Ifodatianal observatoxy.

BULLETIN No. LIII

THE DISPLACEMENTS OF NICKEL AND TITANIUM LINES IN THE SUN AND ARC.
By T. Royds, D.Sc.

The displacements of the iron lines in the solar spectrum have been given in provious bulletins ${ }^{1}$, and from the sun-minus-are displacements Mr. Evershed deduced a vertical current at the centre of the sun's disc decreasing with depth, and a low pressure in the sun. It was shown, however, that lines which are unsymmetrical in the are have abnormal displacements in the sun, and these lines had to bo left out of consideration. In extending the investigation to nickel and titanium it has to be remarked that these abnormal displacements are much more frequent than with iron. In the case of nickel it is doubtful whether there are any really symmetrical lines in its spectrum. So rare are symmotrical lones in nickel and titanium that it has not been possible to confirm, except to a limited extent, the conclusions arrived at from the iron lines, but one can only sav that the rosults from nickel and titanium are not inconsistent with those indicated by iron.

Five separate investigations of displacements were carried out, namoly :-
(i) Centre of sun's dusc minus centre of nuckel arc,
(ii) Centre of sun's disc minus centre of tilanium arc,
(iii) Limb of sun minus contro of sun's disc,
(iv) Negative pole of nickel are minus centre of nickel are,
(v) Negativo pole of titanium are minus centre of titanium arc.

The displacements measured are given in Tables IX and X at the end of this balletin. The limb-minnsarc displacements were obtained by addtion of the displacements in (i) and (iii), and in (ii) and (iii) for nickel and titanium respectively.

Experimental Detarls.

The spectrograph has been described previously ${ }^{2}$, but has now an Anderson grating with $9.7 \times 12.8 \mathrm{~cm}$. ruled space and 75,085 lines. The third order spectrum was usid and the dispersion varied from 0.85 angstroms per mm . at $\lambda 3560$ to 0.64 angstroms per mm . at $\lambda 5170$. The optical arrangement for photographing sun and arc simultaneously was tho same as that employed previously ${ }^{2}$ and the device used for photographing the two limbs and the centro of the disc simultaneously was the same as that described in Kodaikanal Observatory Bulletin No. XXXIX. Care was taken that the grating was uniformly illuminated from each of the duferent light sources whose spectra were required in juxtaposition for measurement of the displacement of the lines. For the adjustment of the limb and centre plates in the micrometor, lines of the iron are were impressed on the plates but were not used for measuring displacements.

The electric are was supplied from a battery of 110 volts and burned in air at 580 mm . prossure (the normal atmospheric pressure at the altitude of tho observatory). The are was placed vertical, parallel to the slit, with a length of 10 mm ., cnlarged to 32 mm . on the slit plate by a condensing lens. The are length

[^0]and current were kept as constant as possible throughout the series of experiments but it will be readily understood that the displacement at the negative pole depends to such a large extent on the instantaneous condition of the arc that the photographs do not form one homogeneous series even though the regions photographed were made to overlap. This does not apply however to the sun-minus-arc determinations, for the wavelength at the centre of a long are is sufficiently stable for the whole set of photographs of about 100A each to form a homogeneous series.

The are had generally to bo cxposed longer than the sun to give easily measurable arc lines, so that the exposures were not always strictly simultaneous, but the exposure in the sun was always made in the middle of the arc exposure without interrupting the latter.

In each region of the spectrum it was found necessary (as also previously with the iron spectrum) to have some photographs with a short exposure on the arc and some with a longer exposure. The stronger arc lines are measured in the short exposure platos and the fainter lines in the long exposure with a sufficient number of lines measured in both to prevent systematic differences being unnoticed. This procedure is necessary in order to avold making measures on overoxposed arc lines, for in my experience it is not possible to set accurately on them and in the caso of unsymmetrical lines the measures may not be true owing to the difficulty of distinguishing the position of maxamum intensity.

Mcasuremonts of each plate were made with the red on the right hand side and again with the red on the left, and were made in duplicate by two measurers.

Many lines aro included in Table IX which were not identified by Rowland, but there is little reason to doubt their idontity. Rowland missed thom porhaps because he did not recognise that lines nebulous and faint in tho arc are gonorally strengthoned in the sun (being high temperature lines) and had no reason to expect'such large differences of wavelength between sun and arc which we now know to be due to the unsymmetrical character of spectrum linos.

