Fodatianal Observatoxy.

BULLETIN No. XXXII.

A NEW METHOD OF MEASURING SMALL DISPLACEMENTS OF SPECTRUM LINES.

In the course of measurement of many sexies of spectra photographed with the Kodrikanal grating spectrograph a new methor of measuring suggested itself which seemed to give promise of appreciably reducing the accidental and systematic errors inherent on the ordinary method of bisecting a spectrum line with a straight spider thread.

The essence of the new method consists in placing a positive copy of the plate to be measured reversed, and almost in contact with the negative, film to film, and moving one with reference to the othor so that the positive images are mado to comcide successuvoly with the negative images of the corresponding lines.

No spider thread is used, and the accuracy of the adjustment for coincidence depends on the sensitiveness of the oye in estrmating the change from the bright and dark contiguous images of a line, to the perfectly uniform density which results when the positive image exactly coincides with the nogative, and the positive copy has the same gradation of tone as the nogative.

Tho delicacy of this adjustmont is greater than might have bcen anticipated, and it is independent of the width of the lines. The displacement of the D lines for mstance at the sun's limb due to the solar rotation can be measured almost, if not quite, as accurately as that of the much narrower lines of Fe etc. Experience has shown that given the same amount of traming in the now method as in the old, the adjustment for comendence of a positive and negative image of a solar line can be made with almost the same apparent accuracy as in bisocting the line with a thread. A good deal of course depends on the contrast in the original negatave, and in the case of the sharply dofined and very dense emassion lines of the are or spark spectrum the adjustment for coinctidence can be made with greater accuracy than is possible in setting a thread central on the line.

The principal advantage claimed for the new method is in the reduction of the accidental errors by reason of the double intervals measured. It is in fact almost equivalent to doubling tho linear dispersion of a plate without altering the width or definition of the lines. The method appears also to be entrely free from the large systematic bias which most observers become aware of when estimeting displacements between the lines in an absorption spectrum and in a comparison spectrum of bright lines.

The detection of asymmetry in a spectrum line is of interest and importance in some researches. By the method of reversing a positive end for end on a negative the slightest want of symmetry is revealed, since the less refrangible edge of a line in the copy is superposed on the more reifrangible edge of the nogative and the condition of perfeet uniformity of density when the centres councido is destroyed if the edges of the line are not simllar. This reversal end for end is not essential for the measurement of displacements and where the lines in a spectrum are thickly crowded, as in the violet and ultra violet solar spectrum, it is better to take the positive copy through the glass. It is then not necessary to reverse it end for end on the negative

The new method is applicable where the spectrum to be measured does not exceed $2-3 \mathrm{~mm}$. in width with a comparison spectrum contiguous to it on one or both sides. It has been used successfully to measure the displacements between sun and arc spectra where the arc lines are impressed on both sides of the solar spectrum, and to solar spectra where the central strip represents the sun's limb and the side spectra represent the centre of the dise; also to solar rotation plates where east limb and west limb spectra form two contiguous strips, or east limb, centre of disc and west limb spectra form tirce contiguous strips.

Where the side spectra are the sanie as in the first two cases mentioned a positive copy may be taken in the ordinary way and reversed end for end on the negative and the lines brought successively into coincidence.

If there are only two contiguous spectra, or three dissimilar spectra, it is necessary to obtain a reversed positive to place on the negative. This may be done in several ways. A positive may be printed through the glass with parallel light, or without using a collimating lens, by exposing for a few seconds to a naked electric arc placed at a distance of not less than 50 feet, and screenng the platie from scattered light. Another method is to take two contact copies in the ordinary way developing one as a positive, and reversing the other to a negative with ammonium persulphate or other bleaching agent. The negative so obtamed can be used on the positive. A third method which I bave found to be much the most satisfactory is to take a single copy of the original negative with a long focus photographe lens using a moderately fast plate and placing the negative with the glass side towards the lens. If the conjugate toci are made equal the positive can be used on the negative.

In many cases it is an advantage to enlarge the original about one and a half or two-fold In this case the procedure is as tollows: an ordinary contact positive is made on a moderately fast plate and developed so that it has the same gradation of tone as the negative. The positive and the original negative are then copied with the enlarging camera, using lantern plates to merease the cuntrast ' In copying, the positive must be placed witin the film side towards the lens, and the negative with the glass side towards the lens (or vice versa) care being taken to place the film in each case at precisely the same distance from the lens so that the scale of the two copies is the same. Very satisfactory results have been obtamed by this mothod, the enlargement and increase of contrast being a distinct gain in measuring.

