Fodatkanal Ofservatoxy.

BULLETIN No. XXXIX.

ON THD DISPLACEMENTS OF THE SPECTRUM LINES AT THE SUN'S LIMB

an investigation of the displacements of the spectrum lines at the sun's limb was made by W. S. Adams in 1909, using the tower telescope and 30 -foot spectrograph at Mount Wilson.* It was shown that, if we except the lines characteristic of the higher chromosphere which show little or no displacement, the great majority of the lines are displaced to the red relatively to the lines at the centre of the disk. This relative shift mereases with the wave-length for all the elements investigated, and for iron the displacements increase rather more rapidly than in direct proportion to wave-length.

Dr. Adams adopts the explanation of this shift suggested by Halm, who believed it to be due mainly to pressure, the effective regıon of absorption at the limb being supposed to be at a lower level and therefore higher pressure than at the centre of the disk, owing to the relatively longer path of tangential rays in the lower levels of the reversing layer compared with the rays passing normally through the solar atmosphere, as at the centre of the disk.

As an alternative to this theory we might suppese the shifts to be due to motion in the line of sight If the gases are ascending radially all over the sun with the roquired velocity, the relative shift to the red at the limb as compared with the centre of the disk would result. This however is ruled out because we find a descending, not an ascending movement, when the positions of the lines at the centre are durectly compared with those from a terrostrial source. If the shifts are the result of movement then they can be explamed only by a motion parallel to the solar surface, and directed away from the earth at all points of the solar circumference. This suggests that the earth itself controls the movement, exerting a repelling action on the solar gases.

Obviously the pressure theory presents a much more rational explanation of the phenomenon than the motion theory; yet there are difficulties in accepting the former which have not been in any way lessened, but on the contrary have been largely increased, by further research. An initial dufficulty which appeals to us is the absence of any evidence of shading or indefinite edges on the red sides of the lines near the sun's limb. If the photospheric light coming from the limb passes through successive layers of diminishing pressure, one would expect the absorption to begin gradually at the red edge of a line, especially as the absorption would be weakest in the lowest and hottest layers where the pressure is greatest, and would increase as the rays ontered the cooler regions of less pressure. The red sides of the displaced lines should therefore appear indefinitely bounded, yet no trace of any such effect is apparent. The lines of the limb spectrum are broader than those of the centre spectrum, but they are sharply bounded on both red and violet edges. Perhaps the strongest argument in favour of the pressure theory which Adams gave in his paper is based on the relative slifts of the iron lines which are most and least affected by pressure. He found that the lines most affected by pressure gave the largest limb - centre shifts, and he also argued that the large increase of shift with wave-length for the iron lines pointed to pressure as the main factor in the case.

We find it difficult to accept these results, because we consider that the relative shifts of different lines at the limb have no particular meaning when determined by reference to the lines at the centre of the disk, for these latter have shifts peculiar to themselves, and our measures show that the absolute shifts of the lines

[^0]at the limb referred to a terrestrial standard show no relation to pressure shifts, and further, the absolute shifts do not increase with the wave-length.

We have dıscussed in Kodaikanal Observatory Bulletin Nos. XXXVI and XXXVIII the shifts of the lines at the centre of the disk compared with the aro in air, and onnsider that our results clearly show that. pressure is not concerned in the general displacement of the solar lines towards the red. A small pressure effect is nevertheless traceable, but this indicates a pressure of less than one atmosphere in the region of rron absorption as observed at the centre of the disk.

This result seems to argue against any large pressure effect at the limb, such as would be deduced from the shifts limb - centre.

Determination of limb shifts.

In determming the absolute shifts of the lines at the limb we have simply combined our measures of the limb - centre shifts with the centre - are shifts, the algebraical sum of the shifts representing the alks." lute or lumb - arc shifts. A number of durect measures of the limb - are shifts were also made by one of us, and these, so far as they go, confirm the indirect determinations.

The spectrograph employed has already been described in Kodalkanal Observatory Bulletin No. XXXVI. For the limb - centre shifts photographs are obtaned by means of a reflecting device placed in frout of the. spectrograph slit. With this apparatus simultaneous exposures are made with light from the centre of the disk and from points one-thirtreth of the sun's radius nside the limb at the opposite onds of a diamutrer. The spectra form three contrguous strips on the plate each about 1.5 mm . in width. After the exposture on the sun, an exposure is made on the rron arc to mpress the iron lines on the plate outside the solar spectra: these serve to determme accurately the inclination of the micrometer thread to the spectrum lines in measuring the displacements, but are not used to determme centre - arc or limb - arc shifts on thi-h. plates. In this way the total shift west lumb - east lumb due to the solar rotation may be accuratuly determined as well as the limb - contre shilits.

In table I we give a hist of all the iron lines of wheh we have measures of both lamb - centre shifts anil centre - are shifts. The algebraical sum of these given in column 6 represents the absoluto shift of the lines near the limb when compared with the iron are in air at 580 mm . pressure, the normal pressure at Kodarkanal.

Table I.-Shifis of Lron Lines.

