
A STUDY ON THE ELECTRIC DIPOLE MOMENT OF 
ATOMS 

A thesis 

Submitted For The Degree of 

Doctor of Philosophy In the Faculty of Science 

Bangalore University 

By 

ANGOM DILIP KUMAR SINGH 

Indian Institute of Astrophysics 

Bangalore 

India 

1998 



Declaration 

, . 
" \ .. I' -, " '.' . ..;. ",,, (;1'- - I \ \.p") 

I hereby declare that the matter contained in this thesis is the result of the investigations 

carried out by me at the Indian Institute of Astrophysics, Bangalore, under the supervision 

of Professor Bhanu Pratap Das. This work has not been submitted for the award of any 

degree, diploma, associateship, fellowship, etc. of any university or institute. 

Bangalore 560034 

1998 August 

Angom Dilip Kumar Singh 

( Candidate) 



Certificate 

This is to certify that the thesis entitled' A Study on Eelectric Dipole Moment in Atoms 

submitted to the Bangalore University by Mr. Angom Dilip Kumar Singh for the award 

of the degree of Doctor of Philosophy in the faculty of Science, is based on the results of 

the investigations carried out by him under my supervision and guidance, at the Indian 

Institute of Astrophysics. This thesis has not been submitted for the award of any degree. 

diploma, associateship, fellowship, etc. of any university or institute. 

Bangalore 560034 

1998 August 

~S~\N' 9x-~_1-~ ~\)~ 
Prof. Bhanu Pratap Das 

(Supervisor) 



Dedicated to my grandfather 

Angom Indra Singh 



.§~ ~ ~ a ~ ~ anr-/~ th~~d:J d!ud~ t/ 
~~ ~~t£~t?n ~ ~~~ anr-/a,j~ ~ a ~t:ad 

/uuUbn ~ ~oe. .fCOn4~ ~ ~~ th ~,pol ~ ~ 
~~m~~m~and~IZMa~~·~m~. ~ 
~ .f a?n ~ ~ II:; g~ 3#kue Yza¥ §1~, ~ ~ a 

,j~~ ~ tt~~ d .fno~ ed d ~ tWne. ~ ~~, d ~ J 
~I/W?n~ ad~ ~~n J~wd~ ~ ~n4 th ~ ~ 
~;( tWne. .f ~ ~..fot, d ~w ~ m ~~ . .f ~ Y~ 
.@'~ .L~ ~J~ ~~r ~d ~ ~~ dd 
~~ ad ~ UlC'ud dd U'eU ~ ;tt~~ wae a d uWu/ 

~ /ff~ ~,j~ J a?n ~II:; ~ !??d~~ ~~~ .fnoUUr~ g~ 
~~~~?~d~.fr 
.f~~ ~ ~~ V~~? ~~ d ~~~ ,j:nwod 

ad.f ~ ~ ~ Y¥ ~~na, ~~ ~~ .@'~, 
§>'~te ~?~~m~~,~~~~ 
ed y;(§J~, @~te V~~, ~~ ~+ ~~ ~ ~n 
~/ t?n JP rJ.1v~ ~ ~~, ~n~ ~ J and ~ Jt. 
.%J~4 
.f a?n ~/ w d J.f~ tfdat:Y .1~.Yf ~U'au; ~u1~na lZg;, 
~;( ~~fo' ~; ..%'~~ ad %neCa ~ rJ~ F4 

ad ~ 4 ~vdd.' .f ~ gtatl'~~ta? ~ d ~dJ, ad 
~~, ~."t;~ and 5~ r ~~ d .f ~/t,f ~ ~?n~~~ 
~~.Yf r. ~ f~, %~ anc/ ~~£? r ?nany 

nzan kM ~ co~ .f ~ wak-? //:d §A. 8#~ ~ ~ 
U4CU~ nu~?n ~ cuJdJ ,jeka4bw wd ~nyw~. ~ ~ ~ ~ 
~ ~~ ,jh/m ?na~ ~ ~t'~ ~~ j~d~ 

zu#~ d:.~J~Jt. f~'f~r ~t" 
§f~te ~~ ~~, Jt. Jt~ %~r ~~M 
anr-/ Jt. ~~ ~..fot, ~ cate r;/ ac&t?~n • .f ~ ~ 

IV 



~ .1~~ ~ eu~eW ~ ~ .1U4~ nze en JJJZ/ J ad::. t'~n£' 
~~;~, §f~ ~ Y~.nuu ~tht&)r ~ ~ ~n 
~~ ~~?n ~n.1 ~ .1~~ wk ~ y~ ~ ~n~ti 
Y~ne W~r~~. 

Jf wao a ~«-u ~ ~ ~ ~ §?A g~~~, ~ 
~~nu~~n.1~~~en~ ~ g~~~.#a 
pr4 ~.ah ~~ ~ o/f ?7M ~ ~ ant:/ aaI?7U~, §t §1ran~.t 
~~ ~ ~ ~ a ~ nuatd-U ~~,?~ ant:/ ~/n~~ 
en ~ ~t& w~~ J wat'-d/' & ~ ~~. ~ ~ ~t&. ~ o£jeu4Ju>:1W 

J ~ wd ~ ~ ~ ~ ~«~ ant:/ yaa ~ud ~~ at' d tf~~t 
.1ud ~ ~ "~ m ~ !ffi. ~~. J tZ?n ~ r ?nan? 

~~ ~~, ufaJ~ aff 
y~ ~t' kn~?n JZ/ r. ~?n~ ~ «~ and ~tAan UJaj c~ 
~ ~ ~ .~t& en CDnyW£eM, ~ ~ .1t? ?n«-e~ ~ Utae ~'UCI'~.j. 

Y~ ~ 9f. ~~ ~ F«4 CD~nU>ntJ~ t:d ~ .1hU ~ m:? .1~y m 

JJJZ/ 4 Utae ~ dar~ r;,/' .1U.j~. ~;.f J dwaJ¢ ~ a ~~. ~ 
~~4 ~ adc~ ~ and ?W~. J~ ~~ ~n/ ~ ~ 
?«,z ~ m ~ c~ ~ ~ ~ .§&,H«~ r ~(/7;? nu ~ t'~ 
~~~~ ~ntJ4n awtd?7VJ;~ ~4 th f?jf@JJZ/ 
y~ ~~ o£jeu.:J.1U>ntJ J ~ wd.§l. YtU/~ ~ ant:/ ~k 
~~ ~ ~ £:J ~ ~ nu ~ &~ mth ~ ~«4J d:et' ~ c~ 

fofo~ a:J a w~d: t:tfan~ ~ ~~. J tZ?n ?~~/ to ~ ~. ~ 
CD~~ r;,/'.9: ~~.tUr, wk zud and ~~ /nt?wd9~ em· a7';Y/~n,? t· ~ 
~ ~~ Utae ~ ~ arQ.j~ th ~ d:; vo4CnaJ.1 and ~~ 

J ~~ d;; ~fouU~? ~ ~ ant:/ ~~ 7n? ~h.ah to ?n~ 
/~ y~ .9;/~, ~~ ~£ JZ/ §J.~, ~van 
~~~, @J~?n ~ ~ §R ?ud'~, ~ ~~, ~ 
~kuk, g 4; ~, g~. ant:/ ~ r c~ v~ 
~ ~ ~.1~~, ~-t' ~ ~ ee wat'§ ~ve kz- dua.~. J 
~ ~~ f~!?~~ ~ 1 YanzL g y~, ~~~ 

v 



~, §r .9~;( T Y. ~, ~~£nu' and ~~ 
!§#aMd r ~ J£~ QW~ ~ ,j~ ~~ J ~ Y ~?Z/ 
.@;. ~ ~k~r ~ ~ ~ cdJ~ebmJ, ~ ~ and 

~~~. 
J Q/.In ~4 a. ke fou/ IZ ~ ~ m d: j2W~ ~ r. X£'na 

%47UU, ~? ~4 ~ en ~ ~ ~ r.«dd 7'7U uf'tar~ t7-n nu~U?U4 
~«,aI. ~~ hah~ ~ J~ ~ ~ an ~ ~~I:­
udand~?~~,j~r ~e?~ h ~.!Y~~ Y. 
.9~: §4. YUItUD and ~ !§#~'r ~ ~ we ~,j~ 
~ awM(!; Wt7-wf and" ~ ~ ra ~ ~~ 

J ~ §a. Wauen 9'~ ~ ~ X;( 9'~ eY/ vrt 
9'~ ~ ~~ ~, !?~ 3t~n ~ ~~n ~nn., @J;. 
Yaudg~~~.L!?w/~J&uU-?W~~iA~1r~, .§I~ 
§a«~ and" g~ ~ ~ !?a«/?~ 2Yneit, .§I~ s:;~~. 
~ ~ ~v, ~. ~ ~ ~ ~ 9'w/ ~~veC,( ~ §4d"'~ 
...h~,u. gw/ !!JJ §~ ~ ~nW ~ ¥54 d ~~ and" .§Iv;/. 
g ~ or ?~t4 ~&~u/ 2Ynn. r d: ~ a£r~ ~ «Ja~ ~~~ 
'Wt?tA: 

~ ~t Y r anduek ~ Jw#'~~t- Jw#'~ tn nz~ 
nu?u/ JM«4 'Wt?ta1 ~ ~ ~~ ~ can and d:? d:d ~ ~ ." J ~ eua/ 

&C ~ IZ ~ tf/a J ke ~ ,j~ dd ak:; ?W?.1¥ 7n(!; ~7n ay? t7-nce 

QWU- --??Zt7-? r ~ ,jt:J-~ ~ ~ ~ 7n(!;, QW~, en t'e~ ~ t:ku,foui. 

J 'Wt?V-d/ ?W? ~V(!; C(;)7n(!; ar£ ~7n ~ ~ ~~ a6jt'4. .Ykr ~ ~ ~~~ 
?~ and;JtJ~ .9~ and ~ ~ ~ ~ ke aky.o ~n a ca«~ a. 
~,f /~ te. hQW~ ~ zud ~fo J ~ve ~ ~ J Q/.In ,ftw«d and 

d:c4 h ~ ~ aQW~~. 

VI 



Contents 

List of Figures 

List of Tables 

1 Introduction 

1.1 An Overview 

1.2 Historical Background on Atomic EDM 

1.3 Discrete Symmetries . . . . . . . . . . . 

1.3.1 Parity or Space Inversion Symmetry 

1.3.2 Time Reversal or Motion Reversal Symmetry. 

1.4 Outline of the Chapters . . 

1.5 Notations and Units Used 

. 
Xl 

xu 

1 

1 

3 

5 

.5 

6 
~ 

{ 

10 

2 Intrinsic Electric Dipole Moment in Atomic Systems 14 

2.1 Possible Sources for Electric Dipole Moment in an Atom ......... , 14 

2.2 Atomic EDM due to Electron-Nucleus 

TPT-Interaction ............ . 

2.2.1 Effective Hamiltonian for the Electron-Nucleus 

TPT -Interaction. . . . . . . . . . . . . . . . . 

. . . . . . . . . . .. 16 

16 

2.2.2 Matrix Element of Electron-Nucleus TPT-Interaction Hamiltonian 17 

2.2.3 The Atomic EDM as an Expectation Value of Dipole Operator 19 

2.3 The Schiff Moment . . . . . . . . . . . . . . . . . 

2.3.1 The Effective Schiff Moment Hamiltonian 

Vll 

20 

20 



2.3.2 The Schiff Moment Matrix Element 

2.3.3 Computation of Schiff Moment. 

2.4 Experiments to Measure Atomic EDM 

2.4.1 General Principle . . 

2.4.2 Experimental Setup . 

2.5 Laser Cooling of Atoms. 

2.6 Laser Trapping of Atoms 

2.6.1 Magneto-Optical Traps(MOT) 

2.6.2 Laser Traps .. 

2.6.3 Magnetic Traps 

22 

23 

25 

26 

28 

29 

30 

31 

32 

2.7 The Yb Experimental Setup Using Laser Cooling and Trapping Techniques 33 

3 Configuration Interaction and Many-Body Perturbation Theory Based 

Atomic Many-Body Theories 

3.1 Description of the Atomic States. 

3.2 CI Method Based Computations. 

3.2.1 Computation of EDM with cr Wave-Functions. 

3.2.2 Computation of EDM Using Perturbed CI Method. 

3.3 The Computation of EDM using MBPT 

3.4 Computation of the wave-operator ... 

39 

39 

40 

40 

41 

43 

46 

3.4.1 Wave-Operator Computed in terms of order of Perturbation 46 

3.4.2 Wave-Operator Computed in terms of Order of Iteration . . 48 

3.5 Computation of EIPNC -the parity non-conserving transition amplitude-

using MBPT formalism ................... . 

3.6 Size-Inconsistency with the Bloch Equation Based MBPT . 

3.6.1 Factorization Theorem is not Valid 

3.6.2 Incomplete Configuration Space . . 

3.7 Size Consistent Theory in Closed-Shell Systems 

3.7.1 Size Consistency with Linked Diagram Theorem 

3.7.2 Size Consistency with Connected Diagrams ... 

Vlll 

49 

52 

53 

54 

56 

56 

60 



4 Computation of Electric Dipole Moment with Different Many-Body Meth-

ods and Comparison 

4.1 The Orbitals and the Configurations. 

4.1.1 Bound and Continuum Orbitals 

4.1.2 The Configuration Space Considered 

4.2 The Matrix elements in EN-Partitioning 

4.2.1 The Residual Coulomb Interaction. 

4.2.2 The PT-Violating and Dipole Interaction Terms 

4.3 The Lowest Order EDM . . . . . . . . . . . . . 

4.4 The CI and Bloch Equation Based Formulations 

4.4.1 Comparison of the Different Methods 

4.4.2 Bloch Equation Based MBPT .... 

4.4.2.1 Computation of Oes and Eo 

4.4.2.2 Computation of Oes,edm and Da 
4.5 The Size-Consistent Formulations . . . . . . . . 

4.5.1 Size Consistency with the Linked Diagram Theorem. 

4.5.2 Cluster Based Formulation 

64 

64 

64 

68 

72 

75 

77 

80 

80 

85 

85 

88 

94 

94 

96 

4.5.2.1 The Singly Excited Amplitude Cluster Equation. 97 

4.5.2.2 The Doubly Excited Cluster Amplitude Equation 99 

4.5.2.3 Selection of EPV Terms and Connected Terms. . 102 

4.5.2.4 The computation of the cluster amplitudes TpTV (1) and 

TpTV (2) 

4.5.2.5 Results 

4.6 Schiff Moment in Atomic Vb . 

5 Parity-Nonconservation in Atomic Yb 

5.1 Introduction . . . . . . . . . . . . . . 

5.2 Effective Hamiltonian for the Atomic 

Parity-Nonconservation ....... . 

