies(au) 

(new method) ( analytical) 

Is -150.71745249 -150.74644702 

2s -17.51577683 -17.522504704 

3s -2.79674825 -2.798286073 

4s -0.41663114 -0.4166592736 

5s -0.193315777 -0.19323713874 

6s -0.112034147 -0.11190684897 

2p(1/2) -14.2827952 -14.2832660 

3p(1/2) -1.88735294 -1.88758357 

4p(1/2) -0.309998594 -0.30990627 

5p(1/2) -0.156765658 -0.156551816 

6p(1/2) -0.09519934 -0.0946946996 

2p(3/2) -14.1436158 -14.1447707 

3p(3/2) -1.8718453 -1.87218898 

4p(3/2) -0.3090889 -0.309005119 

5p(3/2) -0.1564329 -0.156218249 

6p(3/2) -0.095040588 -0.094515993 

3d(3/2) -0.330869481 -0.331085459 

4d(3/2) -0.168738372 -0.16852932 

5d(3/2) -0.101351306 -0.100124895 

6d(3/2) -0.067523464 -0.046470480 

3d(5/2) -0.3307596 -0.3309822 

4d(5/2) -0.168664166 -0.16845722 

5d(5/2) -0.101314806 -0.100090263 

6d(5/2} -0.067503287 -0.0463757676 

4f(5/2} -0.1251762324 -0.1250548669 

5f(5/2) -0.0801426261 -0.0795791414 

6f(5/2) -0.055655986 -0.0241280364 

4f(7/2) -0.125176566 -0.12505519 

5f(7/2) -0.080143031 -0.0795795336 

6f(7/2) -0.055656295 -0.0276054744 

5g(7/2) -0.080001362 -0.0797286629 

6g(7/2) -0.055556899 -0.05189128110 

5g(9/2) -0.080001198 -0.079728497 

6g(9/2) -0.055556807 -0.0518911151 
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Table 3.10: Number of orbitals used in CCSD(T) calculation. 

Symmetry No. of orbitals in numerical orbitals Gaussian orbitals 

each symmetry used in the calculation used in calculation 

MgII 

s 11 1,2, .. 5s 6s, .. 118 

p(I/2) 11 2p, ... 5p 6p, ... 11p 

p(3/2) 11 2p, ... 5p 6p, ... l1p 

d(3/2) 11 3d, ... 5d 6d, ... 10d 

d(5/2) 11 3d, ... 5d 6d, ... lOd 

f(5/2) 11 4f,5f 6f, ... lOf 

f(7/2) 11 4f,5f 6f, ... lOf 

g(7/2) 11 5g,6g 7g, ... 9g 

g(9/2) 11 5g,6g 7g, ... 9g 

Call 

s 12 1,2, .. 6s 8s, .. 12s 

p{1/2) 11 2p, ... 6p 7p, ... 12p 

p(3/2) 11 2p, ... 6p 7p, ... 12p 

d(3/2) 11 3d, ... 6d 7d, ... 12d 

d(5/2) 11 3d, ... 6d 7d, ... 12d 

f(5/2) 11 4f, ... 6f 7f, ... 13f 

f(7/2) 11 4f, ... 6f 7f, ... 13f 

g(7/2) 11 5g,6g 7g, ... 9g 

g(9/2) 11 5g,6g 7g, ... 9g 
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Table 3.11: IP got using nonlinear CCSD in units of (em-I): 

orbital Experiment Analytical Error(%) New Error (%) 

method method 

MgII 

38 -121267.41 -121146.11 0.10 -121146.11 0.10 

3p(1/2) -85597.99 -85516.94 0.09 -85493.85 0.12 

3p(3/2) -85506.44 -85422.94 0.09 -85400.10 0.12 

48 -51462.22 -51401.11 0.11 -51422.62 0.07 

3d(3/2) -49776.09 -49702.80 0.14 -49741.43 0.07 

3d(5/2) -49776.70 -49703.43 0.14 -49741.90 0.07 

4p(1/2) -40646.61 -40536.31 0.27 -40611.47 0.08 

4p(3/2) -40616.11 -40503.86 0.27 -40580.27 0.08 

58 -28481.21 -28331.64 0.52 -28457.77 0.08 

4d(3/2) -27955.31 -27658.29 1.06 -27937.82 0.06 

4d(5/2) -27955.31 -27658.64 1.06 -27938.15 0.06 

4f(5/2) -27467.41 -27409.90 0.21 -27464.47 0.01 

4f(7/2) -27467.41 -27409.78 0.21 -27464.35 0.01 

5p(lj2) -23812.51 -23408.87 1.69 -23793.95 0.07 

5p(3j2) -23798.41 -23389.57 1.71 -23779.82 0.07 

Call 

48(1/2) -95748.00 -95974.06 0.24 -95836.80 0.09 

3d{3j2) -82098.87 -82430.28 0.4 -81644.66 0.55 

3d{5/2) -82037.42 -82241.53 0.25 -81465.49 0.69 

4p(1/2) -70556.70 -70719.12 0.23 -70569.94 0.02 

4p(3/2) -70332.84 -70482.08 0.21 -70327.26 0.007 

4d(3/2} -38908.69 -38852.47 0.14 -38710.65 0.05 

4d(5/2) -38889.49 -38816.18 0.18 -38677.34 0.10 

5p(1/2) -35213.00 -35229.60 0.05 -35218.60 0.01 

5p(3/2) -35134.80 -35146.30 0.03 -35133.77 0.00 

4f(5/2) -27691.04 -27670.68 0.07 -27684.85 0.02 

4f(7/2) -27691.04 -27670.69 0.07 -27670.06 0.07 
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Figure 3.2: Percentage oj' error in IP results of' nd('ll('(' ()l'lJirn/s oj' AlgI! obtained 
using anaiytiud GallssiClll Im.b'is (solid line) and Ilew basis (clnsil('d liIle) 

Some of the other propnties like dipole matrix elCllH'Ilt.S, trnllsition probabilities 

('which are dOlllinated by the \wlV,t'f'unctioIls of core orbitals) de, art' more dependent 

on accurate wavefunctions than IP and EE. We hav(' compared oscillator strength 

properties for transitions of Mgt, which is one of our motinl.tiolls in this thesis ,,'ork 

Due to lack of accurate experiment on oscilla,tor strcllgths of !ll<lI1Y transitions \ve 

could not quantify th(~ accuracy all transitions. HO\\'(\n'l', n comparison with the 

NIST and re('('llt empirical value'S for a few transitioll is giy(lll ill table 3,13 which 

does show the superiority of the new approach over the' analytical one. 
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Table 3.12: EE of Mg 11 got using nonlinear CCSD in units of (au) 

orbital Experiment Analytical Error(%) New Error (%) 

method method 

3s(1/2)-3p(1/2) 35669.42 35629.162 0.11 35652.26 0.05 

3s(1/2)-3p(3/2) 35760.97 35723.170 0.10 35746.01 0.04 

3s(1/2)-5p(1/2) 97454.90 97737.242 0.29 97352.16 0.10 

3s(1/2)-5p (3/2) 97469.00 97756.539 0.29 97366.29 0.10 

3p(1/2)-3d(3/2) 35821.90 35814.139 0.02 35752.42 0.19 

3p( 1/2)-5d(3/2) 67751.68 70877.636 4.61 67657.72 0.13 

3d(3/2)-5p(1/2) 25963.58 26293.937 1.27 25947..17 0.06 

4p(1/2)-4d(3/2) 12691.30 12878.022 1.47 12673.64 0.1-1 

3d(3/2)-4f(5/2) 22308.70 22292.899 0.07 22276.95 0.14 

3d(3/2)-5f(5(2) 32198.88 32490.301 0.90 32165.47 0.10 

Table 3.13: Compa.rison of some oscillator strength results of jVIg II 

Transitions NIST Empirical Analytical method New Method 

3s -3p(1/2) 0.313 0.30333 0.30365 

3s -3p(3/2) 0.627 0.60845 0.60899 

38 -4p(1/2) 3.2( -4) 3.04(-4) 3.32(-4) 

38 -4p(3/2) 6.4( -4) 5.28(-4) 5.98(-4) 

3d(3(2)-5p(1/2) 0.0039 0.0059 0.00385 

4p(1/2)-5d(3/2) 0.083 0.12116 0.09368 

3d(3/2)-5f( 5/2) 0.165 0.23289 0.15924 

4d(3 /2)-5f( 5/2) 0.80 1.23190 0.79511 
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3.4 Properties of Mg II using the Coupled Cluster 

Approach 

An alkali atom or ion can be treated as a one-electron system to a good approxi­

mation consisting of a single valence electron outside the closed shell core. Earlier 

works on the oscillator strength of the transitions from the valence electrons had 

been focussed primarily on the strong ns ---7 np transitions. The intensity of suc­

cessive lines ns ---7 n'p decreases rapidly with increasing n'. Systematic calculations 

have shown this behaviour of alkali spectra to be only one example of a general fea­

ture of absorption spectra due to the non-hydro genic character of realistic potentials 

V(r) [54]. 

Interstellar ultraviolet lines of Mg II (A 2796,A 2803) have been observing as strong 

interstellar absorption lines in the spectra of early type stars like /3, 5, 'T Seo and 

f3 Cep [55]. The combination of high spectral resolution, photometric precision and 

sensitivity provided by many recent spectrographs has motivated the study of UV 

interstellar absorption lines. This study enables a detailed examination of individual 

absorbing regions in the interstellar medium (ISM). The potential precision of these 

measurements has also triggered new interest in the determination of atomic prop­

erties, particularly the oscillator strength (f-values), required to convert measured 

line strengths into gas-phase column density. The strong near-UV Mg II lines are 

generally highly saturated along most interstellar lines outside the local ISM and 

usually yield extremely uncertain estimates of Mg II column densities in interstellar 

gas. Since Mg+ is the dominant form of Mg in the neutral ISM i.e, H I gas, and 

since Mg is expected to be a significant constituent of interstellar dust grains, the 

far-UV lines are critical for assessing the role of this important element in the ISM. 

Along the most interstellar lines -with the exception of those that pass only through 

the local ISM [56]- the near-UV Mg II AA 2796,2803 lines are strongly saturated 

and yield limited column density information. The neutral source of accurate Mg 

II column densities is thus the other pair of observationally accessible Mg II lines, 

the intrinsically much weaker doublets around A 1240 discussed below. The deter­

mination of column densities of any element in interstellar cloud is obtained from 

equivalent widths of the observed lines. The equivalent width is calculated from a 
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curve-of-growth analysis using suitable models for the \'elocity distribution of the 

absorbing gas element. Since l'vlg II is the main ionization stage in ISM, the column 

density of magnesium is relatively high among other cosmic abundance [55~ 57]. 

Magnesium is one of the most abundant metals and, because it readily condenses 

into the solid form, it also likely to be one of the main constituents of interstellar 

dust. In addition, Mg provides a diagnostic of electron dellsity in the gas phase 

of the ISM, through the ionization ratio Ivlg!j\Ig+. An accurate assessment of the 

importance of Mg in both the gas and the dust must dearly start with accurate 

column densities. 

Analogous to the above two strong lines 38 2S1/ '2 -+ 4p 2 Pl/2,3}2 transitions are also 

found in the ultraviolet region at approximately 124:0 .-\.. As mentioned earlier this 

doublet transition is very weak. In 1975, Morton and Hu [58] had shown that with 

the theoretical value of the oscillator strength of these transitions provided by Black 

et al. [59J in 1972, the empirical curve of growth for the states of ions does not fit the 

equivalent wid ths that arise from the Mg+ lines (see the figure 3.4). They claimed 

that the f-value should be a factor of 2.6 larger than the value calculated by Black 

et al.. But thl' oscillator strength calculated using various methods. shows a steep 

drop. That is because of a cancellation of the positive and negath"e contributions 

to the radial integrals [54]. 