λ (Rowland).	Intensity,	Lumb - centre.		\bigcirc-arc.	Sum	LRemarks	Number of measurus.	
		Kodankanal.	Mt Wilsou.				$\begin{aligned} & \text { Lumb - } \\ & \text { centre. } \end{aligned}$	\bigcirc-aro.
		A/1000.	A/1000	4/1000	A/1000			
3895803 3899850	7	- ${ }^{3}$		144 +19 +19	+11 +15		4	4
3903.090	10	- 2		+17	+15		4	,
3906628	10	+ 4		+11	+15		5	1
$3920 \cdot 410$	10	-1	+ 6	+15	+17	3 plates give zero shift and one plate - 6 (limb	4	4
3923.054						- centre)		4
${ }_{3925} 790$	$\stackrel{5}{5}$	± 7	\ldots	+14	al $+\quad 21$ +12		3	1
3928075	8	+		+ 18	+ 20		2	
3930450			...	+14	+16		5	4
3431269 $3935 \% 965$	1	+ +8 +8		+ +8 +13	+ 16 +17		$\stackrel{8}{3}$	1
${ }_{3937} 479$	3	+ 3	\cdots		+		3	1
3948925 3950.102	${ }_{5}^{4}$							
$3950 \cdot 102$ 3956819	5 6 6	析 $+\quad 6$ $+\quad 6$	$\ldots 6$ $+\quad 7$	a $+\quad 5$ $+\quad 4$	+ 11 +11		4 4 5	1
${ }_{3966-212}$	3	+	$+$	+ 4	+		${ }_{8}^{5}$.
3969413	10				+18		5	
3977891 398631	,	+7 $+\quad 7$	+ 6	+ $+\quad 6$ $+\quad 5$	+ 13 +11 +1			3
3986321 3998205	4	+ + $+\quad 7$	\ldots	+ 5	+11		2	1
$4005 \cdot 408$	7	+88	+ 8	+88	+16		1	3
40091864	3	+9 $+\quad 9$ +14		-5	+ ${ }^{4}$		1	
4022018 4045	5 30	+14 $+\quad 8$	+ ${ }^{+9}$		+12 +14		${ }_{1}^{1}$	$\stackrel{1}{2}$

Table I.-Shifys of Iron Lines-cont.

λ (Rowland).	$\begin{gathered} \text { Inten- } \\ \text { sity. } \end{gathered}$	Lrmb - centre.		\odot-arc.	Sum	Remarks.	Number of measares.	
		Kodarkanal.	Nat. Wilson.				$\underset{\text { centre. }}{\mathrm{Limb}^{2}}$	\bigcirc-arc.
		A/1000. +8 +8	A/1000.	A/1000.	A/1000.			
1062599 4063 \%	${ }_{20}^{5}$	+8 +8	+ 8	+ $+\quad 4$ +8	+ 12 +14		${ }_{1}^{1}$	4
+071:908	15	+38	+	+88	+11		1	3
4076792	4	+ 7		+ 3	+10		1	1
4118708 4127.767	5 4 4	a $+\quad 6$ $+\quad 5$		+8 $+\quad 3$ $+\quad 5$	P $+\quad 9$ $+\quad 10$		${ }_{3}^{3}$	$\stackrel{2}{2}$
${ }_{4}^{41124.840}$	$\stackrel{4}{5}$	+6 $+\quad 6$		$+\quad 5$ $+\quad 2$	\% +8 +8		${ }_{2}^{2}$	${ }_{2}^{2}$
4140089	6	- 1	"	$(+12)$	+11	Limb - arc direct mea-	2	
$\begin{aligned} & 411.4 \cdot 038 \\ & 4147 \cdot 836 \end{aligned}$	15 4	$\underline{+7}$	+ 8	+14 $+\quad 14$ $+\quad 2)$	P $+\quad 22$ $+\quad 9$	Lumb - are direct mea-	3	3 \cdots
						sure.		
4354567 4175.806	${ }_{5}^{4}$	+6 $+\quad 6$...	$\begin{array}{r}\text { P } \\ +\quad 7 \\ \hline\end{array}$	+ ${ }_{\text {13 }}$		3	2 4
4181.919	5	+ 7		+ 4	+11 +11		1	6
$4187 \cdot 204$ 4.191595	${ }_{6}^{6}$	a $+\quad 2$ $+\quad 3$		$+\quad 7$ +18	a	Unsbarp line in arc	$\stackrel{2}{3}$	G
41.91595 $4202 \cdot 198$	6	+3 $+\quad 3$ $+\quad 3$		+ +11 $+10)$	a $+\quad 5$ $+\quad 15$	Undarp line in mo	3	${ }_{4}^{6}$
4220509	3	+7 $+\quad 7$	+ 8	(0)	+ +88 $+\quad 8$	Lumb - arc direct mea-	1	