By the ordinary method of measuring I have found no advantage in enlarging a plate if the scale of the original is not less than one millimetre to the angstrom because the moreased width of the spectrum lines in the copy and the more obtrusive irregularities of grain militate against the accurate bisection of a line with the spider thread. With the new mothod neither the width of the lines nor the grain of the plate has very much effect on the accuracy of setting. With the spectrograph I have employed the scale of the original negatives $1 s$ made as large as is consistent with reasonable exposure times. With a Rowland $3 \frac{1}{4}$-inch grating of 15,028 lines to the inch the scale ranges between $1 \cdot 2 \mathrm{~mm}$ and 2.0 mm to the angstrom and these may be enlarged with advantage up to 3 or 4 mm . to the angstrom.

The photographically reversed positive may be placed on the negative film to film and either reversed end for end or not reversed. If the relative displacements between three different spectra are to be measured it must be so reversed, but for two spectra only it may be either way. When not reversed end for end the positive and negative images of all the lines on one spectrum come into coincidence simultaneoasly, and the entire spectrum assumes a uniform grey tint devoid of all details. In this way it is possible to obtain a generalized measurement of the displacements of all the lines of the two spectra by ineasuring the amount of movement required between the two plates in order to obtain this unform tint, first in one spectrum and then in the other, half of this movement being equal to the mean displacoment of the lines. A fairly accurate estimate of the mean result of a plate can in this way be made very rapidly.

In addition to the advantages already mentioned the following may also be claimed for the new method.

In measuring displacements of two contiguous spectra by the ordinary method a troublesome correction has to be applied for the inclination of the thread to the spectrum lines, this being determined by numerous subsidiary measures. This correction is entirely avoided by the new method if the spectrum lines may be assumed normal to the spectrum, for it is easy to adjust the positive and negative plates with the spectra
exactly parallel to one another lengthwise so that the lines will also be parallel. With a properly dosigned slit the spectrograph may be accurately adjusted once for all to give spocha in which the linos aro exactly normal to the spectrum.

In measuring with the photographically roversed positivo so that tho positivo may bo placed on tho negative without reversing end for ond, ansymmetrioal lines may bo monsured with tho same accaracy as symmetrical lines, which is far from being the caso in bisocting with a throad; also with closoly olintorod lines such as occur in the violet and ultra violot part of tho solar spoctrum tho measuros oan bo mado by groups instead of single linos, for all tho linon of one spectram disnppear simmltancously whon the positive and the negative are brought into coincidence. Thas group method olimmates accidontal irregularitios in the distribution of the silver grains whoch cortanly affect the moasuros of indivichal linos to somo oxbent by any method of measuring.

Finally the strain on the eyes soems to be less severo in estimuting donsition of line unagos of considur. able width compared with the stram of conoentrating abtiontion on on oxcoodmerly marove thread and trying to place it central on a less well dofined lino mage.

The followng farrly obvious objections may be made to the mothorl:-
(1) The extra time and tromble pecquired in making suitablo positivos and in moting tup tho phatog for rneasurement
(2) The possibility of new sourees of orror introduced in enpying especially when copios are obtained through the glass.
(3) Errors dne to a parallax ollect cansed by tho distance separating the two films.
(4) Confusion resulting from the maltiplication of inages m tho fiold of viow of tho microncoje.

Objection (1) mast be weighed against tho incroaso ol nocurncy obtainod. I'lo oxha troublo in wothing up the plates for measurement may bo largoly mitigntod by suitably desiguod apraratins.

With regard to (2) the experenco of tho writor is that no mesumablo distortion onedurs in tho linos of a spectrum in copying either by contact, or with a lons and harough tho ghass. If such distortiom does occasionally ocour such errors may bo treatod as paroly mucidontal.
(3) Errors due to a parallax elfect bocono appreciallo if the positive and nograbivo platos aro separatod by intervals greater than 5 mm . ; with suitable apparatus howovor tho plates can ho hrought to within 0.05 mm . If the upper plate is cut as small as possiblo.
(4) The confusion of images is sometimos rabher bafling whon tho positivo is rovorsod ond for ond on the negative. With exporiences in working the mobhod this dilficulby disuppears.

