Fodathanal Gbservatoxy.

BULLETIN No. XL.

AN INVESTIGA'LION OF THE DISPLAOEMENT OF UNSYMMEIRICAL LINES UNDER 1)TFFFRENT CONDITTONS OF TEE ELECTRIO ARO.
 By T. ROYDS, D.Sc.

Whilst investigating the suitability of iron lines as standards of wavelength, St. John and Miss Ware found that in one of their photographs the wavelengths of lines of ther group d wore longer, and of group e shorter, than mother photographs ${ }^{1}$, and Goos has concluded that the wavelengths of certain iron lines vary with carrent, are length and region of the are ${ }^{2}$, also Fabry and Bursson detected shifts of opposite signs for the two kinds of unsymmetrical lines when the current in the arc was increased ". I have been led to similar results in the course of a comparison of the spectrum of the centre of the sun's disc with that of the eloctric arc ${ }^{\prime}$. In these experiments I found that when a short are had been employed the solar displacoments were for certain lines systematically different from those when a long arc had been used for comparison with the sun. This suggested a direct comparison of the certre of a short arc with the centro of a long arc, and it was found that the ron lines of group d and certam of group c (i.c., lines unsymmetrically widened towards the red) were displaced in the short are to the rod, and tho lines of group e (unsymmotrical towards the violet) to tho violet, whilst symmetrical lines were practically undisplaced.

Tho oxistence of this displacoment affecting almost exclusively those lines which are most shifted by pressure, seriously limits our means of estimating the pressure shifts in the sun. Also there is evidence that, the wavolongths of the lines which are liable to undergo displacements are not normal even at the contre of a vory long anc, for many of the solar displacomonts given in Table IX of Kodarkanal Observatory Bullotin No. XXXVIII aro so large as not to be explained as due either to pressure or to motion in the line of sight It is thorefore of prossing importance to investrgate the cause of the displacements which occur in differont condatioms of tho electaic arc, and to find a light source giving normal wavelengthe for all classes of lines.

Experimental details - The sjectrograph employed for thes mestigation has been described elsewhoro". The third order spectrum was generally used except for regions less refrangible than $\lambda 5800$ for which the socond order was used. The disporsion in the third order varies from 0.9 A per mom. at $\lambda 3950$ to $0 \% \mathrm{~A}$ per mm. at $\lambda 5680$.

The oloctric are was supplied by a batery of 110 volts, the poles were vertical and an imago, onlarged $3 \frac{1}{4}$ times, was formed on the vortical slit of the spectrograph by means of a condensing lons. The comparison of the spoctra from two different, parts of the arc was made by means of an ocoulting screen sliding in fiont of the slit. Tho comparison spectrum was in every case the central portion of a long are and was impressed on the photograplic plate above and below a spectrum in the middle to be compared with it. Half of the exposure of the comparison spoctrum was given immediately before exposing the middle spectrum, and the second half inmediately afterwards. This guarded agrainst the possibility of shifts due to temperature
changes or to mechanical disturbances passing unnoticed. A graduated scale on the occulting screen enabled the length of the arc to be controlled.

The atmosphere surrounding the arc was arr at ordinary pressure (580 mm . at the level of the Observatory) or at reduced pressure. For the ron and copper are metallic poles were used; in the cases of other elements salts were introduced on one or both poles of a carbon arc.

Investigation of Iron Lines.- It was found previously that the displacements of the iron lines in the short arc were associated with the unsymmetrical character of the lines, lines widened more towards the red were found to be displaced to the red, and those widened more towards the violet to the violet, whilst symmetrical lnes were undisplaced. For the present purpose therefore spectrum lines may be classıfied as symmetrical (marked s in the tables), those widened unsymmetrically towards the red (marked ur) and those widened unsymmetrically towards the violet (marked av). The study of the iron lines has been confined to two
 lines and 16 strong unsymmetrical lines, 8 hemg widened more towards the red and 8 towards the violet.

The measured displacements of these non lines under different conditions are given in Table I.

It is seen from the table that only unsymmetrical lines undergo any notable displacement and these always in the drection of greater widening. How far this result is due to errors of estrmating the correct position of the maximum intensity in an unsymmetrical line is discussed below. The largest displacements occur in the region near the negative pole of the uron arc, at the positive pole the displacement is about half that at the negative pole. A considerable displacement is also produced by shortening the are (as was shown for other lines in Bulletin No. XXXVIII) or by increasing the current through the arc.

