Fodatianal obsexataxy.

BULLETIN No. XXXI.

SUMMARY OT PROMINENCE OBSERVATIONS FOR THE FIRST HALT OF THE YEAR 1913.

The distribution of the prominences in latitude during the six months endmg June 30, 1913, is represented in the accompanying diagram. In this the full line gives the meau darly areas, and the broken line the mean daily numbers, for each zone of 5° of latitude The scale of ordinates represents tenths of square minutes of arc for the full line and numbers for the broken line. The means are corrected for partial or imperfech observations the total of 166 days of observation being reduced to 153 " effective" days

> Mran Areas and Mean Numbers of Prominunces.

January 1st to Jung 30the 1913.
Menn areas - full line
Moan numbers-broken line.

There is a reduction of aroa in the sonthorn hemispluere compared with the previous six monthsand an increase in the north, the area for the whole sun remaiming the same. The reduction in the south affects chiefly the zones $15^{\circ}-20^{\circ}$ and $45^{\circ}-50^{\circ}$ and the increase in the north is mainly in the region $40^{\circ}-50^{\circ}$.

By these changes tho two hemspheres have become sensibly equal in activity both as regards areas and numbers.

The usual reduction of area us shown in the polar regions (60° to 90°) and in the immediate vicinity of the equator, indsating the general dependence of the distribation on the solar rotation.

The moan daily areas and numbers for each hemisphere correctod for partial observations are as follows -

The monthly, quatterly, and half yearly frequencies, corrected for partial observations, and the mean height and extent, are given m the following table.-

Compared with the provious six months the mean frequency has remaned practically unaltered, the mean height has slightly moreased and the mean cxtent has slightly diminished.

Nean height.

The mean apparent herght of the prominences, $29^{\prime \prime}$. 2 , exceeds that found for the provious six months by $0^{\prime \prime} 6$.

The total number of prominences recorded durng 166 days of observation which attained heights of $60^{\prime \prime}$ or more is 334 or an average of $2 \cdot 1$ per diem as aganst $1 \cdot b$ per diem during the lattor half of 1912. Five prominences were photographed exceeding $180^{\prime \prime}$ m height. The highest was photographed on January 26th at latitude $+30^{\circ}$ west. This was a small pointed cloud closely resombling in form the brighter part of the nebula photographed near. Nova Persel. At $8{ }^{11} 20^{\mathrm{m}}$ it was about 4^{\prime} above the sun's limb but appeared to be receding from the sun at a speed of about 30 kilomoters per second, and at $9 \mathrm{~h} 50^{\mathrm{m}}$ it was outside the field of the spectroheliograph.

Distrobution east and west of the sun's axis.
The eastern limb shows a slight preponderence in numbers and areas over the western as follows:-

| 1913 January to June- | | | East. | West. | Percentage east. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Numbers observed | \ldots | \ldots | \ldots | 1485 | 1449 | $50 \cdot 61$ |
| Total areas in square minutes of aro | \ldots | $187 \cdot 4$ | 182% | 50.70 | | |

Metallic prominencess.

Only five were observed during the six months, particulars of these are given in the following table:-

Metalluc prominences during the first half of 1913

Date.			$\begin{aligned} & \operatorname{Time} \\ & \text { I.S.I. } \end{aligned}$		Base.	Latitude		Limb.	Height.	Elements giviag bright lines	
					North.	South.					
						0	0	0		"	
January					1	$25 \cdot 5$			40		
Do.		$\cdots{ }^{4}$				26		W	10	$\mathrm{Na}, \mathrm{Mg}, p \mathrm{Fe}$.	
March 13 26		35 24	1			W	25	$\mathrm{Na}, \mathrm{Mg}, p \mathrm{Fe} .$	
Do Do, 26 . .26		24 24	$\stackrel{2}{0} 0$.	44.5 415	W	$\left.\begin{array}{l}70 \\ 25\end{array}\right\}$	$\mathrm{Na}, \mathrm{Mg}, p \mathrm{Fe}$ and He .	