Apquaratus.

The accompanyng drawing shows the escontial loaturos of tho apparatias that has boon asoct, A photograph of the merometer with tho apparatns atiached is also givon.

In the drawing P is a sliding brass plato 12 inohos long' $\times 2 \frac{1}{2}$ inchos wide and having an oponing or slot cut along the centre lengthwnen about $\frac{1}{2}$ inch wide and 6 inchos long. Thwo strips of wood ano serowod to the plate underneath, one on onch sude of tho oponing; those form the mounting to which fhe positive is gummed film down wards.

Above P is a tlat piece of hard wood W, $\frac{1}{6}$ inch thick, 7 inches long, and the same widuh as P. This also has an opening cut in the centre. Brass anglopiocos $A_{1} A_{2}$ aroserowol to tho wood along tho odgres; these support and guide the shding plato. The edges of l 'are ground straight and parallol, and tho inner surfaces of A_{1} are filed true. Between the angle pioco A_{2} and tho ndge of the sliding plate a long spring S, made of hard brass wire is inserted; this holds the plate against A_{1} and malus the sliding movoment smooth and easy. The outer edge of W, and consequently tho innor surfice of A_{2}, is mado parallel to tho ways of the micrometer. The positive being attachod to the slicling parts can by this moans bo moved over the negative, which is fixed to the micrometer stage below, until the corresponding linos aro noar together ; and this movement canot disturb tho adjustmont for parallelism of the spoctrum lines in the two photographs.

The wood W is attached to the moving carriage of the micrometer by wo strong angle pieces made of $\frac{1}{8}$ inch steel plate. One of these R is shown in the drawing. Dach is comnected to the wood by a sorew
passing through a hole in the steel made just large enough to allow the threads to pass freely through. A large nut with milled. head N fits on each screw, and between the steel and the wood pieces of stout clock spring C are placed. By turning the nuts the springs are either compressed or released and the parts below are drawn up or forced down. The positive plate can in this way be raised or lowered and its inchnation adjusted to parallelism lengthwise with the negative.

On each of the steel angle pieces there is also provided a screw with milled head T. This is screwed through the steel in the position shown, the end bearing on the clock spring; its function is to adjust the inchnation of the posstive laterally and bring it into parallelısm with the negative.

By means of the two adjustments the surfaces of positive and negative are made parallel and brought as near together as the unevenness of the plates will allow, usually within $\frac{1}{2 \sigma} \mathrm{~mm}$. Two clamping screws, M, hold the entire apparatus to the sliding carriage of the micrometer. The holes in the vertical part of the steel connecting plates are slotted and by lonsening M the whole may be rassed or lowered through about 10 mm .

The microscope tube is shown in the upper part of the diagram its objective being at 0 , about 3 inches above the plates to be measured. The microscope has a magnifying power of 12 diameters and a large field of view so that a length of 12 mm . of spectrum may be seen.

Method of working. -The negative to be measured is securely fastened to the micrometer stage along its edges by two or more strong dog clips. The slidng plate P is withdrawn and the positive copy which is cut as narrow as possible is fastened to the wooden strips with photographic paste. A very suitable adhesive is Higgins vegetable glue as this is not too strong, and when completely dry the plate may be easily detached. Before the gum has set the spectrum is made central and parallel to the edges of the sliding: plate. A few minutes are allowed for the gum to set, and before the plate with the positive attached is replaced in the slide the latter is raised to its highest point by loosening the clamps M The plate is then put in and the whole lowered until the positive rests on the negative, film to film; the clamps are then tightened and the nuts N are turned so as to rase the positive just clear of the negative, the screws T are also slightly turned to adjust the two surfaces parallel. In order to bring the positive and negative spectra into coincidence and parallel to one another lengthwise the negative is adjusted laterally. In the micrometer which has been used for this work the stage is provided with lateral movements which are a great convenience in making this last adjustment.

The positive may now be moved by hand over the negative until the corresponding lines in the two plates are near together in the field of view, it is then moved by the micrometer screw to get the successive coincidences of positive and negative images in the two spectra to be compared, the successive readings of the screw giving twice the interval separating the lines.