Fig. 1 of the accompanying plate is a three times enlargement of a portion of a photograph comparing the spectrum of the region near the negative pole with the centre of the arc and shows the different behaviour of the three limes $\lambda 5383$ (uv), $\lambda 5393$ (ur), and $\lambda 5397$ (s).

Inrestigation of the Oalcium Triplet near λ 4580.-Since the sun and are comparisons detalled in Kodarkanal Observatory Bulletin No. XXXVIII showed that the solar displacements of certan lines of some elements were much more abnormal than those of the iron lines, it was to be expected that these lines would also gıve larger displacements under varying arc conditions. The calcium triplet at $\lambda 4580$ was selected as being most convement for investigation. In Table II are given the displacements measured using an aro between carbon poles on one of which a little calcium chloride had been placed. The displacement at the negative pole is greater than ono-tenth of an Angstrom unit for each lme of the triplet when tho salt has been placed on the negativo pole, and is not appreciably greater when the salt has been placed on both poles; one photograph illustrating the displacement is shown enlarged 3 times in fig. 2 of the accompanying plate The average displacement at the negative pole of the line $\lambda 4607.510$ (due to strontium inipurity) on the same photographs is +00004 A .

Tabie 1I.-Displacements of the Calcicm Triplet near $\lambda 4580$ in the Carbon Arc in Air.

λ (Rowland.)	Negative Pole -- Centre (arc 12 mms , long).		Positive Pole--Centre (Are 14 mins long).	
	Sult placed on-pole.	Salt placed on + pole.	Halt placed on-pole.	Salt placed on + pole
Number of photo. graphs.	3	4	1	1
$4 \mathrm{4} 7 \mathrm{5} 73 \pm$ (u1)	$+101$	+ 51	+ 59	+ 50
$1581 \cdot 375$ (ur)	+113	+ 62	+ 63	+ 56
$4586 \cdot(0,47$ (ur)	+ 125	+ 69	+ 68	+ 58
Mean ...	+113 A	$+\cdot 061 \mathrm{~A}$	+ 063 A	+.055 A

When the salt is placed on the positive pole only, the displacement at the negative pole is rednced by nearly one-half and becomes about equal to the displacem ont at the positive polc. For the positivo pole the displacoment is approximatrly the same on whichever pole the salt has been placed. The result that the cisplaconent at tho negalive pole is greater when the calcium salt has been placed on that pole is of great importance in tracing tho cause of tho displacements In order to keep the calcium content of the arc moro constant than it is possille to obtan by placing a salt on the poles, the "flamo" arc was also employed to produco these lines, the measures being given in Table III. The displacement is of the same ordor as that, whon tho carbon are is suppled with calcium salt, and when the flame arc carbon is the positive pole and mordinary are carbon the negative, the displacement at the negative pole is loss than half that when both poles are llamo are carbons.

Table LIL.-Displacements of tha Caiciom Triplet near $\lambda 4580$ in the " Flame" Arc in Arr.

λ (Rowland)	Nogative Pole-Centre (Are 15 mms . long)			Positivo Pole-Centre (Arc 15 mms long)		
	Buth polos flame	$\left\|\begin{array}{c} + \text { pole, flame arc } \\ \text { carbon } \\ \text { - pule, ordinary } \\ \text { carbon. } \end{array}\right\|$	+ polc, ordinary carbon - pole, llame arc carbon.	Both poles flame asc carkons.	$\left(\begin{array}{l} \text { + poie, flame are } \\ \text { carloon } \\ \text { pole, ordmary } \\ \text { carbon. } \end{array}\right.$	
Numbor of photo graphs.	4	2	2	3	2	2
$\begin{aligned} & 4578732 \text { (ux) } \\ & 4581.575 \text { fur) } \\ & 4586047(\end{aligned}$	+128 $+\ldots 137$	$+\quad 49$ $+\quad 47$ $+\quad 57$	+ 77 $+\quad 60$ $+\quad 86$	a $+\quad 59$ $+\quad 47$ $+\quad 56$	a $+\quad 57$ $+\quad 49$ $+\quad 62$	$+\quad 34$ $+\quad 28$ $+\quad 37$
Mean	+132 A .	$+\cdot 051 \mathrm{~A}$	$+{ }^{0} 74 \mathrm{~A}$	$+054 \mathrm{~A}$	$+056 \mathrm{~A}$	+ U33 A

