Fodattanal Obsexvatory.

BULLETIN No. XXVII.

ON THE PRESENCE OF RADIUM AND TEE ELEMENTS OF THE INACTIVE GROUP IN THE UHROMOSPHERE.

A comparison of the wave-lengths of radium lines moasured by Runge and Preoht with Rowland's table of solar spectrum lines shows, as was pointed out by Runge, that the radium lines are not found in the absorption spectrum of the sun. A comparison of the emanation lines measured by Royds with the sun gives a similarly negative result

A comparison recently made by Dr. Dyson * of the lines of radium and the emanation with the bright line spectrum of the ohromosphere as observed at eolipses indicates sevoral apparent coincidences of wave-length which suggest that these oloments may, after all, be revealed by thoir emission lincs although not by their absorption lines, as is the case with helium in the sun.

In discussing the speotroscopio results of the colpses of 1898 and 1900 I showed that the chromosphore or "flash" spectrum observed at eclipses is in truth a reversal of the Fraunhofer speetrum, notwithstanding the great differences in the relative intensities of tho lines of different elements in the bright line and dark line speotra; and that the only bright lines of the flash speotrum which could not with reasonable certainty be identified with the dark lines of the Framhofer spectrum are those of helimu in the visible region of the spectrum and of hydrogen in the ultra violet region, and the unknown line at $4685.7 . \dagger$

In the absence of very accurate measures of the wavo-longths of the flash spectrum lines, it is not possible to say with certainty whether other elements may not also be rocognised in the emission spectrum of the chromosphere although not in the absorption speetrum. If radium and the emanation can be so recognised it would be natural to suppose that in addition to helium, other elements of tho inaotive group (in whioh I inolude the emanation) might be expected to indicato their presence in this way.

In the year 1903 S . A. Mitchell announced the discovery of neon and argon in the flash speotrum, \ddagger but his conolusions appear to havo beon basod on insufficient evidence, and the wave-lengths of the neon lines at that time were not known with suffioient acouracy to give a decisive result.

I propose to show that with the best eolipse material now available and the most rocent measurements of the lunes of the elements in question the oridenoe is of a distinotly negative oharacter as regards radium and the emanation as well as neon and argon, and the probabjlity is that not one of these elements can be recognised in the sun by a study of the emission spectrum of the ohromosphare, any more than by a comparison with the solar absorption spectrum.

For comparison with the radium and emanation lines in the ultra violet region of the spectrum, I have taken the chromosphere wave-lengths from my measures of the "flash" speotrum obtained at the eclipse of 1900 for which the limits of acouracy may be estimated at about $\pm 0.04 \AA^{\circ}$ for well-defined lines. In the less refrangible region between the limits $\lambda \lambda 4000$ and 4800 no measures havo bitherto been published which are sufficiently accurate for satisfactory comparisons. At the eolipse of 1905 Mitchell secured some grating spectra of the "flash" which are, I believe, the finest whioh have ever been obtained in the less refrangible region, and it is to be regretted that no wave-length measures have been published., I have in my possession

[^0]some positives on glass of these plates kindly sent me by Dr Mitohell, and at the risk of anticipating to some extent any results which he may subsequently publish, I have mysolf made a set of measures of all the lines which fall near to either radium or emanation lines.

The scale of the plates is $1 \mathrm{~mm} .=10.8 \AA$ and the definition is suoh that isolated lines of medium intensity can be measured with a probable error of $\pm 0.001 \mathrm{~mm}$ or $\pm 001 \AA$. Many of the fainter lines or blends will however be subject to an error four or five times greater than this. As the spectra are almost perfectly normal the rednotion process is the simplest possible; I have taken as standards sixteen lines well identified with lines in Rowland's table, mostly of titanium, and distributed over a range of speutrum extending from $\lambda 4012$ to $\lambda 4924$.

In tables I and II I have entered in columns 3 and 4 the results of these measures with estimates of intensity. The more refrangible chromosphere lines are from my 1900 eolipse results, these being of tho same order of accuracy as the measures of Mitohell's plates In oolumns 5, 6, 7 I give the wave-longths, intensities and origins of the nearest Frannhofer lines from Rowland's table.