I.-NICKEL LINES.

1. The displacemont at the negative pole of the nickel arc.

These displacoments, givon in Table IX, column 6, each the mean of three determinations, have been measured in the same way as those of iron and other elements described in Kodaikanal Observatory Bulletin No. XL. As there was no supply of pure nickel available, "nickel" coins (value one anna) of the Indian coinage were taken for the are. The coins are an alloy consisting of 80 per cent of nickel with 20 per cent of copper. A coin was made the lower, negative, clectrode and the upper electrode was commercial iron. With this arrangement the arc burned very steadily, moro steadily than the arc between two iron electrodes; the iron lines were produced simultancously and gave a check on the consistency of the results with previous measures of the sun and iron arc. The are length was 10 mm . throughout, enlarged to 32 mm . on the slit plate, and tho current strength $5^{\frac{1}{2}}$ ampères. In order to avoid iron globules adhering to the anna coin when the are was struck, the elcelrodes were never brought into contact but the arc was started by inserting a piece of are carbon between the electrodes.

Except in the region above $\lambda 3900$, most nickel lines undergo a large displacement either to the red or to the violet. As in the cases of othor elements the lines are displaced in the direction to which they widen unsymmetrically in the arc and those lines which appear symmetrical have zero or small displacements. It is not claimed that the negative pole displacements less than about 0.004A recorded in Tables IX and X are real, but the means of the measures have been given without modrfication. In some cases where the lines are too faint or diffuse for measurement the direction of the displacement at the negative pole was evident under low magnification and has been noted in the table.

There is a parallelism between the pressure displacements given by Duffield ${ }^{1}$ and the displacements at the negative pole but it is very doubtiul whether there is any physical relation between the true pressure effect and the negative pole displacement. It seems more than probable that pressure displacements as determined

[^1]from increasing the pressure of the atmosphere surrounding the electric arc are, to a greater or less degree depending on the condition of the experiments, not free from the displacements observed at the poles of the arc. Consider, for example, the values given by different experimentors for the pressure shift of the Mount Wilson group e of the iron lines which are displaced to the violct at the negative pole. The lines of this group were originally defined as those which shift, and widen unsymmetrically, towards the violet under pressure, ${ }^{1}$ and Gale and Adams give the pressure shilt of the group in the region $\lambda 5400$ to be $-0^{\circ} 014 \mathrm{~A}$ per atmosphere (i.e., to the violet) in comparing the are in vacuo with the are at pressures up to 1 or 2 atmospheres. ${ }^{2}$ St. John and Babcock, however, comparing the arc in vacuo with that at pressures up to 1 atmosphere obtain a value of +0.0017 A per atmosphere (i.e., to the red), at mean wavelongth $\lambda 5392$ and -0.0035 A per atmosphere (i.e., to the violot) for the lines at mean wavelength $\lambda 3755^{3}$. St. John and Babcock do not state why their experience differs from that of Gale and Adams working between the same pressures, but one may assume it is because they have had a longer arc, or have avolded the polar regions, or both. It is probable that the values of St. John and Babcock are more free from the pole displacement but it is open to question whether they represent the true prossure shift even now.

It is to be noted that the linos showing decided displacement at the negative pole are gonerally high temperature lines belonging to those groups which are faint or absent in the furnace spectrum according to the experiments of King, ${ }^{4}$ but are not enhanced in the spark.

> 2. The sun-minus-are displacements of nickel lines.

These are given in column 7 of Table IX. Only the central portion of a long are was used for comparison with the centro of the sun's disc.
(a) Relation to negative pole desplacements.-The intimate relation betweon the displacements in the sun and at the negative pole of the arc is at once evident from Tablo IX. The lines with a decided shift to the violet at the negative pole are chsplaced in the sun more to the red than lines with zoro or slight shift at the negative pole, and those with a shift to the red at the negativo pole aro displaced to the violet in the sun or, in a few cases, only slightly to the red. This indicates that the condilion of the vapour (probably vapour density ${ }^{5}$) at the centro of a long are is intermediate between that in the sun and that at the negative pole of the arc. In the following table, the average sun-minus-are displacoments are given for lines classificd according to the amount of the shift at the negative pole of the arc. The result of the table is cmbodied in the accompanying diagram.

