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Synopsis 

For more than three decad(·s black hole physics has been the focus of extensive investiga­
tions. A considerable body or knowledge has been accumulated in course of these studies. 
Most of these investigations, however, have been directed towards black holes represented 
by vacuum solutions that al'(~ time independent and asymptotically flat. Time indepen­
dence is characterized by t.11(~ existence of a timelike Killing vector field and asymptotic 
flatness implies that the sp;u:et.ime at large distances from the black hole is Minkowskian. 
These features namely vacuulIl exterior, time independence and asymptotic fiatness lie at 
the heart of most conceptual and mathematical work associated with black hole physics. 
When one wishes to study a. t.otally realistic situation, however, it may be necessary to 
give up either time indepelld(~llCe or asymptotic flatness or both. This would be the case, 
for instance, when the black hole is surrounded by local mass distributions or is embedded 
in an external universe. Uueler such circumstances, one would like to ascertain whether 
the well known properties or black holes are retained, modified or mdicully alt(~r·ed. Black 
holes in cosmologka.l backgrounds, or more generally, in non-fiat. bnvkgroullcls form, there­
fore, an important. topic. V(~l'y little has been done in this direction. Some of t.he issues 
involved here have been outlined in a recent article by Vishveshwara[l]. As discussed in 
t.hat article, t.here may be fundamental questions of concept.s and definitions involved in 
this cont.ext. Addressing a.1I t.he pertinent issues in a comprelH'llsive maIlner would be 
a formidable task indeed. Nevertheless, considerable insight may lJ(' gained by studying 
sprcifie examples evcn if tlH~y are not entirely realistic. In a Hcri(~H of foit,u<iies we have been 
in"('stigating black holes ill lIoll-fiat backgrounds. In t.his rE.~gard the family of spacetimes 
derived by Vaidya[2] rcpreH(~III.illg in a way black holes in cosmological backgrounds have 
he(,ll found to be helpful. TlwHe metrics, in general, correspond to nOIl-\'HCI.lUm solutions 
that. represent blac:k holes which are no longer asymptot.ically ITa.t.. One of this represents 
I.h(' Kerr black hole in the lm(:kground of the Einst.ein universe aud the ot.her the special 
c:a.H(~ namc1y t.ha.t. of the Schwarzschild black hole in the backgrouud of the Einstein uni­
verse. These Hpac(~timcs coul.ain, as limiting cases, t.he usual Kerr and the Schwarzschild 
spacet.imes respeetivciy and thc! Einstein universe. In the present I h('si:..;, t.hereforp, for the 
Hak(' of brevity awl beCaUH(~ Ill' the specific model cmployed, we shall nse the terms 'cos­
mological' amI 'Holl-Hat.' inl.(~I-dlangeably for convcnience, dependiug OIl whether we wish 
to draw attention to the coslllological nature of the background or to t.he asympt.otically 
nOll-Hat Ilature reHpectively. 

Some preliminary work performed before the advent of the presellt thesis may be noted 
hen'. The Schwarr.schild black hole in the background of the Eim:;(.('in ulliversl~ was inves­
tigated by Nayak, MacCallulII and Vishveshwara[3]. Tlwy constru('t.l~d a. compositc static 
spacetime as an example of a I llack hole in a non-fiat. background. which comprises a vac­
UUlll Schwarzschild spacetilll(~ lor the interior of t.he hlack hole, ncn ISH which it is matched 
on to the spacetime of VaiclYiL representing no black hole in the EillHteill univcrsl'; this it-



self, in turn, is matched to the Einstein universe. They called this composite spacetime 
the 'Vaidya-Einstein-Schwarzschild (VES) spacetime'. They also studied the behaviour of 
scalar waves in this spacetime. 

We may mention here some previous work related to black holes in non-flat backgrounds. 
For instance, McVittie considered the spacetime corresponding to a mass-particle in an 
expanding universe[8][9][lO]. The metric, at a first glance, seems to admit an event hori­
zon. However it can be shown that the spacetime becomes singular on this surface and the 
interior is not defined at all. As such this spacetime represents essentially a mass-particle 
rather than a black hole in an expanding universe. For further properties and problems 
associated with the work of McVittie, we refer to Sussman[ll]. There are also studies 
in the literature based on the so called 'Swiss-cheese model'. Einstein and Straus[lO][12] 
constructed a model which comprises a cavity enclosing a Schwarzschild vacuum space­
time which includes the black hole; exterior to the cavity is the Friedman cosmological 
spacetime. The above two models have been employed to study the influence of the cosmo­
logical expansion on planetary orbits as has been done, for instance, by Gautreau[13] (see 
also Brauer[14]). This study has been extended to the case of a slowly rotating black hole 
by Chamorro[15]. 

In the models mentioned above, the matching is not extended up to the horizon as in 
the case of the YES spacetime. Also, the background parameter R occurring in the YES 
spacetime can be varied continuously thereby controlling the influence of the non-flat cos­
mological background. As R increases, approaching the limit of the Schwarzschild vacuum 
solution as R tends to infinity. Furthermore, the YES spacetime is a special case of the 
Kerr black hole in the background of the Einstein universe given by Vaidya. So the study 
of the YES spacetime is a precursor to that of the Vaidya-Einstein-Kerr (VEK) spacetime. 
Obviously a study of the VEK spacetime would lead to a greater insight into rotating black 
holes in non-flat backgrounds. 

In the present thesis we study both the YES and the VEK spacetimcs. After investigating 
some physical effects in the YES spacetime we move on to the VEK spacetime focusing 
on the geometry and physics of the event horizon. This is followed by an investigation of 
important physical effects in the VEK spacetime. We then move 011 to discuss the Carter 

. constant and the Petrov classification of the VEK spacetime. Lastly, we study the struc­
ture of particle angular momentum in the VEK spacetime. Throughout we compare and 
contrast the results obtained with that of their flat background counterparts. An detailed 
outline of the thesis is given below. 

1. The Vaidya-Einstein-Schwarzschild black hole: Some physical effects. 
In our study of the YES spacetime we have investigated some physical effects such 
as the classieal tests and geodesics[21]. The pertinent results a.re as follows. 



• The background-black hole decomposition. 
In order to study the effects due to the background and the black hole clearly, we 
have introduced the background-black hole decomposition. This idea is implicit 
while expressing the Kerr metric in Kerr-Schild coordinates but has not been 
exploited fully cHpecially in the case of the Schwarzschild metric. This decom­
position enables us to neatly separate out the various geometrical and physical 
quantities associated with the spacetime into background and black hole quan­
tities. Thus attention may be given to either the background spacetime or the 
black hole in order to study or generalize the properties of the spacetime. In 
particular, the ba.ckground may be extended from a flat into a non-flat one. As 
an application, we have decomposed the test particle Lagrangian as the sum of a 
background and a black hole term. The background term may be thought of as 
a kinetic energy term and the black hole term may be thought of as a potential 
energy term, in analogy with the usual Lagrangian formalism. This allows us to 
decompose the conserved quantities into corresponding background and black 
hole terms as well. 

It is expected that the background-black hole decomposition may be carried out 
in the case of black hole spacetimes other than the Einstein universe facilitating 
thereby to find new solutions of black holes in non-fiat backgrounds, especially 
in the background of an expanding Universe. 

• The effective potential. 
We have presented the effective potential for particle motion and performed a 
qualitative analysis by plotting the effective potential against the radial coor­
dinate. We have shown that at small values of the background parameter, the 
infl uence of the cosmological background is so large that there is an enormous 
modification in the nature of the orbits. At large values of the background 
parameter the orbits tend to their Schwarzschild character as the cosmological 
influence decreases. 

• The classical tests. 
Our study of the classical tests, namely the gravitational redshift, the perihelion 
precession and light bending, in the Vaidya sector of the YES spacetime shows 
how the non-fiat nature of the background spacetime affects the Schwarzschild 
results. The non-flat background manifests itself through the background pa­
rameter R. This is more so in the case of the perihelion precession and light 
bending than in the case of the gravitational redshift. 

- The gravitational redshift. 
In the usual Schwarzschild case we can find the ratio of the frequencies of 
light emitted at a certain point in the spacetime and observed at another. 



In the YES ease however, due to the presence of different sectors, the ef­
fect" becomes much more interesting. We have considered the gravitational 
redshift seen by a static observer in the Einstein sector due to light emitted 
in the Vaidyn. sector. We have shown that when both the observation and 
the emission points are in the Einstein sector the redshift is absent as is 
expected. 

- Perihelion precession. 
We have shown that the presence of the background increases the perihe­
lion precession. The perihelion shift has been calculated in full and also to 
second order in 1/ R. 

- Bending of light. 
We have shown that the presence of the background causes an increase in 
the bending of light. This effect is analogous to that in perihelion preces­
sion. Again, the calculations have been presented in full and to second order 
in 1/ R. 

• Geodesics in the YES spacetime. 
A study of geodesics is the direct route towards gaining qualitative and quan­
titative insight into the nature of the spacetime. First we have studied circular 
geodesics and then presented a brief classification of the geodesics. 

• Circular geodesics. 
In the Schwarzschild case there is a photon orbit at r = 3Ms and timelike or­
bits exist below this limit. In contrast we have shown that in the YES case, 
there are two photon orbits and that time-like circular geodesics exist within 
these two limits. There are no circular geodesics beyond these values. This is 
analogous to the effect in the Ernst spacetime, where two null circular geodesics 
are present as has been pointed out by Nayak and Vishveshwara[18]. As the 
background influence becomes small the inner null circular geodesic approaches 
the Sch,varzschild value r = 3.Ms and the outer null circular geodesic approaches 
infinity. An interesting feature which we have pointed out here is that of the 
centrifugal force reversal, which has been discussed by Prasanna [19]. The cen­
trifugal force reverses at the inner null circular orbit by becoming inward. This 
is analogous to what happens in the case of the Schwarzschild spacetime. We 
have shown that in the present case, such a reversal takes place at the outer 
null orbit also, as in the case of the Ernst spacetime. Since the Schwarzschild 
case has a null circular orbit at only r = 3Ms this implies that the effect of the 
Einstein cosmological background is in bifurcating the null circular orbit of the 
Schwarzschild spacetime into two thereby completely altering the nature of the 
Schwarzschild circular geodesics. 



• Classification of the geodesics. 
We have presented a brief classification of the geodesics. In the Schwarzschild 
spacetime there are eight timelike and three null geodesics. In contrast to this 
we have shown that the YES spacetime allows eight timelike and eight null 
geodesics. 

2. Geometry of the Vaidya-Einstein-Kerr black hole. 

• The event horizon. 
By studying the event horizon, we have shown that the background -gives rise to 
significant modifications in the geometrical and physical quantities associated 
with the black hole. The event horizon shrinks from its limiting Kerr magnitude 
as the background influence increases and the stationary limit surface gets more 
distorted. Thus there is an enlargement of the ergosphere. 

• The circumferences. 
We have shown that the distortion of the horizon can be ascertained by com­
puting its equatorial and polar circumferences and studying the variation of the 
oblate ness parameter. The oblateness parameter 8 is given by the difference of 
the equatorial and polar circumferences divided by the equatorial circumference. 
This has been investigated by two different approaches. In the first instance, 
to compare the results with those obtained by Smarr in the Kerr case, we have 
varied the distortion parameter without varying the background parameter. 

We have shown that further insight can be gained into the structure of the hori­
zon by investigating the oblateness as an explicit function of the parameters 
a and the background parameter R. As we have pointed out there exist both 
modulated and direct effects. 

The modulated effect is obtained by varying a for different fixed values of R. 
Here we have found a totally unexpected effect. That is, whereas the equatorial 
circumference Ce increases monotonically with a for all values of R, the polar 
circumference Cp first decreases as a increases, starting from the Kerr value, and 
then increases after a critical value of R. Nevertheless, the oblateness parame­
ter increases with a for all values of R. On the other hand the direct effect is 
obtained by varying the circumferences with R. Here, one sees that both Ce and 
Cp decrease as R decreases, ie as the background influence increases. However, 
the oblateness parameter increases as R decreases. 



• The surface area of the horizon. 
Another quantity that indicates the change in the geometry of the event horizon 
is its surface area. As was done in the case of the circumferences, we have stud­
ied two different effects of the background on the area. First the modulation of 
rotation by the background and second the direct effect of the background. In 
the first case, for large values of R the area decreases monotonically with a as in 
the Kerr case. Then for a critical range of values of R the area increases, attains 
a maximum and then, decreases. Finally for small values of R it increases mono­
tonically with a. This effect is also a novel one which reveals the peculiarity of 
the background inft.uence. Next, we have the direct effect of the background. 
As R decreases thereby enhancing the background effect, the area decreases and 
asymptotically approaches the Kerr value as the background effect goes down. 

Our analysis of the surface area of the VEK black hole has shown that it is no 
longer a function of the scale parameter r} alone as in the Kerr case. It gets 
coupled to the distortion parameter (3 as well. 

• The angular velocity of the horizon. 
The angular velocity of the VEK event horizon is an important physical quan­
tity. It plays a central role in physical effects such as superradiance. We have 
shown that it goes up significantly as the background inft.uence increases. 

• Gaussian curvature and embedding. 
By investigating the intrinsic geometry as represented by the Gaussian curva­
ture we have shown that the VEK black hole may be classified into two distinct 
classes. The first class consists of black holes with positive Gaussian curvature 
and the second consists of black holes with negative Gaussian curvature. In the 
Kerr case studied by Smarr, this classification is on the basis of two constant 
'limiting' values of the distortion parameter (3. In the VEK case however, the 
corresponding 'limiting' values are no longer constants but depend on the angu­
lar momentum parameter a and the background parameter R. The topology of 
the VEl( event horizon is that of a 2-sphere as may be expected for any normal 
black hole. 

3. Examples of physical effects in the VEK Spacetime. 
We have investigated some physical effects in the VEK spacetime. These include 
circular geodesics and the gyroscopic precession. 

• Circular geodesics. 
A study of the circular geodesics is very fruitful in gaining insight into the na­
ture of the black hole and the spacetime. In the VES case, as mentioned above, 



the nature of the geodesics changes significantly due to the non-flat background. 
In the VEK case we have shown that the changes are more pronounced due to 
the presence of rotation. In the Kerr spacetime only one null circular geodesic 
exists. Corresponding to this there is one co-rotating and one counter-rotating 
orbit. Timelike geodesics exist all the way up to infinity. In contrast, the VEK 
case allows two different possibilities depending on the background parameter. 

In the first case two null circular geodesics are present. There is an inner null 
geodesic and an outer null geodesic. Each of these have one co-rotating and 
one counter-rotating orbit. Timelike geodesics exist between the inner and the 
outer null geodesics. 

In the second case only one null geodesic exists. Corresponding to this is one co 
and one counter-rotating orbit. There is a complete absence of timelike circular 
geodesics. The impact parameter also reflects this feature as we have shown in 
the special case of the YES spacetime. 

By investigating the phenomena of gyroscopic precession in the VEK spacetime 
we have shown that the background affects the precession in both modulated 
and direct effects. The first torsion which in the Kerr case coincided with the 
Schwarzschild Keplerian frequency now no longer coincides with the YES gen­
eralized Keplerian frequency. It is now a function of the angular momentum 
parameter as well in contrast to the Kerr case. This brings about a pronounced 
modification of the results from the Kerr case. In particular this gives rise to a 
generalized version of the Schiff precession. Moreover, even in the special cases 
of the generalized versions of the Fokker-De Sitter precession in the YES space­
time, the background prevents the first torsion from being equivalent to the 
generalized Keplerian frequency. Finally, the generalized version of the Thomas 
precession in the Einstein universe is also considerably modified. 

• The Carter constant and Petrov classification of the VEK spacetime. 
A study of the Carter constant and the Petrov classification sheds light on the 
connection between the properties of the geodesics and the classification of the 
gravitational field. Thus, starting with a discussion of Carter's discovery of the 
fourth constant in the Kerr case, we have shown by construction that the Carter 
constant exists in the VEK spacetime also. From the Carter constant we have 
obtained the Killing tensor and brought out its significance by considering the 
special case of the Schwarzschild spacetime wherein the Killing tensor becomes 
reducible. 

Next, taking into account the fact that in the Kerr spacetime, the Killing tensor 
is related to the Killing-Yano tensor which, in turn, is related to the type-D 



nature of the spacetime, we have investigated the classification of the VEK 
spacetime. By (~mploying the Newman-Penrose formalism we have calculated 
the spin coefficients for the VEK spacetime. We have shown that unlike the 
Kerr case there is a non-vanishing spin coefficient E. Even though the rest of 
the results mirror that in the Kerr case, their expressions are considerably com­
plicated. These spin coefficients contain as limiting cases the Kerr and the VES 
counterparts and of course the Schwarzschild ones also. The Bianchi identities 
contain non-zero Ricci terms also in addition to the Weyl scalars. 

Motivated by the significance of the type-D nature of a black hole spacetime we 
have studied the classification of the VEK spacetime. We have demonstrated 
explicitly and in detail, that the VES spacetime is type-D. We have shown that 
the only non-vanishing Weyl scalar is '112 • Turning to the Ricci terIils, the only 
non-zero terms are cI>oo, q>111 <b22 and the scalar A. That these terms which van­
ish in the Schwarzschild case do not do so here shows that the spacetime is 
non-vacuum. In the Einstein universe also the Ricci terms are non-zero which 
brings out the asymptotically non-fiat nature of the spacetime. The optical 
scalars wand a vanish as in the Schwarzschild case whereas the optical scalar 
8 is modified because of the background. 

We have discussed the 2-spinor formalism and constructed the Killing spinor 
for the VEK spacetime. By means of the Killing spinor we have calculated the 
Killing-Vano tensor and shown that in the limit of the background parameter 
tending to infinity this coincides with the Killing-Yano tensor of the Kerr space­
time. 

• Geodetic Particle Angular Momentum in the VEK spacetime. 
With the above apparatus in hand, we have investigated the relation between 
the Killing and the Killing-Yano tensors. The Killing tensor has been shown 
to be a 'square' of the Killing-Vano tensor. Both these tensors have been ex­
pressed through the Newman-Penrose tetrads to further clarify their structure. 
We have shown that these tensors contain the Kerr counterparts as limiting 
cases. By constructing a tetrad for the Killing tensor we have further exhibited 
the relations between the metric, the Killing and the Killing-Yano tensors. The 
eigenvalues of these tensors have been calculated. 

We have introduced the background-black hole decomposition and discussed the 
Kerr-Schild and the generalized Kerr-Schild transformations and their implica­
tions for the Kerr and the VEK cases respectively. By employing this decomposi­
tion we have expressed the Newman-Penrose tetrad in terms of background and 
black hole terms. Further, we have split the Hamiltonian, the four-momentum, 
and the Killing tensor into background and black hole terms. We have shown 



that the Killing-Yano tensor has only a background term. 

Focusing on the Killing-Yano tensor we have employed the phase space formal­
ism to project it to space. By means of the projected tensor we have defined 
quantities analogous to the components of particle angular momentum. These 
components satisfy the Poisson bracket relations expected of them. We have 
shown that to first order in the angular momentum parameter and to second 
order in the inverse of the background parameter, the angular momentum vector 
precesses along the central axis preserving its magnitude. 

To summarize, we have demonstrated that the effect of the background on the properties 
of the usual black holes are significant. We have shown that the results may be classified 
into three groups. In the first, the properties of the black holes are retained. Such is the 
case with the gravitational redshift discussed in Chapter 2 and the existence of the Carter 
constant and the Petrov classification of the YES spacetime discussed in Chapter 5. The 
results here are similar to that in the flat case. In the second case, the properties of the 
black holes are considerably modified. This is the case with the perihelion precession, the 
bending of light considered in Chapter 2, the geometry of the ergosphere, the angular ve­
locity, topology, and the nature of the spin coefficients corresponding to the VEK black 
hole as shown in Chapter 5. In the third case, the properties of the black holes are radi­
cally altered. This includes the behavior of circular geodesics and the classification of the 
timelike geodesics in the VES spacetime discussed in Chapter 2, circular geodesics in the 
VEK spacetime and the nature of gyroscopic precession discussed in Chapter 4. 

To conclude, we have shown that the effect of the background on the properties of the 
usual black holes is clear and patent. As a prototype the Vaidya cosmological-black holes 
on which we have based our investigations is specific and restricted. Nevertheless, it is not 
at all unlikely that the above effects may be retained or even enhallced in more realistic 
models. 
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Chapter 1 

Introd uction 

1.1 Black Holes in Cosmological Backgrounds 

For more than three decades black holes have been investigated in great detail. Most 
of these studies, however, have been directed towards black holes represented by vacuum 
solutions that are time independent and asymptotically flat. Time independence is char­
acterized by the existence of a timelike Killing vector field and asymptotic flatness implies 
that the spacetime at large distances from'the black hole is Minkowskian. These features 
namely vacuum exterior, time independence and asymptotic flatness lie at the heart of 
most conceptual and mathematical work associated with black hole physics. When one 
wishes to study a totally realistic situation, however, it may be necessary to give up either 
time independence or asymptotic flatness or both. This would be the case, for instance, 
when the black hole is surrounded by local mass distributions or is embedded in an external 
universe. Under such circumstances, one would like to ascertain whether the well known 
properties of black holes remain retained, modified or radically altered. 

Black holes in cosmological backgrounds, or more generally, in non-flat backgrounds form, 
therefore, an important topic. Very little has been done in this direction. Some of the is­
sues involved here have been outlined in a recent article by Vishveshwara[l]. As discussed 
in that article, there may be fundamental questions of concepts and definitions involved 
in this context. Addressing all the pertinent issues in a comprehensive manner would be 
a formidable task indeed. Nevertheless, considerable insight may be gained by studying 
specific examples even if they are not entirely realistic. In a series of studies we have been 
investigating black holes in non-flat backgrounds. In this regard the family of spacetimes 
derived by Vaidya[2] representing in a way black holes in cosmological backgrounds have 
been found to be helpful. These metrics, in general, correspond to non-vacuum solutions 
that represent black holes which are no longer asymptotically flat. One of this represents 
the Kerr black hole in the background of the Einstein universe and the other the special 
case of the Schwarzschild black hole in the background of the Einstein universe. These 
spacetimes contain, as limiting cases, the usual Kerr and the Schwarzschild spacetimes 
respectively and the Einstein universe. In the present thesis, therefore, for the sake of 
brevity and because of the specific model employed, we shall use the terms 'cosmological' 
and 'non-flat' interchangeably for convenience, depending on whether we wish to draw 
attention to the coHmological nature of the background or to the asymptotically non-flat 



2 

nature respectively. 

We may mention some preliminary work performed before the advent of the present thesis. 
The Schwarzschild black hole in the background of the Einstein universe was investigated 
by Nayak, MacCallum and Vishveshwara [3]. They constructed a composite static space­
time as an example of a black hole in a non-flat background, which comprises a vacuum 
Schwarzschild spacetime for the interior of the black hole, across which it is matched on 
to the spacetime of Vaidya representing a black hole in the Einstein universe; this it­
self, in turn, is matched to the Einstein universe. They called this composite spacetime 
the 'Vaidya-Einstein-Schwarzschild (VES) spacetime'. They also studied the behaviour of 
scalar waves in this spacetime. 

With this as the starting point we shall investigate in this thesis, further properties of black 
holes in non-flat backgrounds. 

The organization of this chapter is as follows. In Section 1.2, we discuss the motivation for 
our investigations. In Section 1.3, we address some of the issues involved. In Section 1.4, we 
give an outline of the approach we have taken. In Section 1.5, we consider other possible 
specific models and discuss the reason for choosing the Vaidya cosmological black hole 
spacetimes. In Section 1.6, we discuss briefly the Vaidya cosmological-black hole metric. 
In Section 1.7, we conclude this chapter with a brief outline of the investigations that we 
have performed. 

1.2 Motivation 

As mentioned in the Introduction, most investigations on black holes have been directed 
towards black holes represented by vacuum solutions which are time independent and 
asymptotically flat. We now discuss the implications of these features briefly. 

1. Vacuum (or charged) solutions: This feature is at the base of most of the theorems 
on black holes. In particular, it is crucial for the formulation of theorems associated 
with the Petrov classification. For instance, the Goldberg-Sachs theorem rests on the 
vacuum nature of the Kerr and Schwarzschild spacetimes. Through this theorem, 
or directly by the nature of the Weyl scalar components, it follows that the vacuum 
black hole spacetimes are all of Petrov type-D. Another theorem of considerable im­
portance in black hole physics, which assumes a vacuum spacetime, is the Hawking 
area theorem. 

2. Asymptotic flatness: This feature is based on the reasonable assumption that the 
curvature generated by the source far outweighs the average curvature due to the 
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rest of the matter in the universe. Thus, it is assumed that the spacetime at large 
distances from the black hole is Minkowskian. Most of the black holes represented 
by vacuum solutions satisfy this criterion. Though this feature is present implicitly 
or explicitly in the formulation of theorems associated with black holes, it is not 
completely clear whether it is really necessary. Also, asymptotic flatness is invoked 
in order to identify conserved quantities via Komar integrals. 

3. Time independence: The static, spherically symmetric Schwarzschild black hole and 
the stationary, a.xisymmetric Kerr black hole are both time independent. Thus, such 
spacetimes are characterized by the existence of a timelike Killing vector. It is this 
feature that ensures that one can define the event horizon of the black hole as a 
Killing horizon. Thus in the absence of this feature it is not clear as to how to define 
the black hole itself. Moreover, the definition of conserved quantities like the total 
mass are tied up with the existence of a timelike Killing vector. 

We now contrast the above with an example of a totally realistic situation characterized 
by the following. 

1. Non-vacuum: In a situation such as that encountered in astrophysics, for instance, the 
black hole may be surrounded by local mass distributions. The spacetime around the 
black hole would then be described by an energy-momentum tensor satisfying certain 
reasonable energy conditions. Thus the black hole would no longer be represented 
by a vacuum solution of the Einstein field equations. Thus, for instance, the classifi­
cation of the spacetime could possibly be affected as there would be no analogue of 
the Goldberg-Sachs theorem. 

2. Embedded ill external universe: In a totally realistic situation the black hole would 
not be surrounded by empty space but by an external universe. Depending on the 
model chosen to correspond to observational data, there are two possibilities . 

• Static universe: In view of the observational tests suggesting a non-static uni­
verse this would seem to be not entirely realistic. However, this choice preserves 
time independence and ensures the existence of a timelike Killing vector field. 
Thus the black hole could still be defined by means of a Killing horizon. Such 
a model although not entirely realistic, affords a simple example for studying 
black holes in non-flat backgrounds. This would constitute a first step in devel­
oping more realistic scenarios . 

• Time dependent(Expanding) universe: Present day observational data is strongly 
in favour of an expanding universe described by a Friedman-Robertson-Walker 
spacetime. It is clear that in this case a timelike Killing vector field no longer 
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exists. Thus it is not possible to define the black hole via a Killing horizon as 
per the standard methods. 

Regarding the above two points, it is clear that in both situations the black hole 
spacetime would no longer be asymptotically flat but would correspond to the space­
time of the background universe. 

From the above discussion we may draw the following conclusions which serve as 
motivation for our studies. 

• The properties of the usual black holes may change when the features of vac­
uum, asymptotic flatness and time independence are relaxed. 

• Since black hole and cosmological spacetimes have been well explored the com­
bination namely black holes in cosmological backgrounds may yield more insight 
into the properties of spacetimes in general. 

• The usual black holes do not admit stationary perturbations that vanish at 
large distances from the black hole, thereby preserving asymptotic flatness. This 
means that the black holes cannot be distorted, a fact supported by the unique­
ness theorems. Other topics that fall within the scope of perturbation analysis 
are, the question of stability, the study of propagation and scattering of radia­
tion and the determination of quasinormal modes. It would be interesting and 
instructive to find out how these phenomena are modified when the background 
is no longer fiat. 

The relaxation of the above mentioned features of the usual black holes may give 
rise to subtle modifications from the standard results. Regarding this we may point 
out that even in the standard case of the Schwarzschild black hole the introduction 
of rotation leads to profound changes. For insta,nce, in the static case the timelike 
Killing vector field becomes null on the event horizon which is at once the static 
limit and a Killing horizon. On the other hand, in the case of the Kerr black hole 
the stationary limit at which the corresponding timelike Killing vector field becomes 
null does not coincide with the event horizon which still remains a null surface. 
However, a suitable combination of the timelike and rotational Killing vector fields 
enables us to construct a globally hypersurface orthogonal, irrotational vector field 
which does become null on the event horizon. The separation of the stationary 
limit from the event horizon giving rise to the ergoregion in between leads to several 
interesting phenomena such as the Penrose process and superradiance. Similarly the 
reverse situation may prevail, namely phenomena that occur in the Schwarzschild 
spacetime may not take place in the Kerr spacetime. For inst.ance, the generation of 
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gravitational synchrotron radiation present in the Schwarzschild spacetime is absent 
in the Kerr spacetime. In a like manner, relaxation of the features of standard black 
holes may radically transform black hole physics. 

We now discuss some of the issues involved. 

1.3 The Issues 

We give a very brief account of some of the approaches attempted by different authors 
towards generalization of black holes. 

1. Tipler (1977)[4] gave a definition of a black hole as a region containing all non­
cosmological trapped surfaces whose boundary is generated by null geodesic seg­
ments. Thus in accordance with this, the local properties remain unaltered whereas 
the global behaviour does change. 

2. Joshi and Narlikar(1982)[5] defined a black hole in a globally hyperbolic spacetime 
to be a future set of all closed compact spacelike 2-surfaces which are either trapped 
or marginally trapped. Their definition differs from that of Tipler in that it does not 
distinguish between local and cosmological trapped surfaces and covers all possible 
local collapse situations. In other words, they defined the black hole on the basis 
of the trapping of light by the gravitational field of a collapsing object in a globally 
hyperbolic spacetime. 

3. Hayward[6] has defined the black hole as a certain type of trapping horizon. A trap­
ping horizon is a 3-surface foliated by marginal surfaces. And a marginal surface is 
a spatial 2-surface where a light wave would have instantaneollsly parallel rays. He 
classified the marginal surfaces into four types, described as future or past and outer 
or inner. The future outer trapping horizon provides the defiuition of a black hole. 
This also excludes cosmological horizons and is thus closer in spirit to that of Tipler. 

4. Ashtekar et al[7] in recent work have introduced the concept of what they call an 
isolated horizon. Their key idea is to replace the notion of a stationary black hole with 
that of an isolated horizon, which can be identified with a portion of the event horizon 
which is in equilibrium ie across which there is no flux of gravitational radiation 
or matter fields. They define an isolated horizon by means of certain boundary 
conditions. They state that these boundary conditions as well as the overall view­
point are closely related to the work of Hayward. However, they do not give a 'direct' 
definition of the black hole. Nevertheless, their work gives importance to cosmological 
horizons as do Joshi and N arlikar. 
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Next we consider some of the issues directly related to our investigations and which we 
shall address in the present thesis. 

1. Tests: This has to do with the issue as to whether the properties of the well-known 
black holes are it retained, modified or radically altered. We shall exemplify these 
three possibilities and draw attention to the nature of the modifications that take 
place. 

2. Physical phenomena: One would like to know whether anything new happens. 

3. Exploration towards more realistic models: The nature of the modifications or the 
simplicity of the model may indicate the appropriateness of the prototype black hole 
on which to base our investigations. This may involve the theory of exact solutions 
which is beyond the scope of this thesis. 

We now discuss the mode of investigation that we employ. 

1.4 Our Approach 

The approach that we shall take in investigating black holes in non-flat backgrounds may 
be outlined as follows . 

• Consider specific examples: This conforms well to the historical evolution of the field 
of black holes. It was initially by the studies on the Schwarzschild and the Kerr 
black holes that the motivation for, and development, of the formalism took place. 
Investigations on the local properties of these black holes gave rise to the need to 
introduce suitable generalizations incorporating global methods as well. Studies on 
physical phenomena in the gravitational field of these black holes led to much of the 
presently well-known theorems such as, for instance, the area theorem along with the 
concept of the irreducible mass. 

• Relax conditions step by step: Dropping at once all the features of the usual black 
holes may prove to be too formidable to handle as a first step. For instance, relaxing 
time independence deprives us of the timelike vector field which goes. into defining 
the black hole. As a concrete illustration, the Vaidya cosmological-black hole metric, 
which we shall discuss below, having the Einstein static universe as the background 
spacetime naturally admits a timelike Killing vector field. However, as we shall dis­
cuss later OIl, its non-static counterpart given by Vaidya himself does not satisfy the 
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definition of a black hole as being a null surface with the light cone tangential to it. 
Therefore, in the present thesis we retain time independence but drop asymptotic 
flatness . 

• Accumulate a sizeable body of knowledge: As in the case of the Schwarzschild and 
the Kerr black holes, possessing a substantial body of knowledge and results on spe­
cific examples makes it easier to proceed towards generalizations. Moreover, this 
step serves as a selection criterion for the specific examples by allowing us to restrict 
attention to those which retain the desirable properties of black holes. 