$4287 \cdot 606$	4					sure.	1	2
42333.772	6	+ 7	+88	± 1	+9 $+\quad 7$		1	
4236112 4250.287	8	-7	,	+	+ ${ }^{3}$		3	${ }_{3}^{3}$
42501287 4260640	8 10	- ${ }_{7}$	+ 4	+	+3 $+\quad 12$		+	$\stackrel{2}{1}$
$4271 \cdot 325$		+3		+5	+88		3	3
${ }_{4}^{4271 \cdot 934 .}$	15	- ${ }^{6}$	+ 6	+ 9	+ 9			3
${ }^{42882 \cdot 565}$	5	+7 +10	+ 7	$\begin{array}{r}7 \\ +\quad 8 \\ \hline\end{array}$	+ 14		${ }_{4}^{2}$	4
4308.081 4.315262	6 4 4	+ $+\quad 9$ $+\quad$	+ ${ }_{8}$	+8 $+\quad 8$ $+\quad 9$	+ +18 +18		4	4
-1325 139	8	+ 2	$+3$	+10	+		${ }_{6}$	6
${ }^{4337 \% 216}$	5	+88	+8888	+ 5	+13		${ }_{7}$	${ }^{4}$
	4	+ +12 +1	+ 6	+	+ +10 +23		7 2	${ }_{1}^{3}$
${ }_{4} \mathbf{3} 776 \cdot 107$	0	+4	+5	+11	+		2	2
$4.383: 720$ 4.404 .927	15	+11	...	+9	+ 10		3	5
441515293	8	干 ${ }^{1}$...	+ +12	+ +15		${ }_{4}$	4
$44.27 \cdot 482$	5	+10		+31	+13		3	4
${ }_{4}^{4446 \%} 785$	3	+88	+"8	+1	+ + +18		${ }_{3}$	3
${ }_{44442}^{4} \cdot 6.565$	${ }_{3}^{6}$	+	+ 6	+ 8	+13		3	3
${ }_{4}^{444478892}$	6	+	+7 $+\quad 5$	+	+13 +18		${ }_{1}^{2}$	$\stackrel{2}{1}$
4454.55\%	3	+ 7	+ 7	+ 8	+13		2	2
$4461 \cdot 818$ 4466727	${ }_{5}^{4}$	[7	+ 7	+ +12 +1	+14 +14 +20		2	3 4 4
44941738	6	+68	$\underline{+10}$	+	+ 15		3	4
4508.455 4515.508	${ }_{3}^{4}$		+11					
4515.508 4522802	3 3 3	...	+11 +11 +10	+ 3	P +14 $+\quad 8$...	1
45288798	8	+	+ 5	+ 10	+		4	3
${ }_{4}^{4.531 .3278}$	5	P +8	a +8 +8	+	+12		5	2
${ }_{4}^{454549024}$	3 2 2	$+{ }^{+. .}$	+ +8 +8	$\begin{array}{r} \\ +\quad 6 \\ \hline\end{array}$	+ +12 +8	p Fe in short are	4	12
4556063 4584.018	3	...	+11	1 $+\quad 1$	+ 12	p Foin short arc	.	1
$4584 \cdot 01.8$ $4.592 \cdot 840$	4	$\cdots{ }_{6}$	+12	a +8 +8	+ +16 +14	p Fe in short arc	$\ddot{4}$	${ }_{2}^{1}$
$4.603 \cdot 126$	4	$+\quad 6$ +4	...	+8 +8	+1.4 +12		${ }_{3}$	2
${ }_{4}^{4607} \cdot 831$	4	+ 7	\cdots	+ 2	+ 9		2	1
4619468 4625227	3	+ + +	\ldots	+ 5	a		${ }_{2}^{2}$	1
$4637 \cdot 685$	5	+	\cdots	- 1	+85 +5		2	1
$4638 \cdot 193$ $4647 \cdot 617$	4	$\begin{array}{r}\text { P } \\ +\quad 5 \\ \hline\end{array}$	\cdots	a +1 $+\quad 1$	+ 6		$\stackrel{2}{1}$	1
$4647 \cdot 617$ 4654672	4	+7 $+\quad 6$...	$+\quad 9$ $+\quad 3$	a		1	${ }_{1}^{2}$
4654 8800	5	+9		+11	+10		1	1
${ }^{4667 \cdot 626}$	4	+ +6 $+\quad 6$	\cdots	- 1	P $+\quad 8$ $+\quad$		2	1
${ }_{4707 \cdot 457}^{4}$	$\stackrel{6}{5}$	+8 $+\quad 4$	\cdots	+	+88 $+\quad 8$		${ }_{1}^{2}$	1
${ }^{4733 \cdot 779} 4$		$\begin{array}{r}\text { + } \\ +8 \\ \hline\end{array}$	+1 +1	+ 11			1
4787003		\cdots	+88	+4 +4	+ ${ }^{+12}$		\ldots	1
4789.819 4859928	3 4 4	\ldots	+ $+\quad 7$ $+\quad 9$	+1 $+\quad 6$ $+\quad$	+13 +11		...	${ }_{3}^{1}$