Table I.-Relation between sun-minus-are displacements and negative pole displacements for nickel lines.

Displacement at negative polo.	Over-014A	$\begin{aligned} & \text { - } 014 . \mathrm{A} \text { to } \\ & \text { - } .104 \mathrm{~A} . \end{aligned}$	$\begin{aligned} & -003 \mathrm{~A} \text { lo } \\ & +003 \mathrm{~A} . \end{aligned}$	$\begin{aligned} & +004 \mathrm{~A} \text { to } \\ & +014 \mathrm{~A} \end{aligned}$	Ovor +014.
Mean displacement at negative polo ..	- 0226A.	- 0n90A.	$+\cdot 0005 \mathrm{~A}$.	+ $\cdot 01081$.	$+\cdot 0225 \mathrm{~A}$.
Mean centre-mmus-arc displacomont	+ 0100A	+ 0073	+ 003 1 A.	- 010434.	$-.0063 \Lambda$.
Number of lmes	7	6	32	23	28

On account of the non-homogeneity in the series of the negative pole shifts referred to previously, it is of no service to attempt to formulate algebraically the law connecting solar displacements and negative pole displacements, but it would seem from the diagram that a displacement to the rod at the negative pole results in greater abnormality in the solar displacement than an equal one to the violet would, and that small displacements at the negative pole are proportionately more effectivo than large displacements.

[^2]

Fig. 1.-RELation of solar displacement to the displacement at the NEGATIVE POLE OF THE ARC.
To the relation expressed in Table I and the diagram there are only 13 exceptions (not included in the table) out of 124 lines with negative pole displacements noted. Perhaps they are due to their being unsuspected blends in the solar spectrum. These 13 exceptions are given below :-

(b) Relation of sun-minus-arc displacement to intensity.-Mr. Evershed has shown that the strongor iron lines (i.e., high level lines) have larger displacements to the red than the weaker lines, and these displacements were interpreted as Doppler effects due to a descending current at the centre of the sun's disc decreasing with depth. The nickel lines, however, taking account only of those with zero and slight pole displacements, do not show any variation with intensity as the summary in Table II shows.

Table II.-Relation of sun-mmus-arc displacements to intensity for nickel lines with zero or slight pole displacements (between $\pm 0^{\circ} 003 A$) excluding $\lambda \lambda 3772^{\circ} 673,3793.745$.

Intensty ...	0	1	2	3	4	5	6	7	8	10
Mean (0-arc	+ 0020	+ 0023	+ 0032	+ 0022	+ 0028	+ 0037	+ ${ }^{-0023}$	+ 0040	+ 0035	+.0030
Number of lines	2	3	5	6	4	3	6	2	2	1
Mean intensity	19				60					
Mean 0 -arc ...	$+0.0025 \mathrm{~A}$				$+0.0030 \mathrm{~A}$					
Number of lines ...	16				18					

Thus the lines of mean intensity 600 have a mean displacement larger than that of lines of mean intensity 19 by the doubtful amount of 0.0005 A . According to St. Johm ${ }^{2}$ lines of nickel and iron of equal intensity originate at the same level in the sun, and consequently we must expect equal displacements if due to Doppler effects. The absolute displacements of the nickel lines, $+00^{\circ}(0) 28 A$ for mean intensity $4^{\prime} 1$ are in good agreement with those of the non lines ${ }^{2}$ betweon intensities 2 and 7 , namely $+0^{\circ} 0031 \mathrm{~A}$, mean intensity 3.9 .

The variation of the clsplacement between lines of mean intensity $1^{\circ} 9$ and 60 is small, in agreement with the results for iron lines of like miensity but the strongest nickel lines in the above table would have been expected to give larger displacements. Perhaps the reason for this discrepancy is to be found in the fact that the nickel lmes although almost or quite symmetrical in the arc at atmospheric pressure are really unsymmetrically widened towards the rod, only becoming obviously so under pressure as shown for almost every line in column 5, Table IX, from the data of Duffield ${ }^{3}$ and Bilham. ${ }^{4}$ It should be remembered, however, that the nickel lines on the whole originate at lower levels than the iron lines which have been studed, and there is some evidence with the ron lines that the variation with intensity becomes less at the lower levels.
(c) Pressure in the sun.-A relationshp conld also be traced between the sun-minus-are displacemonts and the pressure shift, giving indications of nearly zero pressure in the sun if all lines are consulered, but this apparent relation is principally due to the dependence of the pressure shifts of unsymmetrical lines on the shift at the negative pole. At present we can only make use of the lines which undergo zero and sleght shifts at the negative pole, athough even these lines seem, from what has been said m (b), to bo under suspucion. The range of the pressure shifts for these lines is small but they can be divided into two groups of more and less affected lines and the mean displacements for the two groups are given in Table III.
 ג $3779673,3793.745,485 \% 600$.