This part of the thesis is concerned with the calculations of allowed transitions for 

Mg+. We employ the coupled cluster method with singles, doubles and partial triples 

excitations (CCSD (T)) to calculate these transitions. For a few transitions, we cal­

culate excitation energies and f-values using the rdCDF-EOL method, and compare 

them with the' corresponding values obtained using the CCSD(T) method. In recent 

years, many ab 'initio, semi-empirical and empirical calculations llave been performed 

[60,61, 62, 63]. The empirical investigation of f-values of Mg II ,\, ),1239,12.10 lines 

from the absorption towards the star ~ Persei [61] showed total inconsistency with ab 

initio calculations done by Hibbert et al. [60]. The improved ab initio calculations by 

Fleming et al. [63] are not in very good agreement with the recent empirical calcula­

tions by Fitzpatrick [62]. Our fully ab initio, highly correlated all order many body 

calculations, however, are consistent with Fitzpatrick's results alld the relativistic 
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Figure 3.4: Empil"icai curve of growth for the ion states expected to be most 
populated in H I regions (taken from reference [58J) 

SD method [64]. We compare our results with the excitation energies and f-values 

provided in NIST database (ref: http://aeldata.phy.nist.gov/nisLbeta.html), wher­

ever available. 

3.4.1 Theory (Coupled Cluster Method) 

We start with a N-electron closed shell Dirac-Fock (DF) reference state 1<[» and 

write the closed shell ground state as 

(3.30) 

where T is the core electron excitation operator. The Dirac-Coulomb equation 

(3.31) 

with 

H = :L CQi·Pi + (fJi -l)mc2 + VN + :L ~ 
i i<j 1 ij 

leads to the exact ground state energy E of closed shell part of the system. Here a 

and j3 are Dirac matrices and VN is the nuclear potential. Hmn',·er, it is technically 
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simpler to first define the normal ordered Hamiltonian 

(3.32) 

where EDF = <cI>IHI<I» and then solve the modified Dirac-Coulomb equation 

(3.33) 

After projecting with <<I>le-T from the left we obtain tlle' correla.tion energy 

(3.3-1) 

where 'I,'e have defined the dressed, normal ordereel HamiltonictIl 

(3.35) 

If we project any of the excited determinants {cI>"ie-T from the left of eq. (3.3-1) we 

additionally get the set of equations, 

(<I>*IHI<I» :::: O. (3.36) 

Equations (3.3-1) and (3.3G) arc the coupled cluster (~quat.iolls. First, tht' set of 

equation (3.3G) has to be solved to yield the duster operat.or T, which then can 

be used to define the dressed Hamiltonian fi and t.o evaluat.e t.he correlation ('nergr 

Ecarr . In the CCSD (coupled duster singles and doubles) approximation, the duster 

operator T is composed of onc- and two-body excitation operators, ie., T = Tl + T21 

which are expressed in terms of second quantization, 

T :::: Tl + T2 = L a; aat~ + 2: a;a:abaat~Z 
ap abpq 

After the COllt.r<lction of the ladder operators [65] a.nd rearranging the indices, eq. 

(3.36) can be l'xpressed in the following matrix form: 

A + B(T).T = 0, (3.37) 

where A is a con~tant vector which consists of the elements (<I>*lirl~) and the matrix 

B(T) itself d('pt'nds on the cluster amplitude so t.hat Eq. (3.3/) has to be soh"ed in 

an iterative procedure. 
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Because of the spherical symmetry of atoms, the above derived equations can be sep­

arated into a radial and an angular part, which considerably reduces the numerical 

effort. The radial Coulomb integrals, which define the most time consuming part of 

the computation, can be stored in the computer's RAM, whereas the angular parts. 

which consist of much simpler algebraic expression, can be evaluated on the fly. 

The reduction of the angular part greatly simplifies the computational complexity 

of both DF and post-DF calculations. The corresponding angular factors have been 

derived by applying the graphical method of the angular momentum adaptation 

scheme, popularly known as the JLV scheme [66]. The multipole expansion of the 

Coulomb operator is given in many test books [67, 68, 69]. Similarly, in the Ijm) 

basis, the one- and two-body cluster operator Tl and T2 can be expressed as 

t~ = (p I Tl I a) = L TlD (p, a) c5 (j a, ;'p) c5 ( rna, mp) (3.38) 
jarna 

and 

k 
(3.39) 

q 

Here, Thp, q, a, b) denotes the radial cluster operator, depending on the multipole 

k, the orbital indices a, b (occupied orbitals) and p, q (virtual orbitals), which is 

multiplied by a phase factor and the appropriate Wigner 3j-symbols. Applying the 

multipole expansion of the Coulomb operator and the clustE.'r operator T together 

with the JLV scheme, the angular momentum reduction of the CC equations is 

straightforward. 

In the multipole expansion of the Coulomb matrix element (abl r~2Icd), only a subset 

of the multipoles of rank k leads to non-vanishing contributions. The triangular 

conditions for the angular momenta 

(3.40) 

set the upper- and lower limit for the multipole moment k. Additionally, the overall 
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parity selection rule demands that the orbital angular momenta satisfy the relation 

(3 .. n) 

and from the angular part of the Coulomb matrix element 'we can derive the addi­

tional constraints 

(3.42 ) 

Equations (3.-11) and (3.42) imply that for a given set of orbitals [a, b, c. d] either 

even or odd values for k lead to non-vanishing contributions. 

In the case of the angular decomposition of the cluster operator T2, the triangular 

conditions (3.40) are still valid as well as the O'~:erall parity selection rule (3.41). 

Following Liu et al. [70], we call a certain set of aUO\ved configurations [a. p, q, b, IL] 

in the angular decomposition of the two-body operator a pair channel. 

The eq. (3.42) has to be satisfied only in the CC diagrams which contain the 

Coulomb integrations in less than third order, (i.e. during the first iteration: then the 

cluster operator itself represents one order in Coulomb interaction) whereas higher 

order Coulomb interactions (in latter iteration) lead to coupled angular momenta 

which violate Eq. (3.42). The excitations, which satisfy eq. (3.42), are called 

even-parity pair channels (EPC). Liu et al. [70] have argued that the EPe prodde 

the dominant contribution to the CC equations and therefore it might be a valid 

approximation to discard the odd-parity pair channels (OPC) and in this way the 

number of cluster amplitudes and the computational effort reduces by a factor of 

half. We have followed this suggestion and applied the CC approach to only EPC 

cluster amplitudes, which we shall refer to as the CCSD-EPC approximation. 

The ground state of Mg+ contains only one valence electron in the 381/2 orbital. One 

way to evaluate the ground state energy of Mg+ is to first compute the correlations 

within the closed shell system Mg++ using the closed shell CC approach and then 

add another electron to the 381/2 orbital with the help of the open shell CC (OSCC) 

technique [71]. Similarly, the valence electron can be added to any other orbital to 

yield excitation energies. In order to add an electron to the k'th virtual orbital of 

the DF reference state we define 

(3..J3) 
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with the particle creation operator a!. We now define the exact state using excitation 

operators for both, the core electrons and the valence electron, in the following way 

(3.44) 

where {Sd is the normal ordered valence electron excitation operator [69}. Since Sic 

has to contain the particle annihilation operator ak, because of the normal ordering 

it cannot be connected to any other valence electron excitation operator so that 

{es/c} reduces to (1 + Sk) and we can write Eq. (3.44) as 

(3.45) 

Following the same procedure as in the closed shell approach, we obtain a set of 

equations 

(3.46) 

and 

Here, .6:.Ek is the difference between the energy of the single reference state Iw~+1) 

and the closed shell state I w). [The operators in left hand side of Eq. (3.46) and 

both sides of Eq. (3.47) are connected]. Eq. (3.47) is nonlinear in Sic because 

the energy difference .6:.EIc itself is a function of Sk. To solve the set of equations, 

one has to start with an initial estimate for the Sk amplitudes, e.g. Sl = 0 and 

S2 = ( tqlvlab) ). Then one can evaluate the energy difference using Eq. (3.46) and 
!a t:b-!p-Eq 

put the result into Eq. (3.47) to solve the Sic amplitudes. This procedure has to be 

iterated and driven to self-consistency. 

The next step in the calculation is the inclusion of the triple excitations in an 

approximate way shown as, 

Spqr 
abk -

(3.48) 

where s~g; is the amplitude corresponding to the simultaneous excitation of orbitals 

a, b, k to p, q, r; IT, VS are the contraction of all creation/ annihilation operators; 

and Ei is the orbital energy of the i-th orbital. This contribution is added to the 

energy obtainC'd using singles and doubles. 
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(3,49) 

where (,6.1 - ~i) is the energy difference bet'iveen final state and initial state. and 

the electric dipole moment matrix element D Ii is defined as 

(3.50) 

where, 

(3.51) 

d = e-T d eT and d is the electric dipole moment operator. The connected parts of 

Eq. (3.50) and Eq. (3.51) will contribute and hence v;e only compute those parts in 

our dipole matrix element calculations. 

3.4.2 Results and Discussions 

The generation of single particle orbitals used in this calculations is discussed in the 

previous section (Sec. 3.3). The starting point of this calculation is the generation 

of DF orbitals for the Mg++ core. Though we have used a large basis space for the 

generation of the orbitals, we restrict the number of basis orbitals for the coupled 

cluster calculation by imposing an upper bound in energy for all single particle 

orbitals of S-, Pl/2-, P3/2- symmetries by 1500 a.u., d3/ 2-, d5/ 2-, f5/ 2-, f7/ 2- symmetries 

by 500 a.u. and g7/2, g9/2 symmetries by 5 a.u .. This is done to reduce the huge 

memory required to store the matrix elements of the dressed operator jj and the 

two electron coulomb interaction in the main memory. We consider all the singles, 

doubles and partial triple excitations from the core in this calculations. 

OUf calculated ionization potential of the 38 orbital is 121117.91 cm-I, which differs 

from the exp('rimental value by 0.12%. In table 3.14 we present the excitation 

energies of tIll' doublet states calculated using the CCSD(T) and the MCDF-EOL 

method, and compare them with the NIST data and values obtained from other 

calculations [GO, 63, 64]. The accuracy of the results obtained using the ::\ICDF­

EOL and the all order relativistic SD method [6-1] are comparable with the CCSD(T) 

results. However, it is difficult to obtain convergence with the ::\ICDF-EOL method 



3.4.2:Results and Discussions 86 

for more than a few states. Therefore, we were not able to calculate the electronic 

properties for higher excited states using that approach. Safronova et al. [64J have 

shown that the effect of Breit interaction is almost negligible. A moderate and 

large cr calculations were performed by Hibbert et al. [60J and Fleming et al. 

[63] respectively to calculate the excitation energies. However, the results of those 

calculations do not agree as well with the NIST data as our CCSD(T) calculations. 

This may be because of the advantages of the CCSD (T) method over the cr method 

as discussed in the review article by Bartlett [65]. Since single particle DF equations 

produce bound orbitals up to 6s, 6p, 5d, Sf and 6g for their respective symmetries, 

only the states made of those bound orbitals are presented in table 3.14. 