5.2.1 Nuclear Spin-Dependent Effective Hamiltonian. 

IX 

104 

105 

109 

113 

. 113 

114 

114 



5.2.2 Nuclear Spin-Independent Effective Hamiltonian 

5.3 Method of Computation ...... . 

5.4 The Shielded Two-Electron Potential 

5.5 Results................. 

5.5.1 The NSD-Parity-Nonconservation 

5.5.2 The NSI-Parity-Nonconservation . 

6 Conclusion and future Directions 

6.1 Conclusion ..... 

6.2 Future Directions. 

Appendix: A 

Appendix:B 

x 

116 

11'i 

120 

122 

122 

12'i 

129 

129 

131 

132 

133 



List of Figures 

2.1 Proposed experimental setup. A fast atomic beam from a hot oven will 

be slowed down by the Zeeman-tuning method, and then the atoms will 

be magneto-optically trapped. The atoms are launched to the EDM meas­

urement region by changing the detunings of the trapping laser beams. A 

high power laser beam will trap the atoms by far-blue-detuned dipole force. 

After polarizing the spin by optical pumping, a probe laser will monitor the 

Larmor precession frequency. . . . . . . . . . . . . . . . . . . . . . . . . .. 35 

3.1 Diagrams for the wave-operators (a)nes(1) and (b) nes(2). 56 

3.2 The diagrams for the residual Coulomb interaction Hes. 57 

3.3 The diagrammatic representations of the term {<P~bIHesl<P~;)x~; 58 

4.1 Histogram of lEI for the even parity CSFs. . . . . . . . 70 

4.2 Histogram of IH(ij)1 for the even and odd parity CSFs. 74 

4.3 The contribution from the continuum orbitals. 79 

4.4 The convergence of the wave-operators .... 82 

4.5 The change in energy due to many-body effects introduced by the configur-

ations. . ................ . 

4.6 The convergence of the wave-operators 

4.7 The value of Do. ........... . 

88 

89 

94 

4.8 Diagrams that contributes to the single-excitation cluster amplitude. 97 

4.9 The diagrams for the terms in doubly-excited cluster operator equation. 100 

4.10 The difference in the value of Do. computed with the Bloch-equation method 

and the one computed with the EPO terms included in nes,edm 108 

Xl 



List of Tables 

4.3 The number of the CSFs with different occupied configurations. ...... 69 

4.4 Energy of the CSF 16s-rP) where'ljJ is a continuum orbital and tk is its energy. 71 

4.5 Matrix element of HpTV wrt np* and 7 s orbital ........ . 

4.6 Lowest order contribution to EDM at the single particle level. 

4.7 Lowest order contribution to EDM from continuum orbitals. 

4.8 Comparison of results from different methods. . ...... . 

76 

78 

80 

81 

4.10 The energy of the ground state ASF with increasing CSF-space size. 86 

4.11 Values of Da for different number of even and odd parity configurations. . 92 

4.12 Values of Da for different number of even and odd parity configurations. . 93 

4.13 Value of Da computed using the CEPA-O formalism. . . . . . . . . . . .. 96 

4.14 Values of Da computed with the EPO components included in the cluster 

amplitudes 7 ............................ . 

4.17 Single particle lowest order Schiff moment induced atomic EDM. 

5.1 Values of the energy levels without shielding parameters. The energies are 

107 

111 

given in units of em-I. . . . . . . . . . . . . . . . . . . . . . . . . . . 123 

5.2 Values of the energy levels with shielding parameters. The energies are 

. . 't f -1 gl ven III um s 0 em . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3 Results for different isotopes with different hyperfine states. T1 NSD and 

EI NSD are in units of eaoJ-lw' x 10-11 • 

XlI 

124 

126 



Introduction 

1.1 An Overview 

The forms of symmetries exhibited by physical systems can be classified as continuous and 

discrete. With each symmetry there is an associated transformation and these obey charac­

teristic group structures. The continuous symmetries are associated with transformations 

which has the concept of infinitesimal transformation and a finite transformation can be 

achieved by applying a sequence of infinitesimal transformations. Whereas in discrete 

symmetries, there is no concept of infinitesimal transformations, instead the transforma­

tion takes the physical system from one state to another. The state of the system before 

and after the transformation can be same or different. If the system remains the same after 

the transformation then it is invariant under the particular symmetry, if the state is differ­

ent after the transformation then the symmetry is said to be violated by the system[3}. In 

classical physics the discrete symmetries figure less prominently than they do in quantum 

physics [2]. 

The three important discrete symmetries of interest in physical studies are charge 

conjugation(C), space-inversion/parity (P) and time-reversal(T). According to the CPT 

theorem[3} all physical systems described in local field theories are invariant under the 

combined CPT transformation. A physical system/process can violate each of these sym­

metries individually such that it is compensated by another of the symmetry but when 

combined the CPT-theorem is still valid. It has been now established that the weak inter­

action violates parity but to date no concrete evidence of T violation has been observed 

1 



1.1:An Overview 2 

apart from the decay of kaons. Symmetry violations can be observed in laboratory by 

looking for their signatures in physical systems. For a single particle or a composite system 

the intrinsic Electric Dipole Moment(EDM) in a non-degenerate state is the signature of 

P and T violation. The significance of observing such an EDM is that it could lead to a 

better understanding of the origin of T or CP violation. 

Neutral Atomic systems are good candidates to search for EDM as it is a composite sys­

tem of leptons and hadrons. The collective many-body effects can enhance the EDM arising 

from interaction in a certain sector or due to intrinsic EDM of the constituent particles 

either constructively or destructively. The effect of a particular interaction (property ) can 

be studied by an appropriate choice of atomic system. The enhancement factor is pro­

portional to the atomic number Z and hence heavier atoms are preferred. Once an atom 

is chosen based on the physical effect of interest, the intrinsic EDM can be measured by 

subjecting the atom to a constant external electric field E. The interaction Hamiltonian 

between E and Da is -Da ·E. Experimentally Da is measured as the linear response to 

a constant external electric field. Though all the theoretical descriptions are applicable to 

both atomic systems as well as ionic systems, ions cannot be used in experiments as the 

external field gives rise to a net force acting on it. From now on only atomic systems will 

be considered. 

The atomic Hamiltonian is the sum of kinetic energy part of the electrons, electron­

nucleus coulomb interaction, .electron-electron coulomb interaction and the PT-violating 

interaction Hamiltonian HpTV ' The presence of HpTV implies that the eigen states of 

the atomic Hamiltonian are no more eigen-states of parity operator P. The theoretical 

computation is done by treating HpTV as the perturbation which mixes opposite parity 

eigen states of the unperturbed Hamiltonian Hatom , which has the kinetic energy of the 

electrons, electron-electron coulomb interaction and electron-nucleus coulomb interaction. 

This gives a mixed parity ground state of the atom, from which the intrinsic atomic EDM 

Da is computed as linear response to the external field. 
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1.2 Historical Background on Atomic EDM 

The history of atomic EDM spans not too long in time but the events and their implications 

are fascinating. It has held great minds together and has had its moments of triumph and 

share of critics as well, which in natural science tends to push the subject more into 

introspection. Having survived many such moments of introspection the quest for atomic 

EDM now stands exposed to deeper introspection: the experimental confirmation of a 

finite atomic EDM. 

The articles by Prof. P. G. H. Sandars and Prof. Norman F. Ramsey [4, 5] are the 

basic references that have been used in writing this section, more emphasis is given to 

experiments than theory as they have been the driving force of this subject. "If one is about 

to be attacked he should counter attack" therein lies the genesis to the whole history of 

atomic EDM[5]. And Ramsey did indeed attack the issue of experimental evidence for 

non-existence of nuclear electric dipole moment, based on the assumption that partiy is 

conserved, which he thought would be a possible subject of query from Prof. Ed Purcell. 

This was in 1950, Ramsey was then teaching a course on molecular beams in Harvard 

which was attended by Prof. Ed Purcell. Later, they proposed an experiment to measure 

the neutron EDM[6]. This was the precursor to several events that unfolded and ultimately 

lead to the search for an atomic EDM. 

Finding no satisfactory experiments to look for parity nonconservation Ramsey and 

Purcell started one to measure neutron EDM with their graduate student Jim Smith[7]. 

The use of atoms was considered and discarded as external, :ectric field would be shielded 

by the electrons. This set the path to the Schiff cancellation/theorem[8], that appeared 

in 1963. There were moments of amusement and bets[9], the time Feynman had bet 

with Ramsey on the futility of an experiment on parity-nonconservation. This elucidate 

the sacrosanct attitude towards parity conservation that prevailed among the theorists. 

Further impetus was given when the ongoing tau-theta paradox was attributed to parity­

nonconservation in weak interaction by Lee and Yang [10]. Parity-nonconservation in 

weak interaction was experimentally confirmed by C. S. Wu and her collaborators[ll] in 

1957. 

The year 1957 was the year of parity-nonconservation. The investigation on using 
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atoms was set into motion by Salpeter[12], with his work on the atomic effects of an 

electronic electric dipole moment. In another development in 1959, Zel'dovich[13] put 

forward the idea of neutral current interaction between the electrons and nucleus in an 

atom, which could introduce optical rotation if the predictions of neutral currents were 

true. This was the first proposal to detect discrete symmetry violations in atomic systems, 

though Wu had used cobalt atoms, it was the radioactive decay of the nucleus that was 

used as the signature and not the atomic properties. 

Though the search for parity-nonconservation was vindicated, the search for the neut­

ron EDM was yet to face another onslaught from theorists. It was shown by Landau[14] 

that nonzero neutron EDM require time-reversal violation too. Ramsey continued his ex­

periments but this time with a different goal; to look for "time-reversal violation". The 

time-reversal violation was indirectly observed in neutral-kaon decay experiment by Cronin 

and co-workers[15] in 1964. 

Serious efforts to measure atomic EDM which arises due to the electronic EDM were 

impeded by the demon of Schiff cancellation. A new route was set forth with the path 

breaking work of Sandars[16], where he investigated the relativistic aspect of Schiff cancel­

lation and derived the atomic EDM that arises due to the electron EDM. This set a stage 

for many atomic EDM experiments that were to be conducted. As established by Schiff[S] 

an atom can still have EDM due to finite nucleus effects too. The first atomic EDM was 

carried at Brandeis[17] using atomic caesium in 1964. Atomic caesium is a system which 

is sensitive to electronic EDM and not to those that originate from the nuclear sector. The 

next important proposal in atomic EDM was the use of polar molecules by Sandars[lS]' 

this set the into motion the use of molecules. 

Other important milestones in the atomic EDM experiments are: the experiment with 

molecules[19]' the cell experiments by Fortson[20, 21], use of optical pumping instead of 

an external magnetic field[22] and more advanced and complicated beam experiments[23]. 

With these experiments the atomic EDM is now firm on its pedestal. The techniques and 

methods associated with these are described in brief along the thesis. 
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1.3 Discrete Symmetries 

In quantum mechanics the Hamiltonian is the starting point of any computation. The 

Hamiltonian H is invariant under a transformation 8 if 

that is it commutes with the transformation operator. Otherwise H is not invariant under 

8. Other terminologies used for this are symmetry violation and odd under the particular 

symmetry. But in case of P it is referred to as P-nonconservation also. 

Though the CPT theorem has three discrete symmetries as components, only P and 

T are the subject of this study. A brief discussion of these symmetries are given in the 

following sections. 

1.3.1 Parity or Space Inversion Symmetry 

The parity transformation is the change in sign of all the spatial-coordinate axes. It is a 

unitary transformation and has eigen-value ±1. If P is the parity transformation operator 

and 8(x, y, z) a function, its parity transformation is 

PB(x, y, z) = 8( -x, -y, -z). (1.1 ) 

Similarly, let 8 be an operator and 0' be its parity transformed expression then they are 

related as 

0' = POp- 1 = popt 

The reflection symmetry also flips the sign of the coordinate but in three dimensions it is 

quite different from parity. The parity transformation is a composite symmetry in three 

dimension, it involves one reflection and one rotation each. But a sequence of rotations 

nor a sequence of reflections cannot constitute parity transformation. More precisely, in 

cartesian coordinate system in three dimension parity transformation is reflection about 

one coordinate and rotation about this axis by 1800 , the sequence of the reflection and 

rotation commutes. The expressions can be derived for other coordinate systems too. 
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Consider the electric dipole operator i5, it is odd under parity transformation as it is 

a vector operator 

j3 Dj3-1 = _D. 

From which it follows that dipole expectation for a system is nonzero only when the 

Hamiltonian of the system is odd under parity transformation. That is, if H is the Hamilto­

nian of the system, then CD) is nonzero for the system only when 
J' 

Hence (i5) is a signature of parity violation in the system. 

1.3.2 Time Reversal or Motion Reversal Symmetry 

Time-reversal or motion reversal symmetry transformation is reversing the sign of time 

coordinate. The time-reversal transformation operator is antiunitary[24] and unlike in 

parity transformation its eigenvalues are dependent on the system considered[2, 25]. In 

operator form it is a combination of a complex conjugation operator and unitary part 

which reverses the sign of time coordinate. It is represented by '0 and given by 

O=UK, 

K is complex conjugation operator and if is a unitary operator which reverses the sign of 

time coordinate. Then the transformation of a function or an operator given in the parity 

symmetry can be extended to time-reversal too. 

The dipole operator transforms under time-reversal as 

ODjj-l = D, 

that is D is invariant under time-reversal. For an atom in the hyperfine state IF M), the 

expectation value of dipole operator is 

(0) = (FMIDIFM). 

According to the projection theorem the expectation value of a vector operator with respect 

to angular momentum eigenstates is proportional to the angular momentum of the system. 
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Using this the expectation value of dipole operator for an atom in the state IF M) is 

( 1.2) 

where c is the constant of proportionality. Applying time-reversal transformation, the 

above relation takes the form 

Using the relations lif'O-l = -f' and liIFM) = (_l)(F-M)IF -M), we get 

( 1.3) 

Comparing (1.2) and (1.3), the time-reversal symmetry is not violated if (D) = 0 and if 

(D) =J. 0 then the time-reversal symmetry is violated. Hence EDM is a signature of time­

reversal symmetry violation. The difference from parity-nonconservation is that, in time­

reversal it is the form of the expectation-which in experiments translates to measurement 

of dynamic variables-that manifests the time-reversal violation. Whereas intrinsic atomic 

EDM is a signature of parity-nonconservation as it doesn't commute with the parity 

operator. 

1.4 Outline of the Chapters 

All the chapters in the thesis has a common thread-atomic EDM-linking them from the 

last line of one to the first line of the next. Yet, exceptions there must be as is the 

rule, as an exception to the thread but overwhelmingly within the scope of the thesis 

is the penultimate chapter. If the other chapters are on the atomic EDM then the last 

chapter makes a contact with the Parity-nonconservation in atoms through the many­

body physics route. An attempt has been made to make the chapters compact, closely 

related and continuous, if otherwise, the vital thread-link must have flared and broke along 

the journey. 