Table I.-Shifts of Iron Lines-cont.

λ (Rowland)	Intensity.	Limb - centre,		$\bigcirc-\mathrm{arc}$	Sum.	Remarks	Number of ineasures.	
		Kodaikanal.	Mt. Walson.				Limbcentre.	\bigcirc - arc
		A/100u.	A/1000.	4/1000	A/1000.			
4871512	5	+ 8	$+9$	+4	+13		1	3
4872332	4	+ 6	..	+ 3	+ 9		1	3
48909 ± 8	6	+ 5	..	+ 8	+ 33		1	3
4891.683	8	- 1	..	$+10$	+ 9		1.	3
4903502	5	$+17$		0	+ 17		1	3
4919174	6		+ 9	0	+ 9		.	2
4934107	5	...	+ 9	+ 5	+14	p Fe in short arc	\cdots	1
5018.629	$+$...	+ 8	+16	+21	p Fein short arc	..	$\stackrel{2}{2}$
5083518	4		$+\quad 9$	+ 7	+16			$\stackrel{2}{2}$
5107.61.9	4	0		+ 4	+ 4			2
5107823	4	+12		+ 4	+16		2	2
$5139 \cdot 427$	4	+ 3	\cdots	- 3	0 $+\quad$	$\odot-$ short aro $=-11$	2	4
5189614	$\stackrel{4}{5}$.	+ 7	0 -83	+ 7			5
5162.449	5	+ 6		- 33		Faint and diffuse line in arc.	1	1
5167.678	5	+ 17		+16	+33	b_{4}	1	4
$5169 \cdot 069$	3	-1		+11	+ 10		1	1
$5169 \cdot 220$	4	+88	.	+18	+ 20	p Fe in short are	1	1
5171778	6	- 2	.	+10	+13		1	4
5191.629	4	+ 6		- 1	+5 $+\quad 5$	$\bigcirc-$ short aro $=-14$	1	4
5192.523	5	0		+ 2	+ 2	$\odot-$ short arc $=-11$	2	4
5195113	4	+ 4	+8	+ 6	+ 12	$\bigcirc-$ short are $=-1$	1	4
5216437	3	+ 3		+ 6	+ 9	$\odot-$ shorl are $=+1$	2	
5227362	5	+ 3		+3	a $+\quad 6$ $+\quad 1$		1	3
$5233 \cdot 122$	7	0 $+\quad 5$		± 7	+7 $+\quad 1$		1	3
52667788	6 8	± 5		$\begin{array}{r}1 \\ \hline+\quad 9\end{array}$	+ $+\quad 1$ +8		1	$\stackrel{2}{2}$
5281:971.	5	+ 1		+	+ 2	$\bigcirc-$ short arc $=-9$	1	2
5283802	6	+ 4	.	- 1	+ 3	$\bigcirc-$ slootarc $=-7$	1.	2
5302480	5	+ 3		- 3	0		2	2
$5310 \cdot 790$	4	+ 9	+ 12	-- 1	+ 10	p Fe in short are	2	1.
$5: 924 \cdot 373$	7	+ 2	..	+ 9	$+11$		2	2
5328236	8	+3 $+\quad 3$.	+ 15	+ 18		2	2
$5328^{\prime} 721$	4	+ 7	...	+8	+15		2	2
$5340 \cdot 1.21$	${ }^{6}$	+ 5		- 6	-		2	
5405989	${ }^{6}$		+ 9	a +9	+ 18		...	
5421×290	6		+ 7		+ 37	Faint and diffuse in are		1
5429:911	6		+ 9	+ 6	+ 15		.	*
54845780	5	..	+ 10	+ 8	T 18			,
5447130	6		$+10$	+ 5	+ 15		-	4
545.834	4		+ 8	+19	+ 27			4
5569848	6	+ 9	+11	+ 5	+15		4	1
5573.075	6	+ 5		+ 7	+12		4	1
$5586 \cdot 991$	7	+5	+ 10 $+\quad 0$	+ 4	+12 +14		4	2
5615877	6	+ 1	+ 9	+9	+ 14		4	.

In forming this table we have given Dr. Adams' values of the limb shifts in column 4 under the healing "Monnt Wilson" and these values have been used in forming column 6 for the lines which we have not yet measured. For hnes measured at both observatories the mean of the two determinations of limb centre has been used. For most of the common liues the agreement between Mount Wilson and Kodaikanal is excellent, but there are two or three marked discrepancies such as the lines 392041.0 and $4271 \cdot 934$, which according to our measures are shifted towards the violet instead of towards the red as in Dr. Adams' determmations. The values in column 6 for these lines must be subject to considerable uncertainty.

As regards the relative accuracy of the different determinations, we give in the last two columns of table I the number of measures on which each value depends. In most cases several plates taken at different clates and in different solar latitudes have been used for each determination of limb - centre or sun - arc shilt. There appear to be considerable systematic variations in the amount of the shifts given by different plates, for both limb - centre and centre - are, so that values obtained from one plate only are subjoct is, this variation from the mean in addition to the greater accidental error of moasurement.

The sun - arc measures are the same as those given in Kodaikanal Observatory Bulletin No. XXXVI, with additions and improved values for many of the lines obtained from later measures.

Lumb shifts in relation to the intensity of the lines.
The first point to be noted in these measures is the relation to intensity. If the lines are grouped according to their mensity in the sun the following mean results are obtained:-

Table II.-Mean Shifys in rolation to Intensity.

Intonsity.	Number of hnos	Limb-centre	Oentre - arc	Limb-are
8 and over	24	$+00023 \mathrm{~A}$	$+00107 \mathrm{~A}$	+ 0.0139 A
7 and 6	33	+ 00047	+ 01063	+00110
5	26	+0.0074,	+00037 +00051	+00111 +0.011
4	34,	+ 00073	+ 00051	+ 0.0124
3 and under	20	+ 0.0006	+ 0.0038	+ 0.0104

In this table all the lines of table I are used in forming the means excepting two. These are the lines at $\lambda 5162 \cdot 449$ and $\lambda 5424290$, which give very anomalous shifts due to peculiar conditions in the arc. Many other lines also are probably affected by the are conditions, ospectally those which widen unsymmetrically ander pressure, hai as it is not at present possible to classify all the lmes of table I it has seemed best to take general means, excluding only those above-mentionerl hnes which give enormons centre - arc shifts which are almost cortainly not connected with solar conditions.

Although individuallines for each intensity give very difforent shifts for both limb - centre and contre - arc, the relation to intensity is woll marked in the means. The limb shiftis merease as the intensity diminishes from the strongest lines to intensity b, whilst tho centre shilits decrease over the same range. Below intensity 5 the shifis mo nearly constant. If the are lines may be considored to be in their normal positions, then the rolation to matensity of the limb - centre shifts is only an apparent one and is really due to the varying shifts of the lines al the centre of the disk, for the added slufts given in the last colnmn "limb - arc" show practically no relation to intensity.

Relalion betweon limb shifts and pressure shifts.
If we group the total shitts, limb - are at 580 mm . prossare according to the amofunt of the prossure sbifts, tho following desults are oltained :-

Tabli Lif.-Mtan Shifis in relatiun to Pressure Shimis.