Table 3.14: Excitation Energies from the ground state in cm-1 

States multiplet NIST CCSD(T) MCDF Others 

2p63p 2 P1/2 35669.31 35652.26 35673.05 35489.04a ,35730.47b ,35663.5c 

2P3/2 35760.88 35746.01 35730.84 35754.8c 

2p64s 2S1/2 69804.95 69723.49 69832.32 6882/.24a ,69804.4c 

2p63d 2D3/2 71491.06 71404.68 71494.Sc 

2 D5/2 71490.19 71404.21 71493.9c 

2p64p 2P1/ 2 80619.50 80534.64 80492.37 79581.50a,80174.0Sb 

2P3/ 2 80650.02 80565.83 80580.59 

2p65s 2S1/2 92790.51 92688.34 91542.87a 

2p64d 2D3/2 93311.11 93208.29 

2D5/2 93310.59 93207.96 

2p64J 2F5/2 93799.63 93681.63 

2D7/2 93899.75 93681.76 

2p6 5p 2 P 1/ 2 97455.12 97352.16 96195. i3a 

2P3/ 2 97468.92 97366.30 

2p6 6s 2S1/ 2 103196.75 103108.93 101858.17a 

2p6 5d 2 D 3/ 2 103420.00 103309.98 

2 D 5/ 2 103419.70 103309.79 

2p6 5J 2F5/2 103689.86 103570.15 

2D7/2 103689.92 103570.21 

2p6 6p 2 P1/2 105622.34 105516.19 

2 P 3/ 2 105629.72 105523.95 

a : Configuration method [60]; b : Superposition of configuration method [63] 

c : Relativistic SD method [64] 
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One of the motivations of this work is to calculate 38 - 4p transitions with high ac­

curacy. Fano and Cooper [54] argued that this transition amplitude should be small. 

Fleming et al. [63] have recently carried out a large scale non-relativistic CI calcu­

lation for this transition. They obtained a value of oscillator strength (8.33x 10-4 ); 

higher than their value calculated earlier (3. 7x 10-4) [60]. In our calculation, we have 

obtained a better description of electron correlation by taking the excitations of all 

the electrons from the core into a large virtual space than them. Our results agrees 

very well with Fitzpatrick's [62] results obtained through an empirical method. But 

it smaller by about two and half times than :\lorton and Hu's [58] empirical value. 

This is shown in table 3.15 along with a comparison of oscillator strengths of 38 - 3p 

and 38 - 4p transitions with the values obtained from NIST database. Safronova et 

al. [64] have calculated 38 - 3p transitions by using a method which includes single 

and double excitations of the HF ground state to all orders ill perturbation theory: 

which they called the relativistic SD method. Their calculated oscillator strengths 

are in good agreement with our. 

Table 3.15: Oscillator Strengths 0[3s - 3p and 38 - 4p transitions 

Transitions Multiplets NIST CCSD ReI. SD Empirical 

38 - 3p 2S1/2 _2 P1/ 2 0.306 0.30365 0.30403 

2S1/2 _2 PS/ 2 0.609 0.60899 0.60989 

38 - 4p 2S1/2 _2 P1/ 2 7.7(-5) 3.322(-4) 3.2(-4) 

281/ 2 _2 PS/ 2 1.5( -4) 5.980(-4) 6.4(-4) 

In table 3.16, we give the oscillator strengths of all the possible doublet allowed 

transitions, rn8 - np, mp - nd and md- nf for various m and n calculated using the 

CCSD(T) method. A comparison is made with the NIST data, and a fevi! MBPT 

[64]'wherever available and MCDF data, where\'er calculated. In this table we have 

presented the oscillator strengths of many transitions for which we do not find values 

in the literature to compare. Almost all the values obtained from NIST database 

shown here are compiled from the earlier non-relativistic semi-empirical calculations 

or relativistic HF type calculations (references are available in the web-site whose 
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address was given earlier). So there are small differences between all the f-values 

obtained from NIST database and our calculations using the CCSD(T) method. 

But there is good agreement between our results and those of relativistic SD [64J 

calculations, wherever available. 

Table 3.16- Oscillator Strengths of various transitions . 
Transi tions Multiplets NIST CCSD MCDF ReI. SD 
3s - 3p 2S1/2 _2 P1/ 2 0.306 0.30365 0.30320 0.30403 

2 Sl/2 _2 PS/2 0.609 0.60899 0.60952 0.60989 
3s - 4p 2S1/ 2 _2 P1/ 2 7.7{-5) 3.322(-4) 

2 Sl/2 _2 PS/2 1.5(-4) 5.980(-4) 
3s - 5p 2 SI/2 _2 P1/ 2 3.3(-3) 3.921(-4) 

2S1/2 _2 PS/2 6.6{-3) 7.427(-4) 
3s - 6p 2 S1/2 _2 P1/ 2 7.593(-6) 

2 S1/2 _2 PS/ 2 1.953{-5) 
3p - 4s 2 Pl / 2 _2 SI/2 0.138 0.14561 0.1533 0.14427 

2 PS/ 2 _2 SI/2 0.139 0.14563 0.1595 0.14943 

3p - 58 2 P1/ 2 _2 Sl/2 0.01763 

2 PS/2 _2 SI/2 0.01767 

3p - 68 2 P1/ 2 -281/ 2 6.027{-3) 

2 PS/ 2 -281/2 6.066(-3) 

3p - 3d 2 P1/ 2 _2 D3/2 0.920 0.93669 0.94086 

2 PS/ 2 _2 D 3/ 2 0.0919 0.09358 0.09409 

2 PS/2 _2 DS/2 0.828 0.84226 0.84716 

3p - 4d 2 P1/ 2 _2 D3/2 3.8462{-2) 

2 PS/2 _2 D3/2 3.844{-3) 

2 PS/ 2 _2 DS/2 3.8463{-2) 

3p - 5d 2 P1/ 2 _2 D 3/ 2 1.236(-2) 

2 PS/ 2 _2 D3/2 1.265(-3) 

2 PS/ 2 _2 D S/2 1.139(-2) 
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(Continued from the previous page) 

Transitions Multiplets NIST CCSD MCDF ReI. SD 
3d - 4p 2 2 

D3/2 - Pl/2 0.149 0.15131 

2 D3/2 _2 P3/2 0.029 0.03034 

2 D5/2 _2 P3/2 0.178 0.18105 

3d- 5p 2 D3/2 _2 P1/ 2 0.0039 3.886(-3) 

2 D3/2 _2 P3/2 7.8(-4) 7.814(-4) 

2 D5/2 _2 P3/2 0.0047 <:1:.659(-3) 

3d-4.f 2 D3/2 _2 F5/2 0.95 0.97246 

2 D 5/2 _2 F5/2 0.04605 

2 D5/2 _2 F7/2 0.92115 

3d- 5f 2 D3/2 _2 F5/2 0.164 0.15926 

2 D5/2 _2 F5/2 7.542(-3) 

2 D5/2 _2 F7/2 0.15085 

4s - 4p 2S1/ 2 _2 Pl/2 0.456 0.46478 0.442 

2 S1/2 _2 P3/2 0.91 0.93224 0.843 

48 - 5p 2 S1/2 _2 P1/ 2 3.4(-4) 8.366(-4) 

2 S1/2 _2 P3/2 6.9(-4) 1.745(-3) 

48 - 6p 2S1/2 _2 H/2 9.922(-5) 

2 S1/2 _2 P3/2 2.237(-4) 

4p- 4d 2 P1/2 _2 D3/2 1.23 1.22868 

2 P3/2 _2 D3/2 0.124 0.12285 

2 P3/2 _2 D5/2 1.11 1.10562 

4p- 58 2 P1/2 _2 S1/2 0.263 0.26105 

2 P3/2 _2 S1/2 0.264 0.26108 

4p- 68 2 P1/2 _2 S1/2 0.0315 0.02987 

2p 2 S 
3/2 - 1/2 0.0315 0.03002 

4p- 5d 2 P1/ 2 _2 D3/2 0.083 0.09699 

2 P3/2 _2 D3/2 0.005 9.743(-3) 

2 P3/2 _2 D5/2 0.074 0.08772 

4d- 4./ 2 D 3/2 _2 FS/2 0.05596 

2 DS/2 _2 F5/2 2.654(-3) 

2 DS/2 2 F7/2 0.05309 
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(Continued from the previous page) 

Transitions Multiplets NIST CCSD MCDF ReI. SD 

4d- 5p 2Ds/2 _2 P1/ 2 0.30105 

2 DS/2 _2 PS/ 2 0.06029 

2 DS/2 _2 PS/ 2 0.36001 

4d- 6p 2Ds/2 _2 P1/ 2 

2Ds/2 _2 P3/ 2 

2 DS/2 _2 P3/ 2 

4d- 5f 2Ds/2 _2 FS/2 0.80 0.79765 

2Ds/2 _2 FS/2 37782(-2) 

2 DS/2 _2 F7/2 0.75569 

5s- 5p 281/ 2 _2 P1/ 2 0.61204 

281/ 2 _2 PS/ 2 1.22678 

5s- 6p 281/ 2 _2 P1/ 2 2.771(-3) 

281/ 2 _2 PS/ 2 5.789(-3) 

5p- 68 2 P1/2 _2 8 1/ 2 0.37715 

2 P3/ 2 _2 8 1/ 2 0.37964 

5p- 5d 2 P 1/ 2 _2 D3/2 1.88856 

2P3/ 2 _2 D3/2 0.19083 

2 P3/ 2 _2 DS/2 1.71708 

5d-6p 2 D3/2 _2 Pr/2 

2 D3/2 _2 P3/ 2 

2 D5/2 _2 P3/2 

5d- 5f 2D3/2 _2 F5/ 2 0.11006 

2 D5/2 _2 FS/2 5.416(-3) 

2D5/2 _2 F7/2 0.10834 

68- 6p 281/ 2 _2 H/2 0.76690 

281/ 2 _2 PS/ 2 1.53734 



3.5: Conclusion 91 

3.5 Conclusion 

The MCDF-EOL method is applied to compute the excitation energies and the ).12 

transition probabilities of Be-like ions in the first section of this chapter. Apart 

from doubly ionized carbon, it is the first time this method has been applied to 

the calculation of the M2 transition probabilities for Be-like ions. The accuracy of 

the computed excitation energies is in excellent agreement with the ~IST database. 

This work highlights a number of unique and desirable features of the MCDF-EOL 

method for highly ionized atoms. For instance, the MCDF-EOL calculations yield 

results with reasonable accuracy using fewer number of valence orbitals than with 

some other schemes. Also the importance of the Breit interaction is highlighted. 

For systems like Mg+ and Ca +, any kind of large basis which is complete should 

give results close to the experimental values. But, the generation of a complete 

basis set is hard even for these small system. So one has to rely on FBSE. In all the 

FBSE method applied to atomic and molecular systems for soI-dng :qF equation, 

the optimization of orbitals' wavefunctions is done with respect to the numerical 

orbitals by suitably changing the parameters defined in any form of the analytical 

basis. Therefore, it is better to use numerical wavefunctions for those orbitals of 

interest, instead of wavefunctions obtained from the analytical basis. In addition, 

it is possible to get a few low lying bound valence orbitals ,vith the new approach, 

which may not be bound if conventional analytical basis set expansion approaches 

are used. The accuracy of these orbitals is very important when calculations of 

interest are bound to bound transitions. In conclusion to the second section of this 

chapter, if one likes to use FBSE, the new method of generating basis will be one of 

the best approach to achieve better accuracy for any property of the systems. 

In the previous section of this chapter focuses on the oscillator strengths for 38 - 4p 

transition as well as all allowed bound-bound transitions among the doublet states. 