• Study issues that emerge: In course of investigations, as in fact borne out by the 
present work, it is natural that further issues may arise. A study of these may shed 
light on the issues that confronted us at the starting point itself. We shall find several 
illustrations of this in the succeeding chapters. 

We turn now to a discussion of possible specific examples of black holes in non-flat back­
grounds. 

1.5 Prototypes of Black Holes in Non-Flat Backgrounds 

In an attempt to arrive at a suitable choice of "a prototype we may mention here some 
previous work related to black holes in non-flat backgrounds. For instance, McVittie con­
sidered the spacetime corresponding to a mass-particle in an expanding universe[8][9][lO]. 
The metric, at a first glance, seems to admit an event horizon. However it can be shown 
that the spacetime becomes singular on this surface and the interior is not defined at all. 
As such this spacetime may represent essentially a mass-particle rather than a black hole 
in an expanding universe. For further properties and problems associated with the work 
of McVittie, we refer to Sussman[ll]. There are also studies in the literature based on 
the so called 'Swiss-cheese model'. Einstein and Straus[lO][12] constructed a model which 
comprises a cavity enclosing a Schwarzschild vacuum spacetime which includes the black 
hole; exterior to the cavity is the Friedman cosmological spacetime. The above two models 
have been employed to study the influence of the cosmological expansion on planetary or­
bits as was done, for instance, by Gautreau[13]( see also Brauer[14]). This study has been 
extended to the case of a slowly rotating black hole by Chamorro[15]. 

All the above models essentially contain cavities. This shortcoming is remedied by the 
Vaidya spacetime. The Vaidya spacetime is of a very special kind in that it connects the 
black hole and the Einstein universe. The regular black holes form a member of the family 
represented by the Vaidya metric. In the limit we do obtain the regular black holes. This 
is not possible, for instance, for models having the De Sitter universe as background. Thus 
the Vaidya family provides the best prototype for our investigations. 
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1.6 The Vaidya Cosmological-Black Hole Metric 

The Vaidya cosmological-black hole metric which we shall be dealing with was derived 
by Vaidya in 1977. We may point out that this is in no way related to the Vaidya radi­
ating metric given by him earlier. His approach towards obtaining the metric is to take 
any suitable background metric and to make a transformation to rotating spheroidal co­
ordinates. By making certain adjustments, he then arrives at the cosmological black hole 
metric. In the limit as we have noted earlier, we recover the usual black hole metric and 
the metric of the Einstein universe. The energy-momentum tensor is derived through the 
Einstein field equations. In the present thesis we confine ourselves to the Einstein universe 
as background. 

1.7 Outline of the Present Investigations 

In the present thesis we study both the Vaidya-Einstein-Schwarzschild and the Vaidya­
Einstein-Kerr spacetimes. In Chapter 2, we investigate some physical effects in the VES 
spacetime. These include the classical tests namely the gravitational redshift, perihelion 
precession and light bending and a study of the geodesics. We move on to the VEK space­
time in Chapter 3 focusing on the geometry and physics of the event horizoll. By computing 
the equatorial and polar circumferences we examine the oblateness of the horizon as a func­
tion of the background parameter. We discuss the behavior of the surface area and the 
angular velocity of the horizon as the background parameter is varied. We compute the 
Gaussian curvature and discuss conditions for embedding the horizon in Euclidean space. 
This will be followed by an investigation of some physical effects in the VEK spacetime 
in Chapter 4. These include circular geodesics and the gyroscopic precession. In Chapter 
5, we study the Carter constant and the Petrov classification of the VEK spacetime. We 
construct the Killing tensor, the Killing spinor and the Killing-Yano tensor. In Chapter 6, 
we investigate the structure of the geodetic particle angular momentum analogues in the 
VEK spacetime by means of the Killing-Yano tensor. Chapter 7 contains a brief summary 
and conclusion of this thesis. Throughout this work we compare and contrast the results 
obtained in the case of black holes in non-fiat backgrounds with that of their asymptotically 
fiat background counterparts. 



Chapter 2 

The Vaidya-Einstein-Schwarzschild 
Black Hole: some physical effects 

2.1 Introduction 

In the previous chapter we discussed the motivation underlying our investigations on black 
holes in non-flat backgrounds. We elucidated the reasons for choosing the Vaidya cosmo­
logical spacetimes as being the most suitable spacetimes for our studies. In the present 
chapter we take as a starting point, a special case of the Vaidya cosmological spacetimes. 
This is the spacetime of the static, spherically symmetric Schwarzschild black hole in the 
background of the Einstein universe. As mentioned in Chapter 1, Nayak, MacCallum 
and Vishveshwara[3] constructed a composite static spacetime called the Vaidya-Einstein­
Schwarzschild (VES) spacetime, as an example of a black hole in a non-flat background. 
As a physical effect they studied the behaviour of scalar waves in this spacetime. 

We now study some more physical effects such as the classical tests and geodesics in the 
YES spacetime[21]. 

The organization of this chapter is as follows. In Section 2.2, we describe the YES metric 
as given in [3] and outline the salient points that led to the construction of the composite 
spacetime. In Section 2.3, we decompose the YES metric into a background and a black 
hole component. This is analogous to the expression of the Kerr metric in terms of Kerr­
Schild coordinates, as will be clarified in the same section. This 'background-black hole 
decomposition' allows for a convenient separation of the effects due to the background 
spacetime and due to the black hole respectively. This type of decomposition is found 
to be useful and instructive in discussing physical effects as well. As an example we 
consider the geodesic Lagrangian. We may point out that this decomposition would be of 
considerable utility if one has to deal with the Kerr black hole in the background of the 
Einstein universe as we shall see in Chapter 6. Section 2.4 comprises the computations 
of the classical tests, namely the gravitational redshift, the perihelion precession and the 
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bending of light, modified by the non-flat background spacetime. Geodesics are studied in 
Section 2.5 and are shown to undergo significant changes because of the background of the 
YES spacetime as compared with the usual Schwarzschild spacetime. This study includes 
the structure of circular geodesics and the classification of geodesics in general. Section 2.6 
carries some concluding remarks. 

2.2 The Vaidya-Einstein-Schwarzschild (VES) Space­
time 

The Kerr metric in the background of a homogeneous model of the universe rather than in 
the standard Minkowskian background was given by Vaidya[2]. This metric ccntains both 
the Kerr metric and the metric of the Einstein universe as limiting cases. The special case 
of this metric, the Schwarzschild metric in the background of the Einstein universe has 
been investigated in detail by Nayak, MacCallum and Vishveshwara[3] who constructed a 
composite spacetime called the Vaidya-Einstein-Schwarzschild (VES) spacetime. We take 
this YES spacetime as our starting point, the metric of which may be presented as 

ds2 = (1 - 2M ) dt2 _ (1 _ 2M )-ldr2 _ R2 sin2 ( ~) (d(j2 + sin2 (J d¢>2) (2.1) 
ves R tanCfi) R tan( i) R 

where, M is the mass parameter and the coordinates range from 0 :5 r / R < 7r, 0 < (J :5 7r 

and 0 :5 ¢> :5 211". Here, M is termed the mass parameter because in order to define it 
rigorously one requires the spacetime to be asymptotically flat. Nevertheless, All indeed 
red uces to the mass of the Schwarzschild spacetime in the limiting case of R -4 00 as we 
shall show below. 

This metric incorporates both the Schwarzschild black hole and the Einstein universe as 
limiting cases. As R goes to infinity, we obtain the Schwarzschild spacetime 

and as lV! goes to zero we obtain the Einstein universe 

(2.3) 

The parameter R represents the influence of the cosmological background on the black 
hole. Smaller the value of R, greater the background influence. In view of this we shall 
denote R as the ba.ckground parameter, which originally started off in the formalism as 
the scaling parameter in the Einstein universe. The background can also be viewed simply 
as matter distribution characterized by R. The event horizon of the black hole is at 

Rtan(r/R) = 2M (2.4) 
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Returning to the metric(2.I), the metric of the interior of the event horizon is taken to be 
that of the Schwarz schild vacuum with mass parameter Ms. The metric of this region is 
therefore 

ds~ = (1 - 2~s) dt2 - (1 _ 2~s )-ldr2 _ R2 sin2 ( ;) (d()2 + sin2 (] d(2) (2.5) 

In ref[3], it has been shown that the metrics(2.I) and (2.2) can be smoothly matched 
across the event horizon. In their paper the authors use Kruskal coordinates for the vac­
uum Schwarzschild and the YES metric in order to perform the matching. We summarize 
the essential steps below. 

The Kruskal form of the YES line element is given by 

ds2 = ( 4MR2)2 1 e-r/2MdU dV _ (Rsin(rIR))2do.2 (2.6) 
4M2 + R2 Rsin(rIR) 

The Kruskal line element for the Schwarzschild vacuum spacetime 

(2.7) 

may be recovered from equation (2.6) by the limit R = 00. 

The horizon of the YES metric is at r = ro where 2M = R tan(rol R). To match to 
Schwarzschild at the horizon the angular variables part requires 2Ms = R sin( rol R). Using 
r' = R sin (r I R) as the radial variable in the YES region both the fj and V of each of 
the metrics may be rescaled by constant factors 4Mslve and 4MR2e-ro/4M 1(4M2 + R2) 
respectively, giving new coordinates U, V, to reduce the metrics to the forms 

(2.8) 

(2.9) 

Then we see the metric is continuous if we identify r s and r' at the future horizon 
U = 0, r' = ra = 2Ms = Rsin(ro/ R), r = ro. 

The derivatives of the metric coefficients will match if 

1 dr 1 
--=-- (2.10) 
2M dr' 2Ms 

at the horizon, but ;;, = II cos(r I R) and 21. = RSin(~o/R)' Therefore we obtain 

1 1 
2M cos(rol R) - Rsin(ro/ R) 

(2.11) 

This is consistent hecause at the horizon 2M = Rtan(ro/R). 
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Matching the metric component g33 yields the relation between the Schwarzschild vacuum 
mass Ms and the YES mass M 

(2.12) 

This clearly exhibits the influence ofthe cosmological matter distribution on the Schwarzschild 
vacuum black hole mass. Since it is required that 2Ms ::::; R the length scale in the exterior 
places a bound on the black hole mass. 

Next we see that at r/R = 7r/2 the metric (2.1) reduces to that of the Einstein universe. 
Here it is natural to match the Einstein universe given by equation(2.3) to the spacetime of 
(2.1). It has been shown that the metric components automatically match bu~ the deriva­
tives do not, giving rise to a surface distribution of matter. We have thus the composite 
YES spacetime which consists of a vacuum black hole interior which is matched across 
the event horizon to the spacetime of Vaidya, which in turn is matched to the Einstein 
universe. In other words the Vaidya spacetime now consists of three sectors namely the 
vacuum Schwarzschild sector, the Vaidya sector and the Einstein sector. We shall use this 
terminology whenever convenient. 

The Schwarzschild spacetime is asymptotically flat whereas the YES spacetime is asymp· 
totically Einstein. This may be seen directly by setting the radial coordinates rand 
R tan{r / R) to infinity in the respective metrics. However, in order to exhibit this feature 
clearly and also with a view towards future generalizations, in particular, having to do 
with the structure of geodetic angular momentum in the spacetime of the Kerr black hole 
in non-flat backgrounds in Chapter 6, we examine this feature in some detail. 

2.3 The Background-Black Hole Decomposition 

In order to study the effects due to the background and the black hole clearly, it is con­
venient to introduce the background-black hole decomposition. This idea is implicit while 
expressing the Kerr metric in Kerr-Schild coordinates but has not been exploited fully 
especially in the case of the Schwarzschild metric. This decomposition enables us to neatly 
separate out the various geometrical and physical quantities associated with the spacetime 
into background and black hole quantities. Thus attention may be given to either the 
background spacetime or the black hole in order to study or generalize the properties of 
the spacetime. In particular, the background may be extended from a flat into a non-flat 
one as will be shown in the following sections. In Chapter 6, we shall discuss this in greater 
detail. 
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2.3.1 The Illetric 

For the sake of completeness we first consider the decomposition of the Schwarzschild 
metric. It is instructive to carry out this procedure for the Schwarz schild metric on its 
own rather than consider it as a special case of the Kerr metric in the Kerr-Schild form. 
Accordingly we begin with the Schwarzschild metric 

The corresponding Newman-Penrose (NP) null tetrad (l, n, m, m) is given by 

r2 
ls - l!dxa = dt - .6. dr 

..6. 
ns - n!dxa = 2r21s + dr 

ma - m!dxa = - ~(dO + isin Od¢) 

ma - m!dxa = - ~(dO - i sin ()d¢) 

where 
..6. = r2 - 2ft/f sr 

In terms of the above tetrad, the metric assumes the form, 

ds~ - 2(ls ® ns - ms ® ma) 

9s t'nS + lSns _ mS'ffi' _ msms 
ab- ab ba ab ba 

We make a transformation ° 2Afs r2 dx =dt- --dr 
r .6. 

which enables us to express the metric as 

with the corresponding NP tetrad 

The flat metric 

ls - dxo - dr 
6. 

ns - 2r2 (dxO - dr) + d'/' 
r 

rns - - ,.f2(dO + isinfJd¢) 

rna - madxa = - ~(dO - isin Ode/» 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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on the other hand, has the NP tetrad 

1, - d,x0 - dr 
1 

nf - 2(dxO + dr) 

mf - - ~(dO + i sin Od¢) 

m, - -~(dO - i sin Od¢) 
v'2 

(2.21) 

The above transformation allows us to express the NP tetrad of the Schwarzschild metric 
entirely in terms of the tetrad of the flat background spacetime. 

ls - 1J 
Ms 

ns - n,- -lJ 
r 

rns - mJ 

rns - mJ (2.22) 

And the metric splits into a flat background metric and a term involving the tetrad of the 
flat background spacetime 

ds~ - halJ ® If, 

- TJa.b - hsl!l{ (2.23) 

where, hs = 2Ma/r and f refers to the flat background. We see that the information about 
the black hole is contained entirely in just one of the tetrad, ns. 

As r goes to infinity, the second term goes to zero and the metric coincides with the 
metric of the flat background spacetime. This shows that the metric is asymptotically 
flat. Turning now to the case where we have an asymptotically Einstein background, by a 
construction closely following the Schwarzschild case, we arrive at the decomposed metric 
for the YES spacetime. 

dS~es = ds~ - hle ® le 

where, h = 2M / R tan( r / R), e refers to the Einstein background. 
The corresponding NP tetrad is 

lves 
r:2 

- dt - =dr 
6.. 

6-
nvea - 2r2lves + dr 

mves - - ~(dO + i sin fJdcp) 

mvea - - ~(dfJ - isinfJdcp) 

(2.24) 

(2.25) 
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where, 

'f2 - R2 sin2 (r / R) 

r. - R sin(r / R) cos(r / R) 

D. - 'f2 - 2Mr. = 'f2(1 - 2A1/Rtan(r/R)) (2.26) 

A generalized transformation 

2M 'f2 

axo = dt - Rtan(r/R) D. dr (2.27) 

enables us to express the YES metric as a combination of a non-flat Einstein metric and a 
term involving the NP tetrad of the Einstein background spacetime. 

the NP tetrad being given by 

lues -

nves -

mves -

mves -

le 

ne -

me 

me 

M l 
Rtan(r/R) e 

(2.28) 

(2.29) 

(2.30) 

As R tan (r I R) goes to infinity, the second term in the YES metric goes to zero and the 
metric coincides with the metric of the Einstein universe. This shows that the metric is 
asymptotically Einstein. As in the Schwarzschild case this form of the metric is known 
as the generalized Kerr-Schild form[lO], the term 'generalized', referring to the non-flat 
nature of the background spacetime. It is interesting to observe that the YES metric may 
be expressed as a combination of the flat metric and two other terms. This is because the 
Einstein metric may be written as 

d ,2 = (d 0)2 _ (-1=)2 _ (d-)2 _ (d-)2 _ (?fax + yay + zdZ)2 
St~ X u.X y Z (R2 -2 -2 -2) -x -y -z 

where x, y and z are cartesian-like coordinates defined by 

whence, 

?f - Rsin(r/R) cos¢sin() 

11 - R sin( r / R) sin ¢ sin () 

z Rsin(r/R) cose 

xO - u+r 

d 2 d 2 (aJax + yay + Zdz)2 
S = sf-e (R2 -2 -2 -2) -x -y -z 

(2.31) 

(2.32) 



Thus the YES metric may be expressed as 

2 2 {xax + ydy + ZdZ)2 
dsves = ds f - (R2 -2 -2 -2) - hie ® ie -x -y -z 
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(2.33) 

This clearly shows that as R goes to infinity the YES metric goes over into the metric of 
the vacuum black hole 

2 2 Ms 
dss = ds f - 2-;-l/ ® if (2.34) 

As M goes to zero, it goes over into the metric of the Einstein universe 

ds2 = ds2 _ (xdx + ydy + ZdZ)2 
ves f (R2 _ x2 _ y2 _ Z2) (2.35) 

It is expected that the background-black hole decomposition may be carried out in the 
case of black hole spacetimes other than the Einstein universe facilitating thereby to find 
new solutions of black holes in non-flat backgrounds, especially in the background of an 
expanding universe. 

2.3.2 The geodesic Lagrangian 

Proceeding in the spirit of the previous subsection, we decompose the test particle La­
grangian and write it as the sum of the background and the black hole terms. The back­
ground term may be thought of as a kinetic energy term and the black hole term may be 
thought of as a potential energy term, in analogy with the usual Lagrangian formalism. 
This allows us to decompose the conserved quantities into corresponding background and 
black hole terms as well. 

It is instructive to recall the usual geodesic Lagrangian method. As is well known, the 
equations governing the geodesics in a spacetime with the line element 

(2.36) 

can be derived from the Lagrangian 

(2.37) 

where T is an affinc parameter which is usually identified with the proper time, for time-like 
geodesics. 

For the YES spacctime, the Lagrangian is 

.c = ~[(1 - 2M ) £2 _ (1 _ 2M )-11'2 _ R2 sin2(!-.-) (iP + sin2 () ¢2)) 
2 R tanCfl) R tan(-fi) R 

(2.38) 

where the dot denotes differentiation with respect to T. As in the Schwarzschild case, 
without loss of generality, we confine the geodesics to the equatorial plane defined by 
() = IT /2. We then have 
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1 [ 2M)'2 ( 2M -1 .2 2. 2 ( r) . 2] 
C = -2 (1 - R ( r) t - 1 - R ( I" ) ) r - R sm R ¢ tan R tan R 

(2.39) 

The above Lagrangian has two conserved quantities coming from the cyclic coordinates t 
and ¢, defined by 

(1 - 21\1 )i = E 
Rtan(r/R) 

(2.40) 

the energy and 
(2.41) 

the azimuthal angular momentum. In terms of these constants, the Lagrangian becomes 

1 E2 
C = 2"[1 - 2 lvl/ R tan(r/ R) 1- 2M/Rtan(r/R) 

(2.42) 

For time like geodesics, we have C = ~(ds/dr)2 = 1, and hence 

E2 f2 

1- 2lvI/Rtan(r/R) 1- 2M/Rtan(r/R) 
(2.43) 

which immediately gives 
(2.44) 

where 
2M L2 

V 2 (r) = (1- Rt (1"))(1 + R2 . 2 1") (2.45) 
an R sm R 

is the effective potential for particle motion described by the above Lagrangian. 

2.3.3 The decomposed geodesic Lagrangian and conserved quan­
tities 

The background-black hole decomposition of the test particle Lagrangian is obtained by 
taking the corresponding decomposed metric and forming the Lagrangian as 

(2.46) 

which may be written as 
(2.47) 

with the Lagrangia.n for the test particle in the Einstein universe alone given by 

1 . r . 
Ce = 2"[(XO)2 - 1'2 - R2 sin2( R) ¢2] (2.48) 

The conjugate momenta are 

(2.49) 
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and therefore 
pves = pe _ h(l xa)l a a a. a (2.50) 

where 
(2.51) 

and the two conserved quantities, the energy E and the azimuthal angular momentum L 
are therefore given by 

Eves - Ee - h(laxa)lo 

Lves - Le 

(2.52) 

(2.53) 

which indicates clearly that the energy receives a contribution from both the background 
and the black hole and that the azimuthal angular momentum is due only to the Einstein 
background. 

We shall see that the above decomposition will be more relevant when we study the classical 
tests. Here we exhibit plots of the effective potential for particle motion after noting that 
the L appearing in equation 2.45 is just Le. 

2 

1.5 

R=10 

1 

0.5 

o~~ __ ~ ____ ~ ____ ~~ __ ~ ____ ~ ____ ~~ 
o 2.5 5 7.5 10 12.5 15 

Figure 2.1: Plot of the effective potential V(r) for M = 1, L = 6 

The qualitative features of the orbits may be discerned from the plot of the effective po­
tential against r. A detailed discussion of such a plot for the Schwarzschild spacetime is 
given in various standard sources [16] and the same may be done for the present case. As 
a detailed discussion based on a different approach will be given below we merely present 
here the plot for various values of R, indicating the degree of cosmological influence. At 
small values of R, the influence of the cosmological background is so large that there is an 
enormous modification in the nature of the orbits. At large values of R the orbits tend to 
their Schwarzschild character as the cosmological influence decreases. 
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2.4 The Classical Tests 

A study of the classical tests, namely the gravitational redshift, the perihelion precession 
and light bending, of the YES spacetime shows how the non-flat nature of the back­
ground spacetime affects the Schwarzschild results. The non-flat background manifests 
itself through the parameter R. This is more so in the case of the perihelion precession 
and light bending than in the case of the gravitational redshift to which we turn first. 

2.4.1 The gravitational redshift. 

It is instructive to study the gravitational redshift first as it is the simplest among the 
classical tests. In the usual Schwarzschild case we can find the ratio of the frequencies 
of light emitted at a certain point in the spacetime and observed at another, to be given 
by[16] 

lJalVE = (..;gQO)EI(V9oQ)a = V(l- 2Mslr)EIVU- 2Mslr)a (2.54) 

where, lIa and liE are the frequencies of light observed and emitted, with subscripts 0 and 
E referring to the observer and emitter, respectively and 900 the metric tensor component. 

In the YES case, however, due to the presence of different sectors, the effect becomes much 
more interesting. We can consider the gravitational redshift seen by a static observer in 
the Einstein sector due to light emitted in the Vaidya sector. In the general case, the ratio 
of frequencies is given by 

(2.55) 

and in terms of the Schwarzschild mass M s , this becomes 

( )
l~ 

(1- j 2M, J(Rtan(rJR))), 
1- 2MilR2 

( )

-1/2 

X (1 - j 2M, J(Rtan (r J R))), 
1- 2MlIR2 

(2.56) 

When light is emitted from a point in the Vaidya sector 7r /2 < r I R < 7r and received by a 
static observer in the Einstein sector, we have 

(1- 2Ms I(Rtan(rIR)));1/2 
)1- 4M;/R2 

(2.57) 

When both the observation and the emission points are in the Einstein sector the redshift 
is absent as is expected. 



20 

2.4.2 Perihelion precession 

In order to consider the effect of perihelion precession in the YES spacetime, and to 
make the discussion analogous to the Schwarzschild case, it is convenient to define u: = 
I/Rtan(r/R) and do a similar calculation as in that case. the orbit equation for time-like 
geodesics is given by, [16] 

(].2u: _ 1 1 -2 
d¢2 + u = M (L~ + R2) + 3M u (2.58) 

By treating the second term on the right hand side as a perturbation, we obtain the solution 

_ 1 1 2 1 1 
u = M(L2 + R2)[1 + ecos¢(I- 3M (L2 + R2))] 

e e 
(2.59) 

where e is a constant emerging after integration, the eccentricity of the orbit as in the 
Schwarzschild case. 

The perihelion shift is 
2( 1 1 ) 

fl.¢ = 3M L2 + R2 
e 

(2.60) 

which in terms of the mass Ms is 

2( 2/ 2)-1( 1 1 ) fl.¢ = 3Ms 1 - 4ms R L2 + R2 
e 

(2.61) 

and to second order in 1/ R may be expressed as 

6,,J.. = 3M; 6,,J.. 3M; (1 4M;) 
'f' L2 'f's + R2 + L2 

s e 
(2.62) 

where the subscript s indicates the Schwarzschild quantities. Thus the presence of the 
cosmological background, increases the perihelion precession. 

2.4.3 Bending of light 

The discussion here is similar to that in the above section. The orbit equation for null 
geodesics[16] is given by 

~u_M -2 
d¢2 +u = R2 +3Mu (2.63) 

For small values such that the second term on the right hand side can be treated as a 
perturbation, we obtain the solution 

__ M cos ¢ 3M2. 3M 2 . 2 
U - R2 + -b- + R 2b ¢sm¢+ V(cos ¢+ 2sm ¢) (2.64) 

where b is the impact parameter usually taken as the radius of the source. 



Introducing cartesian-like coordinates 

we obtain 

x = Rtan(r/R) cos 4> 

y = R tan (r / R) sin 4> 

2M M 
x = b ± [-b- + R2 (b + 3M)]y 
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(2.65) 

(2.66) 

whence, the deflection angle-the difference between the angular coefficients of the two 
asymptotes of the above equation-, is 

2M M 
~ = 2[-b- + R2 (b + 3M)] 

Which may be expressed in terms of the mass Ms as 

and to second order in 1/ R we have 

bs 2Ms ( 2M;) 
~ = b~s + R2 b+ 3Ms + -b-

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

where bs represents the Schwarzschild quantity obtained as a limiting case when R -+ 00. 

We see that the presence of R causes an increase in the bending of light. This effect is 
analogous to that in perihelion precession. 

2.5 Geodesics in the YES spacetime 

A study of the geodesics is the direct route towards gaining qualitative and quantitative 
insight into the nature of the spacetime. First we study circular geodesics. Next we present 
a brief classification of the geodesics in general. 

2.5.1 Circular geodesics 

We first investiga.te the simpler case of circular geodesics by the method of Killing vectors 
given by Iyer and Vishveshwara[20]. The YES metric admits a time-like Killing vector ea 

and a rotational Killing vector 'f]Q. 

We form the combination 

~a = (1,0,0,0) 

'f]Q = (0,0,0,1) (2.72) 

(2.73) 
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where w is the angular velocity. 

Confining to the equatorial plane, we obtain by equating the derivative with respect to 
r of the norm XUXu to zero, the generalized Kepler law in the Vaidya sector of the YES 
spacetime 

which in terms of the schwarzschild mass Ms is given by 

w2 = Ms(1 - 4M; / R2t 1/ 2 /(R3 sin3 ( ~) cos( ~)) 

For R going to infinity we recover the usual Kepler law 

w2 = Ms/r3 

for the Schwarzschild spacetime. 
For M going to zero, ie in the Einstein universe 

w2 = 0 

and there are no circular geodesics as is expected. 

Let us consider the time-like and null circular geodesics, the condition being 

XUXu = 900 + w2933 ~ 0 

(2.74) 

(2.75) 

(2.76) 

(2.77) 

(2.78) 

This and the generalized Kepler law together lead to the existence of null circular geodesics 
at the two coordinate values: The inner null circular geodesic defined by 

r .1 12M2 
Rtan R = 6M/[1 + y1- Ji2l (2.79) 

and the outer null circular geodesic defined by 

r .1 12]\1[2 
Rtan R = 6M/[1- y1- Ji2l (2.80) 

with R2 ~ 12M2. 

Time-like circular geodesics exist 'sandwiched' within these two limits. There are no cir­
cular geodesics beyond these values. This is analogous to the effect in the Ernst space­
time, where two null circular geodesics are present as has been pointed out by Nayak and 
Vishveshwara[18]. As R becomes large the inner null circular geodesic approaches the 
Schwarzschild value r = 3Ms and the outer null circular geodesic approaches infinity. An 
interesting feature to note here is that of the centrifugal force reversal, which has been 
discussed by Prasanna[19]. The centrifugal force reverses at the inner null circular orbit 
by becoming inward. This is analogous to what happens in the case of the Schwarzschild 
spacetime. In the present case, such a reversal takes place at the outer null orbit also, as 
in the case of the Ernst spacetime. Since the Schwarzschild case ha.s a null circular orbit 
at only r = 3Ms we see that the effect of the Einstein cosmological background is in bifur­
cating the null circular orbit of the Schwarzschild spacetime into two thereby completely 
altering the naturn of the Schwarzschild circular geodesics. 
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2.5.2 Geodesics and their classification 

We now present a classification of the geodesics[17]. Going back to the orbit equation 
considered in Section 4, we write it as 

(dU)2 
dif> = I(u) (2.81) 

where 
1(-) - M-3 _2 2M _ (1 - E~es 1 ) 

u - 2 u - u + L2 U - L2 + R2 
e e 

(2.82) 

The nature of the roots of the cubic equation 

1(11) = a (2.83) 

determines the nature of the geodesics. 

We take 'iLl, 112 and U3 to be the roots and refer to Chandrasekhar[17] for details of the 
analysis. 

We note first the features of the time-like bound orbits which require that 

1- E~e8 1 a 
L2 + R2 > 

or, in the background-black hole decomposed form 

1 - E; 1 2hEe{la xa ) - h2(laxa)2 
L2 + R2 + L2 > a 

e e 

which contains the special cases 

1 - EJ 2hEj {laxa ) - h2(laxa )2 a 
L2 + L2 > 

j f 

corresponding to the Schwarzschild case, with 1 denoting the fiat quantities and 

1- E2 1 
L2 e + R2 > a 

e 

corresponding to the case of the Einstein universe. 

Without going into extensive details, we list the various cases: 
There are five cases: 

(2.84) 

(2.85) 

(2.86) 

(2.87) 

Case(1): For a < U1 < U2 < U3, there exists two distinct orbits confined respectively, to 
the intervals 
(a): 111 :::; 11 :::; U2, an orbit which oscillates between two extreme values of the radial coor­
dinate u-1 = Rtan(r/R), which we may call the orbit of the first kind and 
(b): 11 2: U3, an orbit, which, starting at a certain aphelion distance, plunges into the 
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singularity at R tan(r / R) = 0, which we may call an orbit of the second kind. 
Case(2): The orbit of the first kind is a stable circular orbit and the orbit of the second 
kind plunges into the singularity. 
Case(3):The orbit of the first kind, starts at a certain aphelion distance ul1 and approaches 
the circle of radius us1 , asymptotically, by spiralling around it an infinite number of times. 
The orbit of the second kind spirals away from the same circle and plunges into the singu­
larity. 
Case( 4): There is an unstable circular orbit of radius ul1 = U2 1 = Us 1. 

Case(5): All orbits, starting from certain aphelion distances plunge into the singularity. 
We note next the features of the time-like unbound orbits which require that 

1 - E~ 1 2hEe(lo.xo.) - h2(lo.xo.)2 0 
L2 + R2 + L2 < 

e e 
(2.88) 

There are only three cases: 
Case(l): There exist orbits of the first kind restricted to the interval, 0 < U S U2 and 
orbits of the second kind with u 2::: ua 
Case(2): Orbits with U2 = U3 which approach asymptotically a common circle, spiralling 
around it an infinite number of times. 
Case(3): Orbits which all plunge into the singularity. 
The above cases are qualitatively analogous to those occurring in the usual Schwarzschild 
spacetime. The quantitative differences which are considerable, are not revealed by means 
of this analysis. However, the null geodesics exhibit a drastic modification even in their 
qualitative features. To see this we consider the orbit equation for null geodesics, 

du 
(d</»2 = g(u) (2.89) 

where 
(_) -3 _2 2M _ (1 1 ) 

g U = 2lvI U - U + R2 U + D2 - R2 
ves 

(2.90) 

with 
Dves = Le/ Eves = Le/(Ee - h(lo.xa)) 
In the usual Schwarzschild case, the corresponding polynomial g( u) is just 

(2.91) 

which is obtained from the above equation by tending R to infinity. Here, the nature of 
the roots depend on the sign of the term 1/ D; which being always positive, leads to a 
situation similar to the time-like unbound orbits, giving rise to three cases only. 

In the YES case, however, the nature of the roots of the corresponding polynomial equation 
depend on the sign of the term (1 / D~es -1 / R2) which can take on both positive and negative 
values depending on the value of R and leads to a situation similar to that of the time­
like bound as well as time-like unbound orbits giving rise to eight cases. This makes the 
qualitative behaviour of the null geodesics completely different from that occurring in the 
Schwarzschild spacetime. As has been already mentioned, the effect of the background in 
altering physical phenomena occurring in the Schwarzschild spacetime is considerable. 
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2.6 Concluding Remarks 

In the present chapter we have studied some physical effects in the composite Vaidya 
cosmological-black hole spacetime constructed by Nayak, MacCallum and Vishveshwara. 
This YES spacetime is asymptotically non-flat but is time independent. The event horizon 
is defined as a Killing horizon. By studying physical effects in this spacetime, we have 
shown that the introduction of the cosmological background modifies the Schwarzschild 
results considerably. In contrast to the Schwarzschild case, the nature of the null geodesics 
is drastically affected and the time-like circular geodesics depart significantly from their 
Schwarzschild counterparts. Regarding the classical tests- the gravitational redshift is 
modified from that in the Schwarzschild spacetime and the perihelion precession and light 
bending undergo an increase because of the background spacetime. These investigations 
allow us to conclude that the background spacetime has a clearly noticeable influence on 
the physical phenomena occurring in this spacetime. 