	Regrion.	Numbor of lines.	Mean preasure shil't per almosphere.	Mean shitt lumb - aro.
		A.-Lines	Vected by pressure.	
	$\begin{aligned} & 4.187-4 ; 28 \\ & 4459-5 ; 1515 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & +0.0097 \mathrm{~A} . \\ & +\quad 0.0134 \end{aligned}$	$\begin{aligned} & +0.0092 \mathrm{~A} . \\ & +0.0096 \end{aligned}$
		B. - Luines 7	dfected ly pressure.	
	$\begin{aligned} & 3 H 95-14416 \\ & 4531-5455 \end{aligned}$	$\begin{aligned} & 40 \\ & 19 \end{aligned}$	$\begin{array}{r} +0.0022 \\ +\quad 0.0029 \end{array}$	$\begin{aligned} & +0.0140 \\ & +0.0140 \end{aligned}$

It is here soen that the mean limb shifts do not increase as do the pressure shifts in passing from the more refrangible to the less refrangible groups of lines, and that the lines most affected by pressure are least shiftod at the limb.

If the limb - arc shifts are corrected for the defect of pressure ali Kodaikanal from normal and the results for the two spectral regions are avoraged, the limb - arc shifts for normal pressure become +0.0065 A for the lines most affected by pressure, and +0.0134 A for the lines least affected by pressure, If the wavelengths of the arc linos are supposed to be unaffected by other conditions, this would mean a total pressure at the limb of 0.24 atmosphere only, but it is very questionablo whether the aro under the conditions of our experiments does give " normal" wave-lengths for many of the lines. Dr. Roydy has shown that lines whioh are unsymmetrical in the are (i.e., the majority of lines with large pressure shifts) are displaced in the short arc compared with the long arc.* This shift is not due to prossure difierences or to motion, but appears to be a density effect, and there are reasons for belzeving that in the long are (5 to 7 mm .) the conditions, although approaching more nearly to solar conditions than in the short arc, are still frar from being the same as in the reversing layer, where the gases appear to be of the last degree of tenaity. Many of the arc lines therefore which we have compared with the sun, and especially those which give abnormal pressure shifts, may be
affected by this density shift which would in general tend to reduce the sun - are shifts for the lines most affected by pressure.

It would seem probable therefore that this density shift may partly account tor the low values obtaned for the lines most affected by pressure. Even if we concede that the whole difference of shift between the lines most and least affected by pressure (which would amount to about 0.007 A when the arc is at normal pressure) is due to the density effect, the figures would umply an absolute pressure near the limb of one atmosphere only, and the difference of pressure between limb and centre of disk about one-fourth of an atmosphere.

It is probable that a better knowledge of the elfect of pressure at the limb may be gained by a comparison of the shifts of only those lines which widen symmetrically in the arc under pressure. In our list there are only $4 i$ lines which are known to be of this character, and the pressure shifts of these lines do not vary very widely : they may nevertheless bu separated into two groups comprising the more and the less affected lines.

In table IV the shifts of the symmetrical lines are set out in detail with the mean values in Angstrom units at the foot of each column. The pressure shifts in column 2 are from the tables of Gale and Adams.*

Table IV.-Mean Shifis of Symmetrical Lines in relation to Pressure Shifis.

	λ	Pressure shift. 8 Atniospheres.	Limb shift	Contre shift.	Total shift.
	A.-Lunes most aflected by pressune.				
	3903.090	+ 22	-2	$+17$	$+15$
	3869.41 .3	-22	+ 4	14.	18
	$4045 \cdot 975$ 4134.840	23	8	G	14
	41.34 .840 4144038	$\stackrel{27}{29}$	6 8	14	${ }_{2} 8$
	$4202 \cdot 198$	25	4	11	15
	$4271 \cdot 034$	22	0	9	9
	4337216	27	8	5	13
	4369-0.4,	23	12	11	23
	4383720	27	1	9	10
	4154552	23	7	${ }_{6}$	13
	$4531 \cdot 327$	29	7	5	12
	5227362	31	3	3	6
	$5269 \cdot 723$	27	-1	9	8
	5328236	29	+3	15	18
	5328.721	26	7	8	15
	5405.989	27	9	9	18
	$54.20 \cdot 917$ 5434 140	29	9	6 8 8	15
	54344740 $5447 \cdot 130$	27 31	10 10	8 5	18 15
	5455834	29	8	19	27
	Means	+.0264	+ 0058	+ 0091	+ 0149
	B,-Lenes least affecteld by pressure.				
	$3895 \cdot 803$	+ 11	- 3	+14	$+11$
	3899.850	12	-4	19	15
	3906628	11.	+ 4	11	15
	$3920 \cdot 410$	10	2	1.5	17
	3923.0544	11	7	14	21
	3928075	12	2	18	20
	${ }_{3956}^{3930} 450$	13	2	14	16
	3956.819 3977 981	14	7	4	11
	4005408	19	8	6 8	13
	$4063 \cdot 759$	20	8	G	14
	1071.908	21	3	8	11
	$4282 \cdot 565$	21	7	7	14
	4308.081	21	10	8	18
	$4315 \cdot 262$	19	9	9	18
	$4352 \cdot 908$	17	3 6	10 4	13 10
	4376107	18	4	11	15
	$44404 \cdot 927$ 4415.293	21	-1	9	8
	$4415 \cdot 293$ $4427 \cdot 182$	18	+3	12	15
	$4427 \cdot 182$ $4443 \cdot 365$	17	10	3	13
	$4461 \cdot 818$	15	7	$\stackrel{4}{7}$	13
	4466 \% 27	18	8	12	20
	Means	... + U164	+.0049	+ 0097	+ $0014 i$

* Astrophysical Journal XXXV, 8, 1912.