Though the value of our calculated oscillator strength for 38 - -1p is larger than ear­

lier calculated values using other methods, it is still a factor of ....... ::?5 smaller than the 

value expected by Morton and Hu [58] to :fit the empirical curn' of growth with the 

particular parameters b=7.0 and log ~V = 15.37. However, it is in excellent agreement 

with the another recent empirical result obtained by Fitzpatrick [62]. Therefore, an 
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accurate experimental measurement is urgently needed. Our calculated excitation 

energies of various states have high accuracy. There is excellent agreement of our 

calculated oscillator strengths using the CCSD(T) method and the MCDF method 

(tested for a few transitions) with those obtained using the relativistic SD method. 

wherever available. Among the features of our CCSD(T) calculations is the approx­

imate inclusion of triple excitations from all the core orbitals into a large rirtual 

space, leading to more accurate and reliable results. 
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Chapter 4 

Applications of Molecular Studies 

to Astrophysics 

4.1 Introduction 

The study of atomic states and spectra proceeds along well-established directions: 

relying heavily on the concept of an average central symmetric field dominated by 

the nuclear field. The fact that the nucleus is a particle in motion can be ignored 

(or taken into account by the "reduced mass" of the electron) and the resulting 

description (Hartree-Fock) provides a very good basis for anal~ysis of spectra and for 

further refinements (electron correlation effects, fine structures, hyperfine structures) 

[1] . 

In the case of molecules the situation is very different, for several reasons. The elec­

trons in molecules move in an average potential field which is not even approximately 

central. For diatomic and linear polyatomic molecules, the field is a.··dally symmetric; 

and the only 'good' quantum number related to this symmetry is the component 

of angular momentum along the symmetry axis. For a general polyatomic molecule 

even this point groups-symmetry is lacking, and only certain reflection and inver­

sion symmetries remain [2]. Also, the nuclear motion is important for molecules. 

The Born-Oppenheimer approximation enables the electrons of the system to be 

described independently of the nuclear motion. This approximation is justified by 

97 



4.1 :Introduction 98 

the fact that the heavy particle motions are slow and the quantum states adjust adi­

abatically to the rotations and vibrations of the nuclei. Because of this, the rotation 

and vibration of the molecules can be discussed separately from electronic motions. 

The approximation that have been there by made, however, give rise to certain typ­

ical "relative motion" effects of the electrons with respect to the nuclei and these 

do not have analogue in the atomic spectra. These rotations and vibrations of the 

nuclei are even important in the radio frequency spectra. 

Observational data for several transitions of a molecular species, from levels covering 

a wide energy range, are very useful for the studies of excitation conditions. Besides 

more accurate measures of molecular abundances, this information may provide 

useful estimates of cloud temperatures. If we assume (i) emission regions covering 

the antenna beam, (ii) optically thin lines (of frequencies 1.1), and (iii) excitation 

temperatures /Tx/» TBa and hv/k, where TEG is the background brightness, the 

fOllowing relation is valid between the observed integrated main beam brightness 

temperature (J Tu Bdv) and the population (column density) N" of the relevant 

lower state molecular energy level El , for each observed transition, 

Nl 3k J TAIBdv 
9; = 871"3 J.l2 VSul 

Here 9l is the level degeneracy and Sui the line strength. /-Ll hand k denote the 

dipole moment, and the Plank and Boltzmann constants, respectively. Therefore, 

accurate dipole moments and line strengths calculations are very important to esti­

mate molecular abundance of the clouds. 

The study of interstellar molecules began with the discovery of narrow absorption 

features in the ultra-violet spectra of a few distant stars, in the early thirties. Inter­

stellar absorption lines of eN, CR and CH+ [3, -!, 5} were identified. ObserYation of 

these radicals revealed for the first time interesting chemical processes in the diffuse 

interstellar clouds. Both these and later radio studies of interstellar molecules have 

provided important clues for more profound physical properties of the Galaxy and 

beyond. 

A few years ago, gas-phase interstellar chemical models of quies('('Ilt molecular douds 

were able to r('produce the obseryed abundances of many small.and complex species 

at so called ('ady times of 105_106 years [6]. But recent models, howe,·er. have 
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difficulty in reproducing the abundances of complex species [7, 8J. The cause of 

this failure is the introduction of many rapid, but highly uncertain neutral-neutral 

reactions. It had been assumed in the earlier models that most of the neutral-neutral 

reactions do not proceed at significant rates at quiescent cloud temperature (10K). 

Reaction between stable neutral species are undoubtedly slow at low temperatures, 

since such reactions have short-range potential barrier which prohibit their occurance 

at low temperatures. There was, however, little evidence for the slowness of neutral 

reactions in which both the reactants are radicals, a term usually signifying an 

"open shell" atom or molecule with a non-singlet electronic state. Indeed, many 

oxygen atom-neutral radical reactions are now known to proceed rapidly at room 

temperature [9]. Also, rapid room temperature reactions involving neutral carbon 

atoms and stable hydrocarbons have been investigated by various groups [10, 11,121. 

Neutral reactions that are rapid at room temperature may well be rapid at low 

temperature. The inclusion of neutral-neutral reactions into gas-phase chemical 

models of dense interstellar clouds has occurred gradually. 

The dark molecular cloud (DMC) within the Taurus molecular cloud 1 (TMC-l) 

is a cold cloud in the solar vicinity ("-'140 pc) [13]. IRC+I0216 is an isolated and 

highly evolved star with a huge circumstellar shell, composed of expelled and at least 

partly processes matter. Despite its faint visual appearance (mv f'V 18), it has been 

classified as a carbon star of spectral type C9. The circumstellar envelope (CSE) 

of the IRC+I0216 contains over 40 molecular species [14J. Both the objects have 

extensively been studied by a number of radio astronomical observations and have 

been utilized for critical tests of gas-phase chemical models which have ever been 

postulated. There have been a number of attempts to clarify the detailed chemical 

processes which produce these molecules. The most prominent chemical feature 

common to these objects are the hydrocarbons. 

After Bettens and Brown [7] remarkable work on carbon atom-hydrocarbon reac­

tions, many studies [12, 15] were done to show that the dispersion interaction be­

tween the two neutral reactants dominates at long-range and is the cause of a large 

reaction rate coefficient at room temperature and below. Despite the assumed syn­

thetic nature of the carbon atom-neutral hydrocarbon reactions included by Herbst 
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et al. [8], they obtained abundances of complex species far below the obser,ed values 

for well-studied dark clouds such as Tl'vlC-l and L134N. 

The analyses of Bettens and Brown [7], and Herbst er a1. [8] may underestimate 

the abundances of complex molecules for several reasons. First, Herbst has sug­

gested that some of the destructive nature of the neutral-neutral reactions could be 

mitigated by inclusion of so-called hydrogen atoms abstraction reactions (HAARs) 

between hydrocarbon radicals and molecular hydrogen. One of the important ex­

ample is this destruction mechanism of C3H radical. C3H which is produced via the 

carbon-insertion reaction between carbon atoms and acetylene could be converted 

into C3H2 via HAAR 

which would compete with the destructive reaction between C3H and atomic OA"Y­

gen. Subsequent reactions in which carbon insertion and hydrogenation alternate 

could produce large quantities of hydrocarbon efficiently. Reactions between the hy­

drocarbon radicals and molecular hydrogen need not occur rapidly for such an effect 

to become important [8] because there is so much H2 in the interstellar gas. Sec­

ondly, their models suffer from sparse laboratory and theoretical data of electronic 

structure and reaction products. These models cannot elucidate the contribution to 

distinct structural isomers such as linear or cyclic C3 H. There are few calculations 

on these isomers and most of them have large uncertainty. Because of these: these 

models may not be able to explain why the interstellar abundance ratio of the above 

two isomers is unity in TMC-l compared to O.2±O.1 around IRC+10216. Hence the 

structure and formation of interstellar C3R isomers remains to be resolyed. This 

has motivated us to take up the following project where we use a rigorous and ac­

curate non-relativistic ab initio method (HV) to calculate the ionization potential, 

excitation energies, oscillator strengths and dipole moments of CaR isomers. 
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4.2 Determination of Properties of Propynlidyne 

Isomers using the HV Method 

The understanding of hydrocarbon syntheses in interstellar clouds provides one stim­

ulus for increased recent interest in studying the hydrocarbon radical C3H and its 

isomers. The linear C3H radical (propynlidyne) was first detected in TMC-1 and the 

carbon star IRC+10216 by Thaddeus et al., [16] using microwave spectroscopy and 

by Gottlieb et ai. [17] in the laboratory. Two years later Yamamoto et al. [18] dis­

covered the cyclic isomer (cyclopropynlidyne) c-CaR in TMC-l. Standard reaction 

models, based on radiative association, dissociative recombination, and exothermic 

ion-molecule processes [19, 20], fail to reproduce the observed number densities and 

isomer ratios for the linear and cyclic CaH isomers. 

The computation of this isomer energy difference has been a major theoretical chal­

lenge. The earliest UHF /6-31G**ab initio calculations for C3H by Yamamoto et 

ai. [18J provided the belief that cyclic-CaH is less stable than the linear C3R iso­

mer. However, this initial belief has been reversed by subsequent state-of-the-art 

theoretical calculations and experiments. Kaiser et at. [21, 22J use coupled cluster 

calculations with single, double and partial triple excitations [CCSD(T)] to supple­

ment their experimental investigation of the mechanism for atom-neutral reaction, 

C2H2 (X 1r.g ) + Cep) -t C3H2 -t l- C3H(X2II) + HeSl/2) 

-t c - CaH(X2B2) + HeSl/2), 

in a study of the dynamical processes involved in the formation of various C3H iso­

mers. This system represents the prototype reaction of ubiquitous interstellar carbon 

atoms with the simplest unsaturated hydrocarbon molecule, acetylene, to synthesize 

hydrocarbon radicals via a single atom-neutral collision in interstellar environments. 

The circumstellar shell of IRC+ 10216, for example, contains C2H2 as well as C(3 P) 

reservoirs at distances of 1014 to 1015 m from the central star [23J. Multireference 

configuration interaction (MRCI) calculations by Takahashi et at. f24J support the 

conclusions by Kaiser et at. (22] that the c-C3H (cyclic C3H) radical is energetically 

more stable than the l-CaR (linear CsR) isomer. 'While the computed ground state 
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energy difference between these two isomers from the MRCI and CCSD(T) methods 

are quite close to experiment, the same quantity generated from other theoretical ap­

proaches departs widely [18, 25] from experiment. These large discrepancies emerge 

primarily from methodological differences among the various approaches and, per­

haps, from basis set deficiencies. In addition, although considerable progress has 

been made in understanding the dynamics of the bond rupture reaction of the C3H2 

radical and the geometries and the relative energies of the C3R isomers, only a few 

studies [24, 26] have so far attempted to describe the properties of the lowest excited 

state of the C3H isomers and their ionization potentials and electron affinities. Fig. 

4.1 shows the proposed reaction pathway to the C3 H isomers. 
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Figure 4.1: Ca.lculated ab initio structures and relative energies of triplet C3H2 and 
doublet C3H isomers. Filled circles are carbon atoms and void circles are h."v·drogen 
a. toms. Figure taken from Kaiser's article [13J 

The present work describes theoretical calculations for the ground and excited state 

properties of both C3H isomers. Almost ail preyious theoretical works concur that 

a bent geometry (C s point group) is energetically higher than the linear isomer 

[see refs. 23 and 43 for details] and that the cyclic isomer is more stable than 

the linear C3H isomer. Since the earlier j\IP:?/6-31G(d,p) opt-imization [2-1J pro-
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duces a rather poor geometry, presumably partially because of the presence of 

two relevant resonance structures, we consider the geometry optimization using 

the HV method with a two configuration reference space that contains these rel­

evant resonance structures. The ground and excited state properties of the l- and 

c-C3H radicals are computed through third order with the HV method for both 

HV optimized geometries, as well as for the experimental and ~1P2/6-31G(d,p) o~ 

timized geometries for comparison. Several harmonic vibrational frequencies are 

obtained as a by-product of the optimization procedure. Extensive theoretical stud­

ies [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] document the HV formalism. 

its conceptual advantages, the computational algorithms for evaluating atomic and 

molecular properties, and the higher order convergence behavior of the method [40]. 