Chapter 3 

Geometry of the 
Vaidya-Einstein-Kerr Black Hole 

3.1 Introduction 

In the previous chapter we studied the Vaidya-Einstein-Schwarzschild black hole which 
represents the Schwarzschild black hole in the background of the Einstein universe. By 
investigating some physical effects such as the classical tests and geodesics we showed that 
the non-flat background leads to significant modifications of the Schwarzschild counter­
parts. Apart from the pronounced modifications of the classical tests, the nature of the 
circular geodesics as well as the classification of geodesics in general is completely altered 
by the presence of the background. At the same time, even in the asymptotically flat case 
it is well known that the introduction of rotation brings about profound changes. Thus 
taken together the above considerations allow us to expect that the inclusion of rotation 
in the asymptotically non-flat case would lead to interesting effects. In the present chaptel 
we take up this line of investigation by studying the Kerr black hole in the background of 
the Einstein universe. 

The Kerr black hole in the background of the Einstein universe is a stationary, axisymmetric 
black hole surrounded by matter distribution. As in the spherical case the cosmological­
black hole spacetime given by Vaidya[2] has been found to be most suitable for our inves­
tigations. We shall call this the Vaidya-Einstein-Kerr(VEK) spacetime in analogy with its 
Schwarzschild counterpart referred to as the YES spacetime earlier. The scaling parameter 
of the Einstein universe characterizes the influence of the non-vacuum background which 
is no longer asymptotically flat. We show that several properties of black holes are signif­
icantly modified by the background effects. These properties include the structure of the 
ergosphere, the geometry of the event horizon as well as its angular velocity. 

\Ve begin this study in Section 3.2 where we describe the VEK metric as given by Vaidya 
and cast it in the Boyer-Lindquist form. We then present the energy momentum tensor 
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and discuss the structure of the event horizon and the stationary limit surface as modified 
by the background. In Section 3.3, we study the effect of the background on the shape of 
the black hole by computing the equatorial and polar circumferences. In Section 3.4, we 
investigate the surface area of the horizon. In Section 3.5, we discuss the angular velocity 
of the horizon. In Section 3.6, we examine the surface gravity and the 'extreme' VEK black 
hole. In Section 3.7, we consider the Gaussian curvature and the embedding of the surface 
of the horizon in Euclidean space. Section 3.8 comprises some concluding remarks. 

3.2 The Vaidya-Einstein-Kerr (VEK) Spacetime 

The Kerr metric represents the spacetime of a stationary, axisymmetric black hole. This 
spacetime is time independent and asymptotically fiat. We wish to retain time indepen­
dence but relax asymptotic flatness. A specific example of such a spacetime is the VEK 
spacetime given by Vaidya. He generalized the Kerr metric by extending the background 
spacetime from a flat one to a homogeneous model of the universe. Thus his cosmological 
rotating black hole metric represents the spacetime of a stationary, axisymmetric black 
hole in an asymptotically non-flat background. This metric yields, as limiting cases, both 
the Kerr metric and the Einstein universe expressed in spheroidal polar coordinates. The 
metric, in general, can be considered as representing the interaction between the black hole 
and the background. 

Since the original paper by Vaidya is not easily accessible and for the sake of completeness 
we briefly outline Vaidya's method in arriving at the VEK metric. 

3.2.1 The Vaidya cosmological-black hole metric 

Starting with the metric of the Einstein universe 

ds~ = (dXO)2 - (dX)2 - (dy? - (dZ)2 - i~~ +_!dy ~ zdZ~; 
-x -y -z 

Vaidya makes a transformation from (x, y, z) to spheroidal polar coordinates (r, (J, ¢) 

x + iy - (Rsin(r j R) + ia cos(r j R» sin (J ei~ 
Z - Rsin(rjR)cos(J 

under which the Einstein metric becomes 

In terms of the retarded null coordinate u = t - r this takes the form 

(3.1) 

(3.2) 

(3.3) 



which forms the background of the VEK metric given in[2l 

where 

ds2 = 2(du + asin2 (}d~)dt - (1 + 2Mp)(du + asin2 (}d~)2 -

2( df]2 . 2 -2) 
M 1 2· 2 () / R2 + sm (}d¢ -a sm 

_ (R2 - a2) sin2 (r / R) + a2 cos2 () 

Rsin(r / R) cos(r / R) 
M2 

28 

(3.5) 

(3.6) 

In the above, M and a are the 'mass' and the 'angular momentum' parameters respectively. 
These quantities are well defined in an asymptotically flat spacetime and it is not clear 
at the outset as to how to extend it to the non-fiat case. Nevertheless, for the sake of 
convenience, we continue to use the terminology keeping in mind that these parameters 
go over to their corresponding limiting counterparts as the background influence vanishes. 
In the above, the coordinates range from 0 < r / R < 7r, 0 < () < 1r and 0 < ¢ < 211". At 
() = 1r /2 and r / R = 1r the metric is singular. The former is present in the Kerr case as well 
and may be taken care of by going over into generalized-Kerr Schild coordinates in analogy 
with the Kerr case. The latter may be resolved by matching the Vaidya exterior to the 
Einstein universe. As in the YES case we match to the Einstein universe at r / R = 1r /2. 
At this radius the VEK line element reduces to . 

a2 sin2 () 
ds2 = dt2 - (1 - R2 )dr2 - R2(d(}2 + sin2 (}d¢>2) (3.7) 

which is the line element of the Einstein universe expressed in spheroidal polar coordinates. 
The metric components of the two spacetimes automatically match and the first derivatives 
of the tt parts is discontinuous, thereby giving rise to surface distribution of matter. The 
jump in the fundamental form of the r = const surfaces is 

MR 
[Kttl = - (R2 _ a2 sin2 (})3/2 (3.8) 

which goes over to the YES counterpart 

as a -t o. 

M 
[Kttl = - R2 (3.9) 

The Vaidya cosmological-black hole metric includes both the Kerr spacetime and the space­
time of the Einstein universe as limiting cases. In order to see this feature clearly, it is 
convenient to cast the metric in the Boyer-Lindquist form. 



30 

And as M goes to zero we obtain the Einstein universe expressed in spheroidal polar 
coordinates 

(3.16) 

The parameter R represents the influence of the background on the black hole. In the 
spherical case of the YES metric, this parameter is unrestricted, ie the metric is regular for 
all values of R in the range 0 < R < 00. In the VEK case, however, we need the condition 

a<R (3.17) 

to ensure the regularity of the metric coefficients. 

3.2.3 The energy-momentum tensor 

The VEK metric represents a non-vacuum solution which is not asymptotically flat. The 
energy momentum tensor is determined through the metric via the Einstein field equations 

1 
'Rab - "2gab'R = fi,Ta.b (3.18) 

The energy momentum tensor is taken to be that of a perfect fluid which is given by 

Tab = (p + P )ua. Ub - P9ab (3.19) 

where ua = ~a /..;guo is the four velocity of a stationary observer and ~a is the tirnelike 
Killing vector field. The density and pressure are then given by 

"'P - ~(1 _ 21Vlz:) 
R2 7P 

"'P - -~(1 _ 2Atlz:) 
R2 7P 

(3.20) 

The stationary limit. is given by ~a~a = goo = 1 - 2JvI z:/p2 = 0 which shows that p ~ 0 but 
p :::; 0 everywhere outside the stationary limit and that both go to zero at the stationary 
limit. Nevertheless p+p ~ 0 outside the stationary limit so that the weak energy condition 
is satisfied which is reasonable. Furthermore p > Ipi and therefore the dominant energy 
condition is also satisfied. 

3.2.4 The event horizon and the ergosphere 

vVe now turn to study the structure of the event horizon as a function of the parameters 
(AI, a, R). 
We may remark that when we speak of the 'surface' of the black hole, we are dealing 
essentially with a sequence of spacelike slices through the event horizon represented by a 
null hypersurface. This gives a family of 2-geometries which, if closed, can be thought of 
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as the surface of the black hole. In general, these surfaces depend on the particular slicing 
chosen. Nevertheless, in the VEK case, as in the Kerr case [24], the 2-geometry of the 
surface of the horizon is independent of the slicing. Thus we may consider the surface of 
the VEK black hole without reference to the slicing. 

Since, therefore, the surface of the event horizon is a two dimensional manifold one would 
expect that only two parameters are needed to describe it. One way of doing this is for 
instance, by defining two new parameters in terms of the parameter R and then studying 
the geometry as a function of these parameters. We do not take this approach here as we 
wish to be able to go to the limiting cases of the Einstein and the YES black holes wherein 
AI = 0 and a = 0 respectively. If, on the contrary, we take, for instance, IV! = mR and 
a = OI.R we are led to the following restrictions. When m = 0 we have two possibilities, 
R --t 00 and M --t 0 giving the limiting case of the flat Minkowski metric expressed in ro­
tating coordinates. '\Then 01. = 0 we again have two possibilities R --t 00 and a -+ 0 giving 
the limiting case of the Schwarzschild metric. Clearly this is not suitable for obtaining the 
limiting cases of the Einstein and the YES metrics. 

The Boyer-Lindquist form of the VEK metric is particularly convenient for ca.lculations 
since orthogonal transitivity is manifestly inherent to this form of the metric. In these 
coordinates, we have the timelike Killing vector field ~ = a/at and the a..xial Killing vector 
field TJ = alar/> and the condition for orthogonal transitivity 

.,abcd ~ ~.n - .,abcdT] .,.., ~ - 0 

... ."b;c."d'/a - " b;c,/d."o. - (3.21) 

is satisfied. 

As has been shown by Greene, Schucking and Vishveshwara[2:3} there exists a globally 
hypersurface orthogonal vector field 

x = ~ + WoTJ (3.22) 

with, 

(3.23) 

Furthermore, the surface on which X becomes null (XaXa = 0) is itself a null surface. In a 
stationary spacetime like that of VEK this is indeed the event horizon and hence defines 
the black hole in the Einstein background. The condition Xo.Xa = fS./.fJ33 = 0 has a solution 

Rtan(r+/R) = M + ../M2 - a2 (3.24) 

where r + is the 'radius' of the outer event horizon. 

On the other hand, as we have already mentioned, the stationary limit is given by the 
condition 

(3.25) 



which has a solution 

!v! + ) M2 - (1 - a2 sin2 () I R2)a2 cos2 0 
R tan( r sl R) = -----'------r=======---­

)1 - a2 sin2 01 R2 
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(3.26) 

The ergosphere is the region between the event horizon and the stationary limit given 

1.5 

1 

0.5 

O~----;+-H-----r----~~~--~ 

-0.5 
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-1. 5 

-2 -1 o 1 2 

Figure 3.1: Plots of rs and r + corresponding to the stationary limit and the event horizon 
respectively for R = 0.6 ,1, 10 respectively going outwards from the centre. The R = 10 
plot is almost indistinguishable from the Kerr case(not shown). Here M = 1, a = 0.5. 

respectively by equations{3.24) and (3.26). 

In figure 3.1 we show the polar plots of fs and r + corresponding to the stationary limit 
and the event horizon respectively for different fixed values of R. These plots indicate the 
change in both the surfaces as R is varied. We see that for lower values of R, the shrinkage 
of both the stationary limit and the event horizon is more pronounced. 

In figure 3.2 we have constructed the polar diagram of the functions R tan{r81 R) and 
R tan(r +1 R) corresponding to the stationary limit and the event horizon respectively, for 
different values of R. Since Rtan(r+IR) is a constant for given values of M and a and 
coincides with the Kerr expression, the representation of the event horizon remains the 
same. However R tan{rsl R) changes with R. Hence, the plots clearly show the changing 
form of the stationary limit compared to the fiducial event horizon surface. As R increases 
the situation tends to that in the Kerr spacetime. For lower values of R the ergosphere is 
larger and more distorted than in the Kerr case. 

In the foregoing WP. have plotted the polar diagrams of the event horizon and the stationary 
limit only to giv(~ a feel for the changes that occur. We shall be considering the actual 
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Figure 3.2: Plots of R tan(rs / R) (the stationary limit represented by the solid curves), 
R tan(r +/ R) (event horizon represented by the dashed curves) for M = 1, a = 0.5 and 
different values of R. The values of Rare 0.6(top left),l(top right) and 10(bottom). 
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geometry by means of quantities which indicate more clearly the effect of the background. 
VVe shall now go on to discuss the effect of the background on the geometry of the event 
horizon. 

3.3 The Shape of the Event Horizon 

It is well known that there is a characteristic flattening of the poles and stretching of the 
equator when a fluid sphere is rotated. One would expect a similar effect in the case of 
t.he event horizon of a rotating black hole. The analogy with a rotating body is supported 
too by the fact that the angular velocity of the black hole is constant over the horizon. 
Smarr[24] investigated some rotational effects on the Kerr-Newmann black hole. For this 
purpose he introduced what he termed as the scale and the distortion parameters TJ and f' 
respectively. In this paper, when we refer to the work of Smarr, it will be with respect to 
the case of the Kerr black hole where the charge is zero. We shall define the scale and the 
dist.ortion parameters for the VEK horizon in analogy with the Kerr case as 

TJ = Jf~ + a2 - J(R2 - a2 ) sin2 (rjR) + a2 

. a a 
/3 = -Jrt + a2 V(R2 - a2) sin2 (1"j R) + a2 

(3.27) 

We ~ee that in the VEK case, the scale and the distortion parametns depend on t.he back­
ground parameter as well. 

w(~ have two possible approaches which we can take while studying the geomet.ry of the 
horizon. In the fin;t, approach, we hold R fixed and allow 77 and f3 to vary analogous to 
Smarr's original approach which is essentially equivalent to considering the effect of rota­
tion on the horizon. In the present case this is further modified by the presence of the given 
background. We may therefore use this approach merely in order to compare our results 
with those of Smarr in the Kerr case. But in order to get a feel for t.he actual influence 
of the background, it is preferable to deal with the basic parametrrs a nIld R explicitly 
H::; we shall dcscrib(~ below. However, we do not entirely give up t.h(' use of the scale and 
distortion pararnetNs but employ them, in particular, to classify thl' Gaussian curvature 
as in Section 3.7 

In the second approach, we do not use the parameters 71 and f3 but iIl~tcad, consider the 
(!xplicit dependence of the geometrical quantities on the parameters (£ and R. Here, in 
t.UrIl, we have two (~ffects which we term as the 'modulated effect' and the 'direct effect' 
III bot.h of which we take !If to be constant. In the ease of the modlllated effect., we vary 
t.he angular momentum parameter a for different values of R. Hen' the effect of rotation 
is modulated or controlled by the background parameter R. On the other hand, in the 
case of the direct effect, we hold a constant and vary R continuously. 'We shall see the 
differences in these two kinds of effects when we study the oblatell(,ss and the area of the 
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black hole. 

3.3.1 The approach of Smarr 

vVe nO\v define the scale and distortion parameters for the event horizon of the VEK 
black hole. The 2-metric on the event horizon is then expressed entirely in terms of these 
parameters and R. The 2-metric on the event horizon of the VEK black hole is given by 

(3.28) 

where the subscript '+' indicates quantities on the event horizon. In terms of the dyad 
(()"2, (j3) this may be expressed as 

(3.29) 

\vhere 

(3.30) 

Thc scale parameter 7/ and the distortion parameter f3 for the abOVI! 2-metric are defined 
by 

T] = Jrt + a2 - V(R2 - a2) sin2 (r/R) + (1,"2 

a a 
/3 = -Jrt + a2 V(R2 - a2 ) sin2(r/R) + (l2 

Then the metric ami the dyad forms (J2 and 83 become, 

e2 _ 

e3 = 

T]2(1 - (32 sin2 8) 172 sin2 () .) 
--'--'-:--:---,;,----""':-, d()2 + d(p-
1 - T]2(32 sin2 () / R2 I - (32 sin2 8 

"'VI - ;32 sin2 () 
--;======--d() V1 - T]2(32 sin2 8/ R2 

T] sin () d¢ 

V1 - (32 sin2 () 

In the above we SC(' that e3 does not depend explicitly on the panullcter R. 

(3.31) 

(3.32) 

In the Kerr case, given a set of values for (a,!vI) the parameters 'I and j3 are determined 
and can be treated as independent variables which may be used i IIst,ead of a and .:.II. In 
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the VEK case, there is a degeneracy in the 3-parameter family, however, which leads to 
the determination of only the angular momentum parameter a. To see this we express a 
and A1 in terms of rJ and (3 

a - 'f}(3 

(3.33) 

We see that a is uniquely determined once rJ and (3 are given. But M is not since it depends 
on the background parameter R as well. Therefore, there is a whole family of stationary, 
axisymmetric black holes depending on R. We also note that the equation for the horizon 
can be expressed in terms of 'f} and f3 as 

(3.34) 

As we have seen above, the parameters TJ and /3 are inherent to the geometry of the black 
hole. It is instructive therefore to examine the variation of one of the parameters, say /3, 
with the background. Here again we would have both the modulated and the direct effects. 
The variation of the other parameter 'f} is easily ascertained from equation(3.33). Towards 
this end we express f3 in terms of M, a and R from equation(3.31) as 

(3.35) 

In Figure 3.3, the variation of /3, with a is displayed for different values of R; this shows 
the modulating effect of the background. We see that smaller the background parameter 
R, larger is the rate of variation of /3 with a. 

0.8 

0.6 

0.4 

0.2 

0.1 0.2 0.3 0.4 0.5 

Figure 3.3: This plot shows the behaviour of the distortion parameter /3 with a for M = 1 
and for different va.lues of R including the Kerr case. 

Turning to the direct effect, as can be seen, the plot of /3 against R in Figure 3.4 shows 
that /3 goes on increasing as the background parameter R decreases. That is, the distortion 
parameter goes up as the background influence increases. In particular, the minimum value 
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Figure 3.4: This plot shows the behaviour of the distortion parameter (3 with R for M = 1 
and a = 0.5. 

is attained for the limiting Kerr case. 

One additional point to be considered is the allowable range of values for the scale and 
the distortion parameters. In the Kerr case, it is necessary and sufficient to demand that 
a :5 111. This places a restriction (3 > I / V2, the equality holding for the case of the 
extreme Kerr black hole with a = M. In the VEK case, this generalizes to a :5 M which 
is equivalent to the condition 

(3.36) 

In terms of the scale and the distortion parameters, we now study the equatorial and polar 
circumferences as well as the oblateness of the event horizon as a function of R. 

Effect of the background on the circumferences via the scale and the distortion 
parameters. 

The equatorial and polar circumferences Ce and Cp respectively are defined as follows. 

Ce - J e3 = fo21r ..)gt/>t/>d¢ at () = ~ 
2 

Cp - J e2 = fo1r ..;goode 

For the VEK event horizon we have 

Ce 
27fT) 

- ..)1 - (32 

Cp -
l1r fiJI - (32 sin2 () 

o J I - 1]2(32 sin2 () / R2 
d() 

(3.37) 

(3.38) 
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Figure 3.5: The equatorial and the polar circumferences plotted against f3 for different 
values of R. 
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Figure 3.6: The oblateness parameter 8 plotted against f3 for both the Kerr and the VEK 
cases. 

Comparing these circumferences allows us to obtain a gross measure of the surface defor­
mation. As in the Kerr case, both Oe and Op are invariant since the curves are geodesics 
of the 2-metric of the horizon. 

We may note that the expression for Oe is the same as that for the Kerr case, ie there is 
no explicit dependence of Oe on R. However, "., and f3 are dependent on R. 

As we have discussed at the beginning of this section, the variation of 'f/ and f3 could be 
due to the change in rotation for different fixed values of R. To compare the results with 
those of Smarr, we treat"., and (3 as independent parameters and vary them for different 
fixed values of R. We compute Oe and Op as functions of 'f/ and p for fixed values of R. 
The results are plotted in Figure 3.5. The equatorial circumference Oe, which does not 
depend explicitly on R and therefore, is the same for the VEK and Kerr cases, increases 
with (3. However, the polar circumference decreases with f3. For lower values of R, the 
rate of decrease of Op is diminished compared to the Kerr case, showing that the flattening 
is reduced due to the background effect. The oblate ness is reflected in the variation of . 
8 = (Ce - Cp)/Ce which is shown in Figure 3.6. Once again the effect of the background 
is to decrease the ohlateness generated by rotation. 
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The above l:alculations were carried out in order to apply Smarr's approach to the VEK 

metric. vVe now turn to the modulated and the direct effects of the background on Ge, Gp 

and J to get further insight into the behaviour of the oblateness of the horizon. 

Explicit effect of the background on the circumferences and the oblateness 

12.5567 5.8 

12.5567 

12.5566 5.75 
12.5566 

12.5565 Kerr 
5.7 

12.5565 

12.5564 

12.5564 
5.65 

0 10 20 30 40 50 o 10 20 30 40 50 

Figure 3.7: Plot of the equatorial circumference Ge against a-l for JI = 1 and for different 
values of R. Bot.h t.ht' Kcrr(lcft) and the VEK(right) cases are shown. 
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F'ig\ll"<' ;3.1'$: Plot.! I/" t.1t(1 polar circumference Cp against IL -I for 111 = 1 aJld for ciifi'eI"cut values 
of R. For lan~;(1 valllcs of R including the Kerr case(left), Cp decl'('i\ses as a-I decreases . 
. -\ft.pr a critical \"dIlC of R(llot shown), Gp increases as a-I decreases(right.). Thus Cp is 
strongly Illoclulat.<~d by the background. 

"Tp now (!xpn'SS t1U! circumferences in terms of the mass, angular lllOlllentllIll and the back­

ground I>ara.lllet(~r. 

First \W hav(~ the (!quatorial circumference 

(3.30) 
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Figure 3.9: Plot of the oblateness parameter 8 against a-I for M = 1 and for different 
values of R. Both the Kerr(left) and the VEK(right) cases are shown. 

And next the polar circumference 

In order to discern the modulated effect, these circumferences as well as the oblateness 
parameter 8 are plotted against a-I, instead of a for convenience, in Figures 3.7, 3.8 and 
3.9 respectively, for different values of the background parameter R. The behaviour of the 
equatorial circumference Ce is uniform for all values of R including the limiting Kerr value, 
going up monotonically as a increases. However, the behaviour of the polar circumference 
Cp is not uniform for all values of R. For lower values of R, ie under strong background 
influence, Cp increases monotonically as a increases. This behaviour reverses at a critical 
value of R after which Cp decreases, as in the Kerr case, with increasing a. Therefore the 
effect of rotation is strongly modulated by the background parameter R. Nevertheless, the 
oblateness parameter 8 increases uniformly for all values of R including the limiting Kerr 
value. 

Thus the behavio\ll" of the circumferences under the modulated effect may be summed up 
as follows. For large values of R, the horizon becomes oblate as the rotation increases, 
with the equatorial circumference increasing and the polar circumference decreasing with 
increase in rotatioll. Below a critical value of R, the horizon 'bloats up' as it were, with 
both the circumferences increasing with rotation accompanied by increased oblateness. 

We now turn to the direct effect of the background on the circumferences. For this pur­
pose, the circumferences as well as the oblateness parameter are plotted against R as shown 
in Figures 3.10 and 3.11 respectively. Both Ce and Cp decrease with R. This is due to 
the shrinkage of Lite event horizon which we had already anticipated in Section 3.2. The 
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Figure 3.10: Plot of the equatorial circumference Ce against R for M = 1, a = 0.5. 
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Figure 3.11: Plot of the polar circumference Cp against R for M = 1, a = 0.5. 
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Figure 3.12: Plot of oblateness parameter 6 against R for M = 1, a = 0.5. This illustrates 
the direct effect of the background on 8 
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oblateness is given by 6 which is now an explicit function of R. The beha.viour of 6 with R 
is shovm in Figure 3.12. Clearly, the effect of the background is to enhance the oblateness 
which increases with diminishing R. 

In the Kerr case oblateness is caused only by rotation. Here we see that the non-fiat back­

ground too contributes towards the oblateness by both modulated and direct effects. 

Wc now cOllsider another geometric quantity, the surface area of the event horizon. 

3.4 The Surface Area 

The smfnce an'a of t.he c\'cnt horizon is an invariant geometric quantity of considerable 
importance. In a val:Uum, a.symptotically fiat spacetime, it is a wcll esta.blished fact that 

HawkiuR;'s area. theorem provides a starting point for black hole thermodynamics. This 

theorem sta.tes that the total surface area of a black hole can never decrease. "·c shall now 

examine the natuw of the area in the VEl< case. 

In the Kerr C<1S(', t.lw surface area of the horizon is given by 

(3,41) 

\\'hell \\'(~ tum t.o IIw ('ase of the VEl< black hole, we find that the a.rna. 

, -= /. rj'2 (il = 4rrkf(1V! + JAl'2 - (/,'2) 101T sin(J dO 
.1!\ (~)" J ~ , 1 + M+vl\l~-II~ ~ 0 1 _ n2~ill 0 

R2 R~ 

(3.42) 

This ('elll 1)(' int.<'grat.pcl to giw 

I -17r A[(1I1 + J Af}. - (I.:.!) R h- I ( Cl ) .'1.= ~ tan-
1 + (M+ M~_(/.~)2 lL R 

R2 

(3.43) 

3.4.1 Effect of the background on the area 

It is illt.('l'(>st.ing t.IJ st.lld~· the ('H'cd of the background OIl the area. of t.lw (went horizon. 

First \\'(' collsid('l' t.he modulated effect of the background and ::;tud,v the variat.ion of the 

an'a as a fUllctioJl of a for cliH'(~rent constant values of R. The result.s are plotted in Figure 
:3.13. for larp;e valtJ('s of R starting from the limiting Kerr ntiuc, t.lw area decreases mono­

tOllicall,v \vit.h Il, Below a crit.ical range of values of R, however, t.lw area first. increases 

with II" attain::; a lllaximurn and then decreases. For lower values of n the beha\'iour of the 
an'a cntirely rcv(~rs(~s, It now increases monotonically with a. This is somcthinp; entirely 

IllWXI)('ct.cd. It indicates that thcre is a nontrivial coupling of the background spacetime 



43 

50r-=~==~--~--------------~ 

24 
45 

23.5 
40 

23 

35 
22.5 ----

30 
22 

o 0.2 0.4 0.6 0.8 1 

50 

40 

30 

20 R=l 

10~============== __ ~ __ ~ o 0.2 0.4 0.6 0.8 1 

Figure 3.13: Plot of the area A against a for Ai = 1, for the Kerr case(top left) and for 
different values of R in the VEK case. For R = 1.8(top right), A attains a maximum due 
to strong modulating effect of the background. After a critical range of values of R, the 
VEK area increases as a increases(bottom). 
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Figure 3.14: Plot of the area A against R for M = 1 and a = 0.5. Both the Kerr and the 
VEK cases are indicated. The decrease of the VEK area as R decreases, exhibits the direct 
effect of the background. 

to rotation. 

Turning to the direct effect of the background, the plot of the area against R in Figure 
3.14 shows that it goes on decreasing as R decreases, that is, as the background influence 
increases. The area of the horizon goes down from its Kerr value at R = 00 indicating the 
shrinkage of the horizon as was indicated by the polar diagrams of Figure 3.1. 

3.5 Angular Velocity of the Horizon 

The angular velocit.y of the Kerr hlack hole is constant over the horizon. This implies that 
the horizon rot.a.t,('s like a rigid body. This feature is of central importance in studying 
physical effects such as superradiance. It is also of direct interest in studying the effect of 
rotation on the black hole. 

The angular velocity of t.he horizon of the VEK black hole is given by 

a 
WH = -2 + 2 r + a 

(3.44) 

As in the Kerr ('asp, it is constant over the horizon of the VEl< black hole. In terms of T) 

and {3, the angular velocity of t.he VEK horizon takes the simple form 

Wy = f3/'f/ (3.45) 

In terms of AI, (/. and R, the angular velocity of the horizon is 

(3.46) 

This shows that t.here is a significant increase in the angular velocit.y of the horizon as R 
decreases, that is as the hackground influence increases. This in turn indicates that there 
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Figure 3.15: Plot of the angular velocity WH of the horizon against R for M = 1, a = 0.5. 
As R decreases, WH increases due to strong background influence. 

would be a pronounced modification in the physical effects associated with the angular 
velocity of the horizon. The variation of WH with respect to R is plotted in Figure 3.15 
and shows its sharp increase with decreasing R. 

3.6 Surface Gravity and the Extreme VEK Black Hole 

We now discuss the surface gravity of the VEK black hole and define the 'extreme' VEK 
black hole. The surface gravity of the VEK black hole is given by 

M + v'M2 - a2 M2 - a2 

K.vek = (1 + R2 ) 2M(M + v'M2 _ a2) (3.47) 

This goes to zero when a = M. Therefore, in analogy with the Kerr case we may define 
the extreme VEK hlack hole as the VEK black hole corresponding to the case a = M. We 
!lOW discuss t.he existence of yet another case for the VEK black hole. 

In the Kerr case as discussed by Smarr[24](see also Carter[26]) we may define the equatorial 
surface velocity of the black hole by, 

v:= Vfj33WH (3.48) 

This reduces to 
a 

(3.49) v = 7M-=--+-y'rM:;::;;;:2 =-=a:::;;::2 

This tends to the velocity of light (v --+ 1) as the extreme Kerr black hole is approached. In 
the VEK case, due to the absence of asymptotic flatness, it may not be possible to define 
the corresponding equatorial surface velocity of the black hole. Nevertheless, proceeding 
by analogy with t.he asympt.otically flat case, we may use this 'definition' to obtain a 
classification of the VEK black hole. Thus, in the VEK spacetime the above formalism 
leads once again to 

a J1 + (M + v'M2 - a2)2/R2 
Vvek := -I933W ll = M + J lvJ2 _ a2 J1 _ a2 / R2 (3.50) 
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The extreme VEK case a = At! gives 

Vvek = VI + ~//1- ~: (3.51) 

This is clearly greater than unity. This makes it possible to classify the VEK black hole 
into two classes. One given by Vvek < 1 and the other given by Vvek > 1 as seen from 
outside by a Killing observer. The existence of the Killing observer is ensured because 
in the present, as in the asymptotically flat case, the norm of the timelike Killing vector 
is unity at the radius r / R = 7r /2 where the matching to the Einstein universe has been 
performed. 

The value Vvek = 1 allows llS to define the 'limiting black hole' for which 

R = J2(M + .jA12 - a2)a 

V2!v!(M + .jAt!2 - a2) - 2a2 
(3.52) 

This shows that for a.ny given R there exists a set of values for a and M that generates a class 
of limiting black holes. We can see from the above equation that at a = M, R = 00. As 
we have already stressed, t.he background parameter R represents the influence of the non­
va.cuum background which is asymptotically non-flat. R = 00 corresponds to the limiting 
ease of a vaCUUlIl hackground which is asymptotically flat. Therefore equation(3.52) which 
describes t.he limit.ing hlack hole contains, as a limiting case, the extreme black hole a = IV! 
at which R = 00. The analogue of the condition a = M for an extreme black hole may 
now l)(~ expressed hy an ()quivalcnt. form of equation(3.52) 

AI = (1 - a2/ R2)a. 

VI - 2a2 / R2 
(3,53) 

whidl goes ()v(~r 1.0 t.he limiting case (t = AI as R -+ 00 

3.7 The Gaussian Curvature and Embedding 

The Gaussian (·u\'\'at.urC' dpfilH'H an isometrically invariant local measure of the intrinsic 
dist.ortioll of t.lw (~\'(mt horizon from sphericity. Being a.n invariant it provides us informa­
t.ion a.bout t.lw topology of the horizon as well via t.he Gauss-Bonnet theorem. We may 
study the Gaussian curvat.ure eit.her by treating it as a. function of the parameters 1] and 
/1, or hy treat.ing it. as an explieit function of the background parameter R. 

The Gaussian curvature of the event horizon of the VEl( black hole is given by 

- 2 2 
J"- ~+((1 a cos fJ)_2 _I 2/, 2(}) 

\. - "O":!.i + R2 P+ "ta I., cos 
P-+. 

(3.54) 
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which in terms of the scale and the distortion parameters, may be expressed as 

K(T},[3,fJ) = 
V 1 - T}2 [32 sin'l () / R2 

2(1 132' ') fJ)3 ((1 + TJ2[32 cos2 () / R2)(1 - [32 sin2 fJ) - 4{32 cos2 fJV1- T}2[32 sin2 0/ R2) T} - sm~ 

(3.55) 

V{hen [3 = a ie when the rotation is absent, we have, 

J(=~= 1 
f~ R2 sin2(r / R) 

(3.56) 

which is the spherical Gaussian curvature of the horizon of the YES black hole. And when 
R ~ 00 we have 

K = E: (p~ _ 4a2 cos2 0) 
p+ 

the Gaussian curvature of t.he event horizon of the Kerr black hole. 