-	Less affected limes	Mure affecied linos
Pressuro sphere shaft per atmo-	$+00011 \mathrm{~A}$	+ ${ }^{\prime} 0024 \mathrm{~A}$
\bigcirc - arce displacement ...	$+0.0032 \mathrm{~A}$	+1032 A .
Number of lines ...	15	16

There is no dufference in the solar clisplacement for the two groups of symmetrical lines with a rolative difference of pressure shift of 00013 A per atmosphere. The solar pressure is therefore equal to the pressure of the atmosphere at the altatude of the observatory. This result is in agreement with the pressure deduced from the symmetrical uroul lines.

3. Dusplacement of nickel lines at the sun's lumb.

It is seen from column 9 of Table IX that the limb-minus-centre displacements are more regular than the centre-minus-arc displacements; Mr. A. A. Narayana Ayyar has shown ${ }^{5}$ that lines with very large centre-minus-arc displacements have normal values for the limb-minus-centre displacement and the values for nickel confirm this There seems to be no connection whatever between limb-minus-centre displacements and the unsymmetrical character of the lines as evidenced by the shift at the negative pole.
(a) Relation to intensity.-Only 21. lines with slight shift at the negative pole are avalable and their mean limb displacement is given in Table IV. As, however, there seems to be no abnormality depending on pole displacements the means of all lines irrespective of the valne of their pole shifts have been given in Table V.

[^3]Table IV.-Relation of limb-minus-centre and limb-minus-arc displacements to intensity for lines with negative pole shaft between $\pm 00^{\circ} 00^{\circ} 3 \mathrm{~A}$.

Intensity ...	0	1	2	3	4	5	6	7
Limb - centre	0000	+ 0045	+ 0026	+ 0050	+ 0085	+ 0065	+ 0045	+.0035
Centre - arc ${ }^{\text {c }}$	+ 0020	+ 0023	+ 0032	+ 0022	+ 0028	+ 0037	+ 0023	+ 0040
Limb - are	+ 0020	+ 0068	+.0058	+.0072	+ 0113	+ 0102	+ 0068	+.0075

Table V.-Relation of lamb-minus-centre displacements to intensity for all lines

Intensty	\ldots	..	0	1	2	3	4	5	6
Limb-centro	\ldots	+0014	+0034	+0034	+0044	+0048	+0056	+0043	+0035
Centre - arc 2	\ldots	+0020	+0023	+0032	+0022	+0028	+0037	+0023	+0040
Limb $-\operatorname{arc}$	\ldots	..	+0034	+0057	+0066	+0066	+0076	+0093	+0066

From these two tables there is slight evidence of the variation of the lumb-minus-centre displacement with intensity which was found with the iron lines. Except for the lines of intensity 0 , the variation is so small as to be of doubtful reality, however. The absolute values of the displacements are slightly smaller than those of the iron lines at the same level.
(b) Relation to wavelength.-There is a slight variation of the limb-mmus-contre displacement with wavelength, the mean for lines from $\lambda \lambda 3662$ to 4490 berng +0025 A and that from $\lambda \lambda 4513$ to 5160 being $+{ }^{\circ} 0036$ A.
(c) Limb-minus-arc displacements.-If the limb-minus-arc displacements are obtained by addmg the limb-minus-centre shifts to the centre-minus-are shifts the results are seen to be mainly depondent on the influence of the negative pole displacement on the last mentioned. Taking, therefore, the centre-minus-are displacements of only those lines which have zero or slight dusplacements at the negative pole, the relationship of the limb-minus-are displacements with intensity is shown in Tables IV and V. As was to be expected from the approximate uniformity in both limb-minus-centre and centre-minus-arc displacements, the resultant limb-minus-arc displacement is also nearly constant.