It is remarkable that two were observed on tho same day (January 4) and at the same latitude, one being on the north-east limb and the other on the northwest limb; the latter was an exceedingly bright point of hght exactly over a suall sunspot (Greenwich No. 7008, Latitude $+26^{\circ}$).

Displacements of the hydrogen lines.
The number of displacements olscrved has largely increased compared with the record for the previous six months. This is partily due to increased attention being given by the observers to these observations and partly to the use of more powerful mstruments during the last three months. Altogether 87 of these disturbances were recorded and more than half the number (49) were in tho high latitnde areas between 60° and the poles. Twenty-three were in mid-latitudes 30° to 60°, and filteou in the equatorial region bounded by latitude 30°.

The largest displacement recorded was on February 1st at latitude $+81^{\circ}$ oast when the C line was displaced $3 \AA$ towards the red at $9^{\text {h }} 1.0^{\mathrm{mm}}$. Two minutes later it had changed to $3 \AA$ towards the violet and at $9^{h} 51^{\mathrm{m}}$ the disturbance had subsided.

Forty-five of the displacements were towards the red, thirty-two towards the violet, and ten in both directions sumultaneously. Fifty-six were on the east limb and thirty-one on the west. Finally the disturbances were almost equally distributed north and south of the equator.

Reversals and displacements of the hydrogen lines on the disc.
Those disturbances boung closely associated with sunspots are rarely observed during years of minimum spot activity No noticeable disturbances of the C lme wore recorded noar the small spots of January, March and April but on February 21st $8^{\text {h }} 20^{\mathrm{m}}$ the dark line was displacod about $3 \AA$ towards the red near spot No. 7010 of the (ireenwich series (Latitude $+27^{\circ}$) and on the $22 \mathrm{nd} 10^{\text {h }} 18^{\mathrm{mm}}$ the line was reversed in several places botweon main spot and tho group of small spots following.

Pronuinences projected on the disc as absorvtion markings,
The sun's disc was photographed in E 人 light on 132 days and on 57 of these days absorption marknggs are shown. The destribution of the markings in latitude are given in the accompanying diagram in which the mean areas, corrocled for foreshortening, are given for each zone of 5° of latitude.

> Mran Arbas of Ela Absorpiton Maringas. Jandary wo June 1913.
> Total mean aroa for North homisphere $=44$ millionths.
> Do. do. Nouth hemisphere $=84 \quad$ do.

The general distribution as almost the same as that of the prominences at the limb, the only noticeable difference is in the southern hemisphere where tho maximum development of absorption markmgs is in as higher latitude than the maximum area of prominences. In the northern hemisphere the correspondence of the two curves is very close. As the majority of prominences do not produce absorption on the dise the diagram represents a much sinaller number of observations than is the case with the prominence diagram on page 18.

Compared woth the previous six months (See Kodaikanal Observatory Bulletin No. XXX, page 12) it appears that the three principal zones of activity in each hemisphere are in exactly the same latitudes in both periods, but the very active zone observed in 1912 at 10° to 20° south has in 1913 become of secondary importance. The reduction of activity in this zone is also shown in the prominence curves.

The mean areas per diem in millionths of the sun's visible hemisphere and the mean numbers are compared in the following table with the previous six months:-

	1912 July to December			1913 January to Jone.	
		Areas.	Numbers.	Areas	Numbers.
North	...	56	$0 \cdot 32$	44	024
South	...	382	128	84	056
Total	...	438	$1 \cdot 60$	128	080

There is here shown a great reduccion in both numbers and areas in 1913, the mean numbers being reduced by half and the mean areas $3 \frac{1}{2}$ times, so that the average size of the markings has also greatly decreased.

The Observatory, Kodaikanal,
14th July 1913.
J. EVERSHED,

Director, Kodaikanal and Madras Observatories.