Displacements of the Calcium Truplet near $\lambda 45080$ in the Arc in Vacuo.-The displacements of these lines in the "flame" arc in vacuo are very much smaller than in the arc in air, but they undoubtedly exist and
probably under all the conditions in which they occur in the arc in air. The displacement near the negative pole disappears at less than a millimetre from the pole so that if the arc burns into a cavity in the electrode the shift is not seen at all The displacements observed in the arc at about 3 cms. pressure are given in Table $\mathbf{I V}$. The shift at the negative pole is about one-ninth of that in the arc in arr, and there is a shift due to increase of the curreat strength The largest displacement occurred when the region near the negative pule at 8 amperes was compared with the centre of the arc at $3 \frac{1}{4}$ amperes, even theu the mean displacement of the triplet amounted only to 0.024 A . These lines are probably very sensitive to pressure but since this did not vary more than a millimetre during an experiment the displacements are not due to pressure

Table TV.—losphacements of the Cahciun Triplet near $\lambda 4.580$ in the "Flame" Arc in Vacuo.

λ (Rowland.)	Negative Pole - Centre of Aro.	Centre of arc at 8 amps --Centre of arc at 3 amps	Negative Pole of arc at 7! amps - Centre of arc at 3 amps
Number of photographs.	2	1	1
4578.732 (ur)	+ 10	$+$	+ 23
4581.575 (ur)	+ 9	+ 5	+ 5
$4580^{\circ} 047$ (ar)	+ 10	+ 6	+ 23
Meun .	+ 010 A	+ 006 a	+ 024 A

Displacements and Plenomena near the Nrgative Pole of the Arc - The hight from the nerghbourhood of the negative pole is much more intense than that from the centre of the arc. When a oalcuan, or other, salt has been introdluced mto a carbon arc thore can be seen near the negative pole a well-definod regron of antensely luminous vapour extending more or less towards the centre of the arc according t 's the quantity of salt introdnced, at the positive pole there is a simnlar intense region less luminous and extonsive. Wven with the enlarged umge of the arc projected on the aluminum occulting screen in front of the sht, the intonse region near the negative pole was very trying to the unprotected eje. It is in this intensely lummous region near the poles that the displacement occurs, in the parts of the arc outside it, though still distant from the centre, the displacement is very small compared with that m the parts within its limits. A series of photographs of the calcium triplet noar $\lambda 4580 \mathrm{in}$ the flame arc was taken comparing the spectrum of different distances from the negative pole with the spectram of the centre of the arc. The length of the image of the arc was kept constant at 2 inches and the mean displacement of the two lines $\lambda 4578$ and $\lambda 4586$ were as follows -

Distance from image of̂ negative pole
Displacemont compured with centre of arc.
1 mm (inside intense regıon) $\ldots \ldots+0 \cdot 132 \mathrm{~A}$
3 , (,,) 0.107 A
9 ," (just on limit of intense region) +0.022 A

16 ,, (outside intense region) + 0008 A
25 ,, (centre of arc) ...
(6.000 A)
The results for the iron lines and the calcium triplet near $\lambda 4580$ show that to investigate the relative behaviour of spectrum lines it is sufficient to confine the experiments to a comparison of the spectrum near the negative pole with that of the centre of the arc. It would take a long time to investigate the behaviour of all lines of every element, even of only unsymmetrical lines, but such a course is hardly necessary in order to show the characteristic features of the dufferent types of lines and the displacement at the negative pole. Various types of unsymmetrical widening are met with even in the comparatively small number of lines which have been photographed. Some of the broad lines have large displacements, others small, depending on the amount of dissymmetry, some lines have one edge fairly sharp, others have both edges diffuse ; lines which are comparatively narrow may be very unsymmetrical and undergo large displacement.

The majority of the unsymmetrical lines mestigated are widened towards the red, but some were also chosen which are widened towards the violet.

Table V contains the results tor all the lines which have been photographed. The second column quotes the character of the lines as given in Kayser's tables ', chefly from the data of Kayser and Runge, Exner and Haschek or Eder and Valenta. The drection of unsymmetrical widening can be seen in the spectrum of the region near the negative pole even of many lines whose character is not given by these authoritics, but the most sensitive test is the durection of displacement.

Table V.-Displagements at tee Negative Pole of a long arc compared with the centre of the arc.