(3.57) 

In the Kerr cas(!, /\ is a function of the polar angle e. In the VEK case, K is in addition 
a function of the parameter R. The Gaussian curvature vanishes at the poles when 

1M2 [3=- 1+-2 R2 (3.58) 

which in t.um ha.ppens for 

(3.59) 

For 

(3.60) 

tlH~re are t.WO "polar ('aps" where the Gaussian curvature becomes negative. This condition 
is obt.aiIwcl by ('xamillillg the range of values of [3 for which t.he Gaussian curvature vanishes. 
It. allows us t.o classify t.he VEI< black holes into t.wo distinct classes parametrized by a and 
R t.hrough the d<'IH'IHlence Oil the value of f3 as given in the above equation. But unlike 
in t.he Kerr ea.se (U ~ 00), each class gives ill fact a whole family (icpending on both a 
ancl R. The first dass, as in t.he Kerr case, consists of black holes with positive Gaussian 
C\ln'a.tl1n~ res(,Illblillg oblat.ely deformed spheres. The second class consists of black holes 
wit.h Il('gativp Gaussian curWl.t.ure. As Smarr has commented in the Kerr case, this class of 
negat.ive Gaussian I'l\l"vature is unlike any surface one can envision ill our familiar 3~space. 
This is t.o he at.t.rihuted t.o the presence of regions of negative Ganssian curvature both 
Ull and arollud t.11I' axis of symmetry, causing the surface to resemble a hybrid sphere and 
pseudosphcre. I3y int.egrating the Gaussian curvature over the surface we find that the 
Euler eharact.C'risti(' of t.he horizon is 2. This est.ablishes that the t.opology of the VEK 
black hole is that. lIt" a 2-splwre. 
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- -

Figure 3.16: The sequence of embedding diagram for /3 = 0 (dashed line), ~J1 +a2jR2 

(dotted linc), !n.J1 + a2 j R2 (solid line) shown for a = 0.5 and R = 1. 

3.7.1 Embedding 

Embedding the 2-surfacc of the VEl< horizon in the Euclidean 3-space gives an additional 
visualization of t.he geometry. The possibility of embedding depends on the sign of the 
Gaussian curvaturp and may shed light on the nature of the surface under investigation. It 
is therefore im~tructive to find conditions for globally embedding the 2-surface of the VEK 
horizon. To this end we first. rewrite the metric in the standard form 

(3.61) 

where 

f -

9 = (3.62) 

The Gaussian curmturl' is t.hen given by 

-1..;9 .. /9 
K(IL) = T-;f( J!j/ + 2,;g) (3.63) 

where the dot ("l!~n()t.es differentiation with respect to )1.. 

vVe now define it lIlap from (jL, ¢) to (x, y, z) by 



The metric then becomes 

We now require that 

from which we obtain 

y - F(f-L) sin 4> 

z = G(f-L) 

F = TJ[j 

/IR'2 G = TJ - 1 - -dJ.L 
f 49 
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(3.64) 

(3.65) 

(3.66) 

(3.67) 

The condition for global embedding is that the expression under the square root of the 
integrand be IlolllH~gative uefinite. This leads to the result that the metric cannot be 
globally mIlb(~dded in Euclidean 3-spacc if 

(3.68) 

This is the S,UlW condition as for t.he negative curvature given by the inequality in equation(3.60). 

The condit.ion gi\'l'Il by eqllation(3.68) is also equivalent to 

2aVl - a,2/R2 
M<-;========== /(1 - 3a21 R2)(3 - a'll R'l) 

(3.69) 

The (lIIlIH'dding dia.gram SP(pWllCe for (3 = 0, 4/1 + a'll R'l, 7z VI + (J,21 R2 for a = 0.5 and 
R = 1 is shown i II Figure 3.1 G. Tlw first value of {3 corresponds to t.he YES black hole. For 
t.he second valuc', th~ polar l'<'giOll has negative eurvat,urc. The last. value of f3 corresponds 
to tlw '(~xtn'III<~' VEK black hole which, as we have shown, cannot (~xist. We have shown 
the diagram for t.his last vahw of f3 as an illustration only. 

3.8 Concluding Remarks 

In t.he pn'scnt chapt.c~r we have investigated the Kerr black hole in the Einstein background 
givpn by Vaidya. This spacetillle may be viewed as that of a rotating black hole surrounded 
by matter distrillllt.ioll satisfying reasonable energy conditions as WP have demonstrated. 
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First of all we note that the VEK horizon is a Killing horizon as in the case· of the Kerr 
spacetime. By studying the event horizon, we have shown that the background gives rise 
to significant modifications in the geometrical and physical quantities associated with the 
black hole. The event horizon shrinks from its limiting Kerr magnitude as the background 
influence increases and the stationary limit surface gets more distorted. Thus there is an 
enlargement of the ergosphere. The distortion of the horizon can be ascertained by com­
puting its equatorial and polar circumferences and studying the variation of the oblateness 
parameter. The oblateness parameter 6 is given by the difference of the equatorial and 
polar circumferences divided by the equatorial circumference. This has been investigated 
by two different approaches. In the first instance, to compare the results with those ob­
tained by Smarr in the Kerr case, we vary the distortion parameter without varying the 
background parameter R. In this formalism the equatorial circumference remaj.ns the same 
as that of the Kerr horizon which of course varies with the distortion parameter. Neverthe­
less, the polar circumference progressively decreases but more slowly than in the Kerr case. 
The net effect is that the oblateness parameter increases more slowly as compared with 
the Kerr spacetime. In a sense, these computations reveal the variation of the oblateness 
modified by R and as compared with the Kerr horizon. 

We have found t.hat further insight can be gained into the structure of the horizon by 
investigating the oblateness as an explicit function of the parameters a and R. As we have 
pointed out t.here (~xist both modulated and direct effects. 

The modulated effect is obtained by varying a for different fixed values of R. Here we 
have found a. totally unexpected effect. That is, whereas the equatorial circumference Ce 

increases monotonically with a for all values of R, the polar circumference Cp first decreases 
as a increases, start.ing from the Kerr value, and then increases after a critical value of R. 
Nevertheless, the oblateness parameter increases with a for all values of R. 

On the other haud the direct effect is obtained by varying R and studying the circumfer­
ences. Here, one sees that both Ce and Cp decrease as R decreases, ie as the background 
influence incrcas('s. However, the oblateness parameter increases as R decreases. 

Another quantity t.hat indicates the change in the geometry of the event horizon is its 
surface area. As was done in the case of the circumferences, we ha\'(.~ studied two different 
effects of the baekground on the area. First the modulation of rotation by the background 
and second the direct effect of the background. In the first case, for large values of R the 
area decreases mOllotonically with a as in the Kerr case. Then for a critical range of values 
of R the area increases, attains a maximum and then decreases. Finally for small values 
of l? it increases monotonically with a. This effect is also a novel one which reveals the 
peculiarity of the hackground influence. Next, we have the direct effect of the background. 
As R decreases t.lwreby enhancing the background effect, the area decreases and asymp-
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totically approaches the Kerr value as the background effect goes down. 

Turning to the angular velocity of the VEK event horizon, we have shown that it goes 
up significantly as the background influence increases. By means of the surface gravity of 
the VEK horizon we have shown that the extreme VEl< black hole occurs at a = M as 
in the Kerr case. However the equatorial tangential velocity defined in analogy with the 
Kerr case is no longer that of light. By exploiting this fact, we have classified the VEK 
black hole and have shown that another type of black hole the 'limiting black hole' may 
be defined for which this velocity is that of light. 

By investigating the intrinsic geometry as represented by the Gaussian curvature we have 
shown that the VEK black hole may be classified into two distinct classes. The first class 
consists of black holes with positive Gaussian curvature and the second consists of black 
holes with negative Gaussian curvature. In the Kerr case studied by Smarr, this classifica­
tion is on the basis of two constant 'limiting' values of the distortion parameter (3. In the 
VEK case however, the corresponding 'limiting' values are no longer constants but depend 
on the angular momentum parameter a and the background parameter R. The topology 
of the VEK event horizon is that of a 2-sphere as may be expected for any normal black hole. 

To summarize, in this chapter we have considered a number of geometric properties as a 
function of the background parameter R. These properties are either retained, modified or 
radically altered as we have shown. 



Chapter 4 

Examples of Physical Effects in the 
VEK spacetime 

4.1 Introduction 

The stationary, axisymmetric, asymptotically flat Kerr black hole is associated with in­
teresting and often intriguing physical effects. In particular we may mention the effects 
stemming from the presence of the ergoregion like the Penrose process and superradiance. 
Here the geometry of the event horizon plays an important role. The other, perhaps more 
observationally significant physical effects, are those associated with geodesics and the phe­
nomenon of gyroscopic precession. A great deal of work has been done on both these topics 
in the asymptotically flat case. However, as we have pointed out and shown in the previous 
chapters, the introduction of the non-flat background leads to nontrivial modifications of 
the results obtained in the fiat case. In the Chapter 3, we investigated the geometry of the 
event horizon and showed that many of the usual results were either strongly modulated 
or modified altogether by the presence of the non-fiat background. Therefore it would be 
interesting and instructive to study some examples of physical effects in the VEK spacetime. 

In the present chapter we investigate circular geodesics and gyroscopic precession in the 
VEK spacetime as examples of physical effects. In studying circular geodesics there are 
two approaches which are usually taken in the Kerr case. One is the geodesic Lagrangian 
method and the other the method of Killing vectors. The former is convenient when one 
wishes to express the results in terms of conserved quantities, the energy and the azimuthal 
angular momentum. The latter, perhaps faster and elegant, is that of the method of Killing 
vectors which leads one directly to the Keplerian frequency. In the Kerr case either of the 
two may be employed to obtain information on the circular geodesics. In the VEK case, 
however, due to tlw complicated nature of the intermediate expressions, we find it conve­
nient to combine the above methods and use them in conjunction. In particular, we use 
the method of Killing vectors in order to obtain the Keplerian frequency and conditions 
for the existence of non-spacelike circular geodesics. We then use the geodesic Lagrangian 
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method to express. these conditions in terms of the energy and the azimuthal angular mo­
mentum or the impact parameter. This also makes it easier to compare the results with 
the corresponding special case of the YES non-rotating spacetime. 

Turning to gyroscopic precession in the VEK spacetime we approach it by employing the 
Frenet-Serret framework developed by Iyer and Vishveshwara[20]. Starting with a brief 
outline of the formalism, we apply it to the globally timelike Killing trajectories followed 
by stationary observers in the VEK spacetime. Next we study gyroscopic precession along 
circular orbits with constant angular speeds by using rotating coordinates. Armed with the 
above results we go on to investigate the generalized versions of the Schiff precession, pre­
cession in the YES spacetime, the Fokker-De Sitter precession and the Thomas precession 
in the the Einstein universe. We compare and contrast the results with the asymptotically 
flat case and show how the non-fiat background leads to significant non-trivial modifica­
tions from the corresponding fiat results. 

4.2 Circular Geodesics 

The study of circular geodesics is a significant topic in both Newtonian gravitation and 
general relativity. In the former it leads to the Kepler laws. In the latter it becomes 
even more important especially in black hole spacetimes wherein the Newtonian effects are 
considerably modified. In our investigations on circular geodesics in the YES spacetime 
in Chapter 2 we saw the emergence of novel features due to the asymptotically non-fiat 
background. We now study circular geodesics in the rotating ,case namely in the VEK 
spacetime. 

4.2.1 The metric 

In the previous chapter we have presented the VEK metric and discussed its features in 
detail. Here, for the sake of reference, we recall that the metric in the generalized Boyer­
Lindquist form is given by 

ds2 = (1- 2A1r.)de _ p2 dr2 _ 7P dfP _ sin2(}Y:}d¢2 + 2(2f1,Jr..asin2(})dtd¢ (4.1) 
7P .6. (2 7P p2 

where 

f2 _ (R2 _ a2) sin2( ~), 

r. - Rsin( ~) cos( ~) 
p2 f2 + a2 cos2 () 

.6. f2 + a2 - 2Mr. 

E2 _ (f2 + a2 )2 _ a2 sin2 (}.6., 
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(4.2) 

In the above we impose R > a to ensure the regularity of the metric coefficients. We now 
study circular geodesics by the method of Killing vectors[20]. 

4.2.2 The method of Killing vectors 

The VEl< metric admits a time-like Killing vector ~a and a rotational Killing vector rt. 

The combination, 

~a = (1,0,0,0) 

rt = (0,0,0,1) 

x.U = ~u + wrJu 

is defined as a quuHi-Killing vector if the Lie derivative of W vanishes along X 

When w is U consta.nt XU reduces to a Killing vector field. 

( 4.3) 

(4.4) 

(4.5) 

In order to investigate circular geodesics we adapt the four-velocity UU along XU by writing 

we then have 

e-27/J = X.uXu 

'l/J,uxa = 0 

(4.6) 

(4.7) 

Confining to tlw ('<Illatorial plane, we obtain by equating the deriyative with respect to r 
of the norm XCl. Xu \.() zero, tlw generalized Kepleriun frequency in the VEK spacetime 

(4.8) 

The IlPgative sign rcf'ers to the co-rotating orbit and the positin' sign to the counter­
rotating orbit. 

The condition for t.he existence of null geodesics is obtained by demanding that 

(4.9) 

This reduces to 

2M {/, ( 2 2 2 2 ,) / () =r= J = (1 - a / R )z: - (1 + 2(1 - a / R ) cos-(r R))Al) 4.10 
M R tall(r / R) 
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For M going to zero, ie, in the Einstein universe, 

(4.11) 

and there are no circular geodesics as is expected. 

As R 4- 00 ie, in the limit of the Kerr spacetime, we obtain the Keplerian frequencies for 
the co and counter-rotating orbits 

1 
w=--= 

a±.fJ 
(4.12) 

And equation (4.10) becomes 

(4.13) 

This is the condition for the existence of null circular geodesics in the Kerr spacetime as 
discussed in Rindler and Perlick[27]. 

And in the limit a. -+ 0 of the VEK spacetime, we obtain the generalized KepJerian fre­
quency 

(4.14) 

Equation(4.10) now becomes 

61\1 
Rtan(1·/R)= .1 2 

1 ± VI - 12:- (4.15) 

Thb:l is the condition for the existence of null geodesics in the YES spacetime. The time­

like geodesies are prrsent within the limits given by the positive and negative roots of the 

equation as shown by Ramachandra and Vishveshwara[21]. 

Returning t(l the iuequulity( 4.10) we may note that the null circular geodesics exist between 

the two limits 

(4.16) 

and the timelike geodesics exist between these two limits. In thn VES case we have the 

corresponding equation(4.14) for Rtan(r/R). To obtain a similar ('quat ion for the VEK 
case, it is necessary to solve equation(4.16) which is not easy. Tlwrefore we now resort to 
the geodesic Lagrangian approach in order to obtain an equivalent ('qllation for R tan(r / R) 
expressing the condition for the existence of null circular geodesie:;. 



4.2.3 The geodesic Lagrangian 

The equations governing the geodesics in a spacetime with the line element 

ds2 = 9abdxadxb 

can be derived from the Lagrangian, 
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(4.17) 

(4.18) 

as, for instance, given in Chandrasekhar[17] which we will follow in the discussion below. 
Here T is an affine parameter which is usually identified with the proper time for time-like 
geodesics. 

For the VEK spacetime, the geodesic Lagrangian is given by 

2C, = (1- 2Alr.)i2 _ 7P 1'2 _ P2iP _ sin28"£2¢2 +2(21\{rasin2(j)i¢ (4.19) 
p2 ~ (2 p2 p2 

where the dot denotes differentiation with respect to T. 

In the equatorial plane defined by 8 = 7r /2 we have 

nr _ (1 2AI)·2 1'"2.2 ((-2 2 2Ala2 )),i,2 '1 2.l\Ja ).;' (420) 
:!.J.., - - t - =r - r + a + "f' +.:. t tCf,l • 

RtallCr/R) ~ Rtan(r/R) R tall (7,/R) . 

The above Lagra.ngian has two conserved quantities coming from the eydic coordinates t 
and </>, defined hy 

1 2Af . 2Ala,i, E 
( )t + "f' -- Rtan(r/R) Rtan(r/R)-

(4.21) 

t.he energy and 
21\Ja (. ((-2 2) 2Ala2 )J. L ------,- t+ r +a + "f' = . 

R tan( r/ R) R tan(r / R) -
(4.22) 

the azimutha.l angular mOllHmtllm. 

These quanti Lies could also havc been obtained by the method of Killing vectors but the 
present. metlwd is convenicnt in arriving at the differential equation for the radial coordi­
nate. 

UHing t.he {!quatiulls( -1.21) and (4.22) we obtain the geodesic Hamilt.onian for null geodesics 
as 

-2 . . r· 2 
21£ = Et - L¢ - 6. r = a (4.23) 

"Ve now invert equations(4.21} and (4.22) to obtain 

. 1 2A1 2.l\1[ a 
t= 6.((1- Rtan(r/R))L+ Rtan(r/R)E) (4.24) 
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and 
. _ 1 -2 2 2Ma2 2l\tla 
4J- D. ((r +a + Rtan(r/R))E- Rtan(r/R)L) (4.25) 

Inserting these into equation( 4.23) and simplyfing, we get 

which may be written in terms of the impact parameter D = L/ E as 

(4.27) 

Circular geodesics are defined by equating the above equation and its derivative to zero. 
We thus obtain 

And 

2A1 (2( / ) 2( / ) 2 2 R"2(R2 _ a2 ) sin2(r / R) -CllC r R - 2cot r R )(D - (J.) E 

+ 2 (D2 _ a2 )E2 = 0 (4 29) 
R(R2 - a2 ) sin2(r/R) tan(r/R) . 

Solving the ab()v(~ (~quatioll we obtain the condition for the existence of the circular null 
geodcsir:s as 

6l\tf (D-a) 
R tan (r / R) = __ ;::=::=(:=D:::::+a::::)== 

1 ± 1 _ 12M2 (D-a)2 
u.~ (D+a)2 

(4.30) 

This is t.he gCIlcra.li~cd version and analogue of the equation ( 4.15) corresponding to the 
YES case. As a -+ 0 Wf': see that this reduces to equation(4.14). 

EquutioIlS(4.16) and (4.30) express the condition for existence of llull circular geodesics. 
These together wit.h the gcneralized Keplerian frequency(4.8) completely characterize the 
t.imclike and null circular geodesics. In fact, these null geodesics arc members of the prin­
cipal null congruences confined to the equatorial plane. We now diseuss the nature of the 
circular geodesics ill some detail. 

There are two possible cases of timelike and null circular geodesics ill the VEK spacetime 
depending on the background parameter. This radical departure from the situation in the 
Kerr spacetime is clue to the presence of the Einstein universe to which the Vaidya sector 



has been matched. 

The first case is defined by 

In this case null circular geodesics exist at the two limits of Rtan(r/R) given by 
equation(4.1O). 

The inner null circular geodesic is defined by 

6 ILl CD-a) 
JV, (D+a) 

R tan( r / R) = ---;::========== 
1 + I _ 12M2 CD-a); 

R2(D+a)' 

The outer null circular geodesic is defined by 

6M (D-a) 
(D+a) 

R tan( r / R) = ---;=========== 
1 - 1 _ 12M2 (D-a)2 

'R2 (D+a)2 

Timelike circular geodesics exist sandwiched between these two null geodesics. 
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(4.31) 

(4.32) 

(4.33) 

In contrast to t.his t.he Kerr spacetime ha.c; only Olle photon orbit. at r = 31U~g~:~ and the 
timelike circular g(~odesics exist starting from this value all the way up to infinity. 

The seeoud casp is defined by 

(4.34) 

In t.his case t.he m:lI eircular geodesics exist at only one value of R tan(r / R) given by 

(D - a) 
R tan(r/ R) = 6A1 (D + a) (4.35) 

And there are no timeIike geodesics at all. We may understand this situation by consider­
ing the limit R2 -+ 12.H2 ~g~:~: in equation(4.30). As this limit is approached the distance 
between the inuer and outer null circular geodesics of the first case goes on decreasing. 
Thus the inner amI outer geodesics approach and merge. Since timelike geodesics are con­
fined between t.he inner and outer geodesics, as the limit is reached t.hey disappear leaving 
the possibility of O<..:curance of only null circular geodesics at Rtal1(r/R) = 6A!~~~:l. 

As mentioned earlier there are both co and counter rotating orbits at t.he value of R tan(r / R) 
given by equatioll(4.30). Therefore it is necessary to distinguish t.he cases a < 0, a = 0 
and a > 0 as, for instance, done in the Kerr spacetime investigated in Chandrasekhar[17] 
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which we shall follow here. In the Kerr spacetime one determines the impact parameter 

D for these values of a. To do a similar analysis in the VEK case it is necessary to solve 
eqtiations( 4.28) and (4.29) simultaneously which is difficult for the case where a "# O. Nev­

ertheless, we shall take the limit a = 0 and obtain further information on the VES case. 

Perhaps, the cases a < 0 and a > 0 can be tackled numerically which, however, we shall 
not attempt here. 

For a = 0 equation(4.10) becomes 

6M 
R tan(r/ R) = J 

1 ± 1- 12:2 

Solving equatioIls( 4.28) and (4.29) together for a = 0 we obtain 

(4.36) 

D = 3V2M (4.37) 
(1 + l~r ± )1 - 1~~2)1/2(I-l(1 ± (J1 - 1~r)))1/2 

Here we must cOIlHicier the cases R2 > 12M2 and R2 = 12M2. 

For R2 > 121\,[2 there are two null circular geodesics. The inner corresponding to the 
positive sign and the outer to the negative sign. For R2 » 12,\12 we may obtain the 

following approximate results. 

The inner null circlllar geodesic with 

D = 3V3M 
)(1 + 3~/h/l- 6~~2 

(4.38) 

This tends to 3 V2 ns R -+ 00. 

And the outer Illlil circular geodesic with 

(4.39) 

This tends to 00 as R -+ 00. 

For R2 = 121\.12 W(~ have 

D = 3)3/2 !vi ( 4.40) 

And there is only OIle photon orbit which occurs at R taner / R) = GAf 

We may summarize the situation as follows. In the Kerr case null geodesics occur at only 

one value of the radial coordinate, ie, at r = 3M (D - a) / (D + (/). There is one co and 
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one counter-rotating orbit corresponding to this value. In contrast to this, the VEK case 
we have two possibilitiesdetermined by the background parameter. In the first case, ie, for 
R2 > 121\I2~g~:~ null geodesics occur at two different values of Rtan(r/R). Thus there are 
inner and outer photon orbits with one co and one counter-rotating orbit corresponding 
to each. Timelike geodesics exist sandwiched between the inner and the outer orbits. In 
the second case, ie, for R2 > 121\12 ~~~:~ null circular geodesics occur at only one value of 
R tan(r / R). There is one co and one counter-rotating orbit corresponding to this. There is 
a total absence of timelike circular geodesics. This clearly illustrates that the presence of 
the nonflat background radically alters the nature of circular geodesics in the VEK space­
time. 

In order to see other effects of the background we now turn our attention to the study of 
gyroscopic precession. 

4.3 Gyroscopic Precession 

The phenomenon of gyroscopic precession is an important example of rotational effects in 
black hole spacetimcs. As shown by lyer and Vishveshwara[20] this effect can be elegantly 
studied by employing the Frenet-Serret formalism. By means of this formalism we may 
exploit the iuvariant geometrical description of particle trajectories following the direc­
tions of spacetime s~'Il1metries represented by Killing vector fields. Once t.he Frenet-Serret 
formalism is adapted to characterize the Killing trajectories, the associated geometric pa­
rameters are identified \vith the physical characteristics of the trajectory The curvature is 
identified with the particle acceleration and the first and the second torsions are directly 
related to the gyroscopic precession. The Frenet-Serret tetrad also serves as a convenient 
reference frame to describe physical phenomena. Here there are two approaches to take. In 
the first, by adapting the Frenet-Serret formalism to general timelike Killing vector fields, 
we may st.udy the precession of a gyroscope with respect to a stationary observer. The pre­
cession ill now due t.o the effect of the black hole rotation but as modified by the background. 

:'Jext, using tIle llH't.hocl of rotating coordinates the formalism can be adapted to the quasi­
Killing tra.jcct,ories defined in equation(4.5). The precession is now due to the effect of 
rotation of the black hole on the gyroscope moving in a. circular trajectory as modified 
by the background. \Vith this framework the gyroscopic precession ean be investigated in 
various circumstances. VVe now briefly review the Frenet-Serret formalism. For details we 
refer to[20]. 

4.3.1 The Frenet-Serret formalism 

vVe have already defined the quasi-Killing vector in the VEK spa(:et.ime in equations( 4.4) 
to (4.7). 
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Introducing a tetrad e(i) with i = 0, 1, 2, 3 the Frenet-Serret equations may be written as 

'a a 
e(O) - x:e(l) 

'a a + a 
e( 1) - x:e(O) 11 e(2) 

'a a + a e(2) - -II e(l) 12e(3) 

e(3) -/2e(2) (4.41) 

where '" is the curvature and 11,12 the first and second torsions respectively. From 
equations( 4.6) and (4.7) we have 

( 4.42) 

implying that along trajectories of Xa the Frenet-Serret invariants x:, II and 12 are constants. 
vVe first apply this to the timelike Killing trajectories in the VEK spacetime .. 

4.4 Gyroscopic Precession Along Timelike Killing Tra­
jectories 

Writing the VEK metric for a stationary, axisymmetric spacetime exprel:ised in generalized 
Boyer-Lindquist coordinates in a general form we have 

( 4.43) 

The generalized Boyer-Lindquist coordinates are adapted to the Killing vectors e and TJ. 

As shown in reference[20j, along trajectories of the timelike Killing vector e the the Frenet­
Serret basis is givPIl by 

wh(~re 

1 
.r;;::-(1, 0, 0, 0) 

v 900 

1 (0 11 22 0) --2-- ,9 900,1,9 900,2, 
/'\,goo 

1 V9OOv=-;s;;,( -g03, 0, 0, 900) 
goo - 3 

Jgllg22 
2 (0, -900,2,900,1,0) 

/'\,900 

.6.3 = goog33 - g~3 

The curvature and torsions are given by 

/'\,2 1 ( 11 2 22 2 ) 
- - 4950 9 900,1 + 9 0900,2 

953 (9ab9oo,a(In :-),b)2 

46.3 (9ab goo,a900,b) 

1 (goo,1903,2 - goo,2903,d 2 

4.6.3g11922 (gabgoO.agOO.b) 
..,..2 
'2 -

(4.44) 

(4.45) 

(4.46) 

( 4.47) 

(4.48) 



From equation( 4.1) and the above we find that 

and 

",2 

r2 
1 

" 
r.~ 

2 

where 

1 

V '2Mr (1, 0, 0, 0) 
1 - ---;r p 

1 - 2 
-r==::::=======::=== (0, .6."€, - 2r.a sin () cos (), 0) 
JrP(.6.€2 + 41"2a4 sin2 tJ cos2 0) 

1 (_ 2Mr.asin2 () 0 0 (1 _ 21.\1r.)) 
. (){iSA( 2MT) ~, , , -2 sm u 1 - -2- P P 

P 

-:I 1 (0, 2r.a2 sin () cos B, €, 0) v'f; (.6.€2 + 4r2a4 sin2 tJ cos20) 

-

-

lYI2 (is.€2 + 4r.2a4(2 cos2 e sin2 tJ) 

(1 _ 2~!:) 2 pl0 

M 2a2.6. sin20(€2 + 4r.a2 cos2 0(2) 

(1 - 2~{r) 2 p10(.6."€2 + 4r.2a4(2 cos2 () sin2 (I) 

4M2a21"2"€2 cos2 () 
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( 4.49) 

( 4.50) 

( 4.51) 

( 4.52) 

(4.53) 

Since fi, is identified with the particle acceleration, the above equations( 4.49-4.52) imply 
that ill additioll to being accelerated, the gyroscope carried by the stationary observer 
precesses wit.h a nOll-zero angular velocity. This may be interpreted as a manifestation of 
the dragging of illertial frames in the VEK spacetime as modified by the background. To 
see the contribution from the background we examine the specia.l case of an observer on 

the equat.orial plane iJ = 1f /2. Equations ( 4.50-4.52) uow become 

MVK. 
~. -
/1. - (1 - 2~ir:) 1"3 

MVK.' 2. 2)3/2' 3 / ) - (1 _ 2MRSin(r/R)COS(r/R») (R - a sm (r R 
(R2_ a2) sin2(r/ R) 

Jd,a (1 _ 21v'I r.) 
r 1"2 

lYI a (21vI R sin(-r / R) CO'l.i(r / R)) 
- (R2 - a2)3 sin6 (r / R) 1 - (R2 - a2 ) sin2 (1'/ R) 

r~ - 0 

That is, T1 is the only nonzero torsion. 

(4.54) 

(4.55) 
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Since the four-velocity is adapted to the timelike Killing vector field the basis vectors 
of the Frenet-Serret frame always remain oriented towards the stationary observers since 
they are Lie-dragged along the Killing trajectory. Thus the stationary observers will see 
the gyroscope precessing with an angular velocity per unit proper time given by -71. We 
shall return to this point after discussing the gyroscopic precession of an observer moving 
in a circular trajectory. 

4.5 Rotating Coordinates and Gyroscopic Precession 
Along Circular Orbits 

In Section 4.4, we have obtained K., 71, 72 for an observer whose world line is along the 
integral curves of the timelike Killing vector e of a stationary spacetime. Such an observer 
is at a fixed value of r, e and ¢. We now use the method of rotating coordinates to adapt 
the expressions of Section 4.4 to trajectories belonging to a quasi-Killing congruence that 
represent observers moving along circular orbits with constant arbitrary angular speeds. 

Taking the metric( 4.43) adapted to the Killing vectors e and TJ we make a coordinate 
transformation 

under which the metric becomes 

where 

90'0' 

¢ - 4>' + wt' 

t - t' 

2 - goo + 2w 903 + W 933 == A 

903 + W933 == B 

93'3' - 933 

( 4.56) 

(4.5i) 

(4.58) 

(4.59) 

(4.60) 

U uder this transformation the coordinate system is now adapted to e' == e + WTJ which is 
a Killing vector of this metric given by 

~'=(l,O,O,O) (4.61) 

\Ve may now adapt the four-velocity along e' and obtain the curyature and the torsions 
along this world line. As e' now corresponds to e + WTJ in the unprillled coordinates we can 
compute "", T1 and 72 along trajectories e+w7] by replacing 900,903 and g33 in equations(4.50-
4.52) by 90'0',90'3' and 93'3" This procedure enables us to obtain t.he curvature and the 
torsions associated with an observer following circular trajectories. Along these orbits given 



by trajectories of e + WTJ the Frenet-Serret equations are given by 

a 1 
e(O) = v'A(1, 0, O,w) 

a 
e(l) = - 2~A (0, g11 AI, g22 A 2, 0) 

a 1 
e(2) = v'A..;:::E:;(B, 0,0, -C) 

A -.6.3 

a e(3) = 
..;grrgn 
2~A (0, -A2' AI, 0) 

and the Frenet-Serret curvature and torsions are given by 

_~ (g11Af + g22AD 
4 A2 

",2 = 

r2 
1 = B2 (gIl AIBl + g22 A2B2 _ g11 Ai + 922 A~) 2 

4.6.3(gllAf + g22A~) B A 

ri = 
gllg22(AIB2 - A2Br)2 
4.6.31J(gllAf + g22A~) 

where 

Aa = gOO,a + w2 g33,a 

Ba = g03,a + wg33,aC = goo + Wg03 

and the subscript (J. takes on values 1 and 2. 

Explicitly, for the VEK spacetime the quantities A ,B and C are given by 

. 2Mr. 2 
A = 1 - w2 sm2 O(r2 + a2) - -2 - (1 - a.W flm2 0) 

p 

B 2Mr.asin2(}( . 2()) (-2 2) .2e = 2 1-awsm - r +a wsm 
p 

2Mr 
C = 1 - -2 - (1 - aw) 

r 

and t.heir dcrivativps with respect to rand () are given by 
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( 4.62) 

(4.63) 

( 4.64) 

(4.65) 

(4.66) 

( 4.6i) 

(4.68) 

(4.69) 



We now consider t,he gyroscopic precession by confining to the equatorial plane. 
Taking () = 7r /2 in the above equations we obtain 

2Mr 
A - 1 - w2(r2 + a2) - -2-(1- aw)2 

r 

B 
2Afra 2 . - -2- (1- aw) - (1"2 +a )wsm2 () 

r 

C - 1 - 2~;Z:(1 - aw) 
r 

2lv'I 
Al - -=2(1 - aw)2 - 2(1- a2/R2)r..w2 

r 
A2 - 0 

Bl - -2 (Mz:a(~2- aw) + (1 _ a2/ R2)r..w ) 

B2 - 0 

With these quantities we obtain the curvature and torsions as 

K,2 = 
~1\12 (aw _1)2 _ (1- ~)~)2 

F (1 _ (r2 + a2)w2 _ 2Mr(;r-1)2) 2 

1 ( A!a _ ((i:'2+2a2)M _ (1 _ a~ )r(l _ 2M)) W + A1a(3r~+a2)w:)2 
1'2 fT' r2 R2 - r. r2 

1 - 1"2 (1 _ (r2 + a2)w2 _ 2M(a~-1)2) 2 
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(4.70) 

(4.71) 

(4.72) 

(4.73) 

\Ve note that the gyroscopic precession is about e(3) which is normal to the orbital plane 
and the precession frequency is given by 7'1 as above. 