The computation of the conformational energy difference is complicated within a 

number of methods by symmetry breaking in the treatment of the linear isomer. 

The ground state of the l-C3B isomer is of 2II symmetry, with one electron occu­

pying the outer most degenerate 7f orbital. Maintaining this degeneracy during the 

optimization procedure often imposes significant technical problems. We impose the 

degeneracy of the i-C3R isomer by using orbitals taken from a series of self-consistent 

field (SCF) calculations for the positive ion and the neutral species. More specifi­

cally, all doubly occupied orbitals for the ground state are determined from a closed 

shell SCF calculation for the ground state of the positive ion. The singly occupied i7 

orbital and the other valence shell orbitals are generated as improved virtual orbitals 

(IVO's) for the neutral species [27]. Although symmetry breaking problems do not 

arise for the cyclic isomer, a similar procedure has also been applied for this case in 

order to treat both the isomers on an equal footing. Moreover, computations using 

this mixed orbital scheme for the cyclic isomer are in excellent agreement with those 

produced with our standard approach based on using neutral molecule ground SCF 

orbitals for all the occupied orbitals, an agreement similar to that demonstrated in 

many previous examples IlJl emerging from the relative insensitivity of third order 

effective valence shell Hamiltonian calculations to a wide range of different orbital 

choices [41]. 2 · d t 'ls The computed 
The theory of the HV method is discussed in chapter m e I.U • 
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results are presented and discussed in Secs 4') 1 and 422 t' I 'HT 'd . .... . . ,respec lYe y. ne pron e 

the first high level ab initio computations for excited electronic states above the low­

est, the oscillator strengths for the transitions among these states, and the ionization 

potentials and electron affinities. An explanation is given for persistent theoretical 

difficulties in computing reasonable frequencies for the bI bending vibrations of the 

cyclic isomer. 

4.2.1 Computational Details 

All energies and molecular properties are evaluated for the c- and l-C3H radicals at 

the experimental [42, 43] and theoretically optimized 1-.1P2 [24] and HV geometries. 

[See Table 4.1 for details and the discussion below]. The ground states of the cyclic 

and linear C3 H isomers belong to the C2v and Coov point groups, respectively. The 

restricted open-shell Hartree-Fock approximation (ROHF) to the ground state of 

the cyclic isomer is a single determinant with six doubly occupied al orbitals. one 

doubly occupied b2 orbital, and two doubly and one singly occupied bi orbitals. 

Thus, the ground state of cyclic C3H radical is of 2 Bl symmetry. The ground state 

of linear C3H, on the other hand, has 2rr symmetry, with seven doubly occupied (j 

orbitals and two doubly and one singly occupied 1i orbitals. 

The carbon atom basis set is constructed from a (10s7p2d)f(5s3p2d] contracted 

Gaussian basis of Sadlej [44] augmented by two s diffuse functions \vith exponents 

0.021 and 0.0055, two p diffuse functions with exponents 0.021 and 0.00-l9~ and 

one d diffuse function with exponent 0.015 for each of the carbon atoms. The 

hydrogen atom basis is a (5s2p)/(3s2p] basis [45]. This provides a basis of 120 

contracted Gaussian type orbitals (CGTO). The number of CGTO used in this 

basis is quite close to that (a TZPP basis) employed by Ochsenfeld et ai. [-16]. 

b t·· d b computing the third order 
The geometries of both isomers have een op lIDlze y 

. c The ~'lP? optimized geometries (see 
HV energy using a two-orbItal relerence space. - ~ 

. I t:£ the c-C H radical with 
Table 4.1) are quite similar to the expenmenta geome ry or 3 

f 0 01 i I contrast calculations for the 
the maximum deviation in bond lengths 0 . ."\. n . 

• . ' • r b . n the MP2, on the one hand. 
lmear Isomer Yield a much larger dlscrepanc) et\'\ ee . 

. 1 h h d The poor quality of 
and the HV and experimental geometnes on t Ie at er an· 
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the MP2 geometry for the linear isomer arises because a one-configuration reference 

function is inadequate to describe the competition between the two dominant C­

C=C-H and C=C=C-H resonance structures. The MP2 geometry weighs the latter 

structure too heavy, while the HV geometry optimization uses a minimal double 

reference treatment (see below) that adequately describes the mixing between these 

two resonance structures. All computations (optimization) produce a longer C-H 

bond length than experimentally observed [42J which actually only determines the 

projection of the C-H bond on the molecular axis. We, however, find no evidence 

for a bent C-H bond, although all atomic displacements have not been considered. 

A four orbital HV valence space (a complete active space) is used for computing 

the state energies and properties of both isomers at the experimental and optimized 

geometries. The choice of valence space orbitals is primarily based on energy con­

siderations and the contributions of various orbitals to the states of interest [33] as 

illustrated below. The valence space generally spans a number of the highest occu­

pied molecular orbitals in the ground state SCF approximations and a number of 

the lowest unoccupied orbitals in this state. For the cyclic geometry, the four orbital 

valence orbital space comprises two al orbitals (one occupied and one unoccupied), 

one b1 orbital (the singly occupied orbital in the ground state), and one b2 (unoc­

cupied) orbital. The complete active space for the linear geometry is composed of 

two CT (one occupied and one unoccupied) and two 7r (one singly occupied and one 

unoccupied) orbitals. 

It is important to note the significant difference in the choice of both orbitals and 

orbital energies between the HV and traditional multireference perturbation methods 

[47, 48]. The traditional approach generates all orbitals and their energies from a 

single Fock operator (the ground state Fock operator). Thus, all reference space 

orbitals and orbital energies, including those that are either occupied or unoccupied 

in the ground state SCF approximation, are evaluated using the same potential. 

The unoccupied reference space orbitals generated through this procedure describe 

an electron in the field of N others and are consequently more appropriate for 

describing negative ion states than the low lying excited states of interest. The HV 

method, on the other hand, determines the unoccupied reference space orbitals and 
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their energies as improved virtual orbitals (IVOs) from a set 1"N-l potential Fock 

operators in order to optimize the first order description (from PH P in Eq. (2.15 i 

discussed in chapter 2 for atomic orbitals) and thereby to minimize the higher order 

perturbative corrections [32, 33, 39]. 

The HV method thus yields unoccupied reference space orbital energies that are 

much lower than those from the ground state Fock operator due to the absence of 

an extra Coulomb operator in the HV treatment for the IVOs, After the HV ,'alenee 

space and orbital energies are computed in this fashion, the reference space orbital 

energies are replaced by their democratic average to eliminate (or greatly reducet 

convergence difficulties form so-called intruder states HQl· 
The explicit procedure for obtaining the molecular orbitals and their energies in­

volves a sequence of self-consistence field (SCF) calculations. [Some steps may 

actually be obtained using a single unitary transformation [35]]. For example: the 

four orbital reference space for the c-C3H radical is generated by the sequence of 

SCF calculations 

(1) (core)166ai3bL 2B1 , 

(2) [( core)166a~3b~12b~1 2B2, 

(3) [( core) 166ai3b~2bg17aL 2 AI' 

Here, the first step is a X2B1 state SCF calculation, and steps :2 and 3 are indepen-

dent single orbital optimizations for the indicated states, where the orbitals inside 

the square brackets are frozen as the orbitals determined in the previous steps. The 

excited orbitals are then obtained by diagonalizing the X2B1 state Fock operator in 

the orbital space complementary to the union of the core and \-alence spaces. The 

HV method incorporates correlation contributions arising from single and double 

excitations out of all the core orbitals and therefore requires fewer core orbitals in 

the valence space than CASSCF methods that omit the core excitations. A.s noted 

in the introduction, the retention of strict degeneracy for the linear isomer is ac­

complished by using a mixture of positive and neutral orbitals. 'When this type of 

1. . t (1) of the above sequence is replaced by 
scheme is applied to the cyc Ie Isomer, s ep 

the two steps, 
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(1') [(core)166aIJ3bi, 2B1 , 

while steps (2) and (3) remain unchanged. A comparison of computations for the 

cyclic isomer with both orbital choices provides a test of its accuracy. 

Because of the large number of computed points required for optimizing the cal-

orne ry op 1m1zatlOn, t e HV geometries are performed \dth culations for the HV ge t t'" h . 

the more limited two-orbital reference space. The core and valence orbitals are 

determined from the SCF sequence, 

(1) (core) 1670-2 , l~ , 
(2) [(core) 16 70-2]27l"1, 2IT, 

2rr , 
for the linear isomer. This HV geometry optimization is of interest as a nontrivial test 

for the HV analytical derivative method [49] for which computer code are currently 

under development. 

4.2.2 Results and Discussion 

4.2.2.1 Cyclic C 3H 

The first excited state electronic transition of c-C3H has been assigned by Yamamoto 

et al. [18] to be of XeB1) -t2Al symmetry, and is the only experimentally reported 

transition so far. Using a simple model, they deduce a vertical excitation energy of 

10,800 cm-1 (1.339 eV). This particular excited state involves a 6al -+ 3b1 transition 

rather than a 3b1 -+ 7a1 excitation. Hence, the doubly occupied Bal orbital must 

be retained ill the valence space. This feature also explains why the EO?\ICC-IP 

computations have been performed using the negative ion I <I>ca H- ) CSF as the closed 

shell zeroth order wavefunction. More specifically, the excited state of interest for the 

c-C3H isomer has the CSF I (core)166a13bD· This particular CSF may he generated 

conveniently from a closed shell CSF l(core)166ai3bi} by removing an electron from 

the occupied Gat orbital, thereby explaining why Stanton [26] employs th.e EO~ICC­
IP method to compute the excitation energies for the c-C3H isomer. 

Table 4.2 displays the vertical excitation energies and oscillator strength.s of the 

c-C
3
H isomers as computed through third order with the HV method. The com­

puted lowest excitation energy for the cyclic isomer is compared with experiment 
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[43J and with other high level calculations, the CASSCF calculations of Takahashi 

[24J and the equation of motion-coupled cluster singles and doubles for ionized states 

(EOMIP-CC) calculations of Stanton [26.J. The errors in the estimation of vertical 

excitation energy for X(2Bd-+2AI from the CASSCF, EOMIP-CC and HV meth­

ods (computed at the experimental geometry) are ~ 14%, 4.2%, and 0.6%, respec­

tively. However, the accuracy of the computed HV excitation energy for the lowest 

XeBd-+2 Al transition degrades when the MP2 (off by 2.8%) and HV (off by 5.97c) 

optimized geometries are used in the calculations. Table 4.1 indicates that the de­

viation from experiment of the calculated C-H bond length R~!;)-Rlf~:') is large 

(0.3%) compared to the deviation RW!~)-RW~~t.) (0.2%) for the C-C bond length. 