* From the Tables in Kavser's Mandbuch der Spectrosropio, Vols. V and V]
\dagger From Kolankanal Observatory Balletin No XXXVITI.
§ See also Tlable I, column 3
It is soen from the table that, as found from ron lines, whilst symmetrical lines undergo very small, if any displacement unsymmotrical lines are displaced in the direction of their greater widening. Not a single exception to this has yet been met with; of lines which were previously known, or are now found, to be
${ }^{1}$ Kayser, पandbuoh der Spectroscopie Vols, $\dot{\Gamma}$ and VI.
unsymmetrical, all are displaced (provided they are unreversed) either to the red or to the violet according to the direction of unsymmetrical widening. The fact of the displacement being dependent on the unsymmetrical character of the lime makes it essential to remove any possibility of doubt that the displacements are not due to errors of estimating the true maximum of intensity of an unsymmetrical line since the tendency of the error is probably also in the direction of greater widening. This point is $d_{1 s c u s s e d}$ below.

When an unsymmetrical line is reversed at the negative pole the displacement of the reversal is much smaller than that of the unreversed line ; in the case of the sodium pair $\lambda \lambda 5622,5688$ (both ur) the reversal is displaced to the violet. The significance of these facts will be discussed later.

The clependence of the shifts on the unsymmetrical widening of lines seems to outwergh that on any other characteristics. Fior nstance, the shift to the volet of the first subordinate series of barium is not characteristic of all first subordmate series but happens with barum smce its series is mnsymmetrically widened towards the violet. Simularly the shift tends to merense as we pass down a series only because the unsymmetrical widening becomes greater.

Reality of the Displacement of Unsymmetrical Lines.-The practice of dividing the exposure of the comparison spectrum into two halves, one before and the other after the middle strip of the photograph was exposed on the part of the arc to be investigated, has removed the possibility of fictitious shifts being undetected. A further safeguard has been the presence of symmetrical lines on nearly every photograph; the fact that these lines suffer no displacement at once shows that the shifts of other lines are not spurious

The dependence of the displacements on the unsymmetrical character of the lines makes it necessary to consider very carefully the error which enters into the estimation of the portion of maximuni intensity of an unsymmetrical hane, for the durection of the error is probably in the same direction as the displacements found. The error of measurement of the position of maxium intensity of a broad unsymmetrical line cannot be small, but it is perfectly clear from the photographs reproduced in the accompanying plate that a real dispiacoment exists whose magnitude cannot be considerably affected by any possible error of measuremont. In figure 2 especially is this obvious, where the lines of the region near the negative pole stab quate cloar of those of the centre of the arc, and smilar cases arc frequently met with. In order to obviate as much as possible the false displacement due to errors of measurement, I have in the case of sone of the iron unsymmetrical lines underexposed the widened lines until they appeared of the same width as those in the comparison spectrum. Under these conditions it may be assumed that the degree of unsymmetrical widoning would be the same in the two spectra and the errors of estimating the position of the maximum intensity would be the same in both cases. Nevertheless, the measured displacement is still of quite the same order as in fully exposed photographs

It might be argued that the displacements are apparent only, being due to the complete absorption of one side of the unsymmetrical line by the outer portion of the arc, leaving visible in the photograph really only a portion of the line apparently displaced ${ }^{1}$, on this viow the emission line from the innar portion of the arc, as well as the absorption line from the outer regions aro supposed, if it were possible to isolate them, to be undisplaced. In the sodıum pair $\lambda \lambda 5682$, 5688 , the absorption line can be seen under propor density condations to be almost at the very edge of the emmsion line, and it is easy to concerve of a case a little more extreme in which the absorpticn line actually reaches to the edge leaving only one component of the emission line visible. The argnment might concervably hold for some cases but it cannot apply to the majority. It must be remembered that the displacement can be made, by choosing the proper portion of the are, to have any value from zero up to the maximum observed at the negative pole, and the smallor displacements occur with the line so broad that any undisplaced absorption line must be visible. Indeed so fax from having to suppose an absorption line not shifted, the actnal aborption line observed in reversed lines is in many cases displaced, a fact which disposes of the hypothesis.