The absolute values of the limb-minus-are displacements of nickel lunes are smaller than those of iron lines due to smaller values for both limb-minus-centre and centre-minus-are.
?II.-Titantum lines.

1. The displacement at the negative pole of the titanuum arc.

The are spectrum of titanium was obtained by feeding small quantities of titnnum metal on to the lower, negative, electrode of a carbon arc. The determination of the displacement at the negative pole was confined to a few regions containing strong lines as the supply of titanium was insufficient for the complete spectrum. On account of the surprising brilliancy of the luminous spot near the negative pole the lines are usually overexposed in the few photographs obtained, and the measurements are consequently not so accurate as is desirable The arc length was 10 mms ., and the current strength 6 ampères.

The displacements at the negative pole of the titanium arc are given in Table X, column 4. It is seen that the majority of the lines investigated give appreciable displacements at the negative pole, mostly to the red, and the displacements seem to have no relation to the pressure shifts.

> 2. The sun-minus-arc displacements of titanuum lines.

These are given in column 5 of Table X.
(a) Relation of sun-minus-arc displacements to negative pole displacements.-As in the case of nickel, the shifts at the negative pole are seen to account for most of the deviations from normal displacement. Grouping the lines according to the direction and amount of their pole shift a relation similar to that for the nickel lines is obtaned in Table VI.

[^4]Table VI.-Relation between sun-minus-arc displacements and negative pole displacements for titanium lines.

Displacement at negative pole	$\begin{aligned} & -008 \mathrm{~A} \text { to } \\ & =-004 \mathrm{~A} \end{aligned}$	$\begin{aligned} & -003 \mathrm{~A} \text { to } \\ & +003 \mathrm{~A} \end{aligned}$	$\begin{aligned} & +004 \mathrm{~A} \text { to } \\ & +010 \mathrm{~A} \end{aligned}$	$\begin{array}{r} \text { Over } \\ +0010 \mathrm{~A} \end{array}$
Mean displacement at negative pole ..	-.0063A	$+.0005 \mathrm{~A}$	+ 0063A	+ 0188 A
Mean sun-mmus-arc displacement ..	$+\cdot 0030 \mathrm{~A}$	$+0030 \mathrm{~A}$	+ 0021A	-0024A
Number of lines	3	13	22	9

(b) Relation of sun-minus-arc displacements to intensity.-The range of intensities of titanium lines is less than that of eather nickel or rron. All lines wore taken into consideration as the pole shifts are not known throughout the spectrum and the means are given in Table VII.
Table VII.-Relation of sun-minus-arc displacements to intensity for all tulanvum lines excepl $\lambda 5025.749$.

Intensity	00	0	1	2	3	4	5
Centre - arc	-. 0015	+9017	+ 0002	+ 0024	+ 0031	+ 0021	+ 0040
Number of lines	.			2	12	16	26	20	10	1
Mean intensity		.	..	$0 \cdot 4$			24		$4 \cdot 1$	
Centre - arc	+.0007			$+.0027$		+.0024	
Number of limes	...			30			46		11	

According to St. John the lines of titanium origmate at the same level as iron lines of intensity higher by one unit. Above intensity 2, the absolute value of the mean displacement is in satisfactory agreement with that for meckel and iron, but below intensity 2, the shifts are smallor than expected. Perhaps the oxclusion of all lines exhibiting polo shifl would rectify this.
(c) Pressure in the sun.-On account of the dependence of the solar displacements on the pole displacements and also on account of the pancity of lines with small displacements at the pole it is of little service to attempt to deduce the pressure in the sun from the relative shift of the more and less affected lines of titanium. The result however, as in the case of nickel, taking all lines into account is in the neighbourhood of absolute zero pressure in the sum, but this is not believed to represent the true solar pressure, because lines exhibiting pole displacements have not been excluded.

> 3. Displacement of the titanium lines at the sun's limb.

The limb-minus-centre displacements are fairly regular for the titanium limes also. For lines above intensity 2 , the displacements are practically independent of intensity, as shown in Table VIII.

All lines have been taken into consideration on account of the incompleleness of the determination of the negative pole displacements.

Table VIII.-Relation between limb displacements and intensily for all tatanium lines.