Results.
I give below two examples of measures made in the ordmary way and by the new method, to show the relative accuracy obtained. These represent two series of solar rotation plates. In the first series (example I) the exposures were made alternately on the sun's east and west limbs, the central strip of spectrum representing the west limb and the two side strips the east limb. An ordmary positivo reversed end for end on the negative was used in the new method of measuring, the original negative being used for the ordinary measures. In the second series (example II) the exposures were made simultaneously on east and west lumbs, these being represented by two contiguous strips of spectrum each 3 mm . in wilth. The original negative was used for the ordmary method of measuring, and copies onlarged 1.4 times for the positive on negative method.

I.-SOLAR ROTATION PLATE.

Date-February 28, 1911.

Latitude (mean)	$1^{\circ} \cdot 4$
Angle D	\ldots		70.2
Correction to limb	...		$\frac{1}{3}$

Alternato exposures-
centre strip west limb $\phi=2^{\circ} \cdot 1$. side strips east limb $\quad \phi=0^{\circ} .8$.

Ordinary method.

λ	Direct.	Reversed.	Mean.	Factors	$\frac{\Delta \lambda}{2}$	Km/sec.	Residuals,
	mm .	mm.	mm.		A		
6252773	$\cdot 133$	-128	$\cdot 131$	6553	.0363	1.74	-1
$6256 \cdot 572$	-137	-1.38	$\cdot 137$	-5532	'0379	182	$+7$
$6261 \cdot 316$	$\cdot 137$	-123	$\cdot 130$	$\cdot 5505$	-0358	1.72	- 3
6265348	139	-137	-138	-5481	$\cdot 0379$	181	+ 6
$6270 \cdot 442$	-124	-135	130	-545.4	$\cdot 0854$	$1 \cdot 69$	- 6
6280*833	$\cdot 144$	-135	140	-5305	-0878	1.80	$+5$
$6291 \cdot 184$	'147	-137	$\cdot 142$	-5339	-0879	1.80	$+5$
6298007	$\cdot 137$	-139	-188	${ }^{5} 5301$	-0867	$1 \cdot 75$	0
$6301 \cdot 718$	-136	$\cdot 1.36$	-136	$\cdot 5281$	- 3550	1.71	-4
63027709	32	181	-132	- 5276	.0817	$1 \cdot 65$	-10
Mean \ldots Probable exror				\cdots	\cdots	1749	
			.012				

Positive on negative method.

Mean result of plate giving equal weights		$\mathrm{K}_{\mathrm{m}} / \mathrm{sec}$.			
		\cdots	1.724
Correction to limb			-.		+ 057
Correction for secant of angle D	\cdots	+ 014
Correction to equator		\ldots	$+\cdot 001$
Correction for earth's revolution	...	\ldots		.	+ 141
Sidereal velocity at equator , 1.937					

II.-SOLAR ROTATION PLATE.

Date-May 22, 1913.

Ordinary method.

Positive on negative method (enlarged copies).

λ	Direct.	Reversed	Half mean.	Faotors.	$\Delta \frac{\lambda}{2}$	$\mathrm{Km} / \mathrm{suv}$.	Residualm.
	mm .	mm .	mm		®		
5560:434	$\cdot 321$	*315	-259	4172	0332	179	$+1$
5562•933	- 326	.330	- 64	4162	$\cdot 0341$	1.84	+ ${ }^{\text {d }}$
5566.931	313	-330	1.61	4152	0334	1.40	+2
$5567 \cdot 621$	322	315	$\cdot 159$	-4146	-0330	1.78	0
5569848	$\cdot 325$	323	$\cdot 162$	$\cdot 4138$	-0335	180	$+2$
5573.075	$\cdot 316$	'327	-161	-4127	0332	178	$+1$
5576.320	$\cdot 832$	31.9	- 163	$\cdot 4116$	-0335	1.80	$+2$
5578946	332	299	158	4107	-0324	1.74	-4
5582-198	'340	315	$\cdot 164$	4095	-0335	180	+2
5586.981	$\cdot 322$	307	. 157	-4078	-0320	1.72	- 6
5588.985	-324	320	$\cdot 162$	$\cdot 4072$	0329	1.77	-1
5590343	315	314	157	$\cdot 4067$	0320	1.71	- 7
$5601 \cdot 505$	335	330	-166	-4027	'0334,	179	+1
$5615 \cdot 877$	-331	-337	'167	'3977	0332	178	0
Mean ... Probable error			...			1.779	
		 006	

Mean result of plate giving equal weights		Km/seo.			
		1.780
Correction to limb	\ldots	...	+ $\cdot 047$
Correction for secant of angle D	\ldots	+.0002
Correction to equator ...	\ldots	+ $\cdot 034$
Correction for earth's revolution	...	\cdots	+ $\cdot 185$
Sidereal equatorial velocity				...	1.996

The measures were made by myself and the same amount of care and attention was given to each method. The plates were first measured with the red end to the right hand and then reversed and the measures repeated. The results in fractions of a millimetre are given in the second and thrd column, and the means in the fourth column; halved in the case of the new method which measures the double interval. The column headed $\frac{\Delta \lambda}{2}$ gives the half interval in angstroms and this is converted into kilometres per second in the last column but one.