The possluility of anomalous dispersion in the arc must also be considered It is concervable that at the negative pole, for example, there is a density gradient sufficient to cause wavelengths on each side of

[^0]the absorption line, for which the refractive index would be abnormal, to be refracted out from the direction of the condensing lens and missing from the spectrum. There are, however, several facts against the anomalous dispersion hypothesis. Firstly, it fails to account for the displacement of unreversed lines. Secondly, for some of the lines widened unsymmetrically tuwards the red, the displacement of the reversal is to the red (e.g., the calcium linos $\lambda \lambda 6102,6122,6162$) and for others to the violet (e.g., the sodium lines $\lambda \lambda 5682,5688)$; these cannot be reconciled by the hypothesis. Thirdly, the unsymmetrical lines undergo large sun-are displacements whose signs are opposite to those of the displacements at the negative pole; the existence of an anomalous dispersion band in the apparent absorption line does not a.ssist in any way in explainng these shifts

There is also the possibility of the displacement being due to the enbancement of a satellite on one side which blends with the principal he to produce apparently a single line displaced. A satellite is known to exist for example, on the red side of the calcium line $\lambda 4586$ shown in fig. 2 , but to account for the greatly varying displacements which can be obtaned in different portions of the are, we must suppose that not ouly is the satellite enhanced until stronger than the principal line, but also is itself displaced. Besides, many lines known to be single are displacod.

The Cause of the Displacement of Unsymmetrical Lines under different condutions of the Electruc Are -In Kodaikanal Observatory Bulletin No. XXXVIII, I have suggested that differences of density are the cause of the displacements betweon the short and the long arc, and presumably, between the sun and the long arc. Thero is now a considerable amount of evidence to elncidate the origin of the displacements under dilferent are conditions, and donsity is the only cause which can explain all the phenomena. Very significant are the following facts:-
(a) Whon the currentstrength is increased, thus increasing the amount of vapour in the are, the lines are displaced in the samo direction as at the negative pole. With an iron arc of 2 mms. length doubling the curront strength produced a mean displacement of - 0.011 A for seven lines unsymmetrical towards the violet or nearly equal to that between the nogative pole and centre of the long are for the same lines (see Table I) ; with an iron are 7 mms . long doubling the current strength did not, from the appearance and sound of the are itself, produce noarly so great a difference in the rate of production of vapour and the displacement, was smaller. Increasing the current in a "flame" arc 6 mms . long also produced a displacement of the calcinm triplet near $\lambda 4580$ of $+\cdot 033 \mathrm{~A}$.
(b) The displacement of the calcium triplet near $\lambda 4580$ at the negative pole is larger when tho salt has beon placod on that pole than when on the positive; with the flame are the displacement at the negative pole is largor whon both poles are flame arc carbons or when the negative pole only is a flame are carbon, than when the positive pole only is a llame are carbon.
(c) When an unsymmotrical lino is reversed at the negativo pole, as frequently is the case, the displacement of the deversal is much smaller than would be expected in an unreversed lime of the same dogree of unsymmotrical widening. There are many cases, such as the calcium triplet $\lambda \lambda 6102,6122$, 6162, whoch aro reversed in one photograph (calcium salt placed on the poles) and unreversed in anothor (sodium sult with calcman impurity placed on the poles), the displacements of the emission lines of the triplot in the latter average $+(0.198 \mathrm{~A}$ and of the absorption line m the former +0.015 A .
(d) Trako the example of the sodium pair $\lambda \lambda 5682,5688$. As mentioned previonsly, ihe reversal of those lines appears under certim conditions of vapour density, almost at the volet edge of the lines. The reversal is so far to the violet that the maximum of the cmission lmes appears quite undisturbed by the ahsorption, as has been observed by Dufficid in the case of certain iron lines under pressure ${ }^{1}$ and by others; on this assumption the emission line at the negative pole is displaced by +0.36 A , an amount not inconsistent with the solar displacoment. Whether the displacement is so great as this may be doubtful, but it is at any rate practically certain that the displacement of the emission line for lines so obviously unsymmetrical towards the red is to the red. It is, thercfore, important to note that the reversal is displaced by - 0019 A , that is to the violet, of the line at the centre of the arc or in the direction opposite to that of the einission line.
(e) The displacements exist, in those parts of the are where the lines are widened and are greatest where the widening is greatest The cause of the displacement may be the same as that of the widening i.e., etther density, temperature, or some electrical effect such as iumisation, but the effect of moreasing the quantity of material in the arc on the width of linos is so obvious that this is probably the chief cause.