Therefore, the slightly greater inaccuracy in the estimation of the transition energy 

at the optimized geometry presumably arises due to the overestimation of the C-H 

bond distance by the optimization procedure. Nevertheless, the estimated quantity 

is in accord \vith the experiment and state-of-art EOMIP-CC calculations. Inter­

estingly, while both the CASSCF and EOMIP-CC calculations underestimate the X 

eBt}-+2 Al transition energy, the HV method overestimates this quantity, \vith the 

HV and EOMIP-CC energies of comparable accuracy. 

Table 4.3 summarizes the computed third order HV vertical ionization potentials and 

electron affinities for the cyclic form of the C3H radical. To our knowledge, this table 

represents the first report for the ion state energies of this radical. Unlike the vertical 

excitation energy, the ionization energies and the electron affinities computed at 

the experimental, MP2 and HV optimized geometry are quite close to each other~ 

indicating that the ion state energies are quite insensitive to these small shifts in the 

geometrical parameters. The two negative electron affinities imply that the llBl and 

l3Bl anion excited states are metastable Feshbach resonances lying in the electron 

detachment continuum [50J. A separate computation for the negative ions should 

probably be used to provide a more accurate description for the interesting excited 

anion states. 

Table 4.4 uses the two optimized and the experimental geometries to illustrate the 

slight variation of the computed dipole moment with the geometrical parameters. 

The table also compares the computed dipole moment from the third order Ht· 
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calculations with experiment and with other correlated calculations. While the 

ground state dipole moments computed with the HV method at the experimental 

and optimized geometries (MP2 and HV) are reasonably close to experiment and 

to other correlated calculations, the dipole moment of the first excited state of Al 

symmetry is quite a bit larger than the other theoretical value, presumably because 

our calculations apply for the ground state geometry, while Ref. 26 uses the excited 

state geometry. 

The vibrational frequencies obtained from the HV method are compared with exper­

iment [51] and with other theoretical calculations [24J in table 4.5. The HV method 

estimate for the lowest vibrational frequency of aI symmetry is comparable to that 

from the CASSCF and MP2 calculations, but the HV overestimates the other two 

vibrational frequencies of the same symmetry. Both the HV and CASSCF treat­

ments yield unphysical results for the bI vibration for which eASSCF computations 

yield an imaginary frequency. In addition, the lowest experimental [18] vibrational 

frequency of cyclic C3H is 508 cm- I (a bl in-plane mode), and all the theoretical 

calculations, including the present, one fail to provide a comparable low frequency 

vibration. An explanation for these behaviors emerges from an analysis of the G­

matrix [52] for the cyclic isomer in the five dimensional space considered (which 

contains two b i vibrations). Both computed bi vibrational frequencies are highly 

sensitive to an off-diagonal G-matrix element: changing the ece equilibrium bond 

angle over a range of 2-3 degrees shifts the computed frequencies from 11000 to 6000 

cm- I for the higher frequency bi vibration, and a change in the ece bond angle 

of 1 degree converts the lower frequency mode from ~ 1000 cm-1 to an imaginary 

frequency. (Note that the root-mean-square zero point bending amplitude is ~4 de­

grees.) Presumably, the theoretical force constants (F-matrix) are reasonable, but 

the vibrational frequencies should be evaluated with G-matrix elements that are 

explicit functions of the angle. 

The third order HV method compensates perturbatively for a wide range of dif-

ferent choices for the orbitals and orbital energies. For example, the third order 

HV vertical transition energies and other related properties for the c-C3H isomer 

have been computed separately by using the occupied orbitals generated from an 
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SOF sequence with the first step involving the (core)166a~ (cation) configuration 

and those with the first step involving the (core)166ar3bt (neutral) ground state 

Fock-operators, respectively. The occupied orbitals from the (core)166a~ positiYe 

ion Fock operator clearly experience a greater attractive potential and, therefore. 

are more tightly bound than those generated from the neutral (core)166a~3b~ Fock 

operator. Because the two sets of orbitals and orbital energies differ considerably 

between these two extreme situations, one way to test practical convergence is the 

degree to which the computed properties differ with the t\VO orbital choices since 

infinite order calculations should yield identical results in both cases. The use of 

cation and neutral occupied orbitals produces the third order HV transition energy 

for X(2B1) -+ 12Al transition as 1.347 eV and 1.288 eV, respectively, which is a 

rather minor difference. The two choices of orbitals and orbital energies yield vir­

tually identical values for the dipole moment. Thus, both choices of orbitals are 

quite adequate for the cyclic isomer. However, the use of cation orbitals is more 

convenient and attractive computationally for the linear isomer, where this choice 

reduces the computational complexity during the orbital optimization. 

4.2.2.2 Linear C3H radical 

Tables 4.6-4.9, respectively present the third order HV vertical excitation energies, 

ionization potentials, electron affinities, and dipole moments as computed at three 

different geometries (experimental, MP2, and HV optimized) and the vibrational 

frequencies obtained from the HV optimization process. To our knowledge, no ex­

perimental or theoretical data (expect the vibrational frequencies and ground state 

dipole moment) are available for comparison. However, based on our success for the 

cyclic isomer and several other systems [28, 29, 35, 36, 37, 38], we expect that our 

computed properties for the l-C3H isomer should be quite accurate, and, therefore 7 

of interest in spectroscopic studies. 

It is evident from table 4.1 that all the optimization procedures appear to fail in 

reproducing the exceptionally short C-H bond length of 1.017.4. determined experi­

mentally [42]. The short computed C-H distance was later interpreted by Oschenfeld 

al. [46] as occurring because of the Renner-Teller effect [531 which arises due to the 
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very low lying vibronic state involving the CCH bending mode and because the 

experiments only determine the projection of the C-H bond on the molecular axis. 

They have shown that the vibrational average for the projection of the C-H bond 

length on the molecular axis reduces the C-H bond length from l.065A to l.008.~ 

in much better accord with the experimentally quoted quantity. Using the same 

procedure, i.e., by evaluating the projection on the molecular axis of the C-H bond 

length as averaged over the CCH bending zero point motion, we obtain 1.019A for 

the projected C-H bond length which is very close to experiment. 

Tables 4.6 and 4.7 demonstrate that the excitation energies and dipole moments 

of the l-C3H isomer vary significantly between the different optimized geometries 

primarily because the single reference MP2 geometry optimization for this isomer 

encounters inaccuracies due to the importance of two dominant resonance struc­

tures. The MP2 geometry optimization produces a shorter C1-C2 bond length than 

experiment. The MP2 optimization yields the C1 -C2 and C2-C3 bond lengths to 

be, respectively, of the order of the CC triple bond length in C2H2 (1.2033A) and 

the CC double bond length in C2H4 (1.3384A). Both the MP2 and HV methods 

agree on the C-H bond length as discussed above, but the HV geometry compares 

more favorably to experiment for the CC bond lengths. Since all of the theoretical 

methods yield the actual C-H bond length as opposed to experiment which only 

obtains its projection on the molecular axis, we compute the excitation energies 

using a "mixed experimental" geometry in which the C-C bond lengths are taken 

from experiment while the C-H bond length is taken from theory (the HV optimized 

value). In contrast to the excitation energies evaluated for the poor MP2 geometry, 

the relative ordering of the excited states ( except the rather nearby 12~- and 22..1 

excited states) computed at the experimental and "mixed" geometries agrees with 

that calculated at the HV geometry. The small differences arise from a slight varia­

tion in the C-C bond lengths. This analysis confirms that the significant variation 

in the computed excitation energies and dipole moments between the MP2 a.wI H" 
. . cstIydne methods as well as between the MP2 and experimental geometrIes anses m 

to the poor MP2 estimate of the C-C bond lengths rather th.\D errors in the G-H 

bond length. 
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Table 4.8 presents the ionization potentials and electron affinities of the linear isomer 

from third order HV calculations at the experimental and theoretically optimized 

geometries. The table clearly indicates that the singlet and triplet IT states of 1-

C3H- are bound, with the 1 II state lower energetically than the 3n electronic state 

as expected. It is also interesting to nate that the positive and negative ion states 

of the l-C3H display a dependence on geometry. While the HV vertical ionization 

potentials for the HV optimized geometry are quite close to those for the experimental 

geometry, the electron affinities differ substantially. A separate optimization for the 

positive and negative ions of the l-C3H radical may be useful to provide a more 

accurate description for these interesting excited ionic species. 

The harmonic vibrational frequencies obtained from the HV geometry optimization 

are compared with those obtained from the CASSCF and MP2 calculation of Taka­

hashi et al. [24] and the MCSCF calculation of Kanada et al. in table ·t9. The 

experimentally [54] estimated lowest vibration frequency this isomer is as low as 

28 cm-1 which corresponds to the C-H bending mode. The present and all earlier 

theoretical calculations, including CASSCF, MP2 and MCSCF calculations fail to 

account for such a low frequency vibrational mode. The estimated vibrational fre­

quency for this C-H bending mode with the HV , MP2, and CASSCF methods is 

262, 245 and 325 em-I, respectively, departing considerably from experiment. 

4.2.2.3 Conformational energy difference 

Table 4.10 compares the ground state energy difference between the cyclic and linear 

C3 H radicals as computed through third order with the HV method and as obtained 

from experiment and from other theoretical calculations [13, 24]. Table -4:.10 indi­

cates that the third order HV conformational energy difference at the experimental 

geometry is fairly close to that obtained from the CCSD(T) method but does not 

fall within the experimental range. However, as noted above the experimental C-H 

bond length corresponds only to the projection on the molecular a..'ds, not the actual 

bond length. The third order HV estimate for the ground state energy difference be-

h t · HV optimized geometries not only 
tween these two isomeric forms at t e respec lVe . 

b . 1 uite close to the MRCI ,"alue. The 
lies within the experimental range ut is a so q 
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computations in table 4.10 should be modified for differences in zero point energies 

between the isomers. Reference 24 estimates that the zero point differences reduce 

the computed energy difference by 1.1 Kcaljmole, bringing the HU calculations well 

within the experimental range. Further reduction in the small discrepancies between 

the optimized and experimental geometries may help in pinning down a more precise 

theoretical prediction. 

4.3 Conclusion 

We describe highly correlated ab initio computations for the ground state energy 

difference between the cyclic and linear isomers of propynlidyne (C3H), as well as 

their harmonic vibrational frequencies, ionization potentials, electron affinities, ex­

cited state energies, dipole moments and oscillator strengths, some of which have not 

been reported before. The difficulties in computing these isomers energy difference 

are illustrated by contrasting our computations using the theoretically optimized 

geometries and the experimental geometries. The third order Hr conformational en­

ergy difference between the two C3H isomers at the experimentally quoted geometry 

is in good agreement with that obtained from the CCSD(T) method but departs 

considerably (::::::: 6-10 KJ fmole) from experiment, mainly because experiment for tbe 

linear geometry only provides the projection of the C-H hond on the molecular axis. 

On the other hand, the third order HV isomer energy difference computed for tbe 

HV and MP2 optimized geometries lie at the opposite extremes of the experimental 

range, although inclusion of approximate zero point energy corrections place the HI' 

value squarely within the experimental range and the :\IP2 \-alue slightly below this 

range. The main source of uncertainty in the energy differenCt' probabh' sttms from 

residual discrepancies between the theoretical and experimental geometries. 

The HV calculations for the ground state isomer energy differellce. tbe c~'clic CJH 

lowest excitation energy, and the dipole moments in both i:;omers art' in good 

agreement with experiment and with other state-of-art com'!<\ct"d computations. 

'n demonstrate the high accuracy dhtainable witb tJwo 
These agreements once agal 

I . . ''''eo pnwidt' tht' first hIgh 
HIl method for complex atomic and molecu ar sy stem:s. 

