Enodatzánal Obsexuatovy.

BULLETIN No. XVI.

ON THE CURVATURE OF LINES IN THE SPEOTRUM FORMED BY A PLANE GRATING.
 By Gilbert T. Walrer, m.a., so.d., f.r.s.

In connection with some measurements of spectra rocently made at Kodaikennal it was found that the lines were slightly ourved. The phenomenon had been pointed out by Hale, but no formula for its amount appeared to be available; the following theoretical examunation may therefure have some use.
2. Let the origin of reference be taken in the oentre of the grating and $O Z$ along one of the lines ruled upon it, and let $O X$ be drawn normatly outwards Let the inoldent light consist of parallel waves propagated in the direction $(-l,-m,-n)$ so that (l, m, n) is the normal to the waves drawn in the direotion to meet the light. and let the diffraoted plane waves be propagated in the direotion ($l^{\prime}, m^{\prime}, n^{\prime}$).

We shall consider the spectrum of the $\mathrm{p}^{\text {th }}$ order and shall take Ω representative point P on the $\mathrm{r}^{\text {th }}$ line of the grating reekoned from OZ towards the side on which y is positive. If then d be the distanoe between conseentive lines on the grating, P may be taken as ($0, r d, s$); and as the projeotion of a vector in any direction is equal to the sum of the projections of its component veotors in that direction, the projections of $O P$ along the normals to the incident and diffraoted waves are $(m r d+n z)$ and ($\left.m^{\prime} r d+n^{\prime} s\right)$ respeotively. Thus the total length of the path treversed by the incident and diffracted rays wien incidence ocours at O will exceed the length when inoidence ocours at P by the amount

$$
m r d+n s+m^{\prime} r d+n^{\prime} x,
$$

and as the speotram is of the $p^{\text {th }}$ order this must be equal to $p r \lambda$. Thus

$$
\left(m+m^{\prime}\right) r d^{\prime}+\left(n+n^{\prime}\right) z=p r \lambda .
$$

This will hold for all values of r and' z if

$$
\begin{align*}
& \text { (} m+m^{\prime} \text {) } d=p \lambda \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{1}\\
& n+n^{\prime}=0 \text {. }
\end{align*}
$$

whioh are the equations giving m^{\prime} and n^{\prime}.
3. We shall now suppose that the inoident light passes through a_{0} straight slit parallel to the lines of the grating and that the centres of the slit and of the oollimating lens lie on the line

$$
\frac{x}{\cos a}=\frac{y}{\sin a}, z=0 .
$$

The incident ray (l, m, n) will thus be parallel to the line joining the centre of the leas to some point on the alit and we shall have

$$
\begin{equation*}
\frac{l}{\cos a}=\frac{m}{\sin a} \ldots \tag{3}
\end{equation*}
$$

Now corresponding to $n=0$ we shall have

$$
l=\cos a, m=\sin a,\left(\sin a+m^{\prime}\right) d=p \lambda, n^{\prime}=0
$$

Thus if the angle of duffraction in this asse:of, symmetrical incidence be β,

$$
l^{\prime}=\cos \beta, m^{\prime}=\sin \beta,
$$

4. Now let us consider the image formed by a cumera lens whose
ventre C lies on the line $\frac{x}{\cos \beta}=\frac{y}{\sin \beta} \neq \frac{y}{6}, \quad 2=0$
We shall suppose that the photographio plate on which the image is formod outs this line at right angles ati O^{\prime}, and that O^{\prime} is at a distance f from O, this being the focal length for the wave length λ. Let $O^{\prime} Y^{\prime}$, $O^{\prime} Z Z^{\prime}$ be axes of referenoe in the plane of the plate, $O^{\prime} Z^{\prime}$ being parallel to OZ ; then if $\left(y^{\prime}, s^{\prime}\right)$ be the co-ordinates, referred to these axes, of a point Q in the image on the plate, a line from C to Q will be parallel to the duffracted ray $\left(l^{\prime}, m^{\prime}, n^{\prime}\right)$. Now the projeotions of $C Q$ parallel to $O X, O Y, O Z$ will be $f \cos \beta-y^{\prime} \sin \beta, y \sin \beta+y^{\prime} \cos \beta$, x^{\prime} : and hence