It is seen that the residuals are notably smaller in the case of the positive on negative measures, and the resulting probable error is half that derived from the ordinary measures in I, and less than half in II. Up to the present fourteen rotation plates have been measured by both methods and in all of these the residuals are smaller by the new method, the average probable crror being $\pm .015 \mathrm{~km} / \mathrm{sec}$. by the old method and $\pm .009 \mathrm{~km} / \mathrm{sec}$ by the new. This is a somewhat smaller difference between the methods than is shown above, but some of the earlier measures show larger probable errors which are doubtless due to inexperience in working the new method.

It will be noticed that in the first comparison there is a systematic difference amounting to nearly 3 per cent. in the mean results of the two methods. This is not eassly explained, the inclination of the thread in the ordmary measures is in this case automatically allowed for in taking the mean readings of the two side spectra which are similar; and there appears to be no other source of systematic error. I can only suggest that personal bias affects one or other method, and I think it probable that the smaller values are the more correct. It is possible that in measuring in the ordinary way there is a tendency to exaggerate displacements even when, as in my own measures, a sliding mask is used to limit the field of view to one spectrum at a time. In all the rotation spectra I have measured in duphcate the old method gives larger values of the displacement than the new but there is often some uncertainty as to the correction for inclination of the thread. The average valuo of the sidereal velocity at the sun's equator from 14 plates is $1.946 \mathrm{~km} / \mathrm{sec}$. for the old method and $1.925 \mathrm{~km} / \mathrm{sec}$. for the new.

In example II the agreement of the mean results is very close but this is possibly accidental. The correction for inclination of the wre is determined by measuring the lines of the arc spectrum of iron impressed on the plates outside the solar spectra and in this plate only four are lines are strong enough for measurement. The results given by these lines were not very consistent and the correction is therefore somewhat uncertain.

In measuring by either method the mean of five settings is taken as the reading for each line, and from the accordance of the individual settings the probable errors of the readings have been computed for all the lines in the two plates. The probable errors of the differonce of readings, i.e., the displacements were then derived for each line. The average probable error of a line derived in this way does not differ materially from that derived from the accordance of the different limes, as is shown below :-

Probable errors of a single line.

No. 1 Ordinary method		By accordance of lines.		By accordance of settings.	
			...	$\pm .039$	/sec.	$\pm \cdot 049$	$\mathrm{Km} / \mathrm{sec}$.
," Positive on negative	...	-	...	$\pm \cdot 019$	\%	$\pm \cdot 030$	"
No. 2 Ordinary method	...	\ldots	.	$\pm \cdot 050$	"	$\pm \cdot 060$	"
" Positive on negative	$\pm{ }^{\circ} \mathbf{2 8}$	"	$\pm \cdot 028$	"

The number of hues measured being 10 for No. 1 and 14 for No. 2 the probable errors of the meanil results of the plates are-

Probable errors of means results of plates.
$\left.\begin{array}{ccccccc}\text { By accordance } \\ \text { of lines }\end{array}, \begin{array}{c}\text { By accorlance } \\ \text { of settings. }\end{array}\right\}$

For these plates therefore the probable error is about halved in the positive on negative measuros ans; compared with the ordmary measures, and the gan on accuracy is about the same whichever way the probable errors are estrmated.

The method has been found particularly useful in measuring the small displacements between tho liness of the are spectrum of mon and solar lmes at the centre of the disc. In this case also onlargoment of the 0 origonal negative is advantageous. I give as an example a recently measured plato contaning five urora lines. The positive and negative plates were enlarged from the origmal to a scale of 2.7 millimetres to tho angstrom.