Intensity	00	0	1	2	3	4	5
Limb - centre		$\cdot 0000$	+.0030	+ 0008	+.0036	+ 0029	+.0037	+. 0040
Centre - arc	- 0015	+ 0017	+.0002	+ 0024	+ 0031	+.0021	+.0040
Limb - are		- 0015	+ 0047	+.0010	+ 0000	+ 0060	+.0058	+ 0080
Number of lines	2	12	17	26	20	10	1

The absolute values of both limb-minus-centre and limb-minus-arc displacements are smaller than those for the uron lines at the same level in the sun. The smallness of the latter displacement is probably principally due, as in the case of nickel, to the abnormality of the centre-minus-arc displacements on account of the unsymmetrical character of the lines in the arc.

My best thanks are due to Mr. A. A. Narayana Ayyar, B.A., Third Assistant, who has done the bulk of the measurement of the plates, and to Mr. G. Nagaraja Ayyar, Second Assistant ; also to Mr. S. Sitarama Ayyar, B.A., First Assistant, who was able to make some measures before he went to Kashmır.

I would also express my indebtedness to Mr . J. Evershed, f.R.s., the Director, for his interest and valuable criticisms.

SUMMARY.

1. The majority of nickel lines show abnormal displacements in the spectrum of the centre of the sun's disc owing to their unsymmetrical character in the arc as evıdenced by the displacement at the negative pole of the arc. The deviation of the solar displacements from normal is in the opposite direction to the displacement at the negative pole, showing that the condition (vapour density, probably) at the centre ot the are is intermediate between that in the sun and that at the negative pole of the arc. Conclusions can consequently only be drawn, at present, from those lines which have zero or slight displacement at the negative pole. Since even these lines, or at any rate most of them, become obviously unsymmetrically widened in the arc under pressure there is possibly still some abnormality in their solar displacoment, and this fact may account for the slight discrepancies when compared with the symmetrical iron lines. Consequently, it can only be sand that the conclusions from the displacements of the nockel lines (and of the titanium lines, for similar considerations apply to titanıum also) are not mnconsistent wilh those drawn for the iron lines.
2. Takng only those nickel lines with zero or slight displacement at the negative pole of the electric arc, the mean centre-minus-are displacement is practically identical with that of the symmetrical iron lines originating at the same level in the sun, but shows no varation with intensity (i.e., with depth in the reversing layer) as would have been expected from the results for uron. On the whole, however, the nickel lines originate at lower levels than the iron lines which have been studied and with the latter there is evidence that the variation with intensity is less at the lower levels
3. Again taking nickel lines with zero or slight displacement at the negative pole, the solar pressure, estimated from the relative shift of the lines more and less affected by pressure, is about three-quarters of an atmosphere, in agreement with that deduced from the symmetrical iron lines.
4. The relation between the negative pole displacement of the nickel lines and the centre-minus-arc displacement has been roughly formulated and $1 s$ shown in fig. 1.
5. The limb-minus-centre and the limb-minus-are displacements also vary but slightly with intensity. The absolute values are smaller than those of the iron lines.
6. The displacements of the titanium lines are similar to those of the nickel lines. The displacement at the negative pole of the arc is again a disturbing factor.
7. The conclusions drawn from the investigation of the iron lines, namely, that the displacements at the centre of the sun's disc and at the sun's limb are Doppler effects due to descending motion in the line of sight and that the solar pressure is of the order of three-quarters of an atmosphere, are not modified by the investigation of the nickel and titanium lines.

The Observatory, Kodaikanal,
2nd December, 1916.
T. ROYDS,

Assistant Director.

Table IX．－Nickel lines．

¢		ESerial number
		人 ${ }_{0}$
Noo		
$:{\underset{z}{E}}_{E_{E}^{E}}^{E}$		
		（－3
		－ $\begin{array}{r}10 \\ -\quad \text { 最 } \\ \hline\end{array}$
$\begin{aligned} & +\quad+1+ \\ & \text { woorner } \end{aligned}$		
	 	-
$\text { 틍 } \because \text { 』a }$		
		第
W00000\％		
¢98989	\％	al number

Table IX.-Nickel lenes-cont

		ESerral number
 		© $=$
	: \quad : \quad : $:_{5}^{5}$	
$1+++++++11+1+++11+1++1++1+++11+11+1+11111+11: 111+$ 		3 - \quad ¢
 		(${ }_{\text {a }}$
$1++++++++1++++++++1++++++++1+++++++11+1+1++1++11111+$ 		$\begin{array}{ll} \hline & 1 \\ \hline \end{array}$
	-	
	cosrcmencos	E1O
	cooccomincos	
	-	Serral number

Table IX.-Nickel lines-cont.