Geodesic motion and the Schiff precession. 

Along a. geodesic, h: = 0 and therefore the angular velocity w is given by 

(4.74) 

which is just the generalized Keplerian frequency in the VEK spacetime already obtained 
in Section 4.2. 

The only non-zero torsion 7'1 becomes 

r2 Rtan(r/R) 

- I (R' - a') Sin'(~ R)Rtan(r/ R) 
(4.75) 
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We see at once that a novel feature has emerged due to the presence of the background. 
In the Kerr case we have 

11(Kerr) = ff, (4.76) 

This coincides with the Schwarzschild Keplerian frequency Ws. The rotat.ional effect of the 
Kerr black hole is in making the gyroscope following a circular trajectory, to precess with 
the Schwarzschild Keplerian frequency. There is no 'direct effect', in the sense defined in 
Chapter 3, of the black hole rotation on the gyroscope. This is evident from the absence 
of the angular momentum parameter in the expression for 11 (Kerr) . In contrast to this, in 
the VEK case, the first torsion 11 does not coincide with the VES generalized Keplerian 
frequency given by 

M 
WVES = R3 sin3 (r / R) cos(r / R) 

In fact Il(VEK) is related to WVES as 

cos2 (r/R) 
II = 2 WVES 

1- ~2 

(4.77) 

(4.78) 

As R -+ 00, II (VEK) --t WVES and the Kerr result is recovered. For \·aluei'i of (1,/ R compara­
ble to unity, however, Il(VEK) no longer coincides with WVES and the relation is drastically 
affected. 

Comparing this situation with the Kerr case we see that as the gyroseope moves along the 
circular geodesic its precession is affected not only indirectly hy the black hole but also by 
the background through the parameter R. Moreover, R enters into the picture by coupling 
to the angular momentum parameter a. This implies that the effect of the background 
manifests itself ill both modulated and direct effects in the sense elucidated in Chapter 3. 
\Vc may rl:~call that the 'modulated effect' is discerned by ke('ping the background param­
eter fixed and allowing the angular momentum parameter a to vary and the direct effect 
is discerned by holding a fixed and allowing R to vary. We now consider the gyroscopic 
precession in various circumstances. 

The gyrose')pic frequency =FIlII is about the basis e(3) which is oriented along the z­
direction. The orbiting( co-rotating) observer measures precession relative to the basis e(1) 

which (;oinc.:ides with the radius vector which rotates with the angular velocity given by 
equation(4.10). The precession angle per unit time as evaluated in the rotating coordinates 
is 

(R2 - ( 2 ) sin (r/R) M 2 . AI ( 
2 ,.---::-::---,. 1/2 

=F27r R'2t,an2(r / R) - Rtan(r / R) (1 + 2 cos (r / R)) ± 2(1. R3 tan3(r/ R) 

(4.79) 
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Next, to evaluate ,the precession relative to a stationary geometry we subtract from the 
precession at the end of one revolution the angle through which e(l) has rotated with respect 
to the stationary observer which is 21r radians. This gives the gyroscopic precession in the 
VEK spacetime. 

In the linear approximation this reduces to a generalized version of the Schiff precession. 

Another interesting result is obtained by computing the precession of the orbiting gyro­
scope with respect to the gyroscope of the stationary observer. In the time taken for one 
revolution of the orbiting gyroscope the latter precesses due to dragging by an amount 

21r 
tl<P(drag) = (-71h/gOo~ 

as has been discussed in[20] where 71 is given by equation( 4.51). This leads to 

D.<P(drag) = 
_ 21rl\1a . ((R2 - a2) sin2(r/R) ± a) 

(R2 - a2)3/2 sin3 (r / R) J lvI R taller / R) 
1 

x (1 _ 2lvI Rsin(r / R) cos(r / R))-'3 
(R2 - a2) sin2 (r / R) 

4.5.1 YES black hole 

(4.81) 

(4.82) 

Since we have not considered gyroscopic precession in the VES spacetime in Chapter 2, we 
shall give it here as a special case. 

The YES metric may be obtained from the VEK metric as a specia.l case of a = O. Thus 
the most general case of gyroscopic precession follows from the VEK expression for a = O. 

General YES case. 

Taking a = a in equations( 4.68-4.69) yields 

A 'j 2 2 2Mr 
- 1 - w- ,'lin Or - -2-

r 
B - r 2wsin2 0 

C 1 _ 2Mr. 
r2 

Al - 2M _ 2rw2 sin2 0 
1'2 -



A2 - - 2 cos () sin ()r2w2 

Bl - -2 sin2 ()wz: 

B2 - - 2w sin () cos (}'f2 
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(4.83) 

The curvature and torsions are given by 

",2 = 
(( 1 - 2AJ ) (~l _ rw2 sin2 (})2 + r 2w4 sin2 () cos2 ()) 

Rtan(r/R) F! -
(1 - 2M _ r2w2s2 )2 

Rta.n(r/R) 

(4.84) 

(1 - 2M - r2w2 sin2 (})2((1 _ 2M ) (~ - w2 sin2 () cos2(r/R))2 + w4 sin2 () cos2 ()) Rtan(r/R) Rta.n(rfR) rO> . 

w2M2 cos2 () 
(4.85) 

F((1 - 2M ) (M - w2 sin2 () cos2 (r/R))2 + w4 sin2 () cos2 ()) Rtan(r/R) r 

The Frenet-Serret frame is given by 

eu 
(a) --

1 (1 0 0 w) V 2Mr -2 2 . 2 '" 1 - -;r - 'r w sm () 
r 

1 

((1 - Rta~~~/R»)( ¥ - .rw2 sin2 (})2 + r2w4 sin2 () cos2 (})1/2 

( ( 21\1 M 2 • 2 w2 cos () :=;in () 
x 0, 1- Rtan(r/R))((Rtan(r/R))3 - w sm ()), Rtan(7/R) ,0) 

1 2~1 
, , (wr2 sin2 0, 0, 0, -(1 - )) 

r sin () !f1=1 - 2M ) (1 - 2M - w2r2 sin:.! ()) R tan(r / R) - V \.L - Rtan(r/R) Rtan(rfR) 

VI - Rta!fr/R) 

r((1- 2M )(MJ.-w2sin2())2+w4cos2()sin2())1/2 
- R tan(r/ R) z:~ 

x (0, cos e si 11 ()rw2, ~r.. - w 2 sin2 (), 0) 
r 

(4.86) 

The equatorial plane. 

As is usual we compute the precession for orbits in the equatorial plane for which () = 7r /2. 
Equations(4.84-4.85) reduce when () = ~ to 

",2 r2(1- Rt!fr/R»)(~ - w2 cos2(r/R))2 
(4.87) - (12M -2 2)2 

- Rtan(r/R) - r w 

7 2 
2 (1 - M(: + ~)2 cos2(r/ R) 

(4.88) 1 - w (1 - 2M -2 2)2 
- Rta.n(rfR) - r w 

"..2 2 - 0 (4.89) 
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The bases vectors of the Frenet-Serret frame are obtained by inserting () = 7T" /2 in equation ( 4.86). 
The gyroscopic precession in this case is 

7"1 = W 2M - -2 2) 
(1 - Rtan(r/R) - r w 

(4.90) 

And 

1 2 
- -27T"((1- M(Rsin(r/R) cos(r/R) + Rtan(r/R))) x 

2!vf 
(1 - - R 2 sin2(r/R)w2)-1/2 -1) 

Rtan(r/R) 
(4.91) 

As R -7 00 this reduces to 

« 3M 2M 2 2)-1/2 ) 6.¢ = -27T" 1 - -)(1 - - - r w - 1 
r r 

(4.92) 

Fokker-De Sitter precession. 

A generalized version of the Fokker-De Sitter precession is obtained by specializing the 
above results to the case of a geodesic along which K, = 0 so that we recover the generalized 
Keplerian frequency 

2 M 
w = --:--....-:--..,...-----:'~~ 

R3 sin3(r / R) cos(r / R) 
(4.93) 

In this case 
(4.94) 

so that the orbital gyroscopic precession frequency is not the same as the angular speed w. 

Thus even in the absence of rotation the direct effect of the background is manifest. There 
is a significant modification of the results from the asymptotically flat case. 

In one orbital revolution, the gyroscope rotates by 

( 4( / M 2r.), 1/2 ) 
6.¢ = -27r (cos r R) - Rtan(r/R) (1 + Rtan(r/R)) - 1 (4.95) 

This reduces to 
6.¢ = -271"«1 _ 3M )1/2 - 1) 

r 
(4.96) 

as R -7 00 thereby recovering the well-known Schwarzschild result. 

4.5.2 Einstein universe 

The general case. 

Taking M = 0 in equations(4.84-4.85) the results arc automatically specialized to the case 
of the Einstein uuiverse. We note that the circular orbits are not geodesics as in the flat 



70 

case as there are no geodesics in the Einstein universe. Nevertheless, non-geodesic circular 
orbits may be examined in order to find analogues of the Thomas precession. 

We now have 

fi,2 _ 

T 2 
1 -

r2w4 sin2 0 sin2 (r / R) 
(1 - r2w2 sin2 0)2 

w2(1 - sin2(r/R) sin2 0) 
(1 - r 2w2 sin2 0)2 

while equations( 4.86) reduce to 

a 
e(O) -

a 
e(l) -

a 
e(2) -

a 
C(3) 

1 (1 0 0 w) VI 2· 2 0 2 ' , , -r sm w 
. r COS 0 

(0,- smO, - -2 ,0) 
r 

1:. (wr2 sin2 0, 0, 0, -1) 
r2 sin Ov1 - w2r2 sin:l 0 

r sin 0 
(0, cos 0, - -2 ,0) 

r 

(4.97) 

(4.98) 

(4.99) 

(4.100) 

vVe see that 72 vanishes identically. This implies that the precession is about the normal 
to the orbital plaIl(~ as should be expected from the symmetry of the situation. 

Thomas precession. 

The above expressions reduce on the 0 = 7r /2 plane to 

fi,2 
R2 sin2 (r / R)w4 cos2 (r / R) 

( 4.101) -
1 - (R2 sin2(r / R)w2 )2 

T2 
w2 

(4.102) 1 - 1 - (R2 sin2 (r / R)w2 )2 

r.2 
2 - 0 (4.103) 

leading to the expression for the generalized version of the Thomas precession 

(4.104) 

As R -+ 00 ie, in t.he flat spacetime, this reduces to 

(4.105) 

which is the well-known formula for the Thomas precession. 
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4.6 Concluding Remarks 

In this chapter we have investigated some examples of physical effects characteristic to a 
rotating black hole in the asymptotically nonflat VEK spacetime. By studying circular 
geodesics we have shown that there is a significant departure of the VEK results from 
the usual Kerr counterparts. This is due to the matching of the Vaidya spacetime to the 
Einstein universe wherein there are no circular geodesics at all. In the Kerr spacetime null 
circular geodesics exist at only one value of the radial coordinate expressed in terms of the 
impact parameter. At this value of the radial coordinate, there is one co-rotating and one 
counter-rotating orbit. Timelike geodesics exist from this point, all the way up to infinity. 
In contrast, the VEl< case allows two different possibilities depending on the background 
parameter. 

In the first case the null circular geodesics are present at two different values of R tan(r / R). 
These values are now functions of both the impact parameter and the background param­
eter. There is an inner photon orbit and an outer photon orbit. Each of these have one 
co-rotating and one counter-rotating orbits. Timelike geodesics exist sandwiched between 
the inner and the outer photon orbits. 

In the second case, null geodesics occur at only one value of R tan(r·/ R) with one co-rotating 
and one counter-rotating orbit. There is a complete absence of timelike circular geodesics. 
The impact parameter also reflects this feature as we have shown in t.he special case a = 0 
of the VES spacetime. 

By investigating the phenomenon of gyroscopic precession in the VEK spacetime we have 
shown that the batkground affects the precession in both modulated and direct effects. 
The first torsion which in the Kerr case coincided with the Schwarzschild Keplerian fre­
quency now no IO!lger coincides with the YES generalized Keplerian frequency. It is now 
a function of the angular momentum parameter as well in contrast to the Kerr case. This 
brings about a pronounced modification of the results of the Kerr ease. In particular this 
gives rise to a gmwralized version of the Schiff precession. Moreover, even in the special 
cases of the f~encralized versions of the Fokker-De Sitter precession in the YES spacetime, 
the background prevents the first torsion from being equivalent to the generalized Keple­
rian frequency. Finally, the generalized version of the Thomas precession in the Einstein 
universe is also considerably modified. 

Thus we may conclude that the influence of the non fiat background on the physical effects 
associated with black hole rotation investigated herein is significant and manifest. 



Chapter 5 

The Carter Constant and the Petrov 
Classification of the VEK Spacetime 

5 .1 Introduction 

Having discussed the geometry of the event horizon and some physical effects in the 
VEK spacetime, we now turn to the investigation of certain separability properties of 
the geodesics and the Petrov classification of the spacetime. We study also certain quan­
tities that have proved to be indispensable in defining particle angular momentum in a 
stationary, axisymmetric spacetime with a view to extend them to the VEK case. These 
quantities are the Killing tensor, the Killing spinor and the Killing-Yano tensor. Their sig­
nificance lies in the fact t.hat on one hand, they are the only quantities that seem to support 
particle angular momentum structure. On the other hand, together, these quantities re­
late the properties of the geodesics, in particular, the separability of the Hamilton-Jacobi 
equation and the Carter constant, to the Petrov classification of the spacetime. 

The existence of these quantities in the VEK spacetime is not at all obvious. There are two 
reasons for this. One is that the separability properties of the equations of mathematical 
physics possessed hy the Kerr metric may not be possessed by the VEK metric. In fact, 
going by the evidcnce of our studies on geodesics in the VES and t.he VEK spacetimes, it 
is not at all unlikcly to expect that the drastic modification in the nature of the geodesics 
from their asymptotically flat counterparts would affect the separability properties also. 

Another reason has to do with the Petrov classification of the spacetime. The Kerr space­
time is of Petrov type-D and is a vacuum spacetime. Therefore it a.dmits a Killing spinor. 
The Killing spinor goes into defining the Killing-Yano tensor. The type-D nature of the 
Kerr spacetime relies on the vacuum, asymptotically flat features of the spacetime. When 
one or both of these features are relaxed it need not be expected that the classification 
remains invariant. Even if the type-D classification is retained as in the VEK case, but 
the spacetime is llon-vacuum and asymptotically non-flat, it is not at all clear whether the 
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Killing spinor an~ hence, the Killing-Yano tensor exists. 

A significant feature of the Kerr metric is that almost all the equations of mathematical 
physics are separable. Central among these equations is the Hamilton-Jacobi equation. 
The importance of this stems from the fact that the solution of the Hamilton-Jacobi equa­
tion gives complete information on the nature of the geodesics. The Kerr metric being 
stationary and axisymmetric there exist two Killing vector fields, one timelike and one 
rotational. These lead directly to two conserved quantities namely the energy and the az­
imuthal angular momentum. The metric itself leads to another conserved quantity namely 
the rest mass. In general, there is no reason to expect any other conserved quantities 
apart from these three. However, as discovered by Carter[28] in his investigations on the 
Hamilton-Jacobi equation for the Kerr metric, there exists a fourth constap.t of motion 
which has proved to be extremely useful in the study of geodesics in the Kerr spacetime. 
Since it is a quadratic constant of motion, it may be expressed as the contraction of a 
symmetric rank two tensor, called the Killing tensor, twice with a four-momentum. The 
Killing tensor, in turn, may be expressed as a 'square' of an antisymmetric rank two tensor, 
the Killing-Yano tensor as shown by Penrose and Floyd[29][30]. 

This discovery came from another line of investigation, viz, that related to the Petrov clas­
sification of the spacetime. It was shown by Walker and Penrose[31] that an asymptotically 
flat type-D vacuum spacetime admits a Killing spinor. The vacuum, type-D character of 
the Kerr spacetimc ensures that the principal null congruences an' geodesic and shear-free 
and that there is only one non-vanishing Weyl scalar W2. The Killing spinor is constructed 
out of ~2 and the basis spinors. The Killing spinor, in turn, may be used to construct 
the Killing-Yano tensor. The Killing tensor is now obtained as a partial contraction of 
Killing-Yano tensors twiec as shown by Floyd[30]. Thus once again one arrives at the same 
Carter constant. 

The above discussion indicates that the Killing-Yano tensor serves as a link between the 
Killing tensor and the Killing spinor. Therefore the Killing-Yallo tensor itself, in turn, 
depends on either the separability property of the Hamilton-Jacobi pquation or the type-D 
character of the spacetime both of which are tied up with the existence of the Carter con­
stant. Closely related to these properties is the fact that the Kerr spacetime is vacuum and 
asymptotically flat. On one hand the property of being type-D depends on the vacuum 
nature of the spacetime. On the other hand, the property of asymptotic flatness enables 
the physical quantities to be appropriately identified through the Killing-Yano tensor. 

To reiterate then, in the case of the non-vacuum, asymptotically nOll-flat VEK spacetime 
there are no grounus to expect that either of the above properties be valid. It is not improb­
able that the matter distribution surrounding the VEK black hole would be expected to 
affect the classification and the asymptotically non-flat feature of the spacetime may make 
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it difficult to define physical quantities. Nevertheless, as we shall show both the separabil­
ity property and the type-D nature of the spacetime hold in the case of the VEK spacetime. 

This chapter is organized as follows. In Section 5.2, we show that the Carter constant 
exists by constructing it following the original method of Carter[35] in the case of the 
Kerr metric. In Section 5.3, we present the Killing tensor. In Section 5.4, we discuss 
the classification of the VEK spacetime. Employing the Newman-Penrose formalism we 
calculate the spin coefficients and contrast the results with the Kerr case. In Section 5.5, we 
present calculations to demonstrate explicitly that the special case of the VEK spacetime, 
namely, the YES spacetime is Petrov type-D. After a brief review of the 2-spinor formalism 
in Section 5.6, we go on to construct the Killing spinor for the VEK spacetime. This will be 
followed by Section 5.7 wherein we construct the Killing-Yano tensor. Section 5.8 carries 
the concluding remarks. 

5.2 The Carter Constant 

The discovery by Carter of the fourth constant which now bears his name was one of the 
remarkable results on investigations involving the Kerr metric. In his studies [28] Carter 
was motivated by the need to integrate the geodesic equations. As discussed in Chapters 
2 and 4, the geodesic equation for a free particle of mass m can be obtained from the 
Hamiltonian 

'1l 1 ab 
n = 29 PaPb (5.1) 

where 
(5.2) 

is the four-momentum. Since the affine parameter does not appear explicitly in the Hamil­
tonian, the Hamiltonian itself is automatically a constant of the motion and is given by 

(5.3) 

In a stationary, axisymmetric spacetime wherein there are two cyclic coordinates corre­
sponding to the timelike and rotational Killing trajectories we have in addition to the 
above, two other constants. The four-momenta Pt and Pt/i where t and if> are the time and 
azimuthal Boyer-Lindquist coordinates respectively, are also conserved. 

For a complete set of first integrals of the motion we need in all four constants of the 
motion. Thus a fourth constant of the motion is needed. This would not exist in a gen­
eral stationary, axisymmetric spacetime. However, in the case of the Kerr spacetime the 
fourth constant does exist as shown by Carter. Since the Kerr spacetime is vacuum and 
asymptotically flat there is no reason to expect that the the non-vacuum, asymptotically 
Einstein VEK spacetime admits a fourth constant. Nevertheless, proceeding in analogy 
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with Carter's con~truction of the fourth constant we now construct it for the VEK space­
time. We first recall the method of Carter[35] which bypasses the necessity of going through 
the Hamilton-Jacobi equation. Thus the Carter constant may be obtained directly by in­
spection of the Hamiltonian by means of the following lemma due to Carter. 

Lemma: Let the Hamiltonian have the form 

1-l = ! 1-lr + 1-lo 
2 Ur + Ue 

(5.4) 

where Ur and Uo are single variable functions of the coordinates r and (J respectively and 
where 1ir is independent of the momentum Po and of all the coordinate functions other 
than rand 1-le is independent of the momentum Pr and of all the coordinate functions 
other than e. Then the quantity 

lC = Ur 1-le - Uo 1-lr 
Ur + Uo 

(5.5) 

Poisson commutes with 1-l and hence is a constant of the motion. The proof is as follows. 

Since 1lr commutes with 1io and Ur commuter with 1-le and Ur + Ue we obtain 

(5.6) 

and 
(5.7) 

We thus obtain 

1 81lr dUr 
...,.---~=---

(Ur + Ue)2 OPr dr 
1 

(Ur + Ue)2 [Ur, 1-lr]PB (5.8) 

Using this in equations(5.6) and (5.7) we obtain 

(5.9) 

This may be written as 
(5.10) 

or 
[lC,1£] = 0 (5.11) 

since lC = 2Ur 1i - 1-lr as can be readily verified. 

It therefore follows that the quantity lC is a constant of the motion. 
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In order to apply. this lemma to the VEK Hamiltonian we note that the VEK metric in 

generalized Boyer-Lindquist form may be written as 

ds2 = (1- 2Alr.)dt2 _ p2 dr2 _ 7P dB2 _ sin2 BE2d..l.2 + 2(2Alr.asin2 O)dtddJ (5.12) 
p2 6. (2 p2 'fJ 7P . 

where r, r., p, .6., :s and ( are as in equation(3.13) of Chapter 3. 

The contravariant form of this metric is given by 

E2 a a 6. a a (2 a a 
- ~6.at®at-~ar®ar-~aB®aB-

1 a2 a a 2A1 ra a a 
(sin2 B - 6.) 8</J ® a¢ + 2 p2 ~ at ® a¢ (5.13) 

Therefore the Hamiltonian is 

-2 - 2 2?, 
_ E 2 6. 2 (2 1 a ) 2 ? ~AI r.a.. 

21£ - -2 A Pt - -2PT - -2PO - (-=----2li - /' Pr/> + - _'j /\ PtPr/> 
p l..l P P sm U.!..l. V l..l 

(5.14) 

We now bring the Hamiltonian to a form in which the above LemlIla may be applied. \Ve 

rewrite the Hamiltonian as 

211. = 
1 ((r2 +a2)2 2 - 2 a2 2 2A1r.a '2e.:' ~/)' 2 2 2 ~) 

-2 2 2 f) b:.. Pt - 6.Pr + =Pr/> + 2 26. Pt1'<t> - {(. ,. 11l . Pt - ( Pe - . 2 II r + a cos 6. p sm f7 

(5.15) 

This is clearly of the form given in equation(5.4) with 

(1"2 + a2)2 2 - 2 a2 2 ?2ivlr.a. 
6. Pt - 6.PT + .6. P¢ + - p2.6. PtPr/J 

U -r2 
T 

Uo (5.16) 

Therefore we immediately obtain 

a2 ((-2 2)2 --2. 2 ) 2 a2 cos2 B.6. 2 (21"2 2 
- -21\ r + a +.6.r sm B Pt + -2 PI" - --=2Pe 

pl..l p P 
JC = 

(a2 cos2 Bsin2 0 + K1"2) 2 (2a.(f2 + a2)a2 COH2 () + r2K). 
- -21\ . 20 PcP - -2/, PtPe> p l..l sm p .!..l. 

(5.17) 

which is the Cart.er constant for the VEK metric. 
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That JC is a constant of the motion follows by the fact that the Poisson bracket of JC and 
1-1. vanishes. 

Thus we have shown that the Carter constant exists despite the fact that the VEK space­
time is nOll-vacuum and asymptotically non-fiat. 

In the phase space view the Carter constant is a quadratic constant of motion. In analogy 
with the metric which also leads to a quadratic constant of motion, namely, the rest mass 
squared, this motivates the possibility of expressing the Carter constant in terms of a similar 
quantity. Since the metric is expressed by means of a symmetric second rank tensor we 
may express the Carter constant by means of a similar symmetric second rank tensor called 
the Killing tensor which we shall now discuss. 

5.3 The Killing Tensor 

The Killing tensor is an extension of the concept of a Killing vect-or fiC:'ld to a tensor field 
with analogous properties. 

\Ye recall that a vector field ~a is termed a Killing vector field if t.he Lie derivative of the 
metric along Ea vanishes 

L~gab = 0 

This is cquiYCl.leut to the Killing equations 

~ajb + ~b;a = 0 = ~(ajb) 

(5.18) 

(5.19) 

Thon, if pU is a ~(~odesic vector satisfying the relations pbPlIilJ = 0 the product Eapa is a 
conserved quant.it.y for 

(5.20) 

t IlP first term vallishrR since pa is a geodesic and the second t.erm VII,ll iHhes due to the Killing 
<'qnatiolls. \V(~ now give the definition of a Killing tensor. 

.-\. Killing tensor [{ab ... ed is a sYlIlmetric tensor satisfying, in a.nalogy with the Killing 
t'quatiolls( 5.19) 

J((ab ... cdje) = 0 (5.21) 

It straight away follows that Kab...ed leads to a conserved quantity. Iudeed, considering the 
quantity Q = [{nIJ ... cdpapb ... pcpd we have 

e(l' abc d) 2 cab c dl( + P \.ub.",·(11) P ... p P je = P P jeP ... p P tLb ... cd 

2 e abc ell' " a b T..' P P P je"·p P \.ub...cd + ... + P ]J P I\.clb ... cdj(' 

- 0 (5.22) 
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the terms other than the last vanish since pa is geodesic and the last term vanishes by the 
Killing tensor equations(5.21). 

For a Killing tensor of rank two which is what we shall be dealing with the above definition 
reduces to the simple form 

e(l-' ab) 2 ea bl( eab},," 0 P 1\.abP P = P P jeP ab + P P P~abje = (5.23 ) 

Just as a Killing vector field is associated with a linear constant of motion ~apa, Kabpapb 

is associated with a quadratic constant of motioll. 

The metric tensor trivially satisfies the requirements for being a Killing tensor, the corre­

sponding conserved quantity being the particle rest-mass. 

The phase space view of the Killing tensor reveals the following. Just as the metric tensor 
multiplied twice by a four-momentum is twice the Hamiltonian, the Killing tensor mul­
tiplied twice by a four-momentum is associated with the Carter constant which, being a 
constant of the mot.ion, Poisson-commutes with the Hamiltonian. 

We now exhibit the Killing tensor for the VEK spacetime. First \ve note that the Carter 

constant introduced in equation(5.17) may be expressed through the contravariant form 

r:.-ab f) a 
1\ -i8l-

axa axb 
K 

a2 (-2 2 2 --2. 2 ) a a a2 cos2 86. a 0 
-p26. (r +a) +6.r sm () at®at+ 7P 8r®or 

(2f2 a a (a2 cos2 e sin2 e + .6.1"2) D '"" 0 
---®-- . -Q9-

p2 ae ae p26. sin:.! e a¢ 8¢ 

(2a(f2 + a2)a2 cos2 e + 1'2"E) 8 a 
- 7526. at ® a¢ (5.24) 

We identif.v this itS the Killing tensor for the VEK spacetime 

- ;~~ ((1'2 + a2)2 + D..f2 sin2 e) 
o 

o o (:.!a(i'2+a2)a2 cos2 O+i'2~) 
p2t::,. 

o 
_ (2a(F2+a2)a2 cos2 O+F2LS.) 

p2fl 

The covariant form of the Killing tensor is 

a2 cos~ o7S. 
p3 

o 
o 

o 
_(~~2 

p. 

o 
o 

(a2 cos2 9 sin:! 9+75.1'2) 

p2Xsin20 

(5.25) 
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Kab = 

(_a2 COS2 O:I+r2 sin2 0) 
pl o o 2a~r2 () (Lla2 COS2 e + f2(f2 + a2)) 

o 
o 

a2 COS2 Op2 
t:.. 

0-

o 0 
i"2~2 0 

( 

2a~t 0 (fj.a2 COS2 () + r2 (r2 + a2)) o o - Si~~ 0 (a4 COS2 () sin2 () fj. + f2 (f2 + a2)2) 

J{ 

(5.27) 

In order to see the significance of the Killing tensor it is instructive to look at the limiting 
case of the Sdnvarzschild space-time by taking R -+ 00 and a = O. vV(~ then have 

(5.28) 

The Schwarzschild metric admits three Killing vectors Lx ,Ly , and L arising from spherical 
:-iymmetry 

. a f) 
Lx - - sm ¢ Be - cot e cos ¢ B¢ 

cos ¢ ;() - cot e sin ¢ ~ 
a 

Be/> 

The Lil~ brat:kcts Ilf these vector fields are 

[Lx, Ly] 
[Ly, Lz] 
[Lz, Lx] 

\Vith these J{ab may be expressed as 

J{ab = {aib + {aib + {aib 
x x y y z z 

(5.29) 

(5.30) 

(5.31) 

Th(' three Killing vectors Lx ,Ly ,Lz give us natural definitions of (~()lIlponents of angular 
momentum 

Lx - L~Pa, 
Ly L~Pa, 
Lz - L~Pa, (5.32~ 

(5.26 
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and the Carter constant is found to be the square of the angular momentum vector 

(5.33) 

In this limiting case of the Schwarzschild spacetime however, the Killing tensor from which 
it arose, is degenerate or reducible. That is, the Killing tensor is expressible in terms of 
the Killing vectors. 

The above discussion suggests that the Carter constant is somehow analogous to the square 
of the angular momentum of the particle. 

In passing we may note that instead of the limiting case R -+ 00, a = 0 we may consider 
the special case of the YES spacetime by keeping the background parameter R finite while 
taking a = o. An analogous discussion as in the Schwarzschild case may be given. Thus 
the YES spacetime also has a similar Carter constant as the Sch,varzschild spacetime via 
a reducible Killing tensor. This is because the YES spacetime also admits the rotation 
group due to spherical symmetry. 

The existence of the Carter constant gives strong motivation to expect that the VEK 
spacetime is of Petrov type-D. We now turn to a brief discussion of the Newman-Penrose 
formalism in order to calculate the spin coefficients for the VEK spacetime. 

5.4 The Spin Coefficients and Petrov Classification 

The Newman-Penrose(NP) formalism enables one to capture the full content of the Einstein 
field equations in terms of the five complex independent tetrad components of the Weyl 
scalar, the six complex independent tetrad components of tp,e trace-free part of the Ricci 
tensor, the Ricci Hcalar, and the twelve complex spin coefficients. The Newman-Penrose 
equations are expressed in terms of a null tetrad (l, n, m, m). land n are real while m 
and Tn are complex conjugates of each other. The special adaptability of the Newman­
Penrose formalism to the asymptotically flat, vacuum, black hole spae\~times is related to 
the type-D charader and the Goldberg-Sachs theorem. This theorem allows one to make 
statements on the Petrov classification of the black hole spacetime as a consequence of the 
vanishing of certain spin coefficients. This, in turn, is related to the geodesic and shear-free 
nature of the congruences formed by the principal null-directions. Thus an examination of 
the spin coefficients allows one to draw conclusions on the nature of the \Veyl scalars and 
vice versa. Since the asymptotically fiat, vacuum black hole spacctimes are all of Petrov 
type-D, it is convenient to examine such spacetimes by means of a null tetrad in which the 
spin coefficients K., (J', A, 1I and all the Weyl scalars except W2 vanish. 

In a non-vacuum, asymptotically non-flat VEK spacetime howewl', it is not possible to 
draw conclusions on the Petrov classification by an examination of the spin coefficients 
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alone. To do so would need at least a generalized version of the Goldberg-Sachs theorem 

applicable to non-vacuum asymptotically non-flat spacetimes. Nevertheless, the existence 

of the Carter constant and its strong relation to the Petrov classification in the case of 

vacuum asymptotically flat black hole spacetimes motivates us to discuss the spin coeffi­

cients and their relation to the Weyl scalars in the VEK spacetime. We now present the 
Ilull tet.rad formalism for the VEl< spacetime. 

5.4.1 The Newman-Penrose formalism 

The NP null tetrad may be obtained by a consideration of the shear-free null congruences 

that emerge while ~30lving the equations for the null geodesics. We may recall that in Chap­

ter 4, we obtained the null geodesics that are members of the principal nulI-congruences 

confined t.o the equatorial plane. This procedure may be continued to construct the null 

tetrad. However, in what follows we shall construct the null tetrad directly from the metric. 

We write the VEl( metric in generalized Boyer-Lindquist coordinates in the form 
A . 2(} ~ ~ 

2 D. . 2 2 sm 2 2) )2 p~ .) P d(}2 
ds = -2 (dt - asm 8d¢) - -=2((r + a d¢ - adt - ,\ dl'- - /2 

P P ~ ~ 
(5.34) 

Introducing the tetrad forms eA = e:dxa where the tetrad indices A, B, C ... range from 

A. = 0, 1,2, 3, and expressing the metric as 

ds2 = 1JABeA ® eB 

we may pick out the tetrad forms 

eO _ ~ (dt - a sin2 (}d4» 
p 

e1 _ P dr 
6. 