There are four chapters excluding the present one, each of them has been divided based 

on its role with respect to the intrinsic EDM of atoms. The second chapter "Intrinsic 

Electric Dipole Moment in Atoms" gives an account of the mechanism that can contribute 
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to the origin of EDM in atoms. A more detailed presentation is given for the mechanisms 

chosen for the present study, namely the electron-nucleus tensor-pseudotensor interaction 

and Schiff moment. For each of these, the form of the effective Hamiltonian and expression 

of the matrix elements required are derived. Along with it the approach for computation 

of the atomic EDM is also elucidated. Since no physical theory is complete without 

experimental verification, in the last part of the chapter a brief sketch of the sophisticated 

experiments for measuring atomic EDM is attempted. Due liberty has been taken to give 

more importance to the basic principles of the experiments than the fine details which is 

really the heart of any experiment. The last section of the chapter is the experimental 

proposal to use the modern techniques of laser cooling and trapping to measure the EDM 

of atomic Vb. To make a ground work for this proposal, the techniques and principles of 

laser cooling and trapping are explored in the preceding few sections. 

The third chapter "The configuration interaction and many-body perturbation theory 

Based Atomic-Body Theories" pertains to the atomic many-body theories and methods 

that used in the computation of atomic EDM. Starting from Configuration Interaction( CI) 

method a slow and step-by-step transition is made towards an almost-coupled-cluster form­

alism. In the process of transition different methods having features of the two are also 

studied. All the methods use the configuration state approach instead of the generally pre­

ferred single-particle approach. This approach has both advantages and disadvantages, 

these are described in the chapter. The first few sections are devoted to CI and improve­

ment on the performance using different formalism but with the same physical effects. It is 

followed by sections on many-body perturbation theory(MBPT) based on Bloch-equation 

and formalisms to compute atomic EDM, where equations required are derived and dis­

cussed. Later, an analysis on the size-consistency of these theories is done and remedies 

are considered. The size-consistent methods based on modifications to Bloch-equation 

are the subject of sections that follows. In these, the equations for coupled electron pair 

approximation(CEPA)-O and CEPA-2 for computing the atomic EDM are derived, both 

the formalisms are size-consistent theories. 

The fourth chapter "Computation of electric dipole moment with Different Many-Body 

Methods and Comparison" is on the application of the many-body theories considered 
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In Chapter3. But it is also a direct descendant of Chapter2 as the different effective 

Hamiltonians used in this chapter were the material for Chapter2. In essence this chapter 

is the computational implementation and study of the theories presented in Chapter2-

3 in specific atomic systems. The whole study is limited to atomic Vb. First part is 

on the configuration space used and its construction. Next the details of the different 

perturbations used in the study are scrutinized at length. With these information in hand 

a lowest order computation of the Yb EDM is attempted next. After gathering certain 

trends and behaviors of the perturbation Hamiltonians the many-body theories explored 

in Chapter:3 are put to test. First part of the test confirms the agreement of the results 

between different CI implementations and matrix based Bloch-equation method. This 

validates some of the issues on size-consistency that were brought out in Chapter:3. Along 

the way the wave-operators used in Bloch-equation are subjected to a fairly deep exposition 

and their computational implementations are also presented. Once through with CI and 

matrix-based Bloch-equation, the spot-light shifts to the size-consistent methods. Here the 

CEPA-O and CEPA-2 equations are torn apart term by term and the effect of a collection 

of terms brought to minute examination. 

The fifth chapter "Parity Non-Conservation in Atomic Yb" adds to variety and maybe 

a bit of nostalgia too. But the real aim is to explore the complexity of the structure 

computations in a rare Earth atom like Vb. In the process, unintentional and without 

malice, yet another atomic many-body structure computation method is pulled out from 

among the plethora of many-body theories in physics. Nostalgic, as the very quest of 

intrinsic EDM of single particle or a composite system of particles was set in motion 

to detect parity-nonconservation in physical systems. The first section of this chapter is 

on the spin-dependent parity-nonconservation effective Hamiltonian. The form of matrix 

elements required are almost identical to those used in the computation of atomic EDM. 

The only difference is that here the quantity of interest is not an expectation value as 

in EDM but a transition moment. A brief outline of the computational method used is 

given and is followed by an analysis on the modification. Where the modification is in 

the two-body potential and the tools of analysis are the topics covered in earlier chapters. 

The chapter is rounded of by the last section which has the results. A finishing touch is 
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given with the reference that follows giving the preceding works. 

The last chapter of the thesis is "Conclusion and Future Directions" which gives an 

analysis of the results from various chapters. And presents ways in which the present 

computation can be improved. It also gives the improvement required for the methods 

used in this computation to make it applicable to other systems of interest. 

1.5 Notations and Units Used 

This section will in few words put down the notations used in mathematical expressions, 

conventions followed and the like. Anything appearing here after that does not conform 

to these are mistakes. Not all the equations are labeled, only those referenced are labeled 

and the label has the chapter number and the sequence of equation separated by a dot. 

The figures and tables on the other hand are all labeled, if not, it is unintended. Vectors 

are represented by either Latin or Greek alphabet with an arrow stuck to the invisible 

apple on its head e.g. A. The usual bold-faced capitals are reserved for matrices, so A 

means a matrix and not a vector under any circumstances. The single particle orbitals are 

in general represented by 11/J), particular cases are represented by specifying the principle 

quantum number and symmetry like in 168). For orbitals other than s symmetry j = l - 8 

orbital is tagged by a suffix ,*, like in p*. A general configuration state function(CSF) is 

represented by liP) and a particular CSF by specifying the valence/core orbitals and their 

occupation number like 1682 ). An atomic state function(ASF) is represented by I'll). The 

definitions of these are given where they first appear. In all the equations and mathematical 

expressions parentheses are used liberally for clarity. A constant which itself is a product 

of physical constants is identified by a calligraphic capital letter e.g. A = -/2CTCYNGF. 

Calligraphic letters are also used to denote other constants like CI coefficients too. The 

dummy indices in tensors are superscripted with due respect and the dummy indices in 

matrix elements as subscripts but not with less respect. Other than these no conventions 

binds further in putting additional superscripts/subscripts, it is all a matter of real estate 

available from then on. 

Throughout the thesis 'with respect to' is abbreviated as wrt. Frequently used termin-
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ologies are also abbreviated after their first occurrence other than in the chapter heading. 

The diagrams given are more of a representation to understand the physical effects and 

the Goldstone rules are not applicable. This is because the energy denominator is different 

from the one required in Goldstone rules. 

In the entire thesis without any exception the unit of physical quantities are in atomic 

units[26]. Atomic unit is the system of units where the fundamental constants: Ii Planck's 

constant divided by 27T", c the velocity of light and e the charge of electron are set to 

unity. For the electromagnetic fields 47T"Eo = 1, where EO is the permittivity of vacuum. 

In this system of unit the length is measured in Bohr radius ao and energy in hartrees, 

where 1 ao = li 2 /m ee2 = 0.5291 77 x lO-lOm and 1 hartree = (m ec2a 2 )jeh = e2 jao = 
4.3597 50 joules,which is equal to 27.2113 96 eV. Another useful quantity is the fine 

structure constant a = e2 jmec. In atomic units the velocity of light c = a-I a.u., where 

one atomic unit of velocity is ac = 2.1876 91 x 106 mj s. In atomic units the unit of EDM 

IS eao. 
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Intrinsic Electric Dipole Moment in 

Atomic Systems 

2.1 Possible Sources for Electric Dipole Moment in an 

Atom 

An atom being a composite system there are many physical phenomena which can lead to 

an intrinsic atomic EDM. It can arise due to the following: 

• The sub-atomic particles have intrinsic EDM. That is either electrons or protons or 

neutrons have an intrinsic EDM . 

• The interaction between the sub-atomic particles violates P and T symmetries. The 

possible interactions are electron-electron, electron-nucleon and nucleon-nucleon. 

The first case is due to the intrinsic property of the sub-atomic particles. Among all, the 

most important one is the intrinsic EDM of the electron. An effective intrinsic atomic EDM 

hamiltonian can be obtained by considering the various interaction terms in the presence 

of an external electric field Heff . According to Schiff theorem a composite system of 
PTV 

charged particles each with an intrinsic EDM has no intrinsic atomic EDM as a whole 

when treated non-relativistically. This is due to the cancellation of terms that contribute 

to Heff . The cancellation is incomplete if the atomic system is treated relativistically. 
PTV 

The P and T violating interaction Hamiltonian due to intrinsic EDM of electrons for an 

14 
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atom with N electrons is 
N 

HpTV = -de I:,Bio\.Elnt , (2.1) 
i=l 

where de is the intrinsic EDM of the electrons, fJi and 5 i are the Dirac matrix and spin­

operator for the ith electron. E:nt is the electric field experienced by the ith electron due 

to the other electrons. The electron spin contributes to the Hamiltonian as it is the only 

vector quantity associated with the electron, hence it decides the direction of quantization 

and only the component of electron EDM oriented along this direction is observable. 

The summation over the electron spin in (2.1) implies major cancellations for closed-shell 

atoms. To study the atomic EDM due to the intrinsic EDM of the electrons open-shell 

atoms should be chosen so that this cancellation is incomplete. An effective Hamiltonian 

can be derived from this Hamiltonian as 

N 

H:~v = I: 2ide{3i/5iPf· 
i=l 

Where Pi and 15i are the linear momentum and Dirac matrix for the ith electron. Though 

the closed-shell atoms are not a good choice for studying the contribution from the electron 

EDM they are good for studying effects which has contributions from nucleus. In this thesis 

only the latter effects will be studied. 

In current-current interaction formalism one form of interaction that violates P and 

T simultaneously is the electron-nucleus tensor-pseudo-tensor interaction [1]. The electron­

electron tensor-pseudo-tensor(TPT) contribution is expected to be negligible as the electron­

electron interaction dominated by Coulomb repulsion. An important feature is that this 

form of interaction is not allowed in the Standard Model(SM) of particle physics. The 

effect of PT-violating nucleon-nucleon interaction can manifest as Schiff moment. Which 

further interact with the electrons to give a finite intrinsic atomic EDM. These are dis­

cussed further in the following sections. 



2.2.1:Effective Hamiltonian for the Electron-Nucleus TPT-Interaction 

2.2 Atomic EDM due to Electron-Nucleus 

TPT-Interaction 

2.2.1 Effective Hamiltonian for the Electron-Nucleus 

TPT -Interaction 

16 

From current algebra, the interaction Hamiltonian corresponding to the electron-nucleus 

TPT current-current interaction is 

H i CTG F (.1. J.tl/ .1. ) (.1. 5 J.tl/ .1. ) 
PTV = J2 'f-In(J' 'f'n 'f'e' (7 'f'e , 

where CT is the tensor-pseudo-tensor coupling constant, GF is the Fermi coupling constant, 

1/Jn and 1/Je are the nucleon and electron fields, ,5 is the Dirac matrix and (71-'1/ is a tensor 

got from the Dirac matrices as 

(J'I-'I/ = ~ ( ,J.t,l/ _ ,l/,i-l ). 

(7J.t1l is an anti symmetric tensor of rank two, when combined with the Dirac matrix ,5 
it has the properties of a pseudo-tensor. The constant phase factor i is included in the 

interaction Hamiltonian is to ensure that the matrix element of HpTV is real. In all the 

expressions used so far the Einstein-Wigner convention has been used, according to which 

summation is implied over the repeated indices. 

In the SM of particle physics the TPT current-current interaction is not allowed. Which 

means within SM the value of the coupling constant CT is zero. If in an atomic system a 

finite intrinsic EDM is observed and can be attributed to the tensor-pseudo-tensor current­

current interaction then it is a clear indication of nonzero CT. Which is a signature of 

physics beyond the SM. 

Using the definition of (7J.t1/ and treating the nuclear part non-relativistically HpTV can 

. be simplified to 

Hm = i2v'2( GTGF) (tf3a)PN(r) = i2v'2( GTGF) (5:.5 5:.5) PN(r), (2.2) 

where r is the nuclear spin, a. is the Dirac matrix and PN(r) is the nuclear density at 

r. The presence of the nuclear density implies that HpTV is effective within the nuclear 
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region alone. Among the orbitals only sand p* have non-zero amplitude in the nuclear 

region and orbital amplitudes of other symmetries is almost zero in the nuclear region. 

The PT-violating property of HpTV can be checked by applying the P and T transforma­

tions separately. The effective Hamiltonian HpTV is odd under parity transformation as a 
transforms like a vector and using Heisenberg equation of motion it can be shown that in 

relativistic formalism it represents the velocity. Similarly, since the T-reversal transform­

ation has a complex conjugation part it is also odd under T-reversal transformation. 

The motivation for studying this form of interaction in an atom is that there are non­

standard models in particle physics which allows this form of electron-nucleus interaction. 

An estimate of CT can be made when the theoretical computation is combined with the 

experimental results. Based on which constraints can be put on the validity of the possible 

non-standard particle physics models. Another important feature of this study is the close 

connection with the experiments, where each compliments the other. For study on the 

atomic EDM due to electron-nucleus TPT -interaction as mentioned earlier a closed-shell 

atom is the right choice. This avoids the contribution from the electron EDM, which 

dominates in the case of open-shell atoms. Here atomic Yb has been chosen as it is a 

closed-shell atom and has high Z. In addition, it has interesting many-body effects as it is 

a rare earth element. 

2.2.2 Matrix Element of Electron-Nucleus TPT-Interaction Hamilto-

nlan 

To compute the intrinsic ED M of an atom arising from the electron-nucleus TPT -interaction 

the sp* approximation will be used. In this approximation only the matrix elements 

between orbitals of sand p* symmetries are computed. This follows from the physical 

condition that only these orbitals are non-zero within the nuclear region. From now on 

atomic EDM will be used instead of referring explicitly as the intrinsic EDM of an atom. 

While computing the matrix elements the relativistic notation of the two component orbit­

als will be used. In this notation a orbital I¢) in central approximation identified by the 

principal quantum number n, angular momentum quantum numbers K. and m in spherical 
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polar coordinates is represented as 

(2.3) 

Where P(r) is the large-component, Q(r) is the small component, Xl<.m(O, 4» and X-l<.m(O, <;:» 

are the corresponding angular parts. The angular part Xl<.m in terms of spinors can be 

expressed as 

Xl<.m(O,¢) = L C(llj2jim - O",O")Y~_O"(O,¢)I¢O"), 
u=±t 

where j is the total angular momentum of the orbital, C(llj2ji m-O", 0") is Clebsch-Gordan 

co-efficient, Y~-O" is spherical harmonics and 1<p0") is spin part of the orbital. The spin part 

I¢q) can either be the spin-up state 10) or the spin-down state lfi). In this form of notation 

the orbital Ins) assumes the form 

The orbital Inp*) can also be expressed in a similar form. Then in sp*-approximation 

the required matrix element of HpTV is either (nslHpTv In'p*) or (n'p* IHpTv Ins). As an 

example consider the matrix element (nslHpTv In'p*). Using the definitions of the orbitals 

and the effective interaction Hamiltonian H pTV , this matrix element can be written as 

00 

(nslHpTV In'p*) = iv'2( CTGF) J J drdO (Pn-l(r)X~lm(O, ¢) - iQn-l(r)xtm(O, 4») x 
o n 

( 
0 aN.5) ( Pn/1(r) Xlm(O:¢) ) PN(r). 

aN·a 0 iQn/l(r) X-lm(O, ¢) 

Where dO denotes the integration over the angular coordinates. While computing the 

matrix element only the z-component is considered as it is the only observable component. 