The explanation of the reversal phenomena on the density hypothesis is obvious The vapour in the outer regions of the arc is of low density (and low temperature) and therefore produces a narrow absorption line superposed on the broad emission line due to the vapours of high density (and high temperature) in the inner reg'ons. The displacements of the absorption line at the negative pole will therefore not be so great as that of the emission line, and may, when the density of the absorbing layer is sinaller than that at the centre of arc (which gives the comparison spectrum), be displaced in the opposite direction.

The fact that the shift at the negative pole is greater than that at the positive, implying greater density of vapour there, may be explained as due to the metallic ions, which would carry a positive electric charge being carried over to the negative pole by the electrical field.

There may be other hypotheses brought forward to explain the displacement of unsymmetrical lines, the most important of which is pressure. The mon lines which undergo displacement under different conditions of the arc, are those which have large pressure shifts, and the directions of displacement are those which would result from an increased pressure in the arc due to a sudden production of vapour at the poles. The amount of pressure required to produce the observed displacements can be calculated, as is done in Table VI. It is altogether inconcervable that pressures of 8 atinospheren above atmospheric can be produced locally in the are burning in free air at atmospheric pressure.

Table VI.—Pressure nelebsary to produce the measured didpfacements.

* According to Humpureys.
\dagger Accordıng to Duffield.
The effect of pressure would be to displace all lines, whereas it has been found that symmetrical lines are not systematically dusplaced either one way or the other.

The fact of absorption lines at the negative pole having smaller displacement than the emissiou lines could also be explained as due to lower temperatnre of the outer regions of the arc, instead of to lower vapour density. The temperature hypothesis does not however explain the other phenomena, for example the displacement due to increase of current density or to shortening the arc.

Ionisation effects may be present in the arc, and in the explanation given above it is not impossible that for the phrase "density of vapour," "density of ions" should be substituted, for in the are the two
are indistinguishable since practically the whole of the vapour will be ionised. The former is more probably the cause of the displacement, and the point can perhaps be tested in furnace spectra.

There is no difficulty in accounting for a density effect on wavelength. Soon after the announcement of the pressure shift Schuster pointed out the importance of determining whether the shift was dependent on the total pressure or on the proximity of molecules of the same nature ${ }^{1}$ Many ohservers have tried to detect the effect of the latter bat generally with negative results. Exner and Haschek however did find an effect ${ }^{3}$ but their conclusions have not gained universal acceptance. ${ }^{3}$ The probable reason why negative results have been obtained is that most spectral lines are symmetrical and therefore show no displacement due to density. So far as my experiments go it appears that the displacement of symmetrical lines under pressure is due solely to the total pressure of the surrounding atmosphere, but there is as yet no direct evidence as to whether the displacement of unsymmetrical lines under pressure is due entirely to increased density or partly to the increased total pressure.

The intimate relation betwoen the unsymmetrical character of spectrum lines and their density displacement is of great importance in the theory of the vibrations of elections within the atom and of the mutual influence of molecnles due to their proximity. Whatever theory is put forward of the origin of spectrum lines and of their displacements mast le able to explain not only the displacements of unsymmetrical lines due to pressure and density to the rod or to the violet according as the widening is towards the red or the violet, bat also the absence of a density effect on symmetrical lines for which a pressure effect exists.

Consequences of the density effect on other investigations of the displacement of spectrum lines and investurations of wavelength standarils.- Tt is necessary to consider whether the existence of the displacement of unsymmetrical lines by different conditions in the electric are do not affect the conclusions drawn from the displacements of spectrum lines in other researches in which an electric are has heen employed to produen the spectrum.

The ןrossure in the reversug layer of the sun can be estimated by comparing the relative sun-are displacements of the lines most and leash affected by pressmre The lines most shifted by pressure, however, are comprisell almost entirely of unsymmetrical lines, and since these lines undergo shifts withon the are itself, the sum - are displacomonts can be variod at will accoriling to the part of the are selecterl for comparison with the sun. It was shown in Kodaikanal Observatory Bulletin No. XXXVIMI that even m the centre of very long are, the conditons producing the shifts in difforent parts of the are, whother they be donsity or not, still do not approach those in the sun. So long, thereforo, as the electric are is userl for comparison with the sun, unsymmetrical linos mnst, for the present, be left out of account altogether in stadying the pressare displacoment in the sun. Considering only symmotrical lines the pressure in the reversing layer at the level of the iron lines is about three-quarters of an amosyhere ${ }^{1}$ and the pressure at the limb is probably not much greator than this. ${ }^{\text {. }}$