Table I—Radium.

Radum lines (Runge and Prechti).		Chromosphere.		Solar lines (Rowland).			Romarks.
λ	$\begin{aligned} & \text { Intien. } \\ & \text { mity } \end{aligned}$	λ	Intiensity.	λ	Intonsity.	Ongin.	
3648975	50	3C48.53 ${ }^{\text {* }}$	5 .	$3640 \cdot 488$.476	4 3 3		
		3 ¢053		-654	5	Fe-La	
$3814 \cdot 58$	100	3814.73 \dagger	7 7	3814.671	4 3	Fe-O.	
4340-83	50	H γ interferes					It. Lookyel.
4436.9	20	$4495 \cdot 84$	1	4435851	4	On.	
4882 36	50	$\left\{\begin{array}{l}468223 \\ 4882 \cdot 57\end{array}\right.$	0 0	$\begin{array}{r}4682.088 \\ .295 \\ \hline\end{array}$	3 1 1	$\mathrm{Ti}^{\mathrm{TO}} \mathrm{p}$	Chromosphate lince tron $\}$ Mitohell's 1805 speo
482812	20	亿 4825\%74	0	-529	1	- CO	$\}$ lrum.

Table II-Enanation.

Note.-The emanation lines in brecketa are from Rutherford and Soddy, and the chromosphere hne in braikets from Dybna'e. catalogue.
*The wave-length acoording to Dyson 18 $3649 \cdot 86$.
\dagger The wave. leanth acoording to Looky ar 18 98144^{\prime} and Dyson $3814 \cdot 87$.
I T. Royde. Phil. Mag. 17., 202, 18088.

It is apparent from these tables that the chromosphere lines are in nearly every oase matched by a solar dark line or group of lines within the limits of nocuracy of the measures, and that in general the wave-lengths differ appreciably from those of the radrum and emanation lines. Only one of the radium lines and three of the emanation lines fall within allowable limits of the chromosphere lines-a proportion which may well be ascribed to chance ooincidences. The strongest radium line at 381458 and the strongest emanation line at 4166519 aro not reprosontod in the ohromosphere within allowable limits. Dr. Dyson suggests that the chromospero line at $3814 \cdot 73$ may be partly due to radiun. The line is well defined in my spectra and the earor of mersurement is almost certainly loss than $\pm 0.05 \AA$. The wave-length, whoh is confirmed by the measures of Dyson and Lookyer, agroes well with the double solar line at mean wave-length $3814 \cdot 70$ of which the more refrangille component is dae to F_{e} and the less refrangible to Ti-a line whooh is slightly enhanoed in the spark. The intonsity in my eelipse spectra is not greater than would be expected oonsidering it to be dur to Fe and T_{1}.

The two chromosphere linos $4508 \cdot 40$ and $4576 \cdot 58$ oceur in a region that was photographed by Hale and Alams at Mount, Wilson without an enlipse, and the very accarate measures made by them oonfirm my measures of Mitcholl's spectra, but give an additional line at 4577.866 which 18 near to, bat still not coincident, with, the emanation line at 4577.77.

The improhability that radium or the emanation can ever be reoognised in eolipse spectra seems the groator beoause of the high atomic weights of those elemente, which would oause them to be confined to a very low lovel in tho solar atmosphere, and as I have shown in disoussing the resalts of the eclipse of 1898 " J'he apparunt intonsity of the radiation of any element in the ohromosphere is determined by the extent to which that olomunt is diffased above the photosphere." Gases confined to very low levels cannot give a eonspiouous omission spoctrum at eolipses.

Neon and Argon in the Ohromosphere.

The groat intonsity of the helium lines in the ohromosphere would lead one to expect some of the lighter elements of the inactive group to be represented, partionlarly neon with atomio weight 20 and postilhy argon.

In table III I give in column 1 the principal neon lines measured by Baly "and inoluding all those exuceding intensity 3. In column 3 are ontered the ohromosphere lines from my eolipse results of 1898 and 1900.