3 e 

p.d() 
( 

si~ () ((r2 + a2)d¢ - adt) 
P 

From these we may define new tetrad forms EA = E~4dxa by 

EO _ 'J;.eo = ~(dt- asin2(}d¢) 

...rE. p2 El ___ e1 =--
V2p V26. 

E2 V2 e2 = V2:p2 dB 
PI ( 

E3 '!! e3 = J2~in B {'(r2 + ( 2)d¢ - adt) 
PI PI 

These tetrad forms may be most conveniently used to arriYe at the llull tetrad. 

(5.35) 

(5.36) 

(5.37) 
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5.4.2 The Newman-Penrose null tetrad 

The null tetrad forms may be obtained immediately from the above tetrad forms EA as 

where we have defined 

P (EO _ EI) 
VK 

n - ~(EO+El) 
m __ 1_(E2 + iE3 ) 

.../2Pl 
m ___ 1_(E2 - iE3 ) 

.../2pt 

PI - 'f + ia cos g 

pt - 'f - ia cos g 

and made use of the identity p2 = Pl7Yi. 

Explicitly we have 

n 

m 

The cont.ravariant. form of the above tetrad is 

1 -
r2 + a2 a a a a 
~ at + ar + ~ a<jJ 

'f2 + a2 a 1 ~ 8 a 8 
----+--2p2 at 2 p2 ar 2p2 8¢ 

ii, 

ia sin f) a 1 8 i esc f) a 
----==--- + --- + ---
..,fiPl at ..,fiPl ae V2Pl a<jJ m -
ia sin 8 a 1 a i csc f) D 

m - + --- - ---==--
J2pt at J2pt 8B v'2Pi 8(/) 

It is easily verified that l, n, m, m satisfy the standard normalization relations 

l·l n·n=m·m=m,·m=O 

l· n 1 

m·m - -1 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

(5.42) 
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where the dot de~otes the operation of the inner product or contractioll. 

In order to facilitate the calculations we note the following useful relations 

l I'd - nl\.n=ml\.m=ml\.m=O 

ll\. 71, - (dt - a sin2 Bd¢» I\. dr 

i sinB 2 2 (5.43) ml\.m - --(-(adt I\. dB + (r + a )dB I\. de/» 

The coordinate forms dt, dr, dB and d¢> may be expressed in terms of the null forms as 

r2 + a2 r2 + a2 iasinB 
dt - 2p2 l + 6. 71, + .J'j.p2 (P1m -71lm ) 

dr 
lLl 

- ---l +71, 2p2 

d() - ( (- +-*-) - y'2p2 P1m Plm 

d¢ - a a ·i (_ -*_) 
27Pl + Ll 71, + ~p2 sinB Plm - P1m 

(5.44) 

These satisfy 

drl\.dt -

drl\d() 

drl\d¢ 

dOAdt -

dOAd¢ -

(5.45) 

\Vith these preliminaries we may proceed ·to calculate the spin cl)efficients for the VEl{ 
spacetime. 

5.4.3 The spin coefficients 

The standard met.hod of introducing the spin coefficients is by identifying them with 
the Ricci rotation ("oefficients[36][l7][37][38][39](see also[40]) or b~' l'Illploying the 2-spinor 
formalism[4l]. However, for the sake of compactness and computational simplicity we 
make use of the Cartan formalism as described in Penrose and Rilldler[42]. This formalism 
requires us to cakulate only the exterior derivatives of the null forms l, nand m. The 
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spin coefficients then appear in algebraic combinations as coefficients of the components 
of these exterior differentials. \Ve first recall the expressions for dl, dn, dm as given in[42]. 
Our expressions differ from Penrose and Rindler in that we have replaced the primed spin 
coefficients by their un-primed equivalents r' = -7r, a' = -)., p' = -p and ,.,,' = -1/. 

Vie have also written out the expression for dm. The bars on the spin coefficients denote 
complex conjugation. 

dl = - ((-a -/3 +'f)l/\m + (-{3 + r - (1)lAm + (€ +€")lAn) 

- (+(;9 - p)m/\m - Rm/\n - "'mAn) 

dn - (( -1/ )lAm + (-il)lAm + ('Y + "I)lAn + (-p + Jl)mAm + (-a + 7r - ~)m/\n) 

- (( -a + 7f - {3)mAn) 

dm (( 'Y - "I + Jl)l/\m + "XlAJl + (-1f - r)lAn + ({3 - (1)mAm) 

(+,0 - € + €")mAn + (jmAn) 

elm - (("I - 'Y + p)l/\m + )'l/\m + (-7r - 'f)lAn + (13 - a)mAm) 

(p - € + f)mAn + amAn) (5.46) 

"'vVe now proceed to calculate the exterior derivatives of l, n. The rest may be obtained 
simply once these are given as we shall show below. 

"'vVe find that 

(5.47) 

where 

II 
2a2 sin () cos () 

-
6. 

l2 - 2a sin () cos () 
ira sinO 

ml 
V27h2Rtan(r/ R) 

m2 
a(a - ir cos 0) 

-
V27h 2 

l' 
m3 -

V2(Rtan(r / R) 

m4 
ir sin () (1'2 - a2 + 2iar cos ()) 

V2P1 2 R tan(r / R) 

ms 
i(r2 + a2) (1' cos 0 + ia) 

(5.48) - V2- 2 PI 

It is no\y necessary to express dl and dm in terms of the wedge products of l, n. In, m. 
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'With the help of t,he expressions for the coordinate forms in equation(5,44) we find that 

where 

dl - llml/\m + ltffil/\m + lmffim/\m 

dm mlnl/\n + mlml/\m + ml'ffil/\m + mnmn/\m + mnffinl\TIT + mmmml\m 

lim 

lim 

lmm 

min 

-

-

-

v'2a.2(Pl sin () cos () 
p4 

Z* _ v'2a2 (Pi' sin () cos () 
1m - p4 

ia(Ecos () 
71~ 

iv'2ap2 sin() 

p2Pl R tan(r / R) 

AP11' 
2p4 R tan(r / R) 

- 0 

p2 Rtan(r I R) 
(1' cos () + ia)( 

v'2P1 2 sin () 

(5.49) 

(5.50) 

\Ve are now left with dn and dm. At this stage dn may be obtaillt'd simply by noticing 
that 

so that 

1.6-
n = --2l + dr 2p 

dn = d .. - --;-l = d --;- /\dZ + -- - dr/\l + -- -;- d(}/\l ( l~) (16.) 1 8 (~) 1 8 (~) 
'l. {i2 2 p2 2 ar p2 2 8() p2 

(5.51) 

(5.52) 

From the relatiollH(.5,4 7), evaluating the derivatives with respC'ct t n ,. and () and using 
equatiolls(5.~.1) W(~ get 

(5.53) 

where 

2~r2 1 ( 1'2 . ,) ) 
nln = p4Rtall{r/R) - p2 Rtan(r/R) - m(l - 2~11l-(r/R)) 

iaK( cos () 
p4 (5.5-4) 

As to the expressioIl for dm it suffices to obtain it by complex cOll,iugating dm. 
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We now equate the algebraic combinations of the spin coefficients in (5.46) to the corre­

sponding coefficients in equations(5.49) and (5.53) and solve the equations to obtain 

r;, 

€ 

P 

f.-L -

T -

71" -

{3 

'Y 

lI=o"=A=O 
ia cos B 

27P Rtan(r/ R) (1' - (Rtan(r/ R)) 

l' (_ (Rtan(r/R). ) 
- TP R tan( r / R) r + ( 'if )w cos (J 

,6,'if (_ (R tan{r / R) . ) 
- 27}R tan(r / R) r + ( 'if )za cos B 

iarsinB (_ ((Rtan(r/R)). B) - r+ zacos 
../?:p2pIRtan(r/R) 'if 

ia'1'sin (J (_ ((R tan(r / R)). (J) 
, r + zacos 

.j2p2pt R tan(r / R) '1' 

(rcos(J+ia)( ia'1'sinB (_ ((Rtan(r/R)). (J) 
""'----=-----'- - r - za cos 
2J2P12sin(J J2p2P1Rtan(r/R) '1' 

ia,6, cos (J R R ,6,'1'2 
----;-~___:__~(r + (' tan(r/ )) - -
4p'!R tan(r / R) 2-pi R tan(r / R) 

1 ( -2 ) 
2p'2 Rta~(r/R) - M(l- 2sin2{r/R)) 

a = "r - /3 (5.55) 

We now substitut.e these spin coefficients into the eighteen standard Newman-Penrose 

equations given, for instance, in[36][17][37][38][42][39][40] to obtain the following equations 

Dp -2 cf? P + 00 (5.56) 

0 - Wo (5.57) 

Dr - p(T + 1f) + T(€ - €) + WI + q'>01 (5.58) 

DO'. - 0*(: - O'.(p + € - 2€) - 73€ + 7I"(€ + p) + cf?1O (5.59) 

D(3 - 6( - (3Cp - €) - E(O'. - 7f) + WI (5.60) 

D",.'-Df - O'.(T + w) + (3(7" + pi) - €( "Y + 7') + T7I" + W2 + CP1l - A (5.61) 

-O*n - n(n + 0'. - 73) + <P20 (5.62) 

Dp, - On - PJ-L + n(1f - 0'. + {3) + W2 + 2A (5.63) 

-Dn - J-L(7I" + '7) + 71"(")' - 7') + W3 + <P21 (5.64) 

0 - -W4 (5.65) 

8p - p(a + (3) + T(p - P) - WI + <POI (5.66) 

80'. - 8*(3 - p,p + O'.a + (3/3 - 20'.(3 + "Y(p - p) + E(f.-L - "j1) - W2 + cf?11 + A (5.67) 

-8*/L - n{J-L - 71) + J-L{ a + (3) - 'It 3 + cf?2l (5.68) 

-DJL - p,2 + J-L( l' + 7) + cf?22 (5.69) 

81' - I2f3 "Y{T - 0'. - (3) + f.-LT - {3(")' - 7' - J-L) + cf?12 (5.70) 



8r - r( r + ,B - a) + 4>02 

Dji - O*r - -jill + r(f3 - 0: - r) + pb + "1) - W2 - 2A 

Do: - 0*"( - 0:("1 - j7) + 'Yes - r) - W3 

And the eight Bianchi identities 

DWl - o*wo -3~W2 + 2(€ + 2P)Wl + (7T - 40")Wo + [Hicci] 

DW2 - 8*Wl - -2~W3 + 3pW2 + 2(7T - O:)Wl - 'xwo + [Ricci] 

DW3 - O*W2 -r.;W4 - 2(€ - P)W3 + 31T"W2 - 2'xWl + [Ricci] 

Dw" - O*W3 -(4<: - P)W4 + 2(21T" + 0:)'l13 - 3'xW2 + [Ricci] . 

Dwo - 8Wl - (4'Y - p)Wo - 2(2r + {3)'Y!1 + 30"W2 + [Ricci] 

DWI - 8W2 vWo + 2(!' - P)Wl - 3rW2 + 20"W3 + [Ricci] 

DW2 - 8W3 - 2VWl - 3pW2 - 2(r - (3)W3 + O"W4 + [Ricci] 

Dw',3 - c5w4 3VW2 - 2(!' + 2P)W3 - (r - 4{3)'l14 + [Ricci] 

87 

(5.71) 

(5.72) 

(5.73) 

(5.74) 

where the cumbersome Ricci terms have been merely indicated. \Ye may note, however, 
that by employing the compacted spin coefficient formalism given, for instance, in[42] the 
Ricci terms also may be exhibited in a direct manner. In the abm"e the notation is stan­
dard except that we have used D instead of ~ to avoid confusion with the Schwarzschild 
counterpart of the .6. already figuring in our notation. vVe note thnt the D, D, 8, 0* are the 
same as the vector fields f, ii, m, in respectively, appearing in equatiolls(5.41). 

These expressions for the spin coefficients, the Newman-Penrose eqnations and the Bianchi 
identities contain, a.s limiting cases, both the corresponding Kerr nnd the YES results. As 
R --+ 00 we recover the Kerr spin coefficients and as a --+ 0 we recover the YES counterparts. 

Apart from the Spill coefficient € which is non-vanishing, /'\., v, O",'x do yanish as in the Kerr 
tase. That these are zero shows that the congruence of the principaluull directions, land n 
are shear-free. In the Kerr case this fact is sufficient to invoke the Goldberg-Sachs theorem 
to conclude that the Kerr spacetime is of Petrov type-D. In the VEl\: spacetime, however, 
in absence of a corresponding theorem, there is no alternative than to evaluate the Weyl 
scalars. A glance at the Newman-Penrose equations{5.67-5.73) shows that the \Veyl scalars 
Wo and W4 vanish straight away. Thus it is immediately clear that the VEK spacetime 
is type-II. In Chapter 6, Section 6.4 we discuss that this is as it should be by showing 
that the VEK metric falls into a generalized Kerr-Schild class which therefore correspond 
to type-II spacetirnes. It now remains to see whether W 1 and W 3 <llso vanish. If they do 
and if W2 is t~e ouly non-vanishing Weyl scalar and can be evaluat't'd, we would not only 
have that the spacetime is type-D but also would be enabled to US(' the expression for W2 
for calculating the v'leyl spinor. Here we are prevented from direct l~' verifying this due to 
the exceedingly cumbersome nature of the computations involw<l. .-\ \vay out of this is 
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to notice that the. expressions not containing the mass IH do not contribute to the Weyl 
scalars. Therefore these terms add up to zero. The remaining terms containing M are not 
so difficult to evaluate and give the result that WI and W3 also vanish. The remaining Weyl 
scalar W 2 may be calculated in <1. way analogous to the Kerr case but is cumbersome and 
we shall not present the details here. Instead we take a brief look at the limiting case of 
the Kerr spacetime(R -+ 00) and then go on to exhibit, in detail, the classification of the 
special case of the YES spacetime wherein a = O. 

When we take the limit R -+ 00 the vacuum nature of the resulting Kerr spacetime allows 
us to use the Goldberg-Sachs theorem and put all the \Veyl scalars (lxcept W2 to zero. The 
Ricci terms in the Bianchi identities go to zero. Then the Weyl !:·.:alar W2 is most easily 
calculated by invoking the Bianchi identities and substituting the Kerr spin coefficients 
into it as done for instance in [36]. We obtain 

DW2 - 3pW2 

c5W2 - 3TW2 (5.75) 

Rewriting these equations and using the value of p and T we have 

a -3 
8r lOgW2 -

P! 
a -3iasin e (5.76) 80logW2 - ;or 

Solving these equations and determining the constant of proportionality from the spin 
coefficient equatioll~ we get 

(5.77) 

where 

P1 = r - ia cos B (5.78) 

:\s mentioned above a similar calculation of the VEK \Veyl scalar requires a knowledge 
of the llon-zero Ricci terms which turn out to have complicated expressions. We turn 
therefore to the simpler special case of the YES spacetime. 

5.5 Classification of the YES Spacetime 

.-\s discussed in tlw previous chapters, the YES spacetime is a special case of the VEK 
spacetime descrihing a static, asymptotically non-fiat black hole surrounded by matter 
distribution. It is a well-defined composite spacetime comprising a vacuum black hole 
spacetime matched to a non-vacuum exterior which, in turn, is matched to the Einstein 
universe as was done by Nayak, MacCallum and Vishveshwara[3]. This YES black hole 
contains the Schwarzschild black hole as a limiting case. As the background parameter 
R --* 00 the Schwarzschild black hole is recovered. 
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Since the Schwarzschild black hole is of Petrov type-D it is natural to enquire as to the 
classification of the YES black hole. As in the VEK case, in the YES case also one cannot 
invoke a theorem like that of Goldberg and Sachs to determine the Petrov type on the basis 
of the nature of the spin coefficients alone. We now specialize the spin coefficients obtained 
in section 5.4 and evaluate the vVeyl scalars explicitly. Taking a = 0 in equations(5.55) we 
get 

K, a=A=v=€=7r=T=O 

P 
1 

-
R tan(r/ R) 

J-L 1 ( 2A1) 
-2Rtan(r/R) 1- Rtan(r/R) 

(3 
cote 

2V2r 
M 

'Y - 2r2 
0: - -"P (5.79) 

These expressions are analogs of the Schwarzschild counterparts given, for instance, in[17]. 
It is evident that that the Schwarzschild results are recovered as R -t 00. 

The Newman-Penrose equations become 

Dp p2 + Woo (5.80) 

0 Wo (5.81) 

0 - WI + il>Ol (5.82) 

Do: - o:p + il>1O (5.83) 

D(3 - (3p + WI (5.84) 

D'Y - W2 + il>u - A (5.85) 

0 <1>20 (5.86) 

DJ-L - pJ-L + W2 + 2A (5.87) 

0 - W3 + il>21 (5.88) 

0 -W4 (5.89) 

6p - p(o: + (3) - WI + il>OI (5.90) 

60. - 6*(3 - J-Lp + 0:2 + (32 - 2a(3 - W2 + il>11 + A (5.91) 
6* - J-L - J-L(O: + (3) - W3 + <1>21 (5.92) 

-DJ-L - J-L2 + 2J-L'Y + <1>22 (5.93) 

6'Y - !2f3 - 'Y( -0: - (3) + (3p + il>12 (5.94) 

0 - <1>02 (5.95) 
D--P -pJ-L + 2p'Y - W2 - 2A (5.96) 

Do. - 6*"( 0:("(- J-L) + 'Y(3 - W3 (5.97) 



Solving the above.system of equations and using equations(5.79) we find that 

Wo 0 

WI - Df3-f3p=~f3-f3P=O ar 
1 2-M 

W2 - "3(D, + 26f3 + DJ.1.+4f3 ) = R2 sin2(r/R)Rtan(r/R) 

W3 - 6, - Da - ap, = 0 
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W4 - 0 (5.98) 

And 

<POI - <P1O = <P02 = <P20 = <PI2 = <P21 = 0 

<Poo 
1 

- R2 

<Pu - 1 (12M ) 
4R2 R tan(r/ R) 

<P22 - 1 ( 2M)' 
4R2 1 - Rtan(r/R) 

A = 1 (1 2lvf) 
4R2 R tan(r / R) 

(5.99) 

Gathering these results together we see first of all from equations(5.98) that apart from 
wo, W4, WI and W3 all·vanish and the only non-vanishing Weyl scalar is W2. This shows 
that the YES spacetime is Petrov type-D, with repeated principal null directions 1 and n. 
By taking the limit R --+ 00 of W2 it is immediately verified that the YES Weyl scalar 
reduces to the Schwarzschild counterpart. 

Next, turning to the Ricci terms above we see that the only non-vanishing quantities are 
the components <Poo, <Pu, <P22 and the scalar A. The presence of these terms reflect the 
non-vacuum nature of the YES spacetime. As discussed in Chapter 2, the non-vacuum 
here refers to matter distribution satisfying reasonable energy conditions. 

By taking NI = a in the Ricci terms we see that 

<Poo 
1 

- R2 
1 

(5.100) <PH - <P22 = A = 4R2 

The non-vanishing of these quantities reflect the asymptotically non-flat feature of the YES 
spacetime. We may recall the the limiting case M = 0 of the YES spacetime is the Einstein 
universe. The asymptotically flat result is recovered in the limit of R tending to infinity 
and the Ricci quantities vanish as expected. 
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In passing we note. that the optical scalars are given by 

e ~ -= -2 
p + P = Rtan(r/R) 

w - 1.0- P 1= 0 

10'01 - 0 (5.101) 

Thus we have established that the VES spacetime belongs to Petrov class-D. This lends 
strong support to the expectation that the VEK spacetime also falls into the same class. 
To our knowledge there is no result which indicates that the Petrov type is preserved in 
passing from the static to the stationary case. In absence of such a result we base our 
expectation that the VEK spacetime is also of type-D by considering the fact that firstly, 
both the limiting case of the Kerr spacetime(R -+ (0) and the special case.of the YES 
spacetime(a = 0) are of type-D. Secondly, the existence of the Carter constant also supports 
this view. Thirdly as we shall discuss in Section 5.6 below, there exists a Newman-Janis 
type of complex transformation which generates twist in the YES spacetime to give the 
VEK spacetime. Lastly, as we shall show in Section 5.7, there exists a Killing-Yano tensor 
which remarkably 'squares' to give the Killing tensor. This tensor may be constructed 
from the Killing spinor which, in turn, is built up from the only nOll-vanishing \Veyl scalar 
\V2 and the metric spinor €AB. To proceed in these directions we first need to study the 
2-spinor formalism to discuss the Killing spinor for the VEK spacetime. 

5.6 The Killing Spinor 

It is now necessary to recall some essentials of the 2-spinor formalism which provides the 
frame-work to define the metric and the Killing spinors. For details we refer, for instance, 
tor 42J or [17]. 

5.6.1 Brief review of the 2-spinor formalism 

In the 2-spiuor formalism the basic entities are the spinors OA and /.,4 usually normalized 
by 

OALA = 1 (5.102) 

Most of what follows may be built out of the OA and l,A and the above relations. 

Indeed, it is helpful to keep the following analogy in mind. In t.he tensorial view the 
l':ewman-Penrose tetrads contain all the information from which tlw rest of the structures, 
the metric, the Killing and the Killing-Yano tensors may be expressed. Likewise, the basis 
spinors oA and /, A contain all the informatiQn from which the metric and the Killing spinors 
may be expressed. 
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The metric spinor. €AB which is an antisymmetric spinor is defined by 

(5.103) 

It satisfies the Jacobi identity 
(5.104) 

Just as tensor indices may be raised and lowered with the metric tensor, spinor indices 
may be so dealt with with the metric spinor. But the position of the indices is also to be 
given prominence. For instance, we have 

Ji-B 
.4. A" 

- €ABJ-t = Ji- "'AB 

(5.105) 

Any spinor Ji-A ... F can be expressed as the sum of the completely symmetrized spinor f-L(A ... F) 

and products of the metric spinors with completely symmetric spillors of lower valence. 

Thus it is necessary to consider only symmetric spinors. 

A Hermitian spinor Ji- is one for which Jl = f-L. The covariant constancy of t.he metric tensor 
is mirrored by the vanishing of the spinorial covariant derivative of t.he metric spinor 

(5.106) 

The 2-spinor formalism is related to the standard tensor form ali 13m through the Infeld-Van 
der vVarden symbols a~A' as follows. 

The Newman-Penrose tetrad is defined in terms of oA and ~A by 

la a A A' - 0".t1A'O 0 

na - O"~A'~AtA' 

rna - a~A' oA t·4.' 

'i'i'f" - a~A,~AoA' (5.107) 

The normalization relations obeyed by the null tetrad follow naturally from the 
rc!ations(5.102). By convention the Infeld-Van der Warden symbols a.re usually not written 
explicitly. They are inserted when needed for calculational purpOSl'S. 

Thus, for example, the relation between the metric tensor and the metric spinor is written 
simply as 

(5.108) 

In addition to these other quantities there .. ~re that coming from the spinor decomposition 
of the Riemann tensor. 



The Riemann tensor has the spinor expression 

where 

and 

X ABCD - X(AB}(CD) 

<P ABC' D' - <P(AB)(C'D') 

X ABCD - XCDAB 

<P ABC' D' - <P ABC' D' 

Along with this we have the scalar A 

so that 

1 AB 
A= -XAB 

6 

X AB& = 3AcACA = A 

This is an expression of the identity 

Ra[bcd] = 0 

We further have 

R - 24A 

Rab - 6Agab - 2<p ab 

In terms of these quantities the Einstein field equations become 

4>ab - 471"(Tab - ~T~gab) 
A l TC 

- '371" C 

The Weyl spinor q, ABCD is defined as the symmetric part of X ABCD 

W ABCD = X(ABCD) = XA(BCD) 

We have 

XABCD = WABCD + A(€AC€BD + CAD€BC) 

The full Riemann tensor(5.109) becomes 

Rabcd = WABCD€A'B'€C'D' + WA'B'C'D'CABCCD + <PABC'D,c.-l'D'CCD 

+4> A'B'CDCABCC'D' + 2A.(€AC€BDCA'C'C8'D' - CADe BCCA' D'€8'C') 
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(5.109) 

(5.110) 

(5.111) 

(5.112) 

(5.113) 

(5.114) 

(5.115) 

(5.116) 

(5.117) 

(5.118) 

(5.119) 



The terms involving W.4.BCD alone give the Weyl tensor 

The Bianchi identity 

becomes 

Or 

Rab[cdie] = 0 

\7~,X.4BCD = \7X <I>CDA' B' 

\7~, W ABCD - \7t~<I>CD)A' B' 

\7CA'iPCD A'D' - -3\7 DB,A 

This shows that when the vacuum Einstein field equations hold 

iPABC'D' - 0 

A - 0 

vVe have 
\7AA'WABCD = 0 

And when matter is present there is a source term 

A I 4!T. 
\7 B W ABCD = 47r\7(B CD)A' 8' 
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(5.120) 

(5.121) 

(5.122) 

(5.123) 

(5.124) 

(5.125) 

( 5.126) 

Equation( 5.125) plays an important role in the existence of the Killing spinor for the Kerr 
spacetime. 

In passing we note that the Newman-Penrose Weyl scalars are giwu in terms of the spinor 
basis 0..1 and "A by 

Wa - W ABCDOAOiJ oC OD 

WI W ABCDU.J..OBoC"D 

W2 - WABCDOA'oB"C"D 

W3 - W ABCDOA.t,s "C "D 

W4 W.4.BCDI,.'\B P "D (5.127) 

The Ricci quantities are defined analogously. vVe now define the Killing spinor 

5.6.2 The Killing spinor 

A Killing spinor ~A .. ,DK', .. N' is a symmetric spinor with r primed and s unprimed indices 
which satisfies 

\7PCA ... D - 0 
Q<"K ... N - (5.128) 
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As the terminology and the definition suggests, ~A. .. DK' ... N' is associated with a conserved 
quantity. To see this we need to contract ~A ... DK' ... N' with a spinor analogue of a geodesic­

vector and take the covariant derivative. For this we take a null vector pa which may 
always be written in the spinor form pa = 7fA7f"' and contract ~A ... DK' ... N' with the 7fA7r's. 
Then demanding that 

(5.129) 

which essentially means that the flag plane of the spinor 7f"A' is also parallely propagated, 
the quantity 

Q _ cA ... DK' ... N'- -;;;:",.",. ",. 
- <,. 7r A ..• /I D /I 1'" 1\ K' ... ,. N' (5.130) 

is conserved. Indeed, taking the covariant derivative of Q we have 

PYr7yQ = pYr7 t:A ... DK' ... N'- r7YY'(- - ",. )cA. .. N' v v y<" 7f" A •.. 7f"N' = v 7r A···7f" D'lry'7f"K',··" N' <,. 

+::;r -;;;:",. nY1'" c A ... N ' - 0 
/I A ... II D"y'7f"K, ..• 'lrN' v <,. - (5.131) 

The first term vanishes due to parallel propagation of the flag plane of 1/"A' (5.129) and 
the second term vanishes by the definition of the Killing spinor(5.128). This property of 
the Killing spinor may be compared and contrasted with that of the Killing tensor(5.21). 
Apart from the similarities, the additional requirement here is that the flag plane of 7f"A' 

vanish and that the Killing spin or need not be symmetric in the primed and unprimed 
indices, ie, r =j:. s. When r = s the Killing spinor is Hermitian and Q is then a real 
conserved quantity essentially equivalent to the Carter constant for null geodesics. When 
r =j:. s however, the Killing spinor is complex and therefore, Q is also complex. It contains 
additional information related to the flag plane of 7f"A' also. This information enables one 
to determine the propagation of polarization planes along null geodesics. Thus when the 
Killing spinor is complex, one cannot give it a direct interpretation associating it with a 
physical conserved quantity. Then one extracts a real quantity from Q by considering the 
quantity IQI by defining Q = QQ after obtaining the solution of Q[31]. Another method, 
which is the one relevant to our purpose, is to obtain an indirect interpretation by using 
the Killing spinor, along with the metric spinor, to build up the Killing-Yano tensor. This 
is because the Killing spinor of a type-D spacetime is essentially complex as we now discuss. 

From here on wards we shall be interested in the particular Killing spinors that is associated 
with the type-D nature of the spacetime. In type-D spacetimes there exists a symmetric 
spinor of valence two given by 

.Tr-1/ 3 
KAB = ':l'2 O(A/"B) (5.132) 

By the definition (5.128) this satisfies 

A' 
V (AKBe) = 0 (5.133) 

This is to be contrasted with the definition of the metric spinor( 5.103) which may be 
written in an equiva.lent form 

(5.134) 
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and whose covariant derivative also vanishes. 

This shows that the metric spinor is trivially a Killing spinor. 

The metric spinor naturally exists for any spacetime. However, the existence of the Killing 
spin or ""AB, as shown by \iValker and Penrose, is intimately related to the type-D character 
of the spacetime. This has to with the fact that ""AB is, apart from the basis spinors oA and 
/,A, a multiple of the Weyl scalar W2. Thus whereas fAB exists in any spacetime, including 
the case of the flat spacetime, the existence of ""AB is restricted to type-D spacetimes. 
Indeed, from the definition(5.132) it is clear that on the one hand ""AB as is defined is a 
Killing spinor only when W2 is the only non-vanishing Weyl scalar. On the other hand, it 
vanishes not only in flat spacetime but even for a conform ally-flat spacetime such as, for 
instance, the Einstein universe. The latter feature is significant in that it allows for ~n 
extension of the Killing spinor from the asymptotically flat Kerr spacetime to that of the 
asymptotically non-flat VEK spacetime. 

Coming back to equation(5.133), in the Kerr case, Walker and Penrose base their proof 
on the vacuum Bianchi identity(5.125). As stated in ref[42] the proof consists in rearrang­
ing the Bianchi identity equation(5.125) so that it becomes (5.133). Thus there exists an 
explicit complex conserved quantity along any null geodesic in a vacuum type-D spacetime. 

After this review of the standard results we move on to the VEl( spacetime. 

5.6.3 Killing spinor and the VEK spacetime 

The above discussion on the Killing spinor had two importallt assumptions. One is that 
the spacetime is of type-D. Another is that, in addition, the spacetime is of vacuum. The 
former is true in the VEK case also and ensures that the only non-zero vVeyl scalar is 
W2 . The latter seems to restrict the existence of the Killing spinol" as when the space­
time is of non-vacuum one no longer has the vacuum Bianchi identit}'(5.125) but rather 
the equation,5.126). Thus one is not certain whether equation(5.133) holds for the non­
vacuum case also. Nevertheless, basing our expectations on the results obtained thus far, 
which strongly indicate that most of the standard Kerr results go through for the VEK case 
also, apart from subtle, non-trivial modifications we assume that equation(5.133) holds. 
Even if this would not be true, it might not be improbable that there exists a redefined 
Killing spin or which does satisfy equation(5.133). However, we do not pursue this point 
further in this thesis. We may remark that it is the existence of such unresolved issues, viz, 
how strong is the relation between the properties of the geodesics and the classification of 
the spacetime when the assumption of vacuum and asymptotic flatness is relaxed, which 
makes the present investigations so signifiC"ant and pressing. 



97 

We now proceed to construct the Killing spinor "'AB for the VEK spacetime. 

The definition of a Killing spinor for a type-D spacetime has been given in equation(5.132) 
above. In order to construct it explicitly one needs the Weyl scalar W2 and also the basis 
spinors 0.-\ and l.A. The basis spinors may be obtained from the ~ewman-Penrose tetrad 
form l once a suitable choice of the Infeld-Vander Warden symbols is made. We note that 
the expression for the Killing spinor contains the product of the basis spinors 0.4. and "8 

which is all we need evaluate. 

It is convenient to perform the following computations by going over to generalized Kerr­
Schild coordinates. This makes it possible also to obtain the expression for the VEK 
Weyl scalar via a Newman-Janis complex algorithm. Since in Chapter 6 we shall treat the 
generalized Kerr-Schild approach, we refer to that chapter for the details. Here we note 
that the generalized Kerr-Schild transformation is given by 

f2 +a2 

du dt- ~ dr 

- a 
d¢> - d¢ - .6. dr (5.135) 

The tetrad forrns(G.36) now become 

- 2 
eO 6. 2 - P - p (du - a sin 8d¢) - .6. 

e1 - P dr 
~ 

f? - E.de 
( 

e3 sin e -
- ~((r2 + a2)d¢ - adu) 

p 
(5.136) 

\Ve ma.v pick out the tetrad coefficients e: from the relation 

(5.137) 

The Infeld-Van D('[' \Varden symbols can be chosen from the tetrad coefficients to be 

( 

YA+asinO 
1 - 1 2M.!:. . --,;r 

(J' .4.B = _ ;; 
1 v'2 -

-t-& 
....L ) ../i. 

vA-asinB . 
1 2.1:1 r 
- ;;2 

AB -P (0 i) 
0"2 = V2( -'i 0 . 