The mean total shift limb - arc is practically identical for the two sets of lines, although the mean pressure shifts are in the ratio $1: 1 \cdot 6$. This would of course imply that the total pressure at the limb is about the same as that of the arr at Kodaikanal, or three-fourths of an atmosphere. It must be said however that some of the values of the limb - centre shifts are very uncertain and need revision, especially those which give low values for the total shift. If we eliminate from the lists the five lines which yield total shufts less than 10, the mean shift for the most affected lnes would be +0.0165 A , and for the least affected lines +0.0149 A , a difference which would imply a total pressure at the limb of 1.27 atmosphere above the pressure at Kodaikanal, or about one atmosphere above normal pressure.

If the total pressure at the limb were of the order of 6 atmospheres, as might be deduced from the mean total shift of symmetrical lines which is almost +0.015 A , then there should be a difference of shift between the lines most and least affected by pressure of 0.0075 A , a quantity which could not fail to appear in the mean results.

In this discussion we have taken no account of differences of level of the effective regions of absorption for the different lines. The reason is that the limb - arc shifts, as we have shown in table II, are not appreciably affected by differences of intensity. If the intensiiies of the lines near the limb are related to level m the same way as St. John has found for sun spots on the disk, then in the region of iron absorption level appears to have little or no effect on the displacements. For the symmetrical lines these are remarkably constant, not only for lines of greatly differing intensity but also for lines in very different regions of tho spectrum.

Another ruason for beleving that the limb shifts are not due to pressure alone is furnished by the displacements of those iron hnes which with increased pressure are shifted to the violet (Mt. Wilson group e) in contrast to the majority which are shifted to the red. For these lines we have only measures of limb contre, the total shifts being unknown, but if the displacements at the limb of the majority of lines to the red is due to increased pressure alone then the lines of group e ought to be shifted to the violet. We have at present only two photographs of limb and centre containing lines of group e but their evidence is quite decisive, for each line 18 displaced to the rod. These two plates include the regions $\lambda \lambda 5365$ to 5455 and $\lambda \lambda$ 5555 to 5638 , and the average displacemont limb - centre is given in the following table, together with the pressure shift per atmosphere according to Gale and Adams *:-

Table V

Tabla V.			
		Pressure shift por atmosphere.	$\begin{gathered} \text { Mean shrft } \\ \text { Limb-centre. } \end{gathered}$
Linos displaced slightly to the red by increased pressure ... ($\lambda \lambda, 5371,5397,5405,5429,5434,5447$).	...	+0.004 A .	+0.008 A .
Limes displaced greatly to the red by increasod pressure ... ($\lambda \lambda 5393,5565,5569,5573,5576,5586,5603,5615$, 5638).	$5624,$	+0.023 A .	+0.008 A .
Lines displaced greatly to the violet by increased pressure ($\lambda \lambda 5365,5383,5411,5415,5424,5555,5565,5598$).	..	- 0018 A.	+ 0.005 A .

The lines shifted to the violet by pressure have, it is seen, smaller displacements to the red than the other lines. Assuming that this relative shilt is due to pressure, the deduced pressure at the sun's limb is, according to whether we compare these lnes with the first or the second group in the table, one-seventh or one-fourteenth of an atmosphere above that at the centre of the disc ; either of these amounts is comparatively insignificant. It should be mentioned, however, that the relative shift of these lines compared with the other lines is not necessarily due to pressure hecause we do not yet know the displacement at the centre of the sun, for m the arc the wave-lengths are not normal. \dagger It may possibly be that the smaller displacement at the limb of the lines shifted to the violet by pressure will be compensated by a larger displacement at the centre as was shown above to be the case for lines of different intensities.

Limb shifts in relation to wave-length.
Our results do not confirm that large increase of shift with wave-length which Adams obtaned with a much smaller number of lines. It is true that the relative shifts limb - centre tend to increase to wards the red end of the spectrum, but this is counteracted by a decrease in the centre - arc shifts, so that the total
shift limb - arc remains sensibly constant whether we take all the lines of table I or only the symmetrical lines. These results are shown in table VI, where the lines of table I are grouped in three differenv regions of the spectrum, and the shifts for each group averaged. As in table II the lines $5162 \cdot 449$ and $5424 \cdot 290$ have been omitted.

Number of lines.	Regrour.	Limb contro.	Centre - arc.	Limb-are.
(A) All lones except two.				
49 45 43	$3895-4282$ $4308-4789$ $4859-5615$	+00016 +00069 +00060	+0.0069 A +0.0052 +0.0055	+0.0115 A +0.0121 +0.0115
(B) Symmetrical lanes only				
23 22	$\begin{aligned} & 3895-4325 \\ & 4387-5455 \end{aligned}$	$\begin{aligned} & +0.00144 \mathrm{~A} \\ & +0.0063 \end{aligned}$	$\begin{aligned} & +0.0106 \mathrm{~A} \\ & +0.0082 \end{aligned}$	$\begin{aligned} & +00150 \mathrm{~A} \\ & +00145 \end{aligned}$

The symmotrical lines have been grouped in two regions only, owing to the small numbor of lines available. Both table A and table B exhibit the same characteristic inverse relation between the limb shift, and the centre shift which results in sensibly constant values of the total shift, or limb-are shift. The symmetrical lines give higher values, probably from the absenco of the anomalous shifts caused by peculiar conditions in the aro

If the total shifts at tho limb were dne to pressure wo should expoct to find a marked increase in tho mean values for the less refrangible lines. For the symmetrical lines the mean pressure shift of the 23 more refrangible lines is 0.0025 A per atmosphere, and of the 22 less rofrangible lines it is 0.0030 A per atmosphere. Bat the less refrangible lines represent lower levels in the reversing layer than the more refrangible lines, so that the mean limb shifts should increase in a greater ratio than $25: 30$. As they do not increase at all but tend to be smaller for the less refrangible lmes, we conclude that pressure is not concerned in the general shift of the lines towards the red.