Table III-Neon.

* T.C. Baly Phil. Trang. A 808, 188.

Table III-Neon-cont.

Neon lines.		Chiomosphere.		Solar lines (Rowland).			Remarke.
		λ	Inteasity.	λ	Intensity.	Origin.	
352057	8	$3520^{\circ} 83$	1-20	3520.367	${ }^{2}$	Tı	
359367	10	$3583 \cdot 65$	30	3598.635	9	$\mathrm{Cr}_{\mathbf{r}}$	
$3600 \cdot 24$	4	${ }^{3600} 80$	30	3800880	3	Y	Ohromoshat
3638.78	8	(3633'62)	(1)		. .	.	Ohromosphere linea from
388239	4	(3682.37)	(1)			\cdots	eolipse off 1800.
3685.84	4	3885 367	80	3685'339	10	Ti	The lines in braokets are
$3701 \cdot 30$	8	3701-28	3	3701288	8	Fe	$\}$ trom Dyson's oatalogre.
4158.68	4			… 8		F	
$41.98 \cdot 71$	4	41889	5	4198800	3	Fe	
$4201 \cdot 03$	4						
425958	8 4				.	-	Mitohell grves n faint line
$\begin{array}{r} 4704 \cdot 56 \\ 4709.00 \end{array}$	4	\because	.	,		-	$\int^{\text {nt }} 420599^{\circ}$ from eclipse of

Of the twenty-five neon lines, seven fall so near to strong lines of $\mathrm{Fe}, \mathrm{Ni}, \mathrm{Or}, \mathrm{Ti}$, and Y that they would be indistngaishable if present; these inolude the strongest neon line at $3593 \cdot 67$ whioh practioally ooincides wath a very strong ohromium line. Thirteen neon lines seem to be entirely unrepresented in the ohromosphere and these include the two strong lines (intensity 8) at 341805 and 3447.83 . Two lines, of intensity 6 and 4 respectively, coincide within allowable limits with faint lines measured by Dyson, and there remain also three lines, $3460 \cdot 67,3464 \cdot 48$ and 4198.71 which might reasonably be attributed in part to neon if the other neon lines of greater intensity were also present.

The absence of the thirteen neon lines above mentioned 18 confirmed by reference to Dyson's list of obromosphere lines, but one of these, 4259.5 , occurs in Mitohell's list of flash spectrum lines photographed by him at the eolipse of 1901. On the whole, it seems certain that neon does not exist in appreciable quantities in the ohromosphere.

In the red and blue spectra of argon there are, according to Kayser, 56 lines of intensity exceeding 4 between $\lambda 3475$ and $\lambda 5190$, of these thirteen may be ruled out beoause of their close'proximity to strong lines of $\mathrm{Fe}, \mathrm{Ti}, \mathrm{Sc}$, etc. The following twenty-eight lines seem to be unrepresented in the ohromosphere; they are not found in the catalogues of Lookyer, Evershed, or Dyson.*

λ	Intonsity	- Red or Blue speatrum	λ	Intensity.	Red or Blue spectram.
3476926	5	Blue	$4228 \cdot 310$	5	Blue
$3480 \cdot 636$	5	"	4259•491	7	Red
$3491 \cdot 444$	5	"	$4266 \cdot 425$	5	
3545.792	5	"	4266.684	6	Blue
$3559 \cdot 695$	8	"	$4272 \cdot 304$	6	Red
3561.213	7	"	$4277 \cdot 718$	6	Blue
3อิ82-547	7	"	4348-222	10	
3638.015	7	"	$4401 \cdot 156$	5	"
$3729 \cdot 450$	9	"	$4426 \cdot 165$	9	",
3928749	7	"	$4430 \cdot 355$	6	
4072159	7	",	4510851	5	Red
$4104 \cdot 107$	7		4579-527	5	Blue
$4190 \cdot 841$	5	Red	4736.065	5	
4191-162	5	"	4806.173	6	

The line at $4348 \cdot 222$ intensity 10 is the strongest argon line : it falls near to a faint obromosphere line at 4347.8 of my list of eolipse lines, and $4348 \cdot 06$ of Dyson's list : a line which may probsbly be identified with the lines in Rowland's table at 4348.002 intensity 2 and $4348 \cdot 130$ intensity 1 . I have remeasured this line on Mitohell's grating spectrum of the 1905 eolipse and get the value 4348.01 , which proves that it does not coincide with the argon line.