(5.138) 

(5.139) 

(5.140) 
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AB sm p vn . () . (2MraSin8 + IT 0 ) 

O"a = ../2(1 _ 2~i!:) 0 2Mrp~Sin8 - VK . (5.141) 

By means of the (J' /B and the relation 

(5.142) 

we find the expression for the Killing spinor to be 

,T,-1/3 (IT 
'oI!2 V ~ - asin8 

K.AB = 
2PV1 - 2;i!: 0 

(5.143) 

It remains to find the \Veyl scalar. To obtain it we proceed from expressionfar the YES 
vVeyl scalar given in equation(5.9B) and rewrite it as 

W-1/ 3 = -M cos(rjR) 
2 R3 sin3(r/R) 

The Newman-Janis algorithm amounts to making the complex transformation 

where 

RSin(rj R) -+ (Rsin(r/ R)) + ixa cos B 

x= 
1 _ sin2(r j R) 

cos2 B 
Under this transformation W2 becomes 

W1/ 3 _ -lvlcos(rjR) 
2 - .../R2 _ a2 sin(r J R) + i cos(rJ R)acos () 

(5.144) 

(5.145) 

(5.146) 

(5.147) 

This reduces to the special case of the YES Weyl scalar as (I, = 0 and the limiting Kerr 
Weyl scalar as R -+ 00. 

The vVeyl scalar '11 2 vanishes when !v! = O. Thus it is not possible to make use of if for the 
case .M = O. In most work involving the Weyl scalar as applied to the study of particle 
angular momentum, as far instance, by Faridi[34]' .U is scaled off. Following the same 
procedure we usc instead of W2 given in the above equation, the quantity W given by 

Wi / 3 = - cos(r / R) 
JR2 - a2 sin(rJR) + i cos(r/R)a cosO 

(5.148) 

Substituting this in equation(5.143) we arrive at the expression for the Killing spinor of 
the VEK spacetime as 

K.AB = _ J R2 - 0.2 sin{r / R) + i cos(r j R),a cos (J (J!5. - a sin (J 

2pcos(r/ R)J1 - 2;tr 0 
IT a . (J) (5.149) 

v n + aSIIl 
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This may be written in compact form using our notation as 

K.A.B = _ T+icos(r/R)acosB (.JK- asinB 0.) 
2pcos(r/R)Vl- 2~r 0 .JK + asmB 

(5.150) 

This expression contains both the special case(a = 0) of the VES Killing spinor and the 
limiting case(R -+ 00) of the VEK Killing spinor 

The VES Killing spinor is given by 

/tAB = _ R" sin'(r / R) tan(r / R) (v'X 0) 
VI - Rta~~/R) 0 v'6. 

(5.151) 

And the Kerr Killing spinor is given by 

r + ia cos B (.Jii - a sin B 0 ) 
K.AB = - rA 

2PV1 - 2~!r 0 V 6. + a sin () 
(5.152) 

Having constructed K.AB for the VEl< spacetime, some remarks are in order. 

In the Kerr case, proceeding along the above lines Hughston and Sommers[-l3] have sho'\vn 
that for any vacuum spacetime possessing a Killing spinor X4.B there exists a (complex) 
Killing vector ka given by 

(5.153) 

They have further shown [42] that this vector satisfies the relations k(a;b) = 0 without 
invoking the vacuum assumption. Moreover Floyd[30] and Penrose[32] have shown that in 
the Kerr spacetime the Killing vector ka. which arises out of the Killing spinor K..4B implies 
that the bi vector 

(5.154) 

satisfies 

Fa(b;c) = 0 (5.155) 

The bivector Fu.b is identified as the Killing-Yano tensor. We base our work on the same 
expression with the Kerr quantities replaced by the yEK counterparts. 

5.7 The Killing-Yano Tensor 

The Killing-Yano tensor is an antisymmetric tensor or a differential form which satisfies 

Fa(b ... cd;e) = 0 (5.156) 

As with the Killing tensor and the Killing spinoI' , the Killing-Yallo tensor is associated 
with a conserved quantity. Indeed taking the covariant derivative of the expression 

(5.157) 
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we have 

ll(Ja;e) = pepb;e ... pcpd Fab...cd + ... Fab ... cd;epepb ... pcpd = 0 (5.158) 

The terms other than the last vanish due to the geodesic equations and the last term vari­
ishes by the definition of the Killing-Yano tensor(5.156). 

Since we shall be interested only in a Killing-Yano tensor of rank two, we shall confine 
ourselves to it. The above definition(5.156) then reduces to 

Fa(b;c) = 0 (5.159) 

The associated conserved quantity is then 

Jb = Fabpa (5.160) 

That is, Ja is a conserved vector field. This property plays a key role in defining an angular 

momentum-like structure for the VEK spacetime, naturally subsuming the Kerr case. It 

is now necessary to obtain an explicit expression for Fab in the VEl< case. 

Employing the definition(5.154) and substituting the expression for the Killing spinor(5.152) 
into it, it is straight-forward to calculate Fab component-wise. We find that 

Or 

( 

0 

acos e 
F.b = -'7"' 

-acose 
o 
o 

a2 sin2 () cos () 

F -- ~ F:tbdXU /\ dxb 
2 

arsinO 
-t;-

o 
o 

__ rCr2+a2 ) sinD 
t; 

(5.161) 

-u,cose(du--asin2()d¢;)/\dr + ~Sin()(adt--(r2+a2)d¢J)/\d() (5.162) 

The contravariant form of the Killing-Yano tensor is given by 

0 acosti(r2+a2 l -arsinO~ 0 
p p2 

__ ucosO(r2+a2 ) 
0 a _a2 ("OS 0 

Fn/J = p ,S 

(5.163) p-
arsinO( 0 a ~ p2 p' sill 0 

0 a2 cosO ~ a -r p sinti 

Ta.king the limit R -+ 00 we recover the Killing-Yano tensor for the Kerr spacetime. It 
is easily seen that. the resulting expression coincides with the on(' given, for instance, in 
Faridi [34]. 

F. __ a cos () ( 

0 

ab -- . 
-o,rOsm e 

--a cos () 
o 
o 

a2 sin2 () cos () 

ar sin () 
o 
o 

--r(r2 + a2 ) sin () 

o ) _a2 sin:.! 0 cos () 
r(r2 + a:.!) sin () 

o 
(5.164) 
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- -acosO(du-asin20d¢)l\dr + ~sinO{adt-(r2+a2)d¢)l\dO (5.165) 

Taking a = 0 in{5.161) we recover the VES expression 

00) o 0 
o Rsin3 (r/R) sinO 

-Rsin3(rjR) sinO 0 

(5.166) 

Or 
F = ~ Fabdxa 1\ dxb = R sin 3 (r j R) sin Od¢ 1\ dO (5.167) 

Having obtained the I<illillg-Yano tensor we have constructed the key quantities which are 
associated directly or indirectly, with the Carter constant and the type-D nature of the 
VEK spacetime. 

5.8 Concluding Remarks 

In this chapter we lla\"c focused on a study of the Carter constaut and the classification 
of the spacetime via the Newman-Penrose formalism. In the Kt'fI' spacetime much of this 
is well established. The VEI< spacetime on which we have based our investigations has 
an additional feat.ure in that. it describes a non-vacuum asymptotically non-fiat. rotating 
black hole. The black hole is surrounded by matter distribution which satisfies reasonable 
energy conditiolls. 

Starting with a discussion of Carter's discovery of the fourth constant in the Kerr case, we 
have shown by construction that the Carter constant exists in the VEK spacetime also. 
From the Carter C'Ollstant we have obtained the Killing tensor and brought out its signif­
icance by considering the special case of the Schwarzschild spacetime wherein the Killing 
t.ensor becomes reducible. 

N(~xt, taking into account the fact that in the Kerr spacetime, the Killing tensor is related 
to the Killing-YaIlo tensor which, in turn, is related to the type- 0 nature of the space­
t.ime, we have illV<'stigated the classification of the VEK spacet.ime. By employing the 
Newman-Penrose formalism we have calculated the spin coefficiellts for the VEK space­
time. We have Hhmvn that unlike the Kerr case there is a non-va.llishing spin coefficient 
f.. Even though t.he rest of the results mirror that in the Kerr cns(\ their expressions are 
t:onsiderably complicated. These spin coefficients <.:ontain as limit.ing cases the Kerr and 
the VES counterparts and of course the Schwarzschild ones also. The Bianchi identities 
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contain non-zero Ricci terms also in addition to the Weyl scalars. 

Motivated by the significance of the type-D n~ture of a black hole spacetime we have stud­
ied the classification of the VEK spacetime. We have demonstrated explicitly and in detail, 
that the VES spacetime is type-D. We have shown that the only non-vanishing Weyl scalar 
is 'l1 2 · Turning to the Ricci terms, the only non-zero terms are <Poo, <P u , <1>22 and the scalar 
A. That these terms which vanish in the Schwarzschild case do not do so here shows that 
the spacetime is non-vacuum. In the Einstein universe also the Ricci terms are non-zero 
which brings out the asymptotically non-fiat nature of the spacetime. The optical scalars w 
and (j vanish as in the Schwarzschild case whereas the optical scalar e is modified because 
of the background. 

We have discussed the 2-spinor formalism and constructed the Killing spinor for the VEK 
spacetime. By means of the Killing spinor we have calculated the Killing-Yano tensor and 
shown that in the limit R -7 00 this coincides with the Killing-Yano tensor of the Kerr 
spacetime. 

With this we have not only brought out the essential features of the VEK spacetime asso­
ciated with the separability properties and the Petrov classification but also constructed 
the quantit.ies that go into supporting an angular momentum structure as we shall see in 
the following chapter. 



Chapter 6 

Geodetic Particle Angular 
Momentum in the VEK Spacetime 

6.1 Introduction 

In the present chapter we deploy the geometrical quantities constructed in Chapter 5 to 
the investigation of their relation to a possible angular momentum-like structure in the 
VEK spacetime defined by the Killing-Yano tensor. As in Chapter 5, these studies involve 
an interplay of diverse concepts. These are the structure of the Killing and the Killing­
Yano tensors, the generalized Kerr-Schild transformation and the background-black hole 
decomposition. We set up the stage for a fruitful study of these topics in the nOll-vacuum, 
asymptotically non-flat VEK spacetime. Thus the results obtained not only give insights 
into the nature of the VEK spacetime but to the limiting case of the Kerr spacetime also. 
We begin by giving a simplified account of the phase-space or symplectic formalism given in 
an unpublished prcprint by Samuel and Vishveshwara[33]. We shall employ this approach 
throughout this chapter. An alternative approach to the investigation of particle angular 
momentum in the Kerr spacetime has been given by Faridi (34]. 

In the previous chapter we have investigated the separability properties of the geodesics 
and the classification of the spacetime. The remarkable fact is that the two lines of inves­
tigation both lead to the Carter constant. This makes the problem of interpretation of the 
Carter constant particularly interesting as it does not admit any clear physical interpreta­
tion. Some work related to such interpretation relevant to our present investigations is that 
of Samuel and Vishveshwara[33] and Faridi[34]. It is well-known that in the limiting case 
of the Schwarzschild spacetime, the Carter constant reduces to the square of the particle 
angular momentum. Taking this clue, Samuel and Vishveshwara suggested a definition for 
the angular momentum about any axis for a particle in geodesic motion around a Kerr 
black hole. They showed that a physically reasonable definition was indeed possible based 
on a natural separation of the Hamiltonian into two parts, a kinetic part admitting a large 
symmetry group and a potential part with a smaller symmetry group. They showed that 
their definition of angular momenta satisfi;d the bracket relations expected of them. Fur-
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ther, they calculated the precession of the angular momentum vector to first order in the 
angular momentum parameter a. 

Faridi gave a construction of the Killing-Yano tensor for the Kerr metric and obtained 
the Carter constant. He showed that the Killing-Yano tensor was related to the angular 
momentum of Newtonian mechanics. The equation of precession has a non-trivial solution 
only for the case of a slowly rotating Kerr black hole valid to first order in the angular 
momentum parameter a. This led him to interpret the Carter constant as the squared 
length of the precessing angular momentum vector. 

Turning to our present investigation of the particle angular momentum in the VEK space­
time we may make the following observations. In curved spacetime, the definition of 
physical quantities is non-trivial due to the absence of an isometry group as in the flat 
spacetime. In the flat spacetime the Poincare group allows us to define the energy, mo­
mentum and angular momentum for a free particle. The momentum of the particle can be 
identified as the generator of spatial translations, the energy as the generator of time trans­
lation and the angular momentum as the generator of rotations. Due to the natural action 
of the Poincare group on Minkowski spacetime, there is a meaningful notion of a global 
translation or rotation. In a general curved spacetime however, it is not possible to define 
any of t.hese quantities in a natural manner. Nevertheless, ill a stationary, a..xisymmetric 
spacetime the isometrics associated with the Killing vectors do enable us to define physi­
cally significant quantities which are conserved. In the special case of t.he static spherically 
symmetric spacetime, it is possible to define the energy and the three components of the 
angular momentum a.bout the centre of symmetry using the timelike Killing vector field. 
These quantities ilre conserved in the motion and asymptotically coincide with their flat 
counterparts. In the stationary, axisymmetric case of the Kerr spacetime only the energy 
and the angular momentum about the axis of symmetry can be defined. This is due to the 
absence of a natural action of the full rotation group on an axisymmetric spacetime. 

Thus it appears that in a curved spacetime, physical quantities can he defined only when 
they are conserved. In the absence of such a criterion, one does not have any clue as t,O how 
to construct. such quantities. This is contrary to the situation in the fiat spacetime. There, 
for instance, due to the existence of the Poincare group, it is possible to define the angular 
momentum of a particle in a potential which is not spherically symmetric, even though it 
is not conserved. This definition relies on the separation of the Hamiltonian into a 'kinetic' 
and a 'potential' term. The first is spherically symmetric and depends only on the metric 
and not on the potential. The second term is the potential term which is not spherically 
symmetric. The first has a large symmetry group whereas the second has a smaller one. 
The kinetic part of the Hamiltonian may be used to define physical quantities like the an­
gular momentum. Though it is not conserved in the motion, it can be meaningfully defined. 
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In the static, spherically symmetric Schwarzschild spacetime, we may define physical 
quantities by an analogous separation of the Hamiltonian into a kinetic and a poten­
tial part. This is due to the separation of the metric into a background and a black 
hole term called the background black hole decomposition introduced by Ramachandra 
and Vishveshwara[21] as discussed in Chapter 2. In the Kerr spacetime such a separation 
is possible by going over into the Kerr-Schild coordinates. Thus in the Kerr spacetime, 
a physically reasonable definition of the angular momentum may be given as shown by 
Samuel and Vishveshwara. As already mentioned their definition is based on the Killing­
Yano tensor. 

Therefore, in view of the above discussion, it would seem that defining the particle angular 
momentum in the VEK spacetime is far from trivial. It is well known that· even in the 
Kerr spacetime such a definition is not at all straight-forward. There, attempts have been 
made to relate the Killing and the Killing-Yano tensors to particle angular momentum 
but still, a complete clarification of the role of these quantities is lacking. In this chapter 
it is our intention to investigate some of these issues in the context of the non-vacuum, 
asymptotically non-flat VEl( spacetime. 

As usual we recover the Kerr results as limiting cases of the VEK counterparts. 

As has been pointed out in Chapter 3, we recall that when we speak here of conserved 
quantities like 'mass', 'energy' and 'angular momentum' in the VEK spa,eetime \ve really 
mean that these quantities have as limiting cases their usual counterparts defined in an 
asymptotically flat npacetime. We shall continue to call these as simply mass, energy and 
angular momentum respectively for convenience. 

The present chapt.er is organized as follows. In Section 6,2, we discuss the phase space 
formalism and show how to project quantities on spacetime to space. In Section 6.3, we 
discus~ the reiatioll between the Killing and the Killing-Yano tensors. We show that the 
Killing-Yano tensor constructed in Chapter 5 leads to exactly the Killing tensor. After a 
brief discussinn on t.he Killing tensor, we discuss the significance of t.he Killing-Yano tensor. 
In Sect.ion 6.,.1:, we discuss the background black hole decomposition for the quantities in 
the VEK spacetime as was done in the YES case in Chapter 2. In Section 6.5, we use 
the Killing-Yano tensor to define vector fields which satisfy the bracket relations and can 
be considered as a.nalogues of the generators of particle angular momentum and discuss 
the corresponding hracket relations. We present calculations on the precession of particle 
a.ngular momentuIll to first order in the angular momentum parameter a. Section 6.6 
carries some concl\lding remarks. 
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6.2 The Phase Space Formalism 

Along with purely geometrical methods the use of Lagrangian and Hamiltonian methods 
in General Relativity has been wide-spread since the beginning of the subject itself. In 
the study of geodesics one employs these or the Hamilton-Jacobi method. Depending on 
the situation, one or the other approach may be found more suitable in carrying on the 
investigations. In the present case we have found the Hamiltonian or phase space approach 
to be convenient for our studies. 

The phase space or symplectic formalism allows one to deal with scalar analogues of the 
corresponding tensors. These scalars are obtained by contracting the tensors with geodesic 
vector fields. Thus, for instance, one avoids dealing with the Lie derivative and the con­
nection coefficients. Instead, one has only to deal with the Poisson bracket. 

This formalism also enables us to project tensors on spacetime to tensors on space. More­
over, it is independent of the existence of a metric on the spacetime. It differs from the 
Geroch formalism which employs the metric tensor to project tensors onto the hypersurface 
orthogonal to the time-like Killing vector field. 

Let C be the configuration space, ea a vector field on C and C be t.he 3-manifold of the flow 
of ~a. Then there exists a natural mapping 

(6.1) 

which assigns each point of C to t.he flow of ea on which it lies. By means of this mapping 
various geometrical quantities may be projected onto C. The only quantities relevant to 
our work are functions, vector fields and forms. 

A function J 011 C is projectible if there exists a function 1 on C from which f is obtained 
by pulling J to C 

f = 1f* J 
This implies J is preserved by the flow of E, and satisfies 

C~f = 0 

In coordinate form this may be written as 

8j =0 
8xo 

(6.2) 

(6.3) 

(6.4) 

Next, a vector field X is projectible if X (I) is a projectible function provided f is also 
projectible. That is 

(6.5) 
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The second term yanishes since f is projectible. Here we have made use of the relation 

C = ixd+dix (6.6) 

Therefore the condition becomes 

(6.i) 

This tells us that C~x is a vertical vector field, ie, proportional to e. In terms of coordinates 
this means that the spatial components of X satisfy 

8Xk 
-=0 
oxo 

and the time component XO remains unrestricted. 

If X = Xa/xo is a projectible vector field, its projection is given by 

(6.8) 

(6.9) 

In terms of coordinates this means that one drops the time components and S is simply 

(6.10) 

Turning to forms, a I-form a is projectible if a(X) is a projectible function provided X is 
a projectible vector field. That is 

(6.11) 

Since X is arbitrary both the terms OIl the right hand side must vanish separately 

ixa -- 0 

C~a -- 0 (6.12) 

In terms of coordinates this takes the form 

ao -- 0 
oak 

0 
oxo -- (6.13) 

Now that we have ::;hown how to project functions, vector fields and I-forms it is easy to 
generalize the results to tensors. 

In analogy with vector fields contravariant tensors are projectible if their Lie derivatives 

with respect to ~ have only time components. That is, the projection of 

F -- F ab 0 8 -- -®-
oxa 8xb 

(6.14) 

is 
- kl 0 8 
F = F oxk ® 8x l 

(6.15) 
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Next, in analogy :with I-forms covariant tensors are projectible if their Lie derivative van­
ishes and the tensors have no time components. The projection of a 2-form /3 = /3abdxa®dxb 
is 

(6.16) 

The above discussion was centred on the configuration space. We now consider the phase 
space r. Since C is four dimensional, r is an eight dimensional manifold. 

Let ~ be a vector field on C. The quantity 

(6.17) 

is then a function on r. Let M be the submanifold of r defined by ~ = con~t = q on M. 
Then the 2-form Wr on r can be pulled back to M by means of the inclusion mapping 

i:Myr (6.18) 

to give the 2-form 
W = i*WM (6.19) 

Because ~ is constant on M the vector field X{ is tangent to M and in the kernel of w. 

Thus 
(6.20) 

The flows of the vector field X{ foliates M into a six dimensional space r and there is a 
natural mapping 

7r' : M -+ f' (6.21) 

w is 1[" projectiblc since equation(6.20) is satisfied and since 

(6.22) 

as w is a closed form. The projection w is given by 

W = rr'*w (6.23) 

r is endowed with a symplectic 2-form w. The Hamiltonian 1i is also projectible since 

(6.24) 

The reduction of r to f' allows us to reduce the dynamics on r to that on r via the 
Hamiltonian 

where 

- 1 q2 1 kl ) ( ) 1i = -- + -g (Pk - qAk PI - qAt 
2 goo 2 

Ak = gOk 

goo 
We now connect the phase space formalism to the usual spacetime counterpart. 

(6.25) 

(6.26) 
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Consider a particle moving in the spacetime Q. The phase space r associated with Q is 
defined as the cotangent bundle over Q, r = T*Q. If Q has coordinates xo., a = 0,1,2,3, 
r has coordinates (xo.,po.)' r is an eight dimensional manifold endowed with a I-form 

(6.27) 

This defines the symplectic 2-form 

(6.28) 

which by construction, is naturally closed. 

dwr = ddOr = 0 (6.29) 

It is also non-degenerate. That is, ixwr = 0 =} X = O. 

The symplectic form leads to an association between functions on r and vector fields. If j 
is a function on r we have 

(6.30) 

defines an unique vector field XI on r. If j and 9 are two functions on r, the Poisson 
bracket is defined by 

{j, g} = Xg(f) (6.31) 

where Xg is given by 
x = 8g ~_ 809 ~ 

9 8po. 8xa o;xo. 8po. 
(6.32) 

The above discussion is entirely independent of the existence of a metric .. 

We now consider the metric tensor gab on Q. The Hamiltonian is 

1 
1£ = 2go.bpaPb (6.33) 

The dynamical vector field associated with it is defined by 

XllWr = dll (6.34) 

where 
81-£ 8 01-£ 8 

.Xll=-----
oPa 8xa oxo. oPo. 

(6.35) 

This implies that if r is an affine parameter we have the Hamilton equations 

dxa 
01-£ = {xa, 1£} - -

dr 8po. 
dpa .. 81£ 

(6.36) 
dr - - 8xa = {Pa,1l} 



The above equations are equivalent to the geodesic equation 

UbUa;b = 0 
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(6.37) 

with ua = ~;. The connection between spacetime isometries and the phase space coun­
terparts is as follows. 

Let the metric admit an isometry. That is, there exists a Killing vector field ~a on Q and 
the Killing equations are satisfied 

(6.38) 

Or equivalently 
c,~gab = gab.c~c _ gcb~ac _ gac~~ (6.39) 

~ is the infinitesimal generator of a point transformation of the system. In phase space 
this transformation is equivalent to a canonical transformation generated by the function 
f = ~apa given by 

c5xa - E{Xa , f} = Et,a 

c5Pa - E{Pa, f} = -~~QPb (6.40) 

As an example, let ~ be the timclike Killing vector in flat spacetime. Then the quantity E = 
f.apo. is the energy of the particle. E is a constant of the motion since from equation(6.39) 

dE 1 
dr = {E,l£} = _2(gab.c~c - gcbf.4c - gac~:~)pj!Pb :: () (6.41) 

Thus, an isometry of the spacetime implies a constant of the motion which is linear in the 
four-momentum Pn. ~ is the physical quantity conjugate to the cyclic coordinate singled 
out by the isometry. We shall find that this point is significant in t.hat it implies that non­
linear, in particular, quadratic constants of motion do not COrI'('::;pond to Killing vector 
fields. Thus, to provide a frame-work to incarpora.tc such non-linear constants of motion 
we nerd a generaliza.tion of Killing vectors to Killing tensors. In Chapter 5, Section 5.3 we 
introduced the Killing tensor [(abo The analogue of the Lie derh"ative of the metric with 
respect to a Killing vector may be written as 

[K, g]s~ = 2J(d(al:) - 2gd(a J(~) = 0 

We now consider the phase space view. 

(6.42) 

If a spacetime admits a Killing tensor, there exists a quadratic constant of motion J( = 
J(abpaPb which sat.isfies 

(6.43) 

The defined in eqllation(6.42) is known as the Schouten-Nijenhui::; bracket. It is a gen­
eralization of the Lie bracket to symmetric tensor fields of rank p;reater than one. The 
Schouten-Nijenhuis bracket has the following properties. 
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1. It coincides, with the Lie derivative if one of its arguments is a vector field and with 
the Lie bracket if both are vector fields. 

2. Ordinary derivatives in equation(6.42} may be replaced by covariant derivatives with­
out affecting the expression. 

3. It is antisymmetric in its arguments and the Jacobi identity is satisfied. 

In the spacetime view therefore, one needs to u~(; with the Schouten-Nijenhuis bracket 
while dealing with the Killing tensor. The phase space view allows us to avoid this. In 
phase space one has to deal only with the Poisson bracket of functions. Instead of dealing 
directly with the Killing tensor, for example, one deals with the function K = Kabpapb. 

With this we have not only discussed the frame-work on which the discussion in this chapter 
will be based but also given some motivation to prefer the phase space approach over the 
conventional spacetime approach. We now go on to relate the properties of the geodesics 
to the classification of the spacetime via the Killing and the Killing-Yallo tensors. 

6.3 Relation Between the Killing and the Killing-Yano 
Tensors 

Following on the construction of the Killing-Yano tensor, it was pointed out by Floyd that 
the Killing tensor may be expressed in terms of the Killing-y'ano tensor as 

gab = Facp b 
c (6.44) 

The Killing-Yano tensor may therefore be regarded as a 'square root' of the Killing tensor. 

It is pertinent to relate the Killing-Yano tensor to the Carter constant. Contracting Fab 
with a four-momentum Pa we have 

Jb = pabpa 

This is parallely propagated along geodesics 

(6.45) 

(6.46) 

And since the Carter constant is expressed through the Killing teIHlor we may substitute 
the expression for the Killing tensor in terms of the Killing-Yano tensor to obtain 

(6.47) 

Thus one sees that it may be possible to telate .fa to the particle angular momentum. 
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We now focus on the Killing and the Killing-Yano tensors corresponding to the VEK space­
time and constructed in Sections 5.3 and 5.7. 

First we elaborate in more detail the relation between the metric, the Killing and the 
Killing-Yano tensors. 

Since Fab may be considered as a 'square root' of Kab and since the tetrad coefficients e~ 
may be considered as a square root of the metric tensor, it is interesting to express the 
Killing tensor as 

K ab = ",AS kA k~ 
where the k~ may be considered as the tetrad coefficients for the Killing ten!)or. 
Now expressing the Killing tensor in terms of the Killing-Yano tensor we have 

Comparing equations(6.48) and (6.49) we have 

kAk~ = -(ecAFca)(edS Fac) 

(6.48) 

(6.49) 

(6.50) 

From this we may express the tetrad coefficients of the Killing tensor in terms of the tetrad 
coefficients of the metric tensor and the Killing-Yano tensor as 

(6.51) 

where the i has br.en included to take care of the negative sign in cquation(6.50) We may 
also write the relations between the tetrad coefficients and the other quantities in matrix 
form 

9 - eTe 

K - kTk 

k - ieF 

F - -ie-1k (6.52) 

The last equation in the above obtained by inverting the third shows that we may inter­
pret the Killing-Yano tensor, in turn, as apart from the imaginary unit, the product of the 
'square roots' of the metric and the Killing tensors. 

We exhibit here the tetrad coefficients for the VEK spacetime since knowing these is 
equivalent to knowing the Killing and the metric tensors. We have 

[Y! 0 0 -asin2 (J 

0'''''';1''·' 1 e: = ~ 
p 

~ D· 0 (6.53) 

0 e o-a~nB 0 ( p 
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And 
-iacos ue. 0 
~ 

0 0 

kA = 
-acosll~ 0 0 ia2 cos II sin2 1I.J3. 

Ii p a 
-if sin lI(f2+a2) ifasinO 0 0 Ii p 

(6.54) 

0 0 -i(f 0 Ii 
We note also the relations 

det(e~) 
7P sin e 

-
( 

det(k:) 
a2 cos2 B(f2 

- p2 sin B 

det(pab) 
a2 cos2 B(2r2 

- p4 sin2 B 
(6.55) 

We now express the metric, the Killing and the Killing-Yano tensor in terms of the Newman­
Penrose tetrad. We have 

ds 2 2(l®n-m®m) 

K - -2(a2 cos2 Bl ® n + r 2m ® m) 

p - -acos BlAn + irmAffi (6.56) 

6.3.1 Some remarks on the Killing and the Killing-Yano tensors 

It is instructive to disc.uss the above form of the Killing and the Killing-Yano tensors with 
respect to the Kerr case. 

In the Kerr case there exist theorems which imply that[9]. 

1. A type-D vacuum solution admits a Killing tensor 

(6.57) 

with 
A + iB = const('lr)-lj3 (6.58) 

2. If a spacetime admits a non-degenerate Killing-Yano tensor, then this tensor can be 
written as 

(6.59) 

From equations{G.56) we immediately verify that the above relations hold with A = 
-a cos Band B = r. The Kerr counterparts are, as usual, contained as limiting cases. 
In view of this it would be interesting t(J" see whether analogous theorems can be formu­
lated in the non-vacuum, asymptotically non-fiat case also. Howcycr, we shall not pursue 
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this point here. 

We now turn to discuss the possibility of defining angular momentum-like quantities. 

By construction and also from the discussion in the previous section it follows that the 
quantity K = KabpaPb is a quadratic constant of the motion. In Chapter 5 we have given 
some motivation to expect that the Carter constant, and therefore, the Killing tensor is 
somehow related to the analogue of angular momentum of the particle. To this end we 
considered the limiting case of the Schwarzschild spacetime. In the VEK case, as in the 
Kerr spacetime, there are no natural definitions of analogues of the angular momentum 
about the x and y axes. It is still possible to see whether there exist vector fields Lx and Ly 
which are not Killing vectors but, nevertheless, have the properties of angular momentum­
like operators. If such vector fields exist, then in terms of these the Killing tensor can be 
expressed analogous to the Schwarzschild case. As shown by Samuel and Vishveshwara, 
such a decomposition does not exist even in Kerr case. Their argument goes as follows. 

If Lx, Ly , Lz are angular momentum operators they must possess the following properties. 

1. They must satisfy the Lie bracket relations 

(6.60) 

2. Each orbit of these vector fields should form a two dimellsional submanifold of Q. 

If we define S as the three dimensional submanifold of Q generated by the vector fields 
Lx, Ly , Lz; and ~, the normal to S would be orthogonal to these four vector fields. If Kab 

can be expanded in terms of the Lx, Ly , Lz it follows that the normal to S is annihilated by 
Kab. But this is a contradiction since the Killing tensor of a st.ationary, axially symmetric 
spacetime is non-degenerate. 

(6.61) 

As to the possibility that a non-linear combination of K ab and tIle Killing tensors formed 
out of the Killing vectors may admit the decomposition the same argument shows that the 
normal to S is an eigenvector of Kg- with constant eigen values. As we shall show below 
the eigenvalues of Kg- are doubly degenerate. 

Therefore though the Carter constant can be interpreted as the 'square' of the angular 
momentum in the Schwarzschild and the YES cases, such an interpretation fails in the 
general case. 

The inability to relate the Killing tensor J;o the particle angular momentum motivates us 
to turn our attention to the Killing-Yano tensor. 
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6.3.2 Significance of the Killing-Yano tensor 

In Chapter 5, Section 5.7 we have discussed some properties of the Killing-Yano tensor. 
We wish to find what grounds there are to expect that this tensor may be related to the 
particle angular momentum. As with the Killing tensor, it is instructive to examine the 
limiting Schwarzschild case of R ~ 00, a = 0 when the Killing-Yano tensor(5.162) acquires 
the form 

F = r3 sin (JdO t\ de/> 

Going over to cartesian coordinates (t , x , y , z) by the transformation 

we find that 

Or 

t - t 

x - r sin B cos ¢ 

y - r sin B sin if> 

z - rcosB 

F = zdx A dy + xdy t\ dz + ydz A dx 

where, ~o. is the time-like Killing vector (1,0,0,0). 
The vector Jb = F(1b pa has components 

JO - 0 
JX - ypz - ::Py 

.JY - ZPx - ;rp: 
JIZ - XPy - YPx 

(6.62) 

(6.63) 

(6.64) 

(6.65) 

(6.66) 

And the following Poisson bracket relations expected of t.he angu1ctr mOlllentum (;omponents 
in flat space are :-;at.isfied 

{JX , JY} 

{JY, JIZ} 
{Jz, JI:} 

-
-
-

.r 

.r 

.JY (6.67) 

By means of the projection formalism given in Sect.ion 6.2 we projt'<!t F to space. \Ve see 
that F projects t.o 

F = zdx A dy + xdy 1\ clz + ydz A dx. 

where the tilde rd"ers to the projected quantity, 

The three-dual of F has the components 

1 - 'k 
Qi - "2 f.ijJ,:FJ ' 

- (x,y,.::) 

(6.G8) 

(6.6!») 
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This is the co-vector field normal to the spheres on which the angular operators act. Thus 
we see that the hyper-surfaces orthogonal to the dual of the spatial projection of the 
Killing-Yano tensor are the orbits of the rotation group. We note that the quantity 

Tr(K) - go.bKab 

- -pabFab 

_ -2(x2 + y2 + Z2) 

(6.70) 

(6.71) 

(6.72) 

is constant on the spheres defined by the spherical symmetry. The angular momentum 
components can also be defined in terms of F as 

(6.73) 

These coincide with the J' s defined above. 