.' . d oscillator strengthS to higher ~x.("lttd 
level calculations for excItatIOn energIes an 



4.3:Conclusion 114 

Table 4.1: Structural data for the C3 H isomers. 
Parameter Linear Cyclic 

MP2 [1] Expt.[2] HV CCS- MP2 [1] Expt.[4] HV CCS-

;:: 
geom. geom. D(T) [3] geom. geoID. D(T)[3] 

R(C1-H) 1.0631A 1.0171A 1.07A 1.065A 1.0790A 1.0760A 1.079A 1.078A 

R(C1-C2) 1.2005A 1.2539A 1.255A 1.243A 1.3747A 1.3739A 1.0370gA 1.37iA 

R(C2-C3) 1. 3640A 1.3263A 1.340 A 1.347 1.3878A 1.3771A 1.3763A 1.378A 

[1] Ref. [24], [2]Ref. [42] [3]Ref .. [22] [4] Ref. [43J 

states of both isomers, as well as several lowest vertical ionization potentials and 

electron affinities. This new information emerges as a bonus of the HV method '\yhich 

generates all states of the neutral and ions from a single computation. The compu­

tations suggest that linear anion has bound excited state. A strong sensitivity of the 

computed b l vibrational frequencies for the cyclic isomer on a G-matri."'{ elements 

explains the persistent difficulties in computing accurate values. 

Table 4.2: Vertical excitation energies (in e V) and oscillator strengths (in paren­
tbeses) of the c- C3H radical. 

State 

12Al 

14A2 

12B2 

12A2 

22A l 

MP2 

geom. 

1.377 (0.037) 

3.735 

3.891 
4.573 (0.014) 

7.825 

8.439 

Third Order W 
Expt. 
geom. 

1.347 (0.037) 

3.754 

3.908 
4.578 (0.014) 

7.775 
8.313 

H" 
geom. 

1.418 (0.039) 

3.754 
3.858 

4.590 (0.014) 

7.778 

[l]Ref. [24], [2]Ref. [26],[3]Ref. [43]. 

CASSCF[l] EOMCC-IP[2J Expt. [3J 

1.149 1.283 1.339 
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Table 4.3: Vertical ionization potentials and electron affinities (in e V) of the c-C3H 
radical. 

State Third Order HV 

MP2 geometry Experimental geometry HV geometry 

Ionization potential 

llBI 10.708 10.665 10.666 

1IAI 10.711 10.674 10.706 

Electron affinity 

1IAl 1.804 1.732 1.741 

1IBI -0.509 -0.494 -0.512 

13BI -0.522 -0.505 -0.524 

Table 4.4: Dipole moments (in Debye) of the c-C3H radicals 

State Third Order HV EOMCC-IP MP2[2] CASSCF[2] Expt. 

MP2 Expt. HV 

geom. geom. geom. 

X2B I 2.43 2.42 2.44 2.35 2.34 2.37 2.30 3 

12 Al 4.31 4.25 4.28 3.03 

14A2 1.80 1.72 1.75 
12B2 1.56 1.49 1.53 

l-C3 H 

[l]Ref. [26]. [2JRef. [46J. [3JRef. [55J. 

Table 4.5: Vibrational frequencies (in cm- I ) of the c-CgH radical. 

Symmetry HV CASSCF[l] MP2 [1] Expt. 

al 1050 1191 1206 1160 [2] 

al 1554 1670 1657 1832 [2J 

al 3712 3450 3325 3238 [2] 

bi 1117 1047 969 508 [3J 

bi 8303 890i 12526 

[lJRef. [24J [2]Ref. [51] [3]Ref. [43] 
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Table 4.6: Vertical excitation energies (in e V) and oscillator strengths (in paren­
theses) of the l-C3 H radical. 

State Third Order W 

MP2 geom. Experimental geom. HV geom. Mixed geom. 

14.6. 1.970 4.329 4.064 4.370 

12~+ 3.320 (0.003) 50461 (0.009) 5.219 (0.008) 5.506 

12.6. 3.429 (0.016) 5.155 (0.021) 4.969 (0.020) 5.207 

12~- 3.978 5.957 5.697 6.000 

22 j. 5.226 5.912 5.806 5.917 

Table 4.7: Dipole moments (in Debye) of the 1- C3H radical. 

State Third Order HV MP2[1] CASSCF[l] Expt. 

MP2 Expt. HV 

geom. geom. geom. 

X2IT 1.83 2.46 2.41 3.31 3.42 3.12 

14~ 0.59 1.66 1.62 

12~+ 1.38 2.35 2.35 

12.6. 2.16 3.31 3.31 

[1] Ref. [24] [2] Ref. [56] 

Table 4.8: Vertical ionization potentials and electron affinities (in e \l) of the l-C3H 

radicals. 

State 

Ionization potential 

11E 

11 IT 

Electron affinity 

11 II 

13I1 

Third Order HV 

MP2 geometry Experimental geometry HU geometry 

8.701 

12.831 

0.298 

0.204 

9.327 

15.223 

0.221 

0.131 

9.208 

1-1.969 

0.305 

0.215 
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Table 4.9: Vibrational frequencies (in cm-1) of the l-CsH radical. 

Isomer Symmetry HV CASSCF[l] MP2 [lJ MCSCF[2] 

7r 262 325 245 247 

() 1020 1095 1117 1139 

() 1829 1925 2467 1906 

() 3291 3613 3601 3607 
[1 ] Ref. [24J [2JRef. [42] 

Table 4.10: Energy difference (in KJ mole-1) between the c-C3H and l-CsH 
radicals. 

Experimental 

geometry 

Third order HV 

MP2 

geometry geometry 

14.12 4.58 8.39 

[l]Ref. [46]. [2]Ref. [24]. [3J Ref. [22J. 

CCSD(T)[l] MRCI[2] Approx. 

Expt.[3] 

13.00 9.01 (8.62) 4.18-8.32 

117 
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Chapter 5 

Conclusion and Future Directions 

--________ ........ IIC:::.,:·':·::.;;::· ... · . .,;; 

5.1 Conclusion 

In this thesis work we have calculated various electronic properties of atomic and 

molecular systems of astrophysical interest using many-body theory. We have at­

tempted to improve the accuracies of the existing calculations and predict strengths 

of uno bserved lines using highly correlated and accurate theoretical methods. 

We have started with neutral carbon, a small but complicated open shell system. 

A multirefercnce non-relativistic many-body perturbation theory, the third order 

effective valence shell Hamiltonian method was employed to calculate excitation 

energies (EE) of various states of the system and oscillator strengths (f-values) of 

allowed transitions among them. There are no experimental measurements for many 

of these transitions among the excited states, only a few theoretical computations 

have been carried out. Using the H1) method we could achieve better accuracy for 

the EE values for all the states than those obtained with other accurate methods 

such as the closed coupling [1], the SUPERSTRUCTURE [2] approaches and the 

coupled clustcr theory based on the similarity transformed equation of motion [3]. 

This was possible because of the multireference structure of our method, which 

enabled us to be captuted the non-dynamical correlation (correlation internal to the 

valence orbitals) necessary to describe open-shells accurately. In these calculations 

we obtained the oscillator strengths by using wavefunctions computed through third 
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order in perturbation and the effective dipole operators evaluated through second 

order. The accuracies achieved for the f-values by our calculations are comparable 

with other theoretical calculations, but they are not in good agreement with the 

experimental values. The present HV computations strongly suggest the use of 

mUltiple reference spaces for the excited state computations because of the different 

nature of correlation in various classes of excited states. 

We have chosen neutral calcium for our next calculation. This is a very important 

system for the spectroscopic studies in astrophysics. The electronic properties of the 

excited states of this atom were not calculated accurately or measured experimen­

tally with high precision. Our successful calculations on neutral carbon motivated 

us to calculate the binding energies (energies relative to first ionization threshold), 

excitation energies, oscillator strengths and transition probabilities of Ca I using the 

third order HV method. The difficulties in accurately estimating these properties of 

Ca r arise mainly due to i) the lack of a balanced description of the ground and ex­

cited states, ii) the use of an inadequate basis which leads to difficulties in describing 

the excited states and an unbalanced treatment of dynamical correlation (correla­

tions describing coulomb holes) and polarization effects. We have shown that by 

using the improved virtual orbitals (IVO) basis and the appropriate selection of the 

valence space the third order HV method produces accurate results of the electronic 

properties by overcoming the above difficulties. We obtained better agreement for 

all the properties with the experiments, wherever available, than the corresponding 

results obtained from other correlated methods. This work highlights a number of 

important features of the HV method. It also demonstrates that the success of the 

HV method largely depends on two competing factors- the trade off between the 

large valence space to produce more accurate results and better perturbative con­

vergence to avoid intruder states. This calculations provide a uniform accuracy for 

more excited states than those obtained with some other schemes such as MCHF 

[4] and CI [5]. 

With the advent of high resolution spectrographs with large signal to noise ratio, 

the observations of forbidden lines become common for precise determination of the 

column densities of the ISM. But very few accurate calculations have been performed 
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on them and experimental measurements are difficult. The magnetic quadrupole 

transition from 282p (3 P2) to 282 (ISO) is one of those frequently observed transitions. 

whose weak transition rates were not calculated precisely for Be-like ions with 1011." 

Z-values and for higher Z-values no attempt being made. At present, observations 

[6, 7] near these ultraviolet and visible lines of highly ionized systems are of immense 

interest. We employed the relativistic counterpart of the MCHF method, the MCDF 

method based on the EOL approximation to calculate accurate excitation energies 

and transition probabilities ofthese transitions. In these calculations, the relativistic 

correction of the Coulomb interaction; the Breit interaction was included via first­

order perturbation theory. We have shown that the effect of the inclusion of the 

Breit interaction to the excitation energies is important as one increases the atomic 

number. The computed excitation energies are in excellent agreement with the NIST 

database. Apart from doubly ionized carbon, to our knowledge, this method was 

applied for the first time to the M2 transition probabilities for Be-like ions. As 

expected for low-Z ions, our results are not different from all other results obtained 

using relativistic corrections. But for heavier ions the relativistic motions of the 

electrons become effective, so the discrepancies are larger. This work highlights 

a number of unique and desirable features of the MCDF-EOL method for highly 

ionized atoms. 

Solutions of the Dirac-Fock equation for many-electron atoms using the method of 

finite basis set expansion (FBSE) have found a number of applications. The accuracy 

of the many-body theoretical computations depends on the basis to a large extent. 

The quality of a particular basis set is determined by physical considerations and 

numerical tests. The most widely used FBSE method in the framework of Gaussian­

type orbitals, which yields good results, but, it depends largely on the e:-"1>0nent 

parameter and size of the basis set. We have developed an approach which uses 

numerical wavefunctions for occupied and a few low lying unoccupied orbitals. This 

has important implications, especially, for the correlated many-body methods. We 

have used this formalism to obtain a new orbital basis. In our work we have applied 

this approach to two systems; Mg+ and Ca + and verified the improvements of the 

calculated results. 
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Intrinsically much weaker lines of Mg+ are the best candidates to determine the Mg II 

column densities in the neutral region of ISM. But all the calculated f-values of these 

lines are ambiguous (see Sect. 3.4) and there are large discrepancies among the ab 

initio calculations and empirical calculations. Therefore, an improved and accurate 

ab initio calculation was necessary. We have employed one of the most successful 

ab initio, highly correlated all order many-body method namely, the coupled cluster 

method to calculate those quantities. The excitation energies obtained using this 

method are in excellent agreement with the experimentally measured values. vYe 

have calculated improved oscillator strengths for 38 - 4p transitions which agree 

well with the empirical estimations [8]. Our calculated oscillator strengths of other 

strong lines are in excellent agreements with the all order relativistic SD method 

[9], wherever available. We have carried out calculations for many of the above 

mentioned transitions which to our knowledge, has not been performed earlier. 