The remaining fifteen argon lines fall near to, or coincide with, faint ohromosphere lines of whioh no origins can otherwise be assigned with cortainty. They are given in the following list :-

	Argon.	Chromosphero.			
λ	Incosarity	Rod or J3lue spectirnm.	λ	Intensity	Antiority.
3491.723	7	Blue	3491.99	0	Dyson
3546005	5	"	$3546 \cdot 09$	0	"
3588.633	9	"	358897	1	
3781018	6	"	3781.0	1	Loockyer
$3850 \cdot 715$	8	",	$\left\{\begin{array}{l}3850 \cdot 15 \\ 3851 \cdot 90\end{array}\right.$	$\left.\begin{array}{l}2 \\ 0\end{array}\right\}$	Evershed (a group of lines).
3868.718	6	"	3808.7	2	Lookyer
$3949 \cdot 107$	6	Red	$\left\{\begin{array}{l}394811 \\ 3040.08\end{array}\right.$	4	Evershed
4164309	5	"	$4161 \cdot 43$	1.	Dyson
$4198 \cdot 436$	5	"	41984	0	Evershed
			[420073	1	Dyson
4200799	9	"	\{ $4200 \cdot 8$	00	Mitchell
		"	$4200 \cdot 9$	1	Evershed
4331-354	6	Blue	$4331 \cdot 47$	2	Dyson
			$\left\{\begin{array}{l}4379 \cdot 94 \\ 4379.7\end{array}\right.$	2	
4370.827	6	"	$\left\{\begin{array}{l}4379 \cdot 7 \\ 4379 \cdot 7\end{array}\right.$	0 2	Evershed Thookyer
$4545 \cdot 220$	5		\{ $4545 \cdot 33$	2	Dyson
404020	5	"	$\left\{\begin{array}{l}4545 \cdot 085 \\ 4609.71\end{array}\right.$	1	Hale and Adams
$4609 \cdot 742$	6	"	$\left\{\begin{array}{l}46098\end{array}\right.$	1	Lookyer
$5188 \cdot 46$	5	Red	$\{5188 \cdot 38$	0	Dyson
5188			[5188:9	2	Ioockyer

Perhaps the most important line of this list is the one at $4200 \cdot 790$ intensity 9 whioh agrees well with the mean of the threc measurements of the chromosphere line. I havo remeasured the haes in this region on Mitchall's grating spectrum of 1905 and find a. olear spaos at 4200.8 , the nearest lunes being at 4198.82 and 4202.35 . This is confirmod by Thookyor who gives no lino between these two in the beautiful eolipse spectra obtained in 1898. There must romain somo doult therofere as to the reality of the line in the chromosphere. The last line in the tahle at 5188.38 acoording to Dyson, is certannly the bright line equivalent of the double solar line at mean wavo-length $5188 \cdot 94$. It is beautifully defined in Mitohell's 1905 speotrum at $5188 \cdot 93$, and Lockyer's wave-length confirms this identifioation.

In a spoctrum so rich in lines as that of argon a certain number of chance coinoidencos are to be expected, but the long list of absent lines, including those of both the red and blue speotra and the strongest line in the blue spectrum, seems to prove that argon does not oxist in appreciable quantity in the ohromosphere.

The spectra of Krypton and Yonon have ulso been examinel but I can find no evidence of the presence of either of these elements in the chromosphero.

[^1]
[^0]: * Astronomische Nachriohten No. 4580. † Phil. 'I'rans, A. 197, 402; A. 201, 468. ま Astrophysioal Journal XVII, 224,

[^1]: Kodatranaíl,
 18th September 1912.
 J. EVERSHED, Direetor, Modaikanal and Madras Observatories.