The analysis of the above limiting case reveals, therefore, that if we wish to relate the 
Killing-Yano tensor to angular momentum-like quantities, the following steps are necessary. 

1. Make a transformation that brings the metric to a form analogous to a flat metric. 
We generalize this to our requirement to mean that the metric be expressed as a sum 
of the background metric plus another term. 

2. Going over to cartesian-like coodinates. The above step should be performed before 
this is made possible. 

3. Project the Killing-Yano tensor onto space following the formalism of Section 6.2. 

4. Find its three dimensional dual Q = Qidxi and check whether it is hypersurface 
orthogonal ie, 9 I\dQ = O. 

5. Find the surfaces to which 9 is orthogonal. 

The first two steps consist in making a suitable transformation for the metric to facilitate 
the use of cartesian-like coordinates. This is accomplished by a generalized Kerr-Schild 
transformation. 

In the Kerr case it is well known that casting the metric in a Kerr-Schild form enables one 
to write the metric as a combination of the fiat and a term composed of the null tetrad 
form l. Since the Killing-Yano tensor is independent of the 'mass' term M it naturally re­
mains unaffected by the absence of the source and therefore refers rather to the background 
spacetime. Thus, (~xpressing P in terms of Kerr-Schild coordinates should bring it to a form 
analogous to that in the Schwarzschild case. That this is indeed the case is borne out by 
the work of Samuel and Vishveshwara[33~ and Faridi[34] as already mentioned. It remains 
for us to see whether the Killing-Yano tensor of the VEK spacetime may also be expressed 
in terms of coordinates analogous to the Kerr-Schild coordinates. In our investigations 
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on the YES spacetime we have seen that the YES metric may be cast in a generalized 
Kerr-Schild form. We have introduced a 'background black hole decomposition' to exploit 
this feature and employ it to the study of conserved quantities. VIle do a similar analysis 
in the present case and show that such a decomposition gives much insight into the nature 
of the quantities associated with the VEK spacetime. 

6.4 The Background-Black Hole Decomposition 

We recall that the background-black hole decomposition allows us to exploit features associ­
ated with a generalized Kerr-Schild form of the metric. We first develop this d~composition 
for the VEK case and then consider the significance of casting the metric in a generalized 
Kerr-Schild form. 

Recalling the procedure followed in Chapter 2 we first decompose the Newman-Penrose 
tetrad forms into background and black hole terms. In terms of t.he generalized Boyer­
Lindquist coordinates it is not possible to achieve this. Therefore we need to go over to a 
transformation to new coordinates (-u, r, fJ,~) by 

du 
r2 +a2 

- dt - A dr 

d¢ 
- a - d¢ - =dr 

.6. 

In terms of these (;oordinates the metric assumes the form 

where 

E hlElE gab = gab + a /) 

h = _ 2}';1r.. 
p2 

In terms of these coordinates the Newman-Penrose tetrad forms b('l'ome 

(6.i4) 

(6.i6) 

(6.ii) 

(6.78) 
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and the following relations are useful. 

1 A n - (du - asin2 fJd~) A dr 

m A rn - -asinO(adu - (f2 + a2)d¢) A dfJ (6.i9) 

We now express all the tetrad forms in terms of the corresponding Einstein background 
quantities. 

1 - IE 
AIr 

n - nE - _2-lE 
P 

m - mE 

l®n 
Air 

- lE ® nE - _2-lE ® IE 
p 

m®m - mE®mE 

(6.80) 

the subscript E referring to the Einstein universe. 

In terms of the decomposed tetrad forms the metric becomes 

(6.81) 

This may be written in the form 

(6.82) 

Since l~ iH uull it.s iudex can equally be raised with .'lab or g~ 

{6.83} 

The present form of the quantities facilitate the introduction of cartesian-like coordinates 
by another traIlHfofmation 

t - 'u-r 

x - (Rsin{r / R) cos ¢ + a cos(r / R) sin ¢) Sill () 

Y - (Rsin(r / R) sin ¢ - a Gos(r / R) cos ¢) Rill () 

Z - Rsin(r I R) cosO (6.84) 

And the full metric may be expressed as • 

d ,2 - lt2 d-2 .J-::-:2 d-2 (xax + ydy + zd:Z)2 I' tOI 1 (6,85) s - (, - X - uy - Z - (R" -2 2 -2) + I E 101 E 
"'-:1: -y -z 
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The Newman-Penrose tetrad form. 1 assumes the form 

1 d 'FX - aYd ry + aXd Z 
= t- x+ y+-

f2 + a2 f2 + a2 f 
(6.86) 

The metric given by equation{6.82) is of a generalized Kerr-Schild form. As R -t 00 the 
metric reduces to the Kerr metric in a Kerr-Schild form 

(6.87) 

where F refers to the fiat background. 

The fact that the VEK metric is expressible in a generalized Kerr-Schild form is significant. 
It is known that a metric which is expressible in a Kerr-Schild form are algebraically 
special[9] of type-II. Indeed, from the Kerr-Schild form(6.87) it can be shown[44] that 

Ra lbld - -h··lal 
bed - e (6.88) 

This leads to the condition 
(6.89) 

In the case of a vacuum spacetime the Riemann tensor coincides with the Weyl tensor and 
therefore the above condition becomes 

(6.90) 

which implies that the spacetime represented by a metric which can be expressed in a 
Kerr-Schild form is of type-II. The tetrad form 1 corresponds to a repeated null direction 
of the Weyl tensor. The Goldberg-Sachs theorem which is applicable in the vacuum case 
then implies that 1 is also shear-free. 

When the metric is of a generalized Kerr-Schild form also it is known that the correspond­
ing spacetime is of type-II. However, due to the absence of a theorem like that of Goldberg 
and Sachs, one cannot conclude that 1 is shear-free. But as we haw shown explicitly, the 
VEK metric is indeed type-D. 

We now proceed to decompose the various geometrical quantities iutroduced above. 

First, the Hamiltonian takes the form 

(6.91) 

Thus the four-momentum is given by 

(6.92) 
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This may be written in the form 

Pa = p~ - h(l . p)la (6.93) 

where P: is the four-momentum of a particle corresponding to the metric of the Einstein 
universe. We note that lE . p = 1 . pE since 1 is null. 

The energy and the azimuthal angular momentum are therefore given by 

E - EE - h(l· p) 

PrfJ - P: + a sin2 (}h(l . p) (6.94) 

where we have substituted the expressions for the components of l. 

In terms of the cartesian-like coordinates we have 

E - EE - h(l . p) 

E zh ) pz - Pz - 'f (l . p (6.95) 

Next, the Killing tensor may be decomposed as 

(6.96) 

This ma.y be written in the for·m 

(6.97) 

In this form the eigenvalues of the Killing tensor are easy to find. We see that l~ is an 
eigenvector of ICEb 

The eigenvalues are given by 

Kabl:nf _ Kj}lf = a2 cos2 () 

Kabm~mf _ KEbmf = 'f2 

The decomposed form of the Killing-Yano tensor is 

F=FE 

(6.98) 

(6.99) 

(6.100) 
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Explicitly, the expression is the same as that obtained in Chapter 5 where if we recall, it 
was calculated directly in terms of generalized Kerr-Schild coordinates 

Or 

( 

0 
a cos fJ 

F,b = _'~~" 

-a cos fJ 

o 
o 

a2 sin2 fJ cos fJ 

F - ~ Fabdxa 1\ dxb 

arsintl 
-(-

o 
o 

_ F{i:2+a2 ) sin tI 
( 

a 1 -a2 sin2 () cos fJ 
'(>' +~') ,I, , (6.101) 

- -acosfJ(du-asin2()d¢)l\dr + ~sin()(adt-{1:2+a2)d¢)Ad() (6.102) 

o 
a cos O(F2 +a2 ) 

p 
arsin O( 

p'l 

a 

a cos tI(F2+a2 ) -aFsinO~ 
p p2 

0 0 

0 a 
a2 cos9 2-(F -r p sinO 

0 
-a~ costl 

.j p. 

p2~~n9 
o 

In terms of the Newman-Penrose tetrad F takes the simple form 

F - -a cos fJll\l + irmAm 

Fab - -a cos fJ(lanb - lbna) + ir(ma7nb - mbma) 

(6.103) 

(6.104) 

This immediately allows us to find the eigenvector and the (·~igenvall1es of F. \Ve find that 
l is an eigenvector of F 

and the eigenvalues are given by 

Fablanb - a cos () 

Fabma~ - -ir 

6.5 Particle Angular Momentum 

(6.105) 

(6.106) 

Before we proceed to cast this into a cartesian-like form we need to perform the steps 
outlined in Section 5. To this end we project the Killing-Yano tensor onto space 

( 

0 

pab = 0 
a2 costl 
-:;;:r­p 

Its three dimensional dual is given by 

o 
o 

2-(F 
p'sinO 

(6.107) 

(6.108) 
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91 
Jj9ir 

-
p2 sin e 

92 
Jj9ia2 cos () 

-
7;2 

whence 

This expression simplifies to 

9 = rdr + a2 cos e sin ()d() 

/1 _ 2~!: 
It is a straight-forward verification that 

91\d9 = 0 

Thus 9 is hypersurface orthogonal. We therefore write 

where 9 = ~ a.nd 

9 =gdf 

f = ~(1.2 + a2 sin2 e) 
2 

Therefore the surfaces orthogonal to 9 are given by 

r2 + a2 sin2 () = constant 

122 

(6.109) 

(6.110) 

(6.111) 

(6.112) 

(6.113) 

(6.114) 

(6.115) 

In accordance wit.h the steps(5) we identify these as the surfaces on which the angular 
momentum operators act. To find these operators we need to make a transformation 
to the cartesian-like coordinates defined by equations(6.84) under which the Killing-Yano 
tensor acquires t.he form 

Fa. = (~ 
0 0 

t) 0 z (6.116) -z 0 
-a y -x 

Or 

F = adt 1\ dz + zdx 1\ dy + xdy A dz + ydz 1\ tlx (6.117) 

VvTe see that this form of the Killing-Yano tensor is similar, apart. from the time compo­
nent containing fl., to that in the limiting case of t.he Schwarzsehild spacetime given by 
equation{6.68) . 
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We note that the· dual of F is given by 

( ~? 
x 11 

~) 0 a 
:F= 

0 -y -a 
-z 0 0 

(6.118) 

We find that 

d:F= 0 (6.119) 

Therefore :F may be written as :F = dA where A may be thought of as a vector potential. 

For :F we find that 
1 1 1 

A = --(x2 + y2 + z2)dt - -aydx + -axdy 
2 2 2 

(6.120) 

We, now proceed to see whether the analogy with the Schwarzschild case may be built up. 
We project to space to obtain 

(0 0 0 

t) - 0 0 z 
Fob = ~ -z 0 

11 -x 
(6.121) 

Or 

p = zdx /\ ely + xdy /\ dz + ydz /\ dx (6.122) 

This has a similar form as the Schwarzschild counterpart. 

Its three dimensional dual is 

g = xdx + ydy + zdz (6.123) 

Thus we now define the angular momentum on space via 

(6.124) 

Its three compOlH'Ilts are 

Lx - X .piip. 
,t J 

Ly - y.piip . 
,t J 

lz - Z .piip. 
,t J (6.125) 

These component.s define vector fields on space given by 

- .. 8 
Lx - xiFJ1_. 

, ax] 

Ly - .. D 
- y·PJ1_ 

,1 8xi 

L:: 
R - .. 8 (6.126) - Z·pJl_ 

,1 8xi 
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We lift these vector fields to spacetime. Since the time component is left unspecified the 
lifts are not unique. We fix the time component by imposing that the lifts be orthogonal 
to the timelike Killing vector e with respect to the flat metric 

(6.127) 

This means that the time components of these vector fields are zero. Now the angular 
momentum components thus defined by this fixing 

satisfy the Poisson bracket relations 

Lx - YPz - ZPy 

Ly - ZPx - Xpz 

Lz - XPy - YPx 

{Lx, Ly} = Lz 

{Ly, Lz} = Lx 

{Lz, Lx} = Ly 

(6.128) 

(6.129) 

These definitions of angular momentum le"ad to physically meaningful results as we shall 
slhJw below 

We study the dynamical evolution of the angular momentum vector to first order in a and 
to second order in 11 R. To do this we need to find the equations of motion for Lx, Ly , Lz 
given by 

Lx - {Lx ,1i} 

Ly - {Ly,1i} 

Ly - {LzI 1i} 

Using the expre~f;ion for the Hamiltonian given in equation(6.91) we find 

Lz - 0 

Lx -
h lapa a L 

R2 sin2(r I R) v' 

Ly -
_ h lapa a L 

R2 sin2(rIR) x 

(6.130) 

where the dot denotes differentiation with respect to the proper time parameter' T'. 

This means that the angular momentum vector of the particle prceesses about that of the 
VEK black hole, preserving its magnitude. In higher orders there a.ppears to be no such 
straight-forward interpretation. Moreove.r it is possible that then the magnitude of the 
vector too changes with' T' as is true in the Kerr case. 
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In Chapter 4, we .have seen that the gyroscopic precession in the VEK spacetime departs 
significantly from that in the the Kerr case. Here we have an analogous precession of the 
angular momentum-like vector which is a dynamical quantity. 

6.6 Concluding Remarks 

In this chapter we have carried out a detailed investigation of the particle angular momen­
tum structure in the VEK spacetime. We have been motivated by the need to understand 
the nature of quantities that go into defining the angular momentum vector in the space­
time of a stationary, axisymmetric black hole when the spacetime is surrounded by matter 
distribution and the background is no longer asymptotically flat. 

We have investigated the relation between the Killing and the Killing-Yano tensors. The 
Killing tensor has been obtained as the 'square' of the Killing-Yano tensor. Both these 
tensors have been expressed through the Newman-Penrose tetrads to further clarify their 
structure. We have shown that these tensors contain the Kerr connt.erparts as limiting 
cases. By constructing a tetrad for the Killing tensor we have further exhibited the re­
lations between the metric, the Killing and the Killing-Yano tensors. The eigenvalues of 
these tensors have been calculated. 

We have introduced the background-black hole decomposition for the VEK spacetime and 
discussed the generalized Kerr-Schild (and the Kerr-Schild as a special case) transforma­
tion and its significa.nce. By employing this decomposition we have expressed the Newman­
Penrose tetrad in terms of background and black hole terms. Further. we have split the 
Hamiltonian, the four-momentum, and the Killing tensor into background and black hole 
terms. We have shown that the Killing-Yano tensor has only a background term. 

Focusing on the Killing-Yano tensor we have employed the phase spae(' formalism to project 
it to the three dimensional space. By means of the projected tensor w(~ have defined quan­
tities analoguus to the components of particle angular momentuIll. These components 
:->atisfy the POiSSOll bracket relations expected of them. We have shown that to first order 
in the angular momentum parameter and to second order in the inverse of the background 
parameter, the angular momentum vector precesses about the rotational axis preserving 
its magnitude. 

Thus we see that in the VEK spacetime it is possible to define an analogue of the particle 
angular momentum associated with the Killing-Yano tensor. In spite of the apparent 
similarity to the Kerr case, there is here a <;:onsiderable modification ill that the background 
parameter now figures in a. significant manner. Lastly, all of the above results reduce to 
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the Kerr counterparts as the background parameter tends to infinity. Thus, the entire 
discussion may be taken over, over by specialization to the Kerr case. 



Chapter 7 

Conclusion 

In the present thesis we have investigated two prototypes of black holes in non-fiat back­
grounds. We have been motivated by the need to understand the natures of black holes 
when the well-known features of asymptotic flatness and time independence are given up. 
Our approach has been to study specific examples in order to gain insight into the nature 
of black holes wherein one or both the above features are absent. In this thesis, however, 
we retain time independence. We have taken as specific examples the family of solutions 
given by Vaidya that represent black holes in cosmological backgrounds. One of this rep­
resents the Kerr black hole and the other represents the Schwarzschild black hole, in the 
background of the Einstein universe. We may, however, note that these spacetimes are in 
reality non-vacuum solutions that in the limit go over to the respective black holes and 
the Einstein universe. These spacetimes may be viewed as those of black holes surrounded 
by matter distribution satisfying reasonable energy conditions. The basic purpose of this 
study is to compare and contrast the well known properties of the usual black holes with 
those in non-vacuum surroundings. We now give a brief summary of the results obtained. 

7.1 Summary of Results 

We have begun by investigating the Vaidya-Einstein-Schwarzschild(VES) black hole con­
structed by Nayak, Mac Callum and Vishveshwara. This YES spacetime is asymptotically 
non-flat but is time independent. The event horizon coincides with the Killing horizon. By 
studying this spacetime, we have shown that the introduction of the non-fiat background 
modifies the Schwarzschild results considerably. As opposed to the Schwarzschild case, the 
nature of the null geodesics is drastically affected. The time-like circular geodesics behave 
in a radically different manner as compared with their Schwarzschild counterparts. Regard­
ing the classical tcsts- the gravitational redshift is modified from that in the Schwarzschild 
spacetime and the perihelion precession and light bending undergo an increase. 

We have next focused on the Vaidya-Einstein-Kerr(VEK) black hole. The VEK event 
horizon is a Killing horizon as in the case of the Ke~acetime. By concentrating on the 
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geometry of the e.vent horizon, we have shown that the background gives rise to significant 
modifications in the geometrical and physical quantities associated with the black hole. 
The event horizon shrinks from its limiting Kerr magnitude as the background influence 
increases and the stationary limit surface gets more distorted. This manifests itself as an 
enlargement of the ergosphere. The distortion of the horizon can be ascertained by com­
puting its equatorial and polar circumferences and studying the variation of the oblateness 
parameter. The oblateness parameter is given by the difference of the equatorial and polar 
circumferences divided by the equatorial circumference. We have studied this by two differ­
ent approaches. In the first instance, to compare the results with those obtained by Smarr 
in the Kerr case, we have varied the distortion parameter without varying the background 
parameter. In this formalism the equatorial circumference remains the same as that of the 
Kerr horizon which of course varies with the distortion parameter. Nevertheless, the polar 
circumference progressively decreases but more slowly than in the Kerr case. The combined 
effect is that the oblateness parameter increases more slowly as compared with the Kerr 
case. In a sense, these computations reveal the variation of the oblateness modified by the 
background and as compared with the Kerr horizon. 

We have showed that further insight can be gained into the structure of the horizon by 
investigating the oblate ness as an explicit function of the angular momentum parameter 
and the background parameter. As we have pointed out there exist both modulated and 
direct effects. 

The modulated effect is obtained by varying the angular momentum parameter for different 
fixed values of the background parameter. Here we have found a totally unexpected effect. 
That is, whereas the equatorial circumference increases monotonically with the angular 
momentum parameter for all values of the background parameter, the polar circumference 
first decreases as the angular momentum parameter increases, starting from the Kerr value, 
and then increases after a critical value of the background parameter. Nevertheless, the 
oblateness parameter increases with the angular momentum parameter for all values of 
the background parameter. On the other hand the direct effect is obtained by varying the 
circumferences with the background parameter. Here, one sees that both the equatorial 
and the polar circumferences decrease as the background parameter decreases, ie as the 
background influence increases. However, the oblateness parameter increases as the back­
ground parameter decreases. 

Another quantity that indicates the change in the geometry of the event horizon is its 
surface area. As was done in the case of the circumferences, we have studied two different 
effects of the background on the area. First the modulation of rotation by the background 
and second the direct effect of the background. In the first case, for large values of the 
background parameter the area decreases monotonically with the angular momentum pa­
rameter as in the Kerr case. Then for a critical range of values of the background parameter 
the area increases, attains a ma.. ... <imum and then, decreases. Finally for small values of the 
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background parameter it increases monotonically with the angular momentum parameter. 
This effect is also a novel one which reveals the peculiarity of the background influence. 
Next, we have the direct effect of the background. As the background parameter decreases 
thereby enhancing the background effect, the area decreases and asymptotically approaches 
the Kerr value as the background effect goes down. 

Turning to the angular velocity of the VEK event horizon, we have shown that it goes 
up significantly as the background influence increases. By means of the surface gravity of 
the VEK horizon we have shown that the extreme VEK black hole occurs as in the Kerr 
case. However the equatorial tangential velocity defined in analogy with the Kerr case is 
no longer that of light. Motivated by this we have classified the VEK black hole into two 
types. We have shown that in addition to the extreme type, another type of black hole the 
'limiting black hole' may be defined for which this velocity is that of light. 

By investigating the intrinsic geometry as represented by the Gaussian curvature we have 
shown that the VEK black hole may be classified into two distinct classes. The first class 
consists of black holes with positive Gaussian curvature and the second consists of black 
holes with negative Gaussian curvature. In the Kerr case studied by Smarr, this classifi­
cation is on the basis of two constant 'limiting' values of the distortion parameter. In the 
VEK case however, the corresponding 'limiting' values are no longer constants but depend 
on the angular momentum parameter and the background parameter the background pa­
rameter. The topology of the VEK event horizon is that of a 2-sphere as may be expected 
for any normal black hole. 

From a study of the geometry we have moved on to investigate some physical effects in the 
VEK spacetime. By studying circular geodesics we have shown that there is a significant 
departure of the VEK results from the usual Kerr counterparts. This is due to the match­
ing of the Vaidya spacetime to the Einstein universe wherein there are no circular geodesics 
at all. In the Kerr spacetime only one null circular geodesic exists. Corresponding to this 
there is one co-rotating and one counter-rotating orbit. Timelike geodesics exist all the 
way up to infinity. In contrast, the VEK case allows two different possibilities depending 
on the background parameter. 

In the first case two null circular geodesics are present. There is an inner null geodesic and 
an outer null geodesic. Each of these have one co-rotating and one counter-rotating orbit. 
Timelike geodesics exist between the inner and the outer null geodesics. 

In the second case only one null geodesic exists. Corresponding to this is one co and one 
counter-rotating orbit. There is a complete absence of timelike circular geodesics. 
The impact parameter also reflects this feature as we have shown in the special case of the 
VES spacetime. 
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By investigating the phenomena of gyroscopic precession in the VEK spacetime we have 
shown that the background affects the precession in both modulated and direct effects. 
The first torsion which in the Kerr case coincided with the Schwarzschild Keplerian fre­
quency now no longer coincides with the VES generalized Keplerian frequency. It is now 
a function of the angular momentum parameter as well in contrast to the Kerr case. This 
brings about a pronounced modification of the results from the Kerr case. In particular 
this gives rise to a generalized version of the Schiff precession. Moreover, even in the special 
cases of the generalized versions of the Fokker-De Sitter precession in the VES spacetime, 
the background prevents the first torsion from being equivalent to the generalized Keple­
rian frequency. Finally, the generalized version of the Thomas precession in the Einstein 
universe is also considerably modified. 

As mentioned in the introductory chapter, a study of the Carter constant and the Petrov 
classification sheds light on the connection between the properties of the geodesics and the 
classification of the gravitational field. Thus, starting with a discussion of Carter's discov­
ery of the fourth constant in the Kerr case, we have shown by construction that the Carter 
constant exists in the VEK spacetime also. From the Carter constant we have obtained 
the Killing tensor and brought out its significance by considering the special case of the 
Schwarzschild spacetime wherein the Killing tensor becomes reducible. 

Next, taking into account the fact that in the Kerr spacetime, the Killing tensor is related 
to the Killing-Yano tensor which, in turn, is related to the type-D nature of the space­
time, we have investigated the classification of the VEK spacetime. By employing the 
N ewman-Penrose formalism we have calculated the spin coefficients for the VEK space­
time. We have shown that unlike the Kerr case there is a non-vanishing spin coefficient 
f.. Even t.hough the rest of the results mirror that in the Kerr case, their expressions are 
considerably complicated. These spin coefficients contain as limiting cases the Kerr and 
the YES counterpart.s and of course t.he Schwarzschild ones also. The Bianchi identities 
contain 1l0Il-l:Cro Ricci terms also in addition to the vVeyl scalars. 

Motivated by the significance of the type-D nature of a black hole spacetime we have stud­
ied the dassification of the VEK spacetime. We have demonstrated explicitly and in detail, 
that the YES spacetime is type-D. We have shown that the only non-vanishing Weyl scalar 
is '*'20 Turning to the R.icci terms, the only non-zero terms are <Poo, <Pu, <P22 and the scalar 
A. That these terms which vanish in the Schwarzschild case do not do so here shows that 
the spacetime is non-vacuum. In the Einstein universe also the Ricci terms are non-zero 
which brings out the asymptotically non-fiat nature of the spacetime. The optical scalars w 
and (J vanish as in the Schwarzschild case whereas the optical scalar e is modified because 
of the background. 
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We have discussed. the 2-spinor formalism and constructed the Killing spinor for the VEK 
spacetime. By means of the Killing spinor we have calculated the Killing-Yano tensor and 
shown that in the limit of the background parameter tending to infinity this coincides with 
the Killing-Yano tensor of the Kerr spacetime. 

With the above apparatus in hand, we have investigated the relation between the Killing 
and the Killing-Yano tensors. The Killing tensor has been shown to be a 'square' of the 
Killing-Yano tensor. Both these tensors have been expressed through the Newman-Penrose 
tetrads to further clarify their structure. We have shown that these tensors contain the 
Kerr counterparts as limiting cases. By constructing a tetrad for the Killing tensor we 
have further exhibited the relations between the metric, the Killing and the Killing-Yano 
tensors. The eigenvalues of these tensors have been calculated. 

We have introduced the background-black hole decomposition and discussed the Kerr­
Schild and the generalized Kerr-Schild transformations and their implications for the 
Kerr and the VEK cases respectively. By employing this decomposition we expressed the 
Newman-Penrose tetrad in terms of background and black hole terms. Further, we have 
split the Hamiltonian, the four-momentum, and the Killing tensor into background and 
black hole terms. We have shown that the Killing-Yano tensor has only a background term. 

Focusing on the Killing-Yano tensor we have employed the phase space formalism to project 
it to space. By means of the projected tensor we have defined quantities analogous to the 
components of particle angular momentum. These components satisfy the Poisson bracket 
relations expected of them. We have shown that to first order in the angular momentum 
parameter and to second order in the inverse of the background parameter, the angular 
momentum vector precesses along the central black hole preserving its magnitude. 

The above results clearly demonstrate that the effect of the background on the properties 
of t.he usual black holes are significant. We see that the results may be classified into three 

groups. In t.he first., the properties of the black holes are retained. Such is the case with 
the gravit.ational red shift discussed in Chapter 2 and the existence of the Carter constant 
and the Petrov classification of the VES spacetime discussed in Chapter 5. These prove to 
be similar to t.hat in the fiat case. In the second case, the properties of the black holes are 
considerably modified. This is the case with the perihelion precession, the bending of light 
considered in Chapter 2, the geometry of the ergosphere, the angular velocity, topology, 
and the nature of t.he spin coefficients corresponding to the VEK black hole as shown in 
Chapter 5. In the third case, the properties of the black holes are radically altered. This 
includes the behavior of circular geodesics and the classification of the timelike geodesics 
in the VES spacetime discussed in Chapter 2, circular geodesics in the VEK spacetime and 
the nature of gyroscopic precession discussed in Chapter 4. Thus the background has a 
significant impact a.t various levels of complexity, from minor modifications to total depar-
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tare from the standard cases. 

We have shown that a study of specific examples gives considerable insight into the nature 
of black holes which are not asymptotically flat. The effect of the background on the prop­
erties of the usual black holes is clear and patent. As a prototype the Vaidya cosmological 
black holes on which we have based our investigations are specific and restricted. It is not 
at all unlikely that the above effects may be retained or even enhanced in more realistic 
models. 

We now proceed to discuss some significant issues that suggest themselves in course of our 
investigations. 

7.2 Discussion 

In the following, we enumerate and discuss some of the significant issues that have arisen 
and need to be addressed further. 

1. From the above summary we have seen that the influence of the non-flat background 
on physical and geometrical properties of the black hole is three-fold in that they 
are either retained, modified or radically altered. It would be instructive to perform 
a detailed classification of physical phenomena based on these criteria. Such a study 
can play the role of an issue by itself. 

2. In our investigations on the VEK black hole we have seen that the surface area of 
the horizon behaves in a radically altered manner in contrast to the Kerr black hole. 
The physical reason behind this behavior may not be obvious since the VEK black 
hole is surrounded by matter distribution. Moreover, it is not clear as to how the 
rotation of the background itself contributes to this effect. It would be interesting 
and instructive to study this issue in detail. 

3. The angular velocity of the VEK horizon increases monotonically as the background 
influence increases. As in the case of the surface area, the part that the rotation of 
the background plays in bringing about this effect would be of considerable interest. 

4. It is well known that the surface area of the black hole plays a significant role in 
that it serves as a point of departure for black hole thermodynamics. In the Kerr 
case, the variation of the mass of the black hole may be expressed in terms of the 
variations of the surface area and the angular momentum with constant coefficients 
which turn out to be essentially the surface gravity and the angular velocity of the 
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horizon respectively. In the VEK case, however, as borne out by our preliminary in­
vestigations(not included in the present thesis) the corresponding coefficients are not 
constants but functions of the mass, the angular momentum and the background pa­
rameters. Moreover, it seems to be possible to admit the variation of the background 
parameter as an additional contribution. This feature, together with the radically 
altered behavior of the area indicates that it is not unlikely that there may be a sig­
nificant departure from the standard black hole thermodynamics. Along with these, 
there is associated, the physical interpretation of the area as analogous to the entropy 
of the black hole. In the VEK spacetime in contrast to the Kerr case, we may have 
to take into account a possible additional contribution to the black hole entropy from 
the matter surrounding the black hole. Thus, a study of black hole thermodynamics 
of the VEK black hole starting from an investigation of the behavior of the surface 
area seems to be an important and promising issue. 

5. Another issue has to do with the way in which Machian ideas are associated with 
our investigations. In the case of the Kerr black hole, the dragging of inertial frames 
and related phenomena are often considered as a manifestation of the so called Mach 
principle. This is because of the effect of the black hole on its surrounding. The 
vacuum, flat background itself obviously has no direct influence on the physical phe­
nomena associated with the black hole. In the VEK case, on the other hand, there 
is clearly an effect of the background on the physical phenomena as well as on the 
black hole. This is a novel feature arising out of the non-flat background. In this 
respect, the background-black hole decomposition that we have introduced may be 
of help in separating out the effects of the black hole from Machian effects due to the 
background representing the matter content of the rest of the universe. 

6. The question of stability that we alluded to in Chapter 1 comes up again here in the 
form of the stability of the VEK spacetime. As is well-known, the usual black hole 
spacetimes arc stable whereas the Einstein universe is not. It is not clear as to the 
nature of the stability of a composite spacetime subsuming both the black hole and 
the Einstein universe. The stability or otherwise of a composite spacetime that yields 
either the black hole or the Einstein universe as limiting cases is an open question. 

7. Lastly, apart from the YES and the VEK black holes which have the Einstein uni­
verse as background, one would like to have more realistic models. There remains 
here the issue of time independence. As mentioned in the beginning, in the present 
thesis we have retained time independence but relaxed asymptotic flatness. A more 
realistic situation, however, would necessitate the relaxation of time independence 
also. This would entail, for instance, the extension of the background from a static 
to an expanding universe, in accordance with observational data. In his investigations 
on the cosmological-black hole metrics, Vaidya originally gave a metric which was 
supposed to incarporate a black hole in the Robertson-Walker universe. However, it 
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can be shown that the 'event horizon' of this spacetime does not satisfy the defining 
property of the black hole as being a null surface with the light cone tangential to 
it. Thus, it fails to be a one-way membrane and as such cannot be called an event 
horizon at all. Therefore, this spacetime fails to qualify as a candidate for being a 
black hole. Therefore, arriving at a suitable generalization of the black hole in a time 
dependent universe is indeed a basic issue that needs to be addressed. Here also, the 
background-black hole decomposition may be useful in generating new solutions that 
incarporate black holes in non-ft.at and non-static backgrounds. 

To conclude, we have made a beginning in attempting to understand the nature of black 
holes in non-ft.at backgrounds when the standard features of the well-known black holes 
namely vacuum exterior and asymptotic ft.atness are given up. As we have pointed out in 
the above paragraphs, there are several interesting and significant issues that need to be 
addressed and tackled in order to arrive at a more realistic picture of black holes in non-fiat 
backgrounds. Such investigations, however, must be reserved for the future. 
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