After the angular integration the matrix element takes the form 

00 1 
(nsIHpTVln'p*) = -v'2( CTGFO"NZ) J dr(Pn- 1 (r)Qn/l(r) - 3Qn-l(r)Pn/l(r))PN(r). 

o 
(2.4) 

That is the angular integrations introduces constant multiplication factors. The angular 

factors were computed with the convention\coupling sequence) in J.J. Sakurai [2]. The 
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difference in the convention can introduce phase factors which can lead to s sign difference. 

A similar expression for other matrix elements can also be derived. Though the radial 

integration has limits from 0 to 00, it is required only within the nuclear region as PN( r) 

beyond it is zero. While computing the matrix elements it is important to get accurate 

radial part of the orbitals and the nuclear density. A fairly accurate model of the nuclear 

density which agrees quite well with the experimental results is the Fermi-nucleus. In this 

model the nuclear density is given by 

PN (r) = 1 Po ~' 
+exp a 

where Po is a constant, b is the half density radius as PN(r) = po/2 ans a is related to the 

skin thickness t as t / a = 41n 3. 

The radial component of the orbitals can be computed using suitable methods, this 

will be discussed in detail in the later chapters. 

2.2.3 The Atomic EDM as an Expectation Value of Dipole Op-

erator 

The electron-nucleus TPT-interaction Hamiltonian is introduced as a perturbation to the 

atomic Hamiltonian. At the single particle level let Ins) be the outer most occupied orbital 

in the ground state configuration. When the interaction Hamiltonian HpTV is introduced 

as a perturbation Ins) will have admixture from orbitals of other symmetries opposite 

is parity. As mentioned earlier the only the virtual orbitals n'p1' will contribute to the 

admixture. In case of atomic Yb which is a closed-shell atom with 68 as the outermost 

occupied shell n = 6 and as p* orbitals are occupied till n = 5 the virtual p* symmetry 

orbitals are (n' > ,5)p1'. 

The new orbitals are no longer parity eigen-states as they are of mixed parity. Rep­

resent the mixed parity orbital by 168), using perturbation theory this can be written 

as 

168) = 168) + 16s=") = 16s) + n~6In' p* ) (n' ::, 1~:::16S ) , 
where f6a and en'pi" are the orbital energies of 16s) and In'pi') respectively. This is the 

lowest order effect, other higher order effects from the residual coloumb interaction can 
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also contribute to it. Computation at the many-body level can be done in many ways 

depending on the many-body effects included, a few methods will be used and discussed 

in later chapters. 

The atomic EDM Do. is the expectation value of the dipole operator D - -r with 

respect to the mixed parity states [3] 

... _ (-1"'1-) - ~ < 6sIDln'p* ;( n'p* IHpTV 16s; 
Do. - 6s D 6s - 2 ~ . 

n'=6 t6s - €n1pi< 
(2.5) 

Where the multiplication factor 2 is to include the complex conjugate term which is 

identical to the normal term due to the following: first, the dipole operator is hermitian, di­

agonal and its matrix elements are real hence (nsIDln'p*) = (n'p*IDlns) and second, HPTV 

is anti-hermitian, from (2.4) its matrix elements are real and hence (nalHpTV tln'p*) = 

(nip * I HpTV Ins). Another method of computing which gives the same result is the method 

of linear response to an external electric field. This formulation is more appealing as it has 

direct bearing on experiments to detect the atomic EDM. When an external constant elec­

tric field E is applied the atomic EDM Do. interacts with it. The interaction Hamiltonian 

between the dipole moment of the atom and .it is -.it. J. 

2.3 The Schiff Moment 

2.3.1 The Effective Schiff Moment Hamiltonian 

In an atomic system even if the nucleus has a finite EDM, it cannot be detected by 

applying an external electric field as the screening due to the electrons will make the 

electric field inside the nucleus zero. The nuclear EDM can manifest itself in the atom 

through interactions with the electrons [4, 5, 6]. A finite EDM of the nucleus introduces 

an interaction term in the electron sector of the atom which leads to mixing of opposite 

parity states and can be observe by measuring the EDM of the atom. 

Let pq( r) and Pd( r) represent the normalized electric charge and dipole moment density 

of the nucleus. Though the charge distribution of the nucleus is solely decided by the pro­

tons at the nucleon level, the dipole distribution can have contributions from the neutrons 
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too. The electrons being point particles the electron-nucleus interaction can be written as 

where the ilN is the nuclear electric dipole moment. In this form of the nucleus-electron 

interaction we have neglected the interaction of the intrinsic electric dipole moment of the 

electrons with the nuclear electric field. This is valid if the atom under consideration is a 

closed-shell, where the net contribution from the electron EDM cancel out. For a many 

electron system these interaction terms can be written as 

" J d3 , [ pq (r) .... (') V' ( 1 ) 1 - 7 r lfi - r"1 + J.LNPd r' lfi - r"1 . 

Thus the atomic Hamiltonian is 

where 

'""" { f 3 ,pg(r') ,,1} Hatom = ~ ti - Z d r \ ..... _ ;:'1 + ~ - .. 
i r~ r i>irzJ 

The infinitesimal displacement operator Q with respect to the electrons can be written as 

The commutation of the displacement operator with the atomic Hamiltonian gives 

The atomic Hamiltonian can be written using the displacement operator as 

In the above expression if the charge distribution is the same as the dipole distribution 

then the third term does not contribute. The total Hamiltonian H can be written in terms 

of the finite displacement operator e{iQ) by subtracting the higher order terms as 

'Q 'Q 1 H = eZ He-I + - [Q, [Q, Hatom]] + .... 
2 
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Consider the interaction term linear in I-l N with further simplifications it assumes the form 

Hs = ~ J(I: 1) . 't7( 4"8(r;)) , 

where the vector coefficient S in the above expression is the Schiff moment which is purely 

a nuclear property and the remaining part are in the electron co-ordinate. For computing 

the atomic EDM within the electron sector the contribution from the nuclear sector can 

be treated as a parameter which can be estimated from the experimental results. The 

above expression is the effective Schiff moment interaction Hamiltonian in the electron 

co-ordinate. 

2.3.2 The Schiff Moment Matrix Element 

The delta function in the expression' for the effective Schiff moment Hamiltonian implies 

that the contribution from the electron sector will be non-zero if the electronic wave-

function is finite within the nucleus. With this condition only the sand p* orbitals need 

to be considered in the electronic matrix elements as these are the only orbitals which are 

finite within the nucleus. To get the general form of the matrix element consider the two 

orbitals nip!< and ns, the matrix element between these orbitals is 

(nlp* IHslns) = I(I~ 1) 1· J d3r1p*(n'pi')~(ns)'~(47rtS(r)). 
Let the direction of quantization be the z-axis, then only those dynamic variables along 

this axis are the observables. Taking the z-component alone in terms of spherical polar 

coordinate system 

8(i) = (:2) 8(r)8(¢)8(cosO) and :z = cosO :r - (rs~nO) :0 

Taking stretched orbitals ie the orbitals with m = 1/2. After the integration over spin 

component, the orbital component of the integrand in relativistic form is 

r~ [P~/l (r )Pn- 1 (r )Yl~( 0, ¢ )Yoo( 0, ¢) + Q~/l (r )Qn-l (r )Ya~( 0, ¢ )Y1o( 0, ¢)] 

In the above expression the radial parts are real and using the properties of the spherical 

harmonics can be simplified to the form 
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The whole of the integrand being independent of cP the integration over ¢> is quite trivial. 

After integration by parts and combining all the expressions, the form of the required 

integration over the electron coordinate is 

[(1 ~ 1) 1. J f drdfM(r)! (f(r, 8)) 

[(1 ~ 1) 1z J f drd( cos B) :2 o(r)o(cos 0) (cos B :r - (1' s~nf)) :0) fer, 0) 

The first term does not contribute to the integration as it is proportional to cos2 () and 

integration over cos 0 in presence of o( cos 0) makes it zero. The second term in the integ­

rand is independent of cos () and hence the integration over cos 0 gives unity and only the 

integration over the radial coordinate remains. 

(2.6) 

This is required expression for the matrix element of the effective Schiff moment operator 

with s ++ ]JI' approximation. 

2.3.3 Computation of Schiff Moment 

Consider the matrix element (2.6), the contribution from the electronic part alone is 

( .) '"') _.1 

Since B is evaluated at the origin, its evaluation requires the value of (PnI1(1')Qn-d r ) + 

Qnll Pn - 1 (1')) at the first few grid points near the origin. In the final expression no compon­

ents should be proportional to negative power in 1', if not the expression when evaluated 

at r = 0 will diverge. 

Using the orbital in the form given in (2.3), near the origin a power series expansion 

of the radial part can be done[7]. Similarly, the r dependent part in (2.6) can also be 

expressed in power series and the most general form of expansion is 

N 

(Pnll(r)Pn-1(1') + Qn1l(r)Qn-l(1')) = ~ai1'i. (2.8) 
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Where N is the order to which the power series is to be taken and ai is the coefficient 

of the ith order term in the expansion. Since the orbitals satisfy the boundary conditions 

I'¢') =0 at r =0, 00 the constant term that is i = 0 has been avoided in the expansion. The 

disadvantage of using this form of expansion is that if the terms with i < 3 contributes then 

the Schiff moment diverges as (2.8) has to be divided by r3 and evaluated at r = O. On 

the other hand if the power series starts from i = 3 then the coefficient of r3 is the required 

electronic component contribution to the atomic EDM arising from the Schiff moment. 

Given the values of (Pn/l(r)Pn-dr) + Qn/l(r)Qn-l(r)) at the first few grid points, the 

coefficients ai can be evaluated by using generalized least square fit algorithms. The power 

series expansion is appropriate only in the region close to the origin, beyond the first few 

grid points the exponential parts in the orbital starts to dominate and this no longer holds. 

As a check, the terms al rand a2r2 are also included in the least square fit, these terms can 

be neglected if the coefficients al and a2 are very small compared to a3. This was found 

true for the matrix element involving orbitals 68 and 6p* for atomic Vb. As in the case 

of electron-nucleus TPT -interaction, the outermost orbital 68 in Yb with the admixture 

introduced by H s can be written as 

The next step in the computation of the atomic EDM due to the Schiff moment is to 

compute the expectation value of the dipole operator. That is, the expression for the 

atomic EDM arising from the Schiff moment involving only the most important orbitals 

in atomic Yb is 

This expression is similar to (2.5) except for the replacement of HpTV by Hs. A major 

difference in the form of the atomic EDM induced due to HpTV and Hs is; the matrix 

element of Hs is evaluated within the nuclear region but for the first few points from the 

origin, whereas for HpTV all the points within the nuclear region are considered. 
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2.4 Experiments to Measure Atomic EDM 

Norman F. Ramsey's experiments on neutron EDM measurement was the first effort in 

measuring the intrinsic EDM of a system[8]. Though the initial quest of neutron EDM 

was as a signature of P-nonconservation it was later proved that it is also a signature 

of T-reversal violation(9]. This was followed by experiments in atomic systems. The 

first experiment in atomic system to measure EDM was on atomic caesium[lO]. Atomic 

caesium was chosen as it is sensitive to electron EDM due to its open-shell structure. 

Later, experiments were carried out with closed-shell atoms to probe the contribution 

from the nuclear sector to the atomic EDM. As the present study is limited to atomic 

EDM which involves the nucleus the description of the experiments will he limited to 

closed-shell atomic systems. 

2.4.1 General Principle 

Let Da and i1 be the intrinsic EDM and magnetic dipole moment of a closed-shell atom and 

I be the nuclear spin of the atom. Since j is the only the vector quantity associated with 

the atom it is also the direction of quantization. The EDM of the atom can be rewritten 

as Dar. In the presence of a constant external electric field E and a magnetic field B, the 

interaction Hamiltonian is 

Due to which the atom precess about the direction of the fields. The precession frequency 

Wo is different for different relative orientations of E and jj. In addition to the term 

linear in external electric field, there is Stark shift which has quadratic dependence on the 

external electric field. The quadratic Stark shift is a weak field effect. Whereas the shift 

due to the atomic EDM is independent of the electric field strength. The required measure 

of atomic EDM is the signal that is linearly dependent on the external electric field. 

Reversing the direction of E flips the sign of its contribution to the interaction Hamilto­

nian but the term due to 13 remains unaltered. The difference in the Larmor precession 

frequency when the alignment of E and B is switched from parallel to antiparallel is 

c5wo = 2Da E / Iii. Various ·other spurious signals in the experimental setup can also be 
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detected and accounted for by doing the experiment in various relative field alignments. 

Once the Larmor frequency shift is measured the atomic EDM can be extracted as 

Da = Ih5wo 
E 

Though Larmor frequency by origin refer to the frequency of precession of a particle with 

magnetic moment in a constant magnetic field, here it is used for the precession of a particle 

with electric dipole moment in a constant external electric field. The principle of the 

experiment is fairly straightforward but it is a deception. As the quantity of measurement 

Da is extremely small it is one among the most challenging physics experiments. Some 

of the experimental setups has the best precision and accuracy in the present day physics 

experiments. 

2.4.2 Experimental Setup 

The importance of these atomic experiments lies in its contribution to the understanding 

of the theory of particle physics and challenge lies in removing all the unwanted signals and 

extracting the true signal of atomic EDM plus the accuracy and precision required. The 

heart of the experimental setup is the atoms used for the measurement and the external 

electric and magnetic fields. Using the traditional techniques this can be done in two ways: 

first the atoms are confined within a cell sandwiched between electric field plates along 

one axis and magnetic field poles along another axis[ll] and second use a vertical beam of 

atoms and apply the, external fields along the path[12]. The accuracy of these techniques 

are limited by the motional magnetic field Bmot and other associated systematic errors; 

since the atoms are moving with a velocity v it experiences a magnetic field .amot = E x vi c, 

which can mimic the EDM signal. 

The atomic cell experiments are resonant flourescence experiments. It has two atomic 

cells sandwiching an electric field plate between them. Two more electric plates are fixed 

on the parallel faces to the first plate. This configuration of the electric plates make it 

easier to maintain the required voltages and the electric field in the two cells are opposite 

in sign. The cells are filled with a mixture of the atoms of interest and a buffer gas. The 

buffer gas prevents the atoms from sticking on the cell walls. The magnetic field poles are 
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then added. Though the atoms precess due to the combined effect of E and B, it can be 

considered as a collection of classical magnetic dipoles precessing with a Larmor frequency 

WL in an effective magnetic field. The precession frequency of the atoms is measured by 

shining a circularly polarized laser beam, where the polarization is modulated with a 

frequency w. Resonance occurs when w is equal to WL and the required signal is the 

transmitted intensity which is circularly polarized with the polarization modulated at the 

frequency 2w. 