The Cyanogen Bands.

The shifts of the cyanogen bands at the limb and at the centre of the disk give additional evidence which is strongly against the view that pressure is the cause of the lumb shifts, for the bands or flutings are not appreciably affected by pressure, and therefore the shifts foumd between limb and centre and centro and arc can only be explained by motion in the line of sight.

In the paper already cited Dr. Adams refers to his measures of the cyanogen flutings at $\lambda 3883$ aurd $\lambda 4216$, for which he finds a small positive shuft limb - centre. His mean result for several plates and for 14 bands near 3883 is +0.002 A. A few meakures of these bands have also been made at Kodaikanal with results whoh confirm Adams' measures, showing a relative shift to rod at the limb which is notably smaller than that of the iron or titanimm lines The mean shift limb - centre of the best defined bands is +0.002 A frum 5 plates.

The values vary considerably from plate to plate, and Adams considered this shift to be due to ascending movements of the cyanogen at the centre of the disk, causing a violet shift at the centre or a relative shift to red at tho limb.

Obvionsly the determination of the absolute shifts of the CN bands at the centre of the disk compared with the bands in the carbon arc is of cructal mportance in testing Adams' hypothesis and in connection with hmb shifts generally. Accordingly we have made very careful sets of measures of the bands near 3883 in eight comparison spectra of the carbon are and the centre of the disk, using carbon terminals or one terminal carbon and the other iron.

In table VII the mean results are given for two sets of measures of 4 plates, each by different measurers, the initials N, N, R, and E at the head of columns 2 and 3 indicate the measurers Nagaraja Ayyar, Narayana Ayyar, Royds and Evershed respectively.

Thable VIL.-Shemts of CN bands at centre of disk in A/1000.

λ (Rowland).								$\begin{gathered} \text { N.N.R. } \\ \text { (4 plates). } \end{gathered}$	$\underset{\text { (4 plates). }}{\stackrel{\text { E. }}{\text {. }}}$
3863533	\ldots	$+10$	
3864438		$+10$	$+7$
3876.448	-	$+1$
$3876\left\{\begin{array}{l}556 \\ .622\end{array}\right.$,	+6	+ ${ }_{4}$
3877 -481	- 2	+1
$3877\left\{\begin{array}{l}587 \\ 646\end{array}\right.$	+ 6	$+6$
$3879\left\{\begin{array}{l}\cdot 331 \\ \cdot 394 \\ \cdot 458\end{array}\right.$	$+5$
$3879\left\{\begin{array}{l}\cdot 796 \\ .851\end{array}\right.$	\cdots	+ 3
$3880\left\{\begin{array}{l}46.5 \\ -532 \\ -596\end{array}\right.$	+ 7
$3880\left\{\begin{array}{l}.815 \\ .931\end{array}\right.$	+	+4
$3881\left\{\begin{array}{r}729 \\ 825\end{array}\right.$	$+8$	$+7$
$3882\left\{\begin{array}{l}\text { 8288 } \\ \text { 89, }\end{array}\right.$	$+9$	$+7$
Means	...	\cdots	\ldots	$+0.0052 \mathrm{~A}$	$+00045 \mathrm{~A}$

Hach set of 4 plates was photographed independently at different dates and required different currections, to be applied for the earth's movements relative to the sun. The lines or bands chosen for measurement were those most clearly defined in the sun and free from evidence of any interference by lines due to other substances. All of them are assigned by Rowland to C only. As the two sets of measures were made quite independently rather a different selection was made, but the agreement of the values for the common lines is as good as could be expected considering the breadih of many of the bands of which the component lines are only partially resolvod in the photographs. There is a general agreement also in the differences of shift for the diflerent lines or bands, showing that these differences are not due to errors of measurement, but are possibly due to tho peculiar conditions in the arc, which as we have shown tend to produce small, or even negative, sun - are shifts in the case of some of the rron lines. The two lines $3876 \cdot 448$ and $3877 \cdot 481$ which give negative shifts in the first set of measures and small positive shifts in the second set would seem to be allected in this way, and the difference $1 n$ the measures may be due to a shorter are haring been used in tho first set of photographs than in the second.

Both sets of measures agree in showing a general shift of the CN bapds to the rell at the centre of the disk amounting to $+0.005 \Lambda$, a valuo which is almost certamly too small, as the general elfect of the are conditions is to reduce the sun - arc shifts. If the lines giving negative shifts are excluded the general mean becomos +0.0064 A, equivalent to a motion of descent on the san of $0.50 \mathrm{~km} / \mathrm{sec}$. This is the same ordor of velocity as we have found for uron in the reversing layer, being intormediate between the velocities obtained from the high level and low lovel irou lines. According to St . John the CN bands ropresent a rather Low level in the solar atmosphere, or about a mid-level in the reversing layer, so that the velocity found above is in strict larmony with our results lor mon.

As the cyanogen gas in the sun is descouding at the centre of the disk and not ascending, the limb centre shifts to the red cannot be explained as due to a violet shift at the centre. If the limb - centre and centre - arc shifts are added, the total or limb - arc slift amounts to about +0.008 A , indicating a recession at the limb parallel to the solar surface of $0.62 \mathrm{~km} / \mathrm{sec}$. But this movement of recession at the limb suggests a similar movement for iron and other elements. For iron the total shift at the limb is as we have shown +0.015 A for the symmetrical lines, and almost constant for different spectral regions. This would imply velocities varying from $1 \cdot 1 \mathrm{~km} / \mathrm{sec}$. at $\lambda 4.000$ to $0.9 \mathrm{~km} / \mathrm{sec}$ at $\lambda 5000$.