$$
\begin{equation*}
\frac{f \cos \beta-y^{\prime} \sin \beta}{l^{\prime}}=\frac{f \sin \beta+y^{\prime} \cos \beta}{m^{\prime}}=\frac{z^{\prime}}{n^{\prime}}=\left(f^{2}+y^{\prime 2}+z^{\prime 2}\right) . \tag{5}
\end{equation*}
$$

5. Now if the ratio of the length of the slit to the focal length of the collimating lens be treated as a small quantity of the first order, n will be a small quantity of that order; and as far as squares of n, by (3),

$$
\frac{l}{\cos a}=\frac{m}{\sin a}=\left(1-n^{2}\right)^{\frac{1}{2}}=1-\frac{1}{2} n^{2}
$$

Thus by (1) -

$$
\begin{aligned}
m^{\prime} & =\frac{p \lambda}{d}-\left(1-\frac{1}{2} n^{2}\right) \sin a \\
& =\sin \beta+\frac{1}{2} n^{2} \sin a, \text { by }(4)
\end{aligned}
$$

and by (2)-

$$
n^{\prime}=-n
$$

Thus substituting for m^{\prime}, n^{\prime}, in (5)

$$
\begin{equation*}
\frac{f \sin \beta+y^{\prime} \cos \beta}{\sin \beta+\frac{1}{2} n^{2} \sin a}=\frac{z^{\prime}}{-n}=\left(f^{2}+y^{\prime 2}+z^{\prime 2}\right)^{\frac{1}{2}} \tag{6}
\end{equation*}
$$

Hence z^{\prime} is of the first order of small quantities and

$$
\begin{equation*}
x^{\prime}=-n f\left\{1+\frac{y^{\prime 2}+x^{\prime 2}}{2 f^{2}}\right\} \tag{7}
\end{equation*}
$$

Also by (6)-

$$
f \sin \beta+y^{\prime} \cos \beta=\left(\sin \beta+\frac{1}{3} n^{2} \sin a\right) f\left\{1+\frac{y^{\prime 2}+z^{\prime 2}}{2 f^{2}}\right\},
$$

so that y^{\prime} is of the second order of small quantities, being given by

$$
y^{\prime} \cos \beta=\frac{1}{2} n^{2} f \sin a+\frac{1}{2} \frac{y^{\prime 2}+x^{\prime 2}}{f} \sin \beta
$$

Omitting the term in $y^{\prime 2}$ which is of the fourth order of small quantitios we obtain

$$
\begin{align*}
2 f y^{\prime} \cos \beta & =n^{2} f^{2} \sin a+z^{\prime 2} \sin \beta \\
& =s^{\prime 2}(\operatorname{sia} a+\sin \beta) \ldots \ldots \ldots \tag{8}
\end{align*}
$$

\qquad
by (7), omitting fourth powers of small quantities.
Hence the light of wave-length λ passing through the slit will come to a focus on the curve (8), a para' bola of semi-latus-reotum

$$
\frac{f \cos \beta}{\sin a+\sin \beta}
$$

or, to the same approximation, a cirole of this radius.
6. Let us now sappose that the normal to the photographic plate instead of being parallel to the diffraoted ray lies in, the plane XOY at an angle γ with the diffracted ray; the plate will now be inclined γ to its former position and the new radius of curvature ρ^{\prime} of the inclined section of the cone of rays through σ will be connected with the old radius ρ of the normal seotion by the relation.

Hence

$$
\begin{aligned}
& \rho^{\prime}=\rho \cos \gamma \\
& \rho^{\prime}=\frac{f \cos \beta \cos \gamma}{\sin a+\sin \beta^{\prime}}
\end{aligned}
$$

Kodatiainal Observatory,
GILBERT'T. WALKER.
1Eth February, 1909.