The atomic beam experiments uses a vertical beam of atoms, vertical beams are used 

to avoid the curved trajectory due to Earths gravity. Once the atoms comes out from 

the atomic oven they pass through a state selection chamber. The state selection chamber 

maximizes the population of the atoms in a particular state and are then passed through 

an evacuated chamber where a constant electric field E and magnetic field B are applied. 

Within the E and jj chamber the atomic states gets remixed due to the interaction of 

the electromagnetic-magnetic fields with the atomic EDM. The degree of remixing is a 

function of the atomic EDM, so once this is measured the atomic EDM can be extracted. 

The degree of remixing is measured by shining a probe laser beam. To compensate for 

any effect due to velocity gradient of the atoms due to gravity, the experiment is done 

with two atomic beams; one downgoing atomic beam and another upgoing. This cancels 

the effect of velocity dependence. 

Both the experimental schemes has certain common drawbacks, they are as listed 

below: 

• In both the schemes the atoms of interest are spread across a large region. It is 

difficult to keep the electromagnetic-magnetic fields uniform when the region is large 

but it is essential for the experiment. When the electromagnetic-magnetic fields are 

not uniform there can be signals which are similar to the atomic EDM signal. 

• Both the experiments involve atoms having a velocity distribution, which cannot be 

neglected. This contributes to the velocity dependent motional magnetic field Bmot , 

which is an unwanted effect as it can mimic the atomic EDM signal. 

A part of the first problem can be avoided by polarizing the atoms using laser beams of 
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appropriate frequency[13] and do away with the need for external magnetic field. Whereas 

the electric field is still required, a solution to this problem is to confine the atoms to a 

small region in space. For the second problem the solution is to make the atoms static, 

which if done in a collection of atoms will cause condensation. As the atoms are required 

in a gas phase the required solution is to maintain the atoms in gas phase with minimum 

possible velocity distribution. As the velocity distribution is defined by the temperature 

of the atoms, this can be done by lowering the temperature of the atoms. 

Among the recent techniques developed in atomic physics the method of "laser cooling 

and trapping of atoms" when used can improve the accuracy of the experiments in terms 

of the contamination from the motional magnetic field and the spread of the atomic cloud. 

This will be topic of the following sections. 

2.5 Laser Cooling of Atoms 

The basic idea of laser cooling is to slow down atoms using radiation pressure due to 

incoherent resonance scattering [14, 15]. The resonant frequency of an atom in motion 

undergoes Doppler shift and when it encounters a photon of appropriate frequency, the 

photon is absorbed and imparts its momentum to the atom. There is a net loss of mo­

mentum along its original direction of motion when the atom re-emits the photon by 

spontaneous decay. This is because the photon emitted by spontaneous decay mechanism 

has no preferential direction where as it absorbs photons coming from a definite direction. 

Steps of resonant absorption followed by spontaneous emission is called one flourescence 

cycle. After one such cycle the velocity of the atom changes, if the source of the photons 

is monochromatic then they are no longer resonant with the atoms. Hence further slowing 

down of the atom by flourescence cycle stops. This can be overcome in the following ways: 

• Use a chirped laser, where the frequency of the photons emitted is not monochromatic 

but within a range and varies from the lower frequency to the higher over a suitable 

time period. The atoms then remain resonant till the highest component in the range 

and the diffusion heating due to spontaneous emission sets the limit on the cooling 

effect. 
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• If the atomic levels employed are appropriate vary the magnetic field within the 

cooling region such that as the atom slows down the resonant frequency reduces. 

This technique is called as Zeeman cooling. 

Both techniques have been successfully used in cooling atoms[16, 17]. The drawback of 

a single laser method is: the atoms are decelerated along one direction-the direction of 

the laser beam. The effect of spontaneous decay induces a diffusion heating perpendicular 

to the direction of the laser beam and puts a lower limit on the cooling effect achieved. 

But this can be avoided and atoms can be further cooled using counterpropagating red­

detuned laser beams along x, y and z axes. In this laser configuration an atom experiences 

a damping force independent of its direction of motion and only a static atom experiences 

no damping force. The diffusion heating due to recoil from spontaneous emission still 

exists but unlike in the unidirectional cooling, it is in equilibrium with the cooling force. 

The lower temperature limit to which the atoms can cooled is called the Doppler cooling 

limit. 

Let Wo and WL be the resonant frequency of the atom and the laser frequency. The 

optimum conditions are achieved when the life-time of the excited state r satisfies the 

condition (wo - wL) = 1/2r. The minimum temperature T the atoms can be cooled is 

Ii 
T= 2kB r' 

where kB is the Boltzmann constant. Using the appropriate quantities the Doppler cooling 

limit is 125 J,lK for caesium and 240J,lK for sodium. When experiments were carried out, 

it was found that atoms were at much lower temperatures than the Doppler cooling limit. 

This has been explained with other cooling mechanisms-polarization gradient cooling­

other than the Doppler cooling present in the setup. In these setups the atoms are slowed 

down due to dissipative force arising from incoherent resonant scattering and atoms are 

not confined by a potential. 

2.6 Laser Trapping of Atoms 

Trapping an atom is: confining it to a limited region by creating a potential such that 

to escape from it requires a certain amount of kinetic energy. This is relatively easy for 
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charged particles where an electric field configuration can confine it. But for electrically 

neutral systems like atoms it is not so straight forward as the force exerted on it bv an 

electromagnetic-magnetic field is very small. Other than the static electric field, the other 

forms of potentials that can be employed are the magnetic field and strong laser fields that 

can induce a dipole moment in the atom. Depending on the form of the field used there are 

different kinds of atom traps. The most important for the present study is the magneto­

optical trap(MOT), with which an experimental measurement of EDM of atomic Yb has 

been proposed. The trapping techniques are briefly described in the following sections to 

give a starting point for the Yb EDM experiment. Though MOT is the technique used, 

for completeness the other methods of atom traps are also described. 

2.6.1 Magneto-Optical Traps(MOT) 

This method can be applied to atoms which has a magnetic dipole moment, which arises 

from the nuclear spin 1. The magnetic dipole moment makes the atom sensitive to an 

external magnetic field. If i1 is the magnetic dipole moment of the atom and B the external 

magnetic field then the interaction Hamiltonian is 

where 9 is the Lande g-value, Ps is the Bohr magneton and Iz is the magnetic quantum 

number of the atom. The product of these three quantities give the magnetic dipole moment 

component along the direction of the external magnetic field. 

The depth of the potential created using magnetic fields is very shallow, for atoms 

with a magnetic dipole moment of 1 Bohr magnet on a magnetic field of 1 tesla can create 

potential with trap depth of lK. It was first applied successfully to ultracold neutrons [18]. 

As the trap depth is small the atoms are cooled before injecting them into the trap 

region. The trap region is a quadrupole magnetic field created by two coaxial coils. The 

magnetic field created by the coils has low field region at the center and increases radially 

away from the center. An atom with its magnetic dipole moment antiparallel to the 

magnetic field has minimum potential energy in the central region and increases as it is 

displaced to the outer regions of stronger field. Thus for the antiparallely aligned atoms 
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the magnetic field forms a potential well. For the anti parallel atoms it form a potential 

hill. But the depth of the potential well is too small to be effective in trapping a sizable 

number of atoms. This is about the magnetic part of the trapping field configuration. 

The optical field is created by counter-propagating red-detuned lasers crossing the 

center of the magnetic field. The gradient in the magnetic field with distance from the 

center creates a gradient in the zeeman level separations. This arrangement generates 

a dissipative force on an atom: as the atom moves away from the center at some point 

the zeeman level separation is resonant with the Doppler shifted laser photon. When this 

occurs there is a resonant absorption of the laser photon by the atom. Since the laser 

beams are red-detuned the resonance happens only with the laser propagating opposite to 

the atomic velocity. The net effect is that, under ideal conditions the motion of an atoms 

execute a damped harmonic oscillator till it settles down at the center of the field. 

2.6.2 Laser Traps 

In MOT the trapping potential was created by the magnetic field and the Zeeman splitting 

combined with the red-detuned laser beams provided a dissipative force. That is MOT has 

two components one is the trapping potential and the other mechanism which continually 

drive atoms to the bottom of the potential well. An atom trap with these components 

but purely with laser fields can be created. Where the force is created due to intensity 

gradient and radiative in origin. It is given by the relation 

Fdipole = X I \7 (I) I , 

where X is the atomic polarizability and I is the laser field intensity. The force arises from 

the in-phase interaction between the induced atomic dipole moment and the laser field. 

When an atom is subjected to a very intense laser field, it induces an oscillating electric 

dipole in the atom. This interacts with the laser field itself. If electric field of the laser field 

has a gradient due to intensity inhomogeneity, then it exerts a force on the atom. This 

force is called as dipole force. The nature of the dipole force is such that with red-detuned 

laser fields the atoms in ground state are driven towards the strong field region-high laser 

intensity region. With blue-detuned laser field, the atoms are driven towards low intensity 
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region. Thus with proper fine-tuning a suitable trap potential can be created. As in MOT 

the trap potential is still not substantial and other mechanisms can heat up the atoms. 

In practice the required intensity profile of the laser field is produced by strong focusing 

of a laser beam with gaussian profile. As in MOT to counteract the heating mechanisms~ 

counter propagating laser beams are used to cool the atoms. The disadvantage of the trap 

is the high laser intensity required which complicates the heating and cooling procedures 

and the small size of the trap area. The later can be a boon for collective systems like 

molecules, where a tightly focused laser beam can be used to manipulate them-optical 

tweezers. 

2.6.3 Magnetic Traps 

The simplest atomic trap with magnetic fields alone is the quadrupole magnetic field 

created with two co-axial coils. Though there is a region of low magnetic field no static 

magnetic field has minima. This can be remedied by introducing a time variation to 

the magnetic field such that the time-averaged potential assumes the form of a harmonic 

potential. The trap potential created is called as time-averaged orbiting potential(TOP). 

This has been successfully used by Wieman and co-workers to observe Bose-Einstein 

condensation for the first time using Rb vapour[19]. 

Another magnetic field configuration that can be used for neutral atom trapping is a 

combination of the dipole field created by a coil and quadrupole field created by four wires. 

This uses Earths gravitational force of attraction on the atom. The magnetic coil is placed 

with its plane parallel to the ground, such that the force on an atom from the magnetic 

field balances the gravitational pull on it. This creates a potential energy gradient along 

the vertical direction-along the axis of the coil, but has no horizontal confinement. 

The horizontal confinement is created by using four vertical wires which are arranged 

along the vertices of a rectangle. Each wire carry currents in a direction opposite to its 

neighbors. This creates a quadrupole field which has minimum field intensity at the central 

regIOn. 



.... 2.." 7_:_T_h:.;:e;..Y.;;..;;;b;..;;;E:.;.:x:.l;;p~e::.r.=im~e.=n;.::.:tal=-:S:;;:;e~t:;::;u:.tp~U;:.:s:::i:.:n:Qg_L:::.a~s::.:e~r;.;. . .:..:.,. ______________ ~_2~3 ~~ ... _, 

2.7 The Yb Experimental Setup Using Laser Cooling 

and Trapping Techniques 

The Doppler-cooling technique [20] combined with the method of polarization-gradient 

cooling[21] can cool atoms to sub-Doppler temperatures of around one micro-Kelvin. 

These cold atoms can be confined in space by a dipole-force trap with a far-off-resonant 

laser light[22]. Laser-manipulated atoms have many advantages for the search of per­

manent atomic EDMs. First, the motional magnetic field iJ x E is small, where v is 
the velocity of an atom and E is the static electric field applied for EDM measurement. 

Second, long observation of cold .atoms with virtually no perturbation can be realized 

by a blue-detuned-dipole-force trap. In fact, the measurement of hyperfine coherence 

time as long as 4 seconds has been performed for sodium atoms [22]. A blue-detuned 

trap is better for our purpose than a red-detuned one because the atoms are located in 

the region without the laser light in the former trap whereas in the latter trap atoms are 

always subject to a strong trap beam. In addition, since the atoms are well localized, 

the spatial inhomogeneities of the external electric and magnetic fields are small over the 

sample region. Third, the application of large electric field is possible in the high-vacuum 

chamber used in laser cooling experiment unlike in vapour cells. The imperfect revf'l'sal 

of the electric field and the current leakage, which are limiting systematics in the vapour 

cell EDM measurement[13]' can also be overcome in the laser trap configuration. 

Thus, the key to the atomic EDM search is to find an atom which can enjoy the 

advantages of the laser cooling technique as well as sensitivity enhancement. Groups at 

Stanford[22, 23] and Texas[24] have proposed EDM searches with laser cooled alkali atoms. 

The enhanced sensitivity to an intrinsic electron EDM makes atomic caesium important. 

The paramagnetism of the ground-state, however, causes serious problems of cold atom 

collisions [24], which limits the accuracy of an EDM experiment. Therefore, if one searches 

for an atomic EDM arising from hadron-related interactions, it would be appropriate to 

use closed-shell atoms. From an experimental viewpoint, the diamagnetism of the ground 

state of closed-shell atoms overcomes the difficulty due to cold collisions, and it also 

indicates that one can measure nuclear contribution without the disadvantage of having to 
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deal with a large electron magnetic moment. From theoretical point of view, apart from 

being sensitive to the Schiff moment and other T -violating hadron interactions, its large 

sensitivity to the tensor-pseudotensor(T-PT) electron-nucleon interaction as shown for a 

Yb atom by our calculation in this paper makes it a good choice for probing the atomic 

EDM from the lepton-hadron interaction sector. Atomic Yb is an excellent candidate 

for applying the laser cooling technique. The ground-state 1So(0 em-I) and the excited 

state IP1(25068.222 cm-1) can be considered as a closed two-state system, when the 

transition between them for cooling. There is, therefore, no need of an additional laser for 

re-pumping which is required in the case of alkali atoms. Also, high-power and narrow­

bandwidth 398.8nm light source for laser cooling, which tunes the 1 So _1 Pt transition, is 

obtained by resonant frequency-doubling of Ti:sapphire laser. A short radiative lifetime 

of 5.5ns[25] of 1 PI state would enable one to rapidly repeat the absorption-spontaneous 

emission cycle, which means that a large force can be exerted on Yb atoms. For example, 

the distance required for slowing a fast atomic beam from an oven of 700 K could be 

shorter than 20cm with cooling laser of saturated intensity. Thus, a large solid angle 

from the Yb oven is utilized, which permits the use of a large number of atoms for the 

experiment. We have recently succeeded in laser cooling and trapping of Yb atoms using 

this transition[26, 27]. This singlet transition would be also useful for optical pumping and 

dipole-foree-trapping. In addition, the intercombination transition ISO _3 PI (17992.007 

em-I) is complementary to the singlet transition in that the radiative lifetime of 3 PI state 

is as long as 827ns[25]. Although this transition cannot be used for slowing a fast atom, 

it may be useful for a second cooling because it makes the Doppler-cooling temperature 

as low as 4/1 K[28]. 