Also, the arc is the sonree which has been chelly employed for the investigntion of pressure displacements, and similar considerations will apply. The arc dnos not always burn well under preasure, and it is a practical impossrbnlity to keep the arc conditions identical with those for the comparison spectrum either as to length or as to the portion of the arc which falls on the spectrograph slit, although this latter in the case of astigmatic spectrographs may not bo so important. It will not be surprising, thereforo, if the supposed pressure displacement of the unsymmetrical lines does not turn out to be at least partly due to the displacements which ocour in difterent parts of the are at constant pressure. For instance knowing that the calcomn triplet $\lambda \lambda 6102,6122,6162$, is displaced by $(1 \cdot 198 \mathrm{~A}$ at the negative pole compared with the coutre of the are, we cannot ignore the possibility that the shift of these lines undor pressure is partly due to this displacement unless it is shown that special precations have beon taken to exclude the polar regions of the arc from entering the spectrograph.

[^1]Pressure displacements have also been _mvestigated in the furnace. ${ }^{1}$ The same pressure produces much larger shifts in the furnace spectrum than in the arc, and since this is true for symmetrical as well as for unsymmetrical lines, density effects, which do not displace symmetrical lines, fail to account for it. Nevertheless there is a difference between the behaviour of symmetrical and unsymmetrical lines. The following Table VII, compiied from the data of Gale and Adains : for the iron arc and of King; for the furnace, shows that the ratio of furnace displacement to arc displacement is considerably smaller for the uron lines unsymmetrically widened towards the red, than for symmetrical lines. This tact can be explained if the arc under pressure has been short or the exposure made on a region near the poles, for either of these would cause the shift of the unsymmetrical lines to be larger than the true pressure effect.

$$
\text { Rutio } \frac{\text { furnace displacement at } 9 \text { atmospheres. }}{\text { arc displacement at } 9 \text { atmospheres }}
$$

Region Syminetrical lines Lines nnsymmetrical towards the red
$\lambda \lambda 4063-4461 \quad . . \quad 2.48$ (26 lines) $. . . \quad . . \quad 1.49$ (5 lines).

Although these experiments were not durected to the determination of standards of wavelength they have an obvious bearing on the chonce of light source for standard lines. It does not seem necessary to abandon the arc in air so long as symmetrical lines are chosen as standards, but with this source it cannot be expected that independent experimenters will get sufficiently concordant results for unsymmetrical lines on account of the great sensitiveness of these lines to density effects. The arc in vacuo is bettor for unsymmetrical lines but is not sufficiently convenient for ordinary usage.

What we shall consider as the light source giving "normal" wavelengths for unsymmetrical lines is entirely arbitrary but is of importance when we wish to moterpret the displacements in heavenly bodies such as the sun. We have now at least three causes of displacement of spectrum lines:-(1) motion in the line of sight, (2) pressure, and (3) density It is desurable to elmmate the density shift since we have at present no means of estmating it quantitatively. Whether the are under reducod pressure or the furnace will prove the more suitable sourco for comparison with the sun 18 a matter for investigation.

Test of unsymmetrical character -The prosence of displacements at the ncgative pole is a simple and powerful means of testing the unsymmetrical character of spectrum lines if we can assume the generality of the rule that only unsymmetrical lines are displaced and these on the direction of their greater wideuing. In the are at ordinary pressures the unsymmetrical widening in most cases is not so obvious that its direction is evident ; the displacement at the negativo pole is, however, generally sufficiently large that the direction of displacement can be at once seen by inspection, although in some cases it would be necessary to measure the displacement. Consider the case of the copper line $\lambda 4578$. In the are at atmospheric pressure this line is so diffuse that it is quite impossible to say whether it is unsymmetrical or not, but supposing that it were important to learn its character for determming its series relationship or other reason, the fact that its displacement at the negative pole amounts to +0.024 . A would show that it is unsymmetrical towards the red, but that the dissymmetry is not great in proportion to the width of the line since the copper line $\lambda 4531$ comparatively narrow undergoes a larger displacement. This conclusion as to the character of the $\lambda 4578$ line is in agreement with that found by Duffield ${ }^{4}$ in the arc under pressure.