Date—March 26, 1912. Centre of sun's dise ānd F'e arc.
Hour angle of sun $24^{\circ} 45^{\prime}$ enst.
Correction for orbital velocity of earth

$$
\begin{array}{cccccc}
\ldots & \cdots & \ldots & \ldots & 4 \\
\ldots & \ldots & \ldots & \ldots & +\cdot 485 & \text { Kin/sec. } \\
\ldots & \ldots & \ldots & \ldots & -191 & \#
\end{array}
$$

Correction for diurnal velocity of earth
Total correction $=V=\ldots+294 \quad$,

λ		Dureet	Reversed	Mean.	Factors	$\frac{\Delta x}{2}$	$\underset{\square}{\text { Corrastion }}$ for	\bigcirc - arc.
		mm .	mm	mm .		A	$\stackrel{\square}{\text { A }}$	i
4442510 ...		069	073	071	3720	-0132	-. 00436	+ 0038
$4447 \cdot 892 .$.		${ }^{-103}$	-101	102	3711	'0189	- 00136	+ 0145
4461818	-053	.067	060	${ }_{3}^{3687}$	- 0111	- 001137	+.0067
4466727 ...		-075	${ }^{\circ} 079$	077	${ }_{3639}^{3678}$	0142	-.00438	+ 0008
4494738 ..			061	061	3639	. 0110	-.00441	+ 0066

The dfferent hnes in this case show very different displacements, as is seen in the last column $\odot-\operatorname{arc}$, it is not possible therefore to derive probable errors from the accordance of these as the differences aro real. The average probable error for each displacement derived from the accordance of settings is $\pm .0003 \AA$ tho greatest being $\pm 0005 \AA$ and the least $\pm 0001 \AA$. The same mean result is got by a comparison of durect and reversed measures, taking account of the fact that the figures given in the 2nd, 3rd and 4th columns of the above table represent the double intervals.

The accuracy of settings for the are lines is greater than for the solar lmes, the mean probable errox of an are line from five settings being $\pm .00018 \mathrm{~A}$ and for a solar line $\pm 00024 \mathrm{~A}$. With the best are lines the error does not exceed $\pm 0001 \AA$, whoch on the scale of the plate measured is equivalent to $.0003 \mathrm{~mm} . \times 2= \pm .0006 \mathrm{~mm}$ This extraordinary degree of precision may be easily attained by payinger attention to certain details of mampulation both in takng the original photographs and in copying them. As the best results for unsymmetrical lines are got by photographically reversing the positive with reference to the negative and not reversing the spectram end for end, it follows that the positive images on one side of the spectrum will be superposed on the negative images on the opposite side, and unless the images are of equal density on both sides the sensitiveness of the adjustment for coincidence will be greatly impaired. In taking the orgginal photograph therefore care should be taken to ensure this equality of density. Fox direct current and a steady arc it is sufficient to reverse the poles during the exposure so that positive and
negative poles change places with reference to the spectrograph slit, and an equal exposure is given in each position. This wall also correct any very small change of wave-length which may be suspected in the radiation from positive or negative pole.

In making the positive and negative enlargements for measurement it is, as already mentioned, essential that both shall have the same gradation of tone; at any rate for the lines to be measured. In many cases the variation of density for the different lines is so great that it is difficult or not possible to obtain a positive which is the exact comnterpart of the negatıve, but with ordinary care in development the posative may be made to exactly neutralise the negative for a large proportion of tho lines. The "fit" of the plates may be tested mmouately after fixing by sliding the positive on the negative film to film while wet, and holding up to the light. In measuring, good results cannot be obtained unless the movemont of the micrumeter is perfectly smooth and without appreciable "backlash". Ordinary spectrum micrometers leave very much to bo desired in this respect, there is considorable friction in the gunmetal slide, and unless this is constantly attended to and cloaned the movement becomes irregular with much lost motion in parts of the shlele where the oll has bocome thek, or dust has accumulated. The apparatus I have adaptod for use with the merometor is to be rogarded as a prelmmary makeshift, useful for ascertaning tho possibilities of the method, I have little doubt that still greator accuracy could be attained if the micrometer wero specially designed for the purpose It would be better for instance to have a fixed microscope and slide lor the positive, and mount the negative on a carriage moving on wheels. With a practically frictionless movement the lost motion could be reduced to an infinitesimal amount and the wear on screw and nut would be greatly lessenod.

Kodaikanar,
29th July 1913.
J. EVERSHED

Director, Kodailianal and Madras Observatories.