The procedure of the atomic EDM measurement with laser cooled Yb atoms will be as 

follows( see Fig. 1 ): First, a fast atomic beam from a hot oven will be slowed down by the 

Zeeman-tuning method. After this pre-cooling stage, the atoms will be trapped and cooled 

by the magneto-optical trap(MOT)[29]. A high density and large number of atoms would 

be loaded into the MOT within several seconds. Then the atomic beam and magnetic field 

for MOT will be turned off. At the same time the detunings of the trapping laser beams 

will be changed and it's intensity reduced to produce moving optical mollasses in the 
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Figure 2.1: Proposed experimental setup. A fast atomic beam from a hot oven will be 

slowed down by the Zeeman-tuning method, and then the atoms will be magneto-optically 

trapped. The atoms are launched to the EDM measurement region by changing the de­

tunings of the trapping laser beams. A high power laser beam will trap the atoms by 

far-blue-detuned dipole force. After polarizing the spin by optical pumping, a probe laser 

will monitor the Larmor precession frequency. 

micro Kelvin region by the polarization-gradient cooling method. When the atoms reach 

the EDM measurement region where a high static electric field is applied, a high power 

laser for a far-blue-detuned dipole force trap[30] will be turned 011. Optical pumping will 

be also performed to polarize the nuclear spin by the application of a circularly polarized 

resonant light pulse[31]. Finally an additional laser beam will probe the Larmor precession 

frequency. The loading and measurement procedure will be repeated many times to reduce 

the statistical uncertainty. 

OUf proposal [32] has other advantages. As pointed out earlier in this paper, the 

electron-spin-exchange collisions between cold Cs atoms cause shift and dephasing of Zee­

man sublevel resonance[24]. In the case of Yb atoms, however, the cold collisions have 

negligi ble effect because the Yb atom has no electron spin in the ground-state. Among 
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seven isotopes, 171Yb and 173Yb have nuclear spins I = 1/2 and I = 5/2, respectively. 

and so are useful for EDM search. The comparison of results of these two isotopes would 

be helpful in eliminating some systematic errors in the experiments. The existence of nuc­

lear quadrupole moment of 173Yb will not cause significant problems because of the good 

homogeneity of electric field over the small sample region and absence of wall collision in 

our experiment. 

We also propose the use of the, polarization technique to measure the EDM. In the 

conventional cell experiments [11 , 13], a particular component of spin polarization, Sz for 

example, is detected through absorption of a circularly-polarized probe light traversing 

in the z direction. Since the laser cooled atoms have quite narrow optical linewidth, the 

absorption signals would suffer large random variations due to the frequency-jitter of the 

probe laser. Also, the optical thickness of dense cold atoms is so high at resonance that 

the probe light is significantly attenuated and will not be so sensitive to the change of 

Sz. In the polarization technique, on the other hand, S~ is detected through paramagnetic 

Faraday effect[31] where rotation of polarization is induced by Sz for linearly polarized 

off-resonant light traversing in the z direction. At sufficiently large off-resonance, a probe 

light is not attenuated, and also the signals are less sensitive to the frequency-jitter. 
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Configuration Interaction and 

Many-Body Perturbation Theory Based 

Atomic Many-Body Theories 

3.1 Description of the Atomic States 

The Dirac-coulomb Hamiltonian of an atom is 

(~.1 ) 

Define UOF as the independent particle central field Dirac-Fock potential then the atomic 

Hamiltonian can be redefined as 

Hatom = L (ti + UOF) + "Ves = Lhi + Yes = Ho + Ves, 
i i 

(3.2) 

"",1 2 Z Yes = ~ - - UOF and ti = CQj • Pi + (fJi - l)c --, 
i>j fij T'i 

then single electron Hamiltonian hi satisfies the Schrodinger equation 

Where l'l,bi) is orbital and ti is the single particle energy. A set of orbitals {I'!,bi)} can be got 

from the above eigenvalue equation and from it a set of configuration state functions ( CSFs) 

{1cI>iJ} can be constructed. 

A CSF is a linear combination of determinants identified by the quantum numbers 

, , total angular momentum J and total magnetic quantum number M. Where I is 

39 
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an additional quantum number required to define the CSF uniquely. The atomic state 

function( ASF) can then be got as a linear combination of these CSFs. An ASF is defined 

by the same J and M but with a different additional quantum number r to identify each 

of the ASF uniquely 

Iw(rdM )) = 2: Cij 1«>('YjJM)). 
j 

ASFs are eigen-functions of the atomic Hamiltonian and satisfies the Schrodinger equation 

where Ei is the energy eigenvalue of the ASF. While computing matrix elements of operat­

ors it is summed over M and effectively it is the quantum numbers rand J that identifies 

an ASF. In addition as Hatom commu'te with the parity operator P the CSFs and ASF 

are parity eigenstates. Using the orbitals a single particle computation can be done by 

introducing H pTV and Yes as perturbations [1]. Here only the Configuration based methods 

cr and modified 01, and Bloch equation based MBPT methods are discussed. 

3.2 CI Method Based Computations 

3.2.1 Computation of EDM with CI Wave-Functions 

From definition an ASF IWi(CJM)) within a CSF space {1<pj(--yjJM))} is 

IW(riJM)) = 2;: Ciilq,(iiJM)). 
J 

In the C1 method the CSP co-efficients Cij are got after diagonalizing the atomic Hamilto­

nian within the OSP space[4]. Since the atomic Hamiltonian commutes with th.e parity 

operator the ASFs are eigen-states of parity. Let {1<Pi('YiJM))} and {1<Pibd'M'))} be 

CSF spaces of opposite parities. Diagonalizing the atomic Hamiltonian within these CSF 

spaces give two sets of ASFs {I'lIi(riJM))} and {IWj(r~J'M')}, which are opposite in 

Dropping the quantum numbers in general IWi) represents an ASF in {IWi(rjJ M))} 

with quantum numbers ri, J and M, similarly IWi) represents the corresponding ASF in 

opposite parity space with quantum numbers n, JI and M' 
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Let Iwo) E {I\IIi(riJ M)} be the ground state ASF. The PT-violating interactions 

within the atom introduce opposite parity corrections to the ASFs. It is wrt the mixed 

parity ground state the expectation value of the dipole operator is to be computed. Let 

IlPo) be the mixed parity ground state, using perturbation theory it can be written in terms 

of the CI wavefunctions as 

Where Eland Eo are the energies of the opposite parity ASFs and the ground state ASF. 

The atomic EDM is then 

... _ (- 1_1_ ) - ,,(\110113 1\111)( \II IIHpTv 1'110) 
Da - Wo D '110 - 2 L.i E E ' 

I 0 - I 

which in terms of CSF with CI coefficients can be written as 

This is the required expression of the atomic ED M in terms of the CSFs. This approach 

requires two diagonalizations, one each in the two opposite parity CSF subspaces. vVhen 

the number of the CSFs in these subspaces are large the diagonalization approach is less 

desirable in terms of computational efficiency. 

3.2.2 Computation of EDM Using Perturbed CI Method 

Let the ground state configuration of the atom be I~o) and {I~i)} be a set of CSFs 

which has same parity and total angular momentum as 14>0)' The CSF I~o) does not 

have any dynamic electron-correlation effects but an ASF l'lto) which includes all the 

electron-correlation effects within {I~i)} can be constructed by doing a configuration in­

teraction(CI) calculation with HaJ;om in {I~i)}' The ground state ASF l\lIo) satisfy the 

Schrodinger equation 

(3.3) 

Where IWo) = Li CoiliP i ), COi are the CI coefficients got by diagonalizing the Ha.tom matrix 

within {ICIli }}. Introduce the parity and time-reversal(PT) violating interaction Hamilto-
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nian HpTVas a perturbation, the total atomic Hamiltonian assumes the form 

H = Hatom + H pTV . 

As HpTvdoes not commute with the parity operator the eigenfunctions of H are no longer 

parity eigenstates. It introduces an opposite parity correction to the wave-function and 

since HpTV scales as G F it should be included to first order only. The Schrodinger equation 

assumes the form 

The perturbation HpTV introduces no energy correction as it is odd in parity. Let {1<Pi)} 

represent the opposite parity configuration space. Expressing Iwb) as a linear combination 

of opposite parity configurations, the ground state ASF of H is 

I\i/O) = IWo) + IW6) = L COil~i) + L COm I~m), 
i m 

(3.4) 

where COm are the correction coefficients first order in HpTV but all order in Yes in a 

restricted configuration subspace. Introduce perturbation parameter A, the Schrodinger 

equation becomes 

Project the equation onto Iwb) and retain the first order terms in A. This gives the matrix 

equation. 

(3.6) 

solving this matrix equation will give the required coefficients of the opposite parity CSFs 

COm. The expectation value of the atomic EDM can then be computed using the perturbed 

ASFs as 

Da = (~oli5l\iio) = 2 LCOiCOj(t1\Ii5I<I>j). ij 
Where D is the dipole operator. Unlike the earlier approach, in this approach only the 

ground state CSF space needs to be diagonalized. Using the Bloch equation based for­

mulations the diagonalization can be avoided altogether. Another advantage of using the 

Bloch equation based formulation is that it requires less memory. 
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3.3 The Computation of EDM using MBPT 

MBPT at the single particle level was used in atomic structure calculation by Kelly[5, 6, i] 

for the first time to compute correlation energies. Here the computations are at the level 

of configurations. The lies part in equation(3.2) can be treated perturbatively by parti­

tioning the configuration space into model and complementary spaces {I<bi)p} and {1~i)Q} 

respectively[2]. The model space has configurations which mix strongly with the ground 

state configuration and the rest of the configurations are included in the complementary 

space. The projection operators for these CSF spaces are 

P=L:!cJ.>i)pp(cJ.>i!, Q=E!~i)QQ(cJ.>i! and P+Q=1. 
i i 

The mixing from the complementary space is computed using Rayleigh-Schrodinger per­

turbation theory. The essence of Rayleigh-Schrodinger perturbation theory is the Bloch 

equation [8] 

[nes, Ha] P = QVesf2esP - Xes P Yes!1esP, 

where Xes = L~I !1~:) and can be written in recursive form as 

(n-I) 

[n~~), Ho] P = QVesn~:-l) P - L n~~) pVesn~:-m-l) P. 
m=1 

(3.7) 

(3.8) 

To compute the intrinsic EDM of an atom, two more perturbations HpTV and HdiP are to 

be introduced. Including H pTV as a perturbation the total atomic Hamiltonian assumes 

the form 

where A is the perturbation parameter. These perturbations introduce corrections to the 

configurations in P-space, corrections from Yes are of same parity as the unperturbed CSF 

but the corrections from HpTV are opposite in parity. The residual coulomb interaction 

"Yes is to be treated to all order but HpTV should be treated to first order only. The exact 

Schrodinger equation is 

(3.9) 

where 
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The value of the atomic ED M is then 

jj being an odd parity operator connects CSFs of opposite parities, so only those terms 

linear in A need to be retained, we get 

(3.10) 

Where (Da)eif = P(O!sDOes,edm + n!s,edmDOes)P is the effective intrinsic atomic EDM 

operator and is different from the usual effective dipole operator. The usual effective dipole 

operator jj eff used in computing dipole transition amplitude connects two CSFs of different 

parities. The effective intrinsic atomic EDM operator is an expectation value operator and 

the wave-operators in it has HpTvand residual coulomb operators as perturbations where 

as in j\f[ it is only Hes. The wave operators nes,edrn and nes are computed from the 

modified Bloch equation 

(n-l) 
[n(n), Ho] P = Q H'n(n-l) P - 2: oem) P H'n(n-m-l) p. (3.11) 

m=! 

Where H' = Yes + AHPTv . Out of all terms only those which has residual coulomb inter­

action alone and those that have one order of H PTV are required. Define n(n) (edm) as the 

nth order wave-operator required for the EDM computation. This can be got from (3.11) 

as 

O(n)(edm) = n(n) + A (~(o(n»)1 ) = n(n) + >.n(n-l) . 
es a A A=O es es,edm 

(3.12) 

The total wave-operator n( edm) is defined by the total order of the perturbations but while 

writing out the components neg and nes,edm the superscript denote the order of residual 

coulomb interaction and the additional subscript 'edm' denote the presence of HpTV as 

perturbation. With these perturbations the first order wave-operator can be written as 

Which using the resolvent operator 

(3.13 ) 
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As the two perturbations are opposite in parity, it is appropriate that the moael space 

and the complementary space be separated into subspaces of opposite parities. Then the 

model space projection operator can be divided into P+ and P_. Doing the same with 

complementary space projection operator and the resolvent operator we can write 

P = p+ + P _ ; Q = Q+ + Q _ ; R = R+ + R_. 