	λ	Intensity.	Character.		Shift at negative pole(6)	Centre - arc. (7)	Limb - centre (8)	$\begin{aligned} & \text { Limb } \\ & -\operatorname{arc} . \end{aligned}$ (9)	Pressure shrfit per atmosphere. (10)	Remarks. (11)	Number of plates.		
			Atmospheric arc (4)	Under pressure. (5)							Centre $-\operatorname{arc}$. (12)	$\begin{gathered} \text { Limb } \\ - \text { centre } . \\ (13) \\ \hline \end{gathered}$	
					A/1000	A/1000	A/1000	A/1000	A/10000				
127	5115566	2	(ur)	\cdots	$+17$	+2	$+5$	$+7$	\ldots		1	2	127
128	29546	2		...		-4	+ 4	0	\cdots		2	2	128
129	37250	3	- 1	+1	+ 4	$+5$...		3	2	129
130	42958	2	...	\ldots	large - ?	$+10$	+ 4	+14	...		2	2	130
131	46.659	Na_{1}-3	.	'.'	large -	$+13$	+ 5	+18	...		3	2	131
132	55935	2	.	\cdots	lergo -	$+13$	+5	$+18$...		1	${ }_{2}^{2}$	132
133	68.832	1	\cdots			-6	$+4$	-2	...		2	3	153

Column 3-Intensty.-The mensities are taken from Rowland's Table of solar wavelongth and unless otherwise noted in
 not identified by Rowland.

Cotumn 4-Chan auter in the arc at cutmospheric pressure - The character in this column was dorived from the appearance of the spectrum lines, more particularly at the negative pole. The letters have the following interpretation -
r denotes unsymmotricall
v denotos unsymmetrically wadened towards the violet
n denotes hazy or dulfuse.
R denotos that tho lino is rovorsod at the nogative pole.
If the letters are onclosod in brackets the character is only slighty ovident
Column 5-Charater in the arc under pressure.-These aro takon mostly from Duffiold; the fow from Bilham are marked(B). Cotumn 6-The dasplacements at the nogalivo polo aro derived mostly from threo platos.
Columan 1o-Pressure sheft per atmosphere.-The shilts aro taken from Duffield's paper. Ti should be remarked that
Duffield has included lines displacod to the volet in the same class as those dasplaced to the red.

Table X.-Titanium lines.

TABLE X.-Tilanzum lines-cont.

[^0]: ${ }^{1}$ Kodaikanal Observatory Bulletins Nos. XXXVI, XXXVIII, XXXIX, XLIV, XLVI.
 ${ }^{2}$ Kodarkanal Observatory Bulletin No. XXXVI.

[^1]: ${ }^{2}$ Duffield, Phul. Trans. Roy. Soc., 215, 205, 1915.

[^2]: 1 St. John and Miss Ware, Astrophysical Journal, 36, 14, 1912. $\quad 2$ Gale and Adams, Astrophysical Journal, 37, 391, 1913.
 ${ }^{3}$ St. John and Babcock, Astrophysical Journal, 42, 231, 1915. ${ }^{4}$ King, Astrophysical Journal, 42, 344, 1.915.
 ${ }^{5}$ Royds, Kodalkanal Observatory Bulletins Nos. XXXVIII and XL.

[^3]: ${ }^{1}$ St John, Astrophysical Journal, 38, 341, 1913
 ${ }^{2}$ Kodakanal Observatory Bulletin No. XXXVIII.
 ${ }^{3}$ Duffield, Phul Trans Roy. Soc., 205, 215, 1915.
 4 Bilham, Phil. Trans. Roy Soc., 214, 359, 1914.
 ${ }^{5}$ Narayana Ayyar, Kodaikanal Oluservatory Bulletan No:XLIV.

[^4]: ${ }^{1}$ The centre-minus-are displacements are derived from a larger number of lines in some cases.
 ${ }^{2}$ The centre-minus-arc displacements are derived from lines with shght pole displacement only.