The velocity interpretation of the limb shifts of the iron lines seems forced upon us by the CN shifts, and involves very remarkable consequences, for we have to suppose the iron and other gaseous substances receding from tho earth at opposite points on the sun's limb, at the centre, and by inference all over the disk and all round the circumference, the velocity ncreasing from the centre of the disk towards the limb where, unimpeded by the denser gases $d t$ the base of the reversing layer, it attans a velocity of about $1 \mathrm{~km} / \mathrm{sec}$.

But a movement constant in durection relative to the earth and manatained at all seasons of the year means an earth effect-an actiual repulsion of the solar gases by the eaxth, and not apparently by the other planets.

While fully appreriating the absurdity of this idea we feel that there may be some justification for it in the apparent influence of the earth on the distribution of sunspots on the visible disk and of the prominences on the east and west limbs. That the earth exerts some sort of influence on solar phenomena which is not shared by the other.planets is a startling and perhaps moredible supposition, but the facts which have recently been disclosed in this connection have not yet been explaned otherwise.

There appears in fact to be no alteruative to this earth-effect hypothesis, at any rate with regard to the cyanogen shifts at the limb, unless we assume some cause for line shifts other than motion or pressure. According to the "Theory of Relativity" of Einstein, the sun's gravitational field should dimmish the frequency of the light emitted, and the mean shift to the red found by us at the centre of the disk agrees very closely with the theoretical gravitational shift calculated by E F. Freundlıch.* But the large variations of shift from line to line at the centre of the disk whech depend mamly on mtensity, and the constancy of the limb shifts for different waverlengths are facts which would apparently offer serious difficulties to this explanation. One of us has found t that the displacement at the centre of the sun's disk decreases rapidly with depth; it would presumably vanish at a depth a little lower than that of the fant rron lines whilst the gravitational force can only be slightly smaller than at higher levels and may, medeed, be larger.

Summary.-The main results of this investigation and the conclusions reached may be briefly recapitulated in the following paragraphs :-
(1) In studying the limb shifts it is considered essential to determine the total shifts limb -arc instead of the relative shifts between limb and centre of disk as has been done hitherto.
(2) The total shifts of 139 iron lines at the sun'slimb have been determined by adding the limb centre shifts to the centre - arc shifts, and also directly in some cases by measuring the hmb - arc shifts.
(3) The limb - centre shifts and the centre - are shifts are found to be related to the intensity of the solar limes in an opposite sense, the former decreasing as the intensity moreases and the latter wucreasing at about the same rate. The total or lumb - are shifts are therefore approximately constant for all intensities.
(4) The relation between limb - are shifts and pressure shifts is discussed for all the lmes with known pressure shifts. Grouping the lines into those more or less affected by pressure and into different spectral regions, it is found that the more aflected lmes are much less shifted than the less affected. This result is believed to be partly due to certain peculiar conditions in the arc which tend to reduce the sum - arc shifts, and especially the shifis of those lines most affectecl by pressure.
(5) Taking symmetrical lines only, which are presumably free from the disturbing effects of the arc conditions, there is found to be no difference of shift belween groups of lines whose average pressure shifts differ in the ratio $1 \cdot 6$ to 1 . This implies a pressure in the effective region of absorption at the limb equal to that of the air at Kodaikanal or $\frac{3}{3}$ atmosphere, a result which may however be considerably modified by further research.
(6) The large shifts of the symmetrical lines at the limb, amounting to 0.015 A towards the red, cannot be due to pressure because, if so, the differential shafts of the lines more and less affected by pressure wouid be of an order of magnitude which could not fail to appear in the measures. Moreover the pressure hypothesis requires that certain mon lines should be displaced at the limb to the violet whereas they are actually shifted to the red of their positions at the centre of the disk.

[^1](7) It is shown that although the relative shifts, limb - centre, of the iron lines tend to increase toward the louger wave-lengths, the total shifts, limb - arc, remain remarkably constant when means are taken min three spectral regions between $\lambda 3895$ and $\lambda 5615$. This constancy of shift 1 also shown strikingly by the symmetrical lines alone, and tells heavily agamst the pressure theory.
(8) The constancy of the limb - arc shifts for symmetrical lines of greatly duffering intensity shows that level is not au inportant factor in determming the homb shifts, if it may be assumed that intensity is related to level for lines near the limb as $1 t$ appears to be for lines in sunspots on the disk.
(9) The cyanogen bands are shown to be displaced towards the red at the limb relatively to the centre of the disk, and at the centre compared with the arc. As these bands are not shifted appreciably by pressure the shifts can only be explained by assuming a movement of recession from the earth-a descending motion on the disk and a movement parallel to the solar surface at the limb. The total shift is about 0.008 A , indicatiog a recession near the limb of 002 km . per sec.
(10) The shifts of the iron lines, amounting to a mean value of 0015 A for the symmetrical lines, is interpreted similarly as due to a rocession of the iron vapour at the limb of about 1 km . per sec. A movement of recession from the earth at the centre and over the entire disk also follows.
(11) The view rhat the solar gases are actually repelled by the earth receives some support from other lnes of evilence, but an alternative hypothesis is considered, namely, that the sun's gravitational field allects the wave-length of the light omitted, in accordance with Emstem's Theory of Relativity.

Kodamanat,
1st Jun 191 .

J. EVERSHED, I. ROYDS.

[^0]: * Astrophysical Journal XXXI, 30, 1910.

[^1]: * Physikalische Zeitschrift XV, 2, 1914.