With these definitions (3.13) can be rewritten as 

(3.14) 

To make the derivation less cumbersome assume that, the model space has configurations 

of only one parity i.e. P = P +, then 

The expression for the wave-operator has been splitted according to the definition given 

earlier, according to which indicing of wave-operator Oes,edm is based on the order of \I~s 

e.g. O~~~edm has one order of H pTV but no Ves at all. Similarly the expression for the second 

order wave-operator is 

Using the definition of (3.12) 

O(2)(edm)P+ = (R+ VesR+ Ves - R+(R+ VesP+)Ves) P+ + A( R_ VesR_HpTV· + R_HpTV R+ Ves 

-R_(R_HpTV P+)Ves) P+, 

_ (0(2) ,,\0(1) )p 
- Hes + Hes,edm + (3.15) 

The other higher order wave-operators can be evaluated in the same way. In general the 

wave-operator n~;!edm can be got from the modified Bloch equation 

n-l 

[,,(n) H ] P - (Q H o(n) Q v. n(n-l) _ '"" n(m) P v.: n(n-m-l)) p ~ 'es,edm' 0 + - - PTV ~ 'es + - es es,edm ~ es,edm + es es +. 
. m~ 

In writing the above equation n(-ld) = 0 has been used and the renormalization term eS,e m 

start contributing from n = 1 onwards. The above equation is valid starting from n = O. 
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3.4 Computation of the wave-operator 

3.4.1 Wave-Operator Computed in terms of order of Perturbation 

The derivations in the previous section is general and the atomic Hamiltonian can be par­

titioned into any convenient form. For computation Epstein-Nesbet(EN) partitioning[9] 

will be used. With EN-partitioning the unperturbed Hamiltonian is defined as 

Ho = ~ l<I>il( ~iIHatoml4>i)( <I>il = L (~iIHatoml<l>i)l<I>i)( ~il· (3.16) 
I t 

To distinguish the residual coulomb interaction from Yes defined earlier, it will be denoted 

by Hes and connects different CSFs. It is given by 

Hes = L l<pi)(<I>iIHatornl4>j)(<l>jl = E (4) i IHatoml<Pjll4>i)(<pjl· 
i,j i,j,i,#j 

(3.17) 

In EN-partitioning the effect of diagonal ladder diagrams is taken to all orders in first order 

wave-function and second order for energy. The energy of CSF I<pi) in EN-partitioning is 

the expectation value of Hatom and the Schrodinger equation for the unperturbed atomic 

Hamiltonian Ho is 

The defini tions of P and Q do not change, but the energy denominator changes. In the 

following derivations the indices i and j cover all the CSFs within the configuration space 

considered. Similarly, HpTV assumes the form 

HpTV = L l4>i)(4)iIHpTvl<l>j)(<I>jl = E(<PiIHpTVI<pjll<pil(~jl, 
iJ iJ 

(3.18) 

That is the unperturbed Hamiltonian and the perturbations are cast in operator form 

within the configuration space considered. Consider the expression for n~~), in terms of 

these definitions it can be written as 

where i E P, j E Q and Ei = (4)il Hatom I4\) , the term within parentheses in the expression 

on the right hand side is just a number. The expression can be rewritten as 

(1) Q( 4>jIHatoml<Pi)p 
where Cji (es) = (Ei _ Ej) . n~!)p+ = LCjJ)(es)l<I>jIQP(il>il 

i,j 
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The second order wave-operator in terms of matrix elements is 

r.(2)p -" l<1>j)QQ(<I>j l( r.(1)_ (1)'""1 ) ( 1 )1') ( ·1 Hes + - L.. E. _ E' HesHes nes ~ <I>k pp <I>k Res tl>~ pp <I>~ , 
l.J ' J k 

where k E P+. Substituting the expressions for Hes and ni!) in terms of the matrix 

elements we get 

where I E Q, the whole expression within the square brackets is just a number, the wave­

operator second order in residual coulomb interaction can be written as 

ni;) = ~ cj~) (es) 1<1> j)Q p( <I>il· 
'J 

This can be extended to higher orders and summing all orders the full wave-operator can 

be defined as 

nes = LCJ~)Itl>j)Q/tl>il· 
nij 

(3.19) 

A similar expression for the wave-operator n~~:edm can also be obtained. Consider the 

expression for n~~:edm' in terms of the operators defined earlier it can be written as 

Like in the case of Oes, the above expression can be generalized to any order n by using 

the Bloch equation and summed to get the full wave-operator 

Des,edm = ECJ~)(es,edm)l<1?j)Q/<I>il· 
nij 

(3.20) 

U sing the expression for nes and f!es,edm the wave-operators nls and nIs,edrn can also be 

derived. Let these be represented as 

nt(n)(es) = L:c}?)(es)l<1?j)pi<1?il, nt(n)(es,edm) = EC}7)(es,edm)l<1?j)PQ(<I>il, 
o ij 

The wave-operators Oes and Qes,edm has the following properties: 
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• The co-efficients in nes and Oes,edm are real as these are product of real matrix 

elements, hence cj7)(es) = C;j) (es) and c)~)(es,edm) = C&n)(es,edm). 

• These wave-operators are non-hermitian ie n!s f:. nes and n!s,edm =/: nes,edm. This 

is evident from the form of the projection operator part in the expression of the 

wave-operators. 

• The wave-operators are state specific, o!s and n!s,edm can act only on the bra CSF 

(CPol and not on any other ket nor bra. Similarly, nes and Oes,edm can act only on 

the ket CSF 1<1>0). 

The atomic EDM in terms of the wave-operators can be computed using the expression 

(3.10) as 

(3.21) 

This is the required value of Da. The factor of two takes care of the hermitian conjugate 

term in the expectation value. 

3.4.2 Wave-Operator Computed in terms of Order of Iteration 

The wave-operator computed using the Bloch equation (3.8) is an order by order approach. 

Since the computation of the wave-operator is a blanket matrix multiplication the Bloch 

equation can be recast in an iterative form 

[n(n) f{,] P = QH o(n-I) P - o(n-l) 6.E(n) p 
es' 0 es es es . (3.22) 

Where .6.E(n) = p Hesni~-l} P is the energy correction from the wave-operator computed 

in the previous iteration. The zeroth order iteration gives ni~) = I and the first iteration 

gIves 

This has the same form as the equation for the first order wave-operator in the order by 

order approach. Consider the second iteration, the expression for the wave-operator is 

[0(2) Ii] P = QH 0(1) P - n(l) fl.E(2) P es' 0 es es es 
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The wave-operator of higher iterations can also be derived in a sequence. The advantage of 

using the iterative approach over the order by order approach is the amount of the memory 

space saved. In the order by order approach wave-operators of all orders need to be stored 

to compute the renormalization term, where as in the iterative approach only ni~-I) and 

n~~) need to be saved and for closed shell systems D..E(n) is just a number and hence a 

scalar. In addition as there is no summation in the renormalization term the number of 

operations required is also reduced significantly. 

To compute atomic EDM the PT-violating Hamiltonian HpTvshould also be included 

as a perturbation. Since HpTV should be treated to first order only it does not contribute 

to D..E. The Bloch equation for the wave-operator n~~~edm is 

[n(n) IT] P _ Q [H r,(n) H r,(n-I) _ n(n-I) AE(n)] p 
~Ges,edm' no - es~Ges,edm + PTv~Ges Hies,edmU 

Since the equation is cast in iterative form and not in order of perturbation using the con­

verged wave-operator nes and the corresponding energy correction D..E the above equation 

assumes the form 

(3.23) 

From the wave-operators given by (3.22) and (3.23) the expression for the atomic BDM 

assumes the form 

3.5 Computation of ElpNc-the parity non-conserving 

transition amplitude-using MBPT formalism 

Unlike the case of EDM, for the computation of EIPNC the dipole matrix element is to be 

computed between two different mixed parity states. Define IWi) and 1'lT]) as the initial 

and final states which are eigen-states of the atomic Hamiltonian without the odd-parity 

Hamiltonian. With the parity odd Hamiltonian Hpnc included the atomic Hamiltonian 

assumes the form 

H = Ho + Ves + )"Hpnc . 
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In operator form Hpnc can be defined within the configuration space-which include con­

figurations of both parities-as 

H pnc = ~ ( ( <P i I H pnc I <P j > ) I <P j ) ( ~ i I 
ZJ 

Since Hpnc connects configurations opposite in parity, in the above expression I~i) and 

I<pj) should be of opposite parities. With the opposite parity corrections the eigen-states 

I'lf i 1 and 1 W f) assumes the form 

Then the required EIPNC transition amplitude is 

The aim of using MBPT is to get eigen-states I~i) and I~j). To get these eigen-states 

we once more partition the configuration space into model and complementary space. In 

single reference case the parity mixed eigen-states can be written similar to EDM case as: 

The indices i and f within parentheses denotes the state dependence of the wave-operator 

and A is the perturbation parameter. Using the above expressions for mixed parity states 

El pNC can be written as 

p\ <P J I ( ot (1) + AOt,pnc (I) ) fj (nes (i) + Anes,pnc( i) ) I <I> i lP 

V(\I!JIq;j)(\f!il\f!i) 
Terms that contribute to EIPNC are those which has one order of Hpnc and dipole each. In 

the above expression these are the terms linear in A, retaining these terms give 

Like in EDM the wave-operators here can be got order by order using the Bloch equation. 

The projection and resolvent operators can further be sub-divided into different parity 
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components. Considering model space for each of the states to be single reference, we can 

define the. model space projection operators as 

Similarly, define the corresponding complementary space projections operators as Qi, and 

Q 1 respectively. The complementary space can be same or different for the two wave­

operators. Depending on the rank of H pnc , the total angular momenta Ji of the initial and 

JI of the final states respectively, the following situations can arise 

1. When Ji = J j , the spin-independent parity non-conserving and the residual cou­

lomb interaction part being scalar operators cannot mix different angular momentum 

eigen-states. Hence the complementary space is the same for both the states. 

2. With J i =1= JI , consider the spin-independent part in Hpnel the change in the angular 

momentum in the transition amplitude is due to the dipole operator. Hence the two 

complementary spaces will be different for the two states. 

3. With Ji = Jj, taking the spin-dependent component of Hpnc the complementary 

space will be common to both the states. 

4. With Ji -:j:. JI , taking the spin-dependent component of Hpne the subspace of con­

figurations with same parity as the unperturbed states will be different but for the 

opposite parity subspace it will be the same. This is because both the spin-dependent 

H pnc component and dipole are rank one operators. 

Once the complementary projection operators are known the corresponding resol vent oper­

ators can be defined as Ri and RI respectively. The Bloch equation for the two eigen-states 

can be written as 

[O(i),Ho]Pi = QiH'Oes(i)Pi - Xes(i)PiH'Oes{i)Pi, 

[0(1), Ho] PI = Q f H'Oes(f)PI - Xes (f) Pf H'Oes(f)PI , 

(3.24) 

(3.25 ) 
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where HI = Yes + H pne , Xes( i) and Xes(f) are the correlation operators for the two states. 

Out of these the required terms are those which has Yes alone and those that has one order 

of Hpne. The first order wave-operators for the two states can be written as 

Here the index 'pnc' has been introduced within parentheses to distinguish from the wave­

operator used in the case of EDM computation. Similarly the second order wave-operator 

for the two states can be got using the Bloch equations: 

[n(2)(i), Ho] Pi = Qi (Yes + AHpne)n(l) Pi - Qin(l) Pi (Yes + )..Hpnc) Pi. 

[0(2)(J), Ho] Pf = Q f (Yes + A Hpnc) 0(1) Pf - Q fn(l) Pj(Yes + AHpnc)Pj . 

From these equations using the resolvent operators the required second order wave-operators 

are: 

and 

(3.26) 

(Rf Yes RjYes - Rj(Rj YesPj ) Yes) Pf + ).. (Rj YesRjHpnc + Rf HpncRjV~s 

-Rj(RjHpnePj)V'es)Pf = (O~;)(J) + AO~~c,es(J)) Pf· (3.27) 

Higher order wave-operators can also be computed and sum to get the total wave-operators. 

This is the order by order computation of the wave-operator, the other form of computation 

is to compute the wave-operator in terms of iteration. 

3.6 Size-Inconsistency with the Bloch Equation Based 

MBPT 

Size-inconsistency in Bloch equation based perturbation theory is due to incomplete can­

cellation of unlinked terms. With Epstein-Nesbet partitioning the following are the cause 

of incomplete cancellation of unlinked terms 
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• Factorization theorem[ll, 12] is not valid 

• Incomplete configuration space 

3.6.1 Factorization Theorem is not Valid 

The energy corresponding to a CSF l4>i) in EN-partitioning is 

Let Icpo) be the model space configuration and ~E denote the energy difference that 

contributes to the denominator, then for the doubly excited configuration 14>~~) the contri­

bution to the energy denominator is 

Energy denominators satisfy the factorization theorem when they are additive. For the 

doubly excited configuration 14>~b) the energy denominator should satisfy 

In general let A and aj denote sequence of core orbital identification indices and Rand rj 

denote the virtual orbital identification indices then the energy denominators should satisfy 

the relation 

~E: = L ~E~:, where A = II aj and R = II rio 
iii 

The above relation is satisfied by the mono-energetic Hamiltonians but energies in EN­

partitioning is non mono-energetic as it include non-dynamic correlation energy and hence 

b..E: i- E ~E~:. 
i 

As a result the factorization theorem is no longer satisfied and leads to incomplete can­

cellation of unlinked diagrams at each order of perturbation. 

The EN partition amounts to inclusion of all hole-hole, hole-particle and particle­

particle ladders in Ho which are 'space-diagonal' in the sense that the orbital indices 

before and after scattering are the same. 
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3.6.2 Incomplete Configuration Space 

The energies used in the EN-partitioning can be made to satisfy the factorization theorem 

by a suitable modification such that 

(iPoIHENliPo) - (iP~IHENliP~) = ~L\E::. 
~ 

Where HEN is the modified EN-partitioning scheme Hamiltonian. This is possible when 

HEN is defined such that it does not include ladder diagrams connecting disconnected 

pieces. Consider the Bloch equation 

From the linked diagram theorem 

The term QHesf2esP contains both connected and disconnected terms. Among the discon­

nected terms, there are some which have no disconnected closed parts. These are legitimate 

and should be retained and are included in (QHesf?'esP)linked. Terms with disconnected 

closed parts contribute to (Q Hes f2 es P)unlinked, these cancel the disconnected terms from 

XesP HesnesP where Xes and P HesnesP have no common label-the exclusion principal 

obeying(EPO) terms. The rest of XesPHesnesP are EPV type and remains uncancelled. 

That is 

Now to have only the legitimate terms in a non-perturbative evaluation of nes upto a 

given rank n = 2, say, we should analyze the structure of Bloch equation as follows 

Where Hi and H2 are the one-body and two-body terms in the residual coulomb in-es es 

teraction, (AB)n denote n-body terms and nes(n) represents n-body wave-operator. The 
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third term in the above equation can generate a disconnected closed part. Since we don't 

distinguish the connected and disconnected pieces of Oes(2), we do not know which part 

of Oes(2) generates the disconnected closed part. However if we keep track of the EPO 

renormalization terms, this will be made to cancel. 

To see this, note that (Xes(n) (P'1:tl2es(i) )p)EPO is an (n + i)-body operator and when 

i = 1 it has two-body terms. If we retain this, this will cancel the disconnected closed 

part from the third term. The other EPO term is three-body, and should be deleted. Thus 

[Oes(1), Ho] = Q (Hes): P + Q( H!snes(l)): P + Q (H!sOes(2)): P + Q (H~5nes(1)):P 
+Q ( H;J2es(2)): - Xes(1) (p H!sOes(1)P + P H;J'les(2)) EPV 

-Xes( 1) (p Hes lOes( l)P) EPO. 

By (AB)c we now mean that there are common labels between A and B hence connected. 

Consider now O;s: 

N ow the last two terms generate three and four body terms of nes and should be deleted. 

The rest are either connected or a legitimate disconnected term like the second term in 

the above equation. In general with a blind computation within a configuration space 

limited till n-tuply excited configurations the renormalization term has EPO part till 

n + 2-body terms. Configurations space being limited to n-tuply excited configurations 

Q H esnes does not contain terms that will cancel these terms. Though the factorization 

theorem is satisfied the incompleteness in the configurations space leads to incomplete 

cancellation of unlinked terms. The above equations for nes with EPO terms deleted are 

the generalized CEPA equations. Thus the condition of configuration space being complete 

is more fundamental to curing the size-consistency. 
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3.7 Size Consistent Theory in Closed-Shell Systems 

3.7.1 Size Consistency with Linked Diagram Theorem 

The wave-operator can be made size-consistent if only the linked terms in the Bloch equa­

tion can be retained[3]. With this approach the unlinked terms are completely excluded 

and the incomplete cancellation of the unlinked terms can altogether be avoided. To 

maintain size consistency the Bloch equation should satisfy linked diagram theorem 

Redefine the wave-operator in terms of degrees of excitation. The wave-operator and 

correlation-operators for a system of N particles is 

N N 

nes = I + !1es (l) + Oes(2) + !1es(3) + ... = L f!es(m) a.nd Xes = L nes(m). 
m=O m=! 