We have chosen one of the most important molecules in astrophysics for our theo­

retical studies, which has received relatively little attention. Hydrocarbon radicals 

are of recent interest in astronomical observations because they provide accurate 

estimations of cloud temperature, chemical processes inside molecul~ clouds. One 

of them is propynlidyne, C3H radical first detected iri TMC-l and the carbon star 

IRC+10216 [10]. \Ve have employed the third order H1) method to calculate the ver­

tical excitation energies, ionization potentials, electron affinities, dipole moments, 

oscillator strengths and some harmonic vibrational frequencies of the two isomers of 

the C3H radicals within MP2 geometry [11] and experimental geometry [12]; some 

of these calculations have not been reported before. The computations of these iso­

mers' ground states energy difference has been a major theoretical challenge. iNe 

confirmed the experimental investigations and the CCSD(T) calculations by Kaiser 

et al. [13] that linear C3H isomer is less stable than the cyclic one. Our calcu­

lated energy differences using two different geometries lie within the experimental 

range if we consider approximate zero point energy corrections. Other calculated 

properties are in good agreement with experiment and other state-of-art correlated 

computations. \Ve have carried out calculations for the first time in literature oftbe 

excitation energies and oscillator strengths of high-lying excited states of isomers, 
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as well as several lowest vertical ionization potentials and electron affinities. This 

work shows many advantageous features of the HV method as well as its limitations. 

In brief, we calculated various electronic properties of single and multi-reference 

atomic and molecular systems of immense astronomical interest with high accuracy 

using many-body processes. To do that we modified the existing approaches and 

codes; at some places, we had to develop new theories and codes depends on the 

requirements of the problems. 

5.2 Future Directions 

We have seen in this thesis that better accuracies are required in lots of cases, which 

serves as a motivation for extending this work in the following contexts. The HL' 

method; one of the most successful MR-MBPT methods, improves the agreement 

between theory and experiment for excitation energies and oscillator strengths of 

atomic systems like calcium and molecular systems like propylidyne isomers, but 

for other systems like carbon improvements are not uniform through out the spec­

trum. One can try to improve the accuracies by improving the quality of the basis 

and increasing the reference space in the HV framework. But, in the latter case, 

as it has been argued over the past few years, the numerical stability of the cal­

culations are affected by the ever present intruder states. Howe\'er, this has been 

mitigated by extensive studies of the convergence of the perturbation series [141· As 

explained in chapter 2, the selection of the model space plays a crucial role as it 

influences the convergence and accuracy of the results. \Vithout the clear separation 

of the model and complementary space with large energy gap between them, the 

so-called intruder states appear and spoil the convergence. Such separation cannot 

be achieved in many cases if a complete model space (consisting of all possible dis­

tributions of the valence electrons in the valence orbitals) is used. Con\'ergence may 

often be achieved by resorting to the incomplete-model-sparl' scheme [15]. where 

only low-energy determinants deemed important for the state under consideration 

are calculated accurately, It is desirable to develop MR-MBPT method ma~T satisfy 

all these requirements. 

The results obtained from the MCDF-EOL method could improve if one considers 
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more excitations from the core and valence spaces to larger virtual space, which 

again leads to the convergence problem to optimize those virtual orbitals. A large C1 

calculation may yield better results than ours. But conventional large C1 calculations 

is time consuming and need huge disk space. Therefore, the non-conventional cr 
approach, like the Epstein-Nesbet approach may be useful in such cases. 

It is possible to improve on several aspects of coupled cluster calculations. One way 

to apply the all order single reference coupled cluster approach (SRCC) of Ki:Hlay and 

Surjan [16] to all the atomic properties. The multi-reference systems, like neutral 

carbon, may be calculated with better accuracy than presented in this thesis, if we 

use a multi-reference version of the state-specific coupled cluster theory, suggested 

by Mukherjee et al. [17]. 

The selection of basis functions is one of the most important ingredient of the atomic 

and molecular calculations, as we have experienced in this thesis work. 'Ve ha\'e 

developed a approach to generate basis functions which yields better results for 

atomic and molecular properties than by using the conventional basis functions. 

The inclusion of the inter-electron separation in the basis functions, the geminal 

basis, may be important in various accurate many-body calculations to describe 

many-body states and improve those results. 

In many-body methods, in general, accuracies improve with extensions of the refer­

ence space or virtual space. And in the case of perturbative method, it is the increase 

in the order of perturbation. To do such calculations, bigger parallel computers with 

more memory and more CPUs are necessary. 
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Appendix:A 

DF and MCDF method 

A.1 Rayleigh-Ritz Variational Principle 

Theorem 1: Let H be the Hamiltonian of a system, then the functional, 

E(lJ!) = (lJ!/H/W) 
(wlw) 

is minimized when l'iT) is the ground state wavefunction. 

Proof: Let {In)} be a set of eigenvectors of H. 

Hln) = En/n) 

I\II) = l:n anln) 

E(w) 
(w/HIlJ!) 
(wlw) 

L lan /2En 
n 

=? E(w) ;::: I: lan l2 Eo = Eo 
n 

=? E(w) ~ Eo 

when the equal sign holds if all an=O for n¥:O. In that case, however, Iw) = 10) is 

the eigenfunction corresponding to Eo as required. 

A.2 Dirac-Fock equation for Atoms 

For a relativistic N-particle system we get the relativistic HF equation which is also 

known as the Dirac-Fock equation. In this case the Dirac Hamiltonian v.rith Coulomb 

potential and central potential VN(ri) is 
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2 

H = L cai·Pi + ({3i - 1)mc2 + VN(ri) + L ~ 
i i<j rij 

(A.l) 

We represent the ground state wavefunction 4> as a N x N determinant 

(h(XI) (h(X2) 

w = _1_ (h(xI) ¢2(X2) 

.IN! 
(A.2) 

Where <I>s are the eigenvectors of J2 and Jz. Where the single particle wavefunctions 

(/Jis are the eigenvectors of J2 and Jz and can be expressed in terms of Dirac form 

as, 

(A.3) 

where g( r) and f (r) are space parts and XX:a,ma part is spin angular function. And 

the'quantum number ~ = ±(j +~) for I = j ± ~ .. 

Using the variational principle: 

bE['ll] = 0 

ab 

The radial part of the single particle Hamiltonian n atomic unit ( e = m = Ii = 1 

and c = ±) is 

And let V represent the Coulomb part of the electron-electron interactions. 

E[¢] L (alhala) + L {(abIVlab) - (abW'lba)} 
a ab 

L qaI(a) + L L[Jk(ab)Fk (ab) + gk(ab)Ck(ab)] 
a ab k: 

(AA) 

where qa is the occupation number of orbital a. 

( 
faCr) ) 1 (fb(r) ) 

Let u =! and Ub = -
a riga (r) r igb (r) 
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Then, the one particle integral can be written as : 

and direct and exchange part of the two particle radial integrals are given by : 

where 

jk(ab) and gk(ab) are angular coefficients. 

Using the Variational Principle, we get 

8{E[¢» - 2:: Aab(alb)} = 0 
ab 

(A.5) 

2: qa8I(a) + 2: 2::[Jk (ab)opk (ab) + l(ab)oGk(ab)] - 2:: Aab8(alb) = 0 
a abk ab 

and 

~ oa L Jk(ab)pk(ab) = 2qa(ouaIVa(r)lua) (A.6) 
bk 

where V, (r) = _1 Lbk(l + oab)fk(ab)}bi : Direct DF potential. 
a q"T 

=} oa L l(ab)Gk(ab) = -2qa(8uaIXa(r») (A.7) 
bk 
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By define €a = q: .Aaa , we get from Eq. 3.26, 

2qa(b'ual[ha + Va(r) - Xa(r)]lua) - 2qa€a{b'ua lua) - 2 L .Aab(b'ualub) = 0 
b:f;a 

13:2 

1 
(ha + Va(r) - €a)ua(r) = Xa(r) + - L .AabUb(r) 

% b:f;a 

(A.S) 

This is the Dirac-Fock equation for relativistic particle. 

A.3 Multiconfiguration Dirac-Fock Equations for 

Atoms: 

In the multiconfiguration approach, each atomic state function (ASF) is expressed 

in terms of configuration state functions (CSFs) by 

W(11 J M) = L c;.<I?rbrTI J M) 
r 

where II is the parity, J and M are quantum numbers representing angular momen­

tum, 'Yr represents other informations needed to specify w. 
Then the energy expression in terms of ASF can be written in terms of CSFs by the 

following way, 

(A.9) 
rs 

where, 

Hrs = (<I>rbril J JV1)IHI<I>sb'sl1 J At£) 

Hrr = L qa(r)I(aa) + L L [jk(ab)pk(ab) + /(ab)Gk(ab)] 
a ab k 

where qa is the occupation of orbital a in configuration r. 

Hrs = LTrs(ab)I(ab) + L LV:S(abcd)Rk(abcd), Jor r -=J S 

ab abed k 

where, 
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Rk(abcd) 1 
(al-Yb~lc) = Rk(cbad) = Rk(adcb) 

r 

Rk(badc) = (bl~Y:Cld) 
r 

The normalization condition is (wlw) = 1, :::} Lr Icrl2 = l. 
Applying the variational principle on Eq. (3.30) with respect to mixing coefficients~ 

we get 

a~* [(wIHlw) - .\(Wlw)] = 0 
n 

==> ~(Hns - .\t5ns )cs = 0 
s 

Thus the matrix eigenvalue equation can be written as 

H c= .\ C (A.IO) 

where,>. = L rs c;Hrscs = E. Therefore, 

DE = 2: c;t5Hrscs 
rs 

Evaluating of 8Hrr and 8Hrs , 

~ 2:(1 + t5ab)f:(ab){ouaIY~lua) 
r bk 

+ ~(1 + 8ab )g;(ab)(8uall:tlub)] 

Let, qa = Lr IcrI2qa(r), Jk = Lr lerI 2J;, gk = Lr ICrI2g~, 
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Then, 

c5a I: /cr /2Hrr = 2Qa[<c5ua/hk + Va(r)/ua) - (c5Ua/Xa(r»)] 
r 

Similarly, we can write, 

=? c5a I: c;Hrscs = 2 [I:T(ab) (c5ua/hk/Ub) + L Vk(abcd)(c5ua/~Yb~/Ub) 
rs b k,bcd r 

Now 

r rs 

Let 

IXa) /Xa} - ~ I: Vk(abcd).!Yb~luc) 
qa k bed r , 

-~ [2:: gk(ab)Yb~lub) + L Vk(abcd)}'b~luc)] 
qar bk k,bcd 

The variation of the orthogonality condition shows, 

Aaa2(c5ualua) + L Aab (c5ua IUb) 
b;6a 

qaca2(c5ualua) + L Aab(c5ualub) 
b;6a 

where Aaa = qaEa· From the variational principle equation, 

c5a[E- LAab(Ualub)] =0 
b 

:::} 2Qa(c5ualh k + Va - calua} - 2qa(b"uaIXa) - ~ L(b"ual [Aab - T(ab)hk] IUb) = 0 
qa b;6a 

=} (hk + Va(r) - ca)ua(r) = Xa(r) + ~ 2:: [Aab - T(ab)hk]ub(r) (A.H) 
qa b;6a 

where K = Ka = fl.b· The coupled equations (3.31) and (3.32) are called the Multi-

configuration Dirac-Fock equations. 
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