The method is not so senstive for lines which reverse at the negative pole since the displacement of the reversal is generally small. As however the unsymmetrical character is in the case of reversed lines easier to detect owing to the reversal not being central, this limitation is not very serious.

[^2]
SUMMARY.

1. When the spectrum of the regiou of the are near the negative pole is comparecl with that of the centre, the unsymmetrical lines are seen to be displaced in the diroction of their greator widuning ; i.e., limes widened more towards the red are displaced to the red at the negrativn pols, and thuso widund mur: towards the violet are displaced to the violet. Symmetrical lanes have very small displacemonos if they are really displaced at all. The displacement amounts to over ono-tenth of an Angstrom unil, for If lines examined, a number which could probably be easily multiplied by extending the investigntion wor of elements and regions of the spectrum. The largest displacoment yet monsured is 0.52 A for tho sodium pair $\lambda \lambda 6154,6160$.
2. There is a displacement in the region near the positive pole of about half the marguitude of that at the negative pole.
3. A displacement of the same sonse as that at the poles is producod ah the centre of the are by increasing the current, or by shortening the arc.
4. The displacementat the negative pole is reducod if ouly the positivo jole is nupplied with the material producing the spectrum
5. Displacements occur in the are in vacono also, but to at much smather oxtomt than in the are in air. The are in vacuo is therefore the better source tor the detemmination of standards of wavelenght and lor comparison with the sun's spectrum.
6. When a lme reverses in the region near the negative polo the displacoment of the reversal is murh smaller than that of the uncoversed line, but is generally in the same dircotwon; in the come of vary unsymmetrical lines such as the sodimen pair $\lambda \lambda 5682,568 \mathrm{k}$, the "lisphacoment of the ahanption line is in the opposite durection relative to the line at the contre of the ance.
7. The cause of the displacement is shown to be incrowe of vapour dowsity of the mamial proburing: the spectrum. The pressure required to produce the displacomonts observerl is too large to bo whathined as existing in the are in arr and other possible hypotheses have also to ho rejectent.
8. The vapour density in the sun's reversing layer is lower than that at the contro of the are undur the conditious of my experiments.

9 The intimate relation between the unsymmetrical widnuing and tho displacoments dne to incromsed density or to pressure, as well as the absence of any density offeot on symmetriog hines for whith a prewner effect exists, are beleved to be of importance in the theory of these shitts and of whe vihnuians of the electrons in the atom.
10. The possibilty of displacement at the negativo pole serms to bo th simplo and wifurive mome of testing the unsymmetrical characher of spectrum lines, since no exceptions have boun found (ill urovornenl lines) to the generalty of the rule that unsrmmetrical lines aro displaond in the directim of their proutere widening.
11. The bearng of the density effect on some othm investigations of dimplacemonts in whioh the are has been used is discussed.

I wish to acknowledge my indebteduess to Mesurs. S. Sitarama Ay yar, (i. Nagaraja Myyar und A. A Narayana Ayyar, the first, second and thrd assistants resplocifoly, for valmahlo awintaner in menmuring the photographs.

[^3]

Fig. 1. IRON LINES.

Fig. 2-CALCIUM TRIPLET near $\lambda 4580$.

[^0]: ${ }^{1}$ Exner and Haschek beleve this to be possible (Die Spektren der Elemente ber Normalem Druck, Vol. I., p., 28.)

[^1]: I Schuster, Astrophys'oal Journal, III, 202, 1806
 ${ }^{2}$ Exner and Haschek, Die Spektren der. Elemente ber Normalem Druck, Vol. I
 ${ }^{3}$ See Kayser Handbuch der Spectroscopic, Vol. II, 297, 308, 309, 310 and Eder and Valenta, Astrophysical Journal, XIX, 251, 1904,
 ${ }^{4}$ Royds, Kodarkanal Observatory Bulletin No XXXVIII.
 ' Evershed and Royds Kodaikanal Ohservatory Bulletin No. XXXIX.

[^2]: ${ }^{1}$ Kıng, Astrophysical Journal XXXIV, 37, 1911, XXXV, 183, 1912
 2 Gale and Adams, Astrophysical Journal XXXV, 10, 1912
 King, Astrophysical Journal XXXIV, 37, 1911
 ${ }^{4}$ Duffield, Phil. Trans Roy. Soc. A. 209, 205, 1908.

[^3]: Kodaikanal Observatohy,
 Au, qust 6th, 1914.
 'I' ROMIS, Insixiamt Jivector