Where in Oes( m) m denotes the degree of excitation. Considering only till double excitation 

the wave-operator and correlation operator assumes the form 

2 2 

nes = L nes(m) and Xes = I: !1es (m) 
m=O m=l 

Since no valence lines are involved in closed-shell systems the diagrammatic representation 

of the wave-operators are 

(a) (b) 

Figure 3.1: Dia.grams for the wave-operators (a)Oes(1) and (b) Oes(2). 

For W it is just a number and the diagrammatic representations ofthe residual coulomb 

interaction are 
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~-Y /\-7\ }---i t----t ~-{ 
(a) (b) (e) (d) (e) 

~-t 1\-1 1\-1 VA }----t 
(f) (g) (I) Ol (k) 

A----e V L---e L---e 
/ " -----e f f 

(n) (0) (I) (m) 

Figure 3.2: The diagrams for the residual Coulomb interaction Hes. 

From (3.28), the equation for the singly-excited wave-operator is 

Similarly, the equation for the doubly-excited wave-operator is 

Let Iq,o) be the reference configuration and {1<Pa)} be the configuration space spanned by 

singly and doubly excited configurations. The wave-operators can then be expressed as 

nes(1) = L 14>:)( <Polx: and nes(2) = L 14>:b)( q,OIX:b. 
ar abrs 

Where x~ and x~b are the excitation amplitudes. Let {14>i)} = Iq,o) + {Iq,a)}, then Hes can 

also be expressed as 

Hes = L (<pj IHeslq,j) I<pj)( q,il· 
i,j 

Using these definitions the equation for the one-body wave-operator can be written as 

[nes(l),Ho]P = ~ [(q,:IHesICPo) + ~(CP:IHesl<P::)x:: + a1f,;sl (q,:IHesl4>::b:)X::b: 

-X:w] 14>:) (<Pol (3.29) 
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Similarly, for the two-body wave-operator the equation is 

L [\ <P~bIHesl<Po) + L \ <P~bIHesl~:;)x~; + L \ q?~bIHeslq?~;b:)X:;b; 
abrs a'r' a'b'r's' 

-x~bw]Iq?:b)\q?ol (3.30) 

In (3.29) all the terms except x~W are connected and hence linked. Similarly in (3.30) all 

the terms are linked except x~bW and the second term 

and has the following diagrammatic representations Out of these diagrams (a) is a dis-

(a) (b) (e) 

Figure 3.3: The diagrammatic representations of the term (q?~bIHeslq?~;)x~: 

connected term but (b) and (c) are connected. The diagram ( a) is still linked but if only 

connected terms are to be retained then it should be discarded. This can be done by 

retaining only those terms which does not have both a' and r' in Iq?~b)' With this modi­

fication all the terms in (3.30) are connected and hence linked. Thus in (3.29) the only 

term that has unlinked contribution is x~W and in (3.30) it is X~bW, The wave-operator 

is connected and size-consistent if these terms are excluded. The wave-operator equation 

then assumes the forms 

[0 •• (1), Ho 1 p= ~ [< q;; 1 H •• Iq;o ) + ~ < q;; 1 H .. Iq;;:)x;: +J~.,< q;;IH •• Iq;;:o:)X;:l:]Iq;;)< q;ol 
(3.31 ) 

Similarly, for the two-body wave-operator the equation is 

[0~(2), Ho 1 p= f. [< q;;:1 H •• Iq;o )+ ~ < q;;: IH •• Iq;;:)x;:~,f,;" < q;;: IH •• Iq;;:::)x;:::]Iq;;:)( q;ol 
(3.32) 
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Applying the modifications to the second term in (3.32) all the terms are now connected and 

linked too. This is the form ofthe equations for CEPA-O. So far the perturbation Hamilto­

nian has been Hes alone. With the PT-reversal violating Hamiltonian HpTyincluded the 

perturbation Hamiltonian is 

H' = Hes + HpTV ' 

The corresponding wave-operators are 

Wave-operators Oes(l) and Oes(2) are same as before but 0pTv(l) and npTy(2) are wave­

operators that connect {1<Pi)} to {I~i)}' where {I<l>i)} is the configuration space opposite 

in parity to 1<1>0)' Within the total configuration space 0pTv(l) and DpTV (2) can be rep­

resented as 

0pTV (1) = L I~)< <l>olx: and 0pTV (2) = L I~:)< <POIX:b 
ar abrs 

The equations for 0pTY (1) is 

[OPTv(l), Ho] P = ~ [<~IHpTV l<Po) + ~ <~IHpTV 1 <P::) x:: +alf,;sl(~IHpTV 1<P::b:)X::b: 

+ ~ (~IH"I~)x; + ~ (~IH"I<l>~)X;dll~)( <l>ol (3.33) 

In expression (3.33) the condition that HpTV should be treated to first order is taken care 

of by excluding terms of the form (<Pi 1 HpTV 1<1> j )x. The equation for DpTy (2) is 

[npTv (2), Ho] P = L [ L (~:IHpTV 1<P::b:)X::b: + L (~:IHesl<P~)X~ 
abrs a l bl r l 8 ' ct 

+ I: <~:IHesl~~)x!dll~:)<<I>ol (3.34) 
cdtu 

The term (~:IHpTV 1<1>0) does not contribute as H PTV being a one-body interaction Hamilto­

nian it cannot produce double excitation. In addition the term Ealrl(~~IHpTV 1<P~;)x~: has 

been excluded as it is always disconnected. The second term in (3.34) can still give 

disconnected terms but they can be avoided by using the same remedy as applied to 

Hence all the terms are connected in the expres sion for DpTV ( 1) and 0pTV (2). 
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3.7.2 Size Consistency with Connected Diagrams 

The other way of separating the wave-operator is in terms of cluster operators. The 

cluster-operator Tn is defined as 

The wave-operators are related to the cluster operators as 

Pma.x ima.x 1 {( )i n-p ( )i} 
O(n) = Tn + L ?: T! Tp E TI , 

p=l z=l LJ. l=p+l 

(3.35) 

where 

i max = integer( n / p), 
. (n-pxi) 

Jrem = 1 ' 
p/2 if p is even 

(p - 1)/2 if p is odd 

and 

. {jrem J= 
-00 

if jrem is an integer 

if jrem is not an integer 

That is when j is not an integer the second term in (3.35) does not contribute to the wave­

operator. The equation for the cluster-operator with the residual Coulomb interaction as 

the perturbation is 

Taking only the linear terms of single and double cluster-operators, the wave-operator is 

The wave-operator nes has been a.pproximated by the linear cluster terms for the following 

reasons: 

• The correlation introduced by T; is very small compared to the contribution from 

T2 • By including the T2 a major part of the electron-electron correlation effect is 

taken care of. 

• Among the four-body cluster operators r; is the major contributor but in the present 

formalism this term can not be included as the CSF coupling is not in particle-hole 

form. 
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• Though Tl does not contribute significantly in the electron-electron correlation it is 

important as HpTvand the dipole operators are single-electron operators. 

For closed-shell systems Xes W is always unlinked and hence can be avoided from the 

cluster equation. The cluster-operator equation is 

This cluster equation does not include the EPV diagrams, the linked EPV diagrams are to 

be avoided but unlinked EPV terms are to be retained. With suitable transformations the 

unlinked EPV terms can be converted into connected terms[12]' thus the cluster-operator 

equation is 

Where the first term is EPV and second term is non-EPV. By suitable rearrangement 

( )
EPV ( )EPV 

QHesnesP . = - QXesWP 
linked 

The cluster-operator equations now takes the form 

[Tes,Ho]P = (QHeS!esP)~:: - (QXesWp)EPV 

With these definitions the single and double cluster-operator equations with residual cou­

lomb interaction as the perturbation are 

[Tes(l),Ho]P = ~ [(<1>: 1 Hes 1<1>0) + ~(<P:IHesl<1>::)r;,' + et1f,;SI (<1>:IHesl<1>::b;)r;,~~1 

_(r;vv)EPV]I<p:)(<1>ol. (3.36) 

The cluster amplitudes are denoted using T to distinguish from the single-particle cluster 

amplitudes represented by t. Here the computation is at the CSF level and T: means the 

cluster amplitude of the cluster excitation operator that excites the reference CSF state 

1<1>0) to the CSF 1<1>:). The same definition can be extended to the double excitation cluster 

amplitudes too. 

[T .. (2), Ho jP = f. [( 4>~bIH,,1 4>0) + ~ (4):: 1 H •• 14>;: )7;':' + .,t,;., (4):bIH··I4>;:b:)7;':~~' 
_(rab8w)EPV] I <1>:b) (<1>0 I· (3.37) 
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Similarly, the PT -violating cluster-operators TPTV can also be evaluated using the equations 

[TeTV (1), Ho] P = ~ [(~IH,TV 1<1>0) + ~ (~:IHeTV 1<1>;', )7;' +"f,;,,(~IHeTV 1<1>::.:)7;;:' 

+ I:(~IHesl<P~)T~ + I: (~IHesl~~)T!~ -(t:W) EPvll~)( <Pol(3.38) 
ct cdtu 

and 

[ TeTV (2), Ho] P - f. [.,E, (~:I HeTV 1 <1>;:.:)7;;;' + ~ (~:I H" 1<1> ;)1; 

+ I: (~:IHesICl)~~)T~~ - (r::W) EPVll~:)( <Pol (3.39) 
cdtu 

U sing these cluster-operators 

Oes,edm = 0PTV (1) + 0PTV (2). 

The required value of the atomic EDM Da can be computed using the operators as 

The equations describing the cluster equations are similar to the equation CEPA-2 equations(13. 

14]. 
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Computation of Electric Dipole Moment 

with Different Many-Body Methods and 

Comparison 

4.1 The Orbitals and the Configurations 

4.1.1 Bound and Continuum Orbitals 

The orbitals used in the CSF based perturbation theory can be of any form but it should 

satisfy the following properties: 

• completeness 

• orthonormality. 

These conditions are satisfied by a set of orbitals generated using a single particle Hamilto­

nian like the Hartree-Fock potential. Similarly, a set of orbitals generated using the [1] 

V N- 1 potential satisfies these conditions too. We have used V N- 1 orbitals in our calcula­

tion. The completeness criterion of the orbital space is determined by the convergence of 

the property of interest and the ground state energy Eo. 

For atomic Yb the occupied-orbitals are generated first with the ground state config­

uration 1682). The virtual orbital I~M is generated using the configuration 16s~i) where 

the orbitals till 6..: are frozen. The total angular momentum of the configuration is chosen 

as the smaller of the two got after coupling the angular momentum of 16s) and I¢i). The 

64 
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disadvantage of using the VN- 1 potential is that to make the orbitals complete the positive 

continuum spectrum must be included. Though the continuum contribution to EDM is 

not very significant, the quadrature of the matrix elements involving continuum orbitals 

always incur errors. Energies of the occupied and the bound virtuals are tabulated in 

Table 4.1 according to symmetry. 

Table 4.1 

Orb. Energy Orb. Energy Orb. Energy 

18 -2267.650 00 l1p* -0.0099 12 5d -0.0788 17 

28 -388.8923 64 2p -331.4874 09 6d -0.042141 

38 -89.709489 3p -73.093962 7d -0.0254 43 

48 -18.672443 4p , -13.373581 8d -0.016963 

58 -2.4395 07 5p -1.182791 9d -0.0121 03 

68 -0.1965 16 6p -0.0971 30 lOd -0.009066 

78 -0.0781 08 7p -0.046876 4/* -0.538989 

88 -0.038868 8p -0.029326 5/* -0.0201 77 

98 -0.023602 9p -0.017981 6/* -0.014008 

108 -0.015887 lOp -0.012699 7/* -0.010285 

118 -.0.011430 l1p -0.009445 8/* -0.007869 

12s -0.008619 3d* -59.191929 9J* -0.0062 14 

2p* -370.0552 26 4d* -7.777963 10J* -0.005030 

3p* -81.4222 13 5d* -0.100042 4J -0.4801 86 

4p* -15.275103 6d* -0.044443 5J -0.020043 

5p* -1.4191 60 7d* -0.026277 6J -0.0139 19 

6p* -0.124456 8d* -O.017~J 73 7J -0.010225 

7p* -0.053768 9d* -0.012338 8J -0.007827 

8p* -0.029238 10d* -0.0092 14 9J -0.0061 84 

9p* -0.018894 3d -57.390605 10J -0.005008 

lOp* -0.013443 4d -7.4220 74 

In order to check on the completeness of the bound virtual orbitals Eo is computed 

with the addition of each orbital of different symmetries. For each symmetry the orbital 
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Table 4.2: CI-energy for each of the symmetry with increasing CSFs 

81. No. C8Fs Energy Change in Energy 

1 16s2) + 1782) + 1687s) -14067.671758 -0.000280 

2 +18s2) + 1(6-7)s88) -14067.6718 83 -0.0001 25 

3 +19s2) + 1(6-8)898) -14067.671940 -0.000057 

4 +110s2) + 1(6-9)8108) -14067.6719 70 -0.000030 

5 +11182 ) + 1(6-10)8118) -14067.6719 88 -0.0000 18 

6 +112s2) + 1(6-11)8128) -14067.6720 00 -0.000002 

7 1682) + 16p*2) -14067.6786 17 -0.0071 39 

8 +17p*2) + 16p* 7p*) -14067.6798 38 -0.001221 

9 +18p*2) + 1(6-7)p* 8p*) -14067.6800 97 -0.000259 

10 +19p*2) + 1(6-8)p* 9p*) -14067.6802 24 -0.000127 

11 +110p*2) + 1(6-9)p* 10p*) -14067.6803 23 -0.000099 

12 +lllp*2) + 1(6-1O)p* IIp*) -14067.6803 80 -0.000057 

13 1682) + 16p2) -14067.677475 -0.005997 

14 +17p2) + 16p7p) -14067.6796 90 -0.0022 15 

15 +18p2) + 1(6-7)p8p) -14067.6811 61 -0.001471 

16 +19p2) + 1(6-S)p9p) -14067.6814 10 -0.000249 

17 +llOp2) + 1(6-9)p10p) -14067.6815 75 -0.000165 

18 +lllp2) + 1(6-10)pllp) -14067.6816 84 -0.000109 

19 1682) + 15d*2) -14067.674044 -0.002566 

20 +16d*2) + 15d* 6d*) -14067.674200 -0.0001 56 

21 +17d*2) + 1(5-6)d* 7d*) -14067.6742 35 -0.000035 

22 +18d*2) + 1(5-7)d* 8d*) -14067.6742 48 -0.0000 13 

23 +19b2) + 1(5-S)d* 9d*) -14067.6742 55 -0.000007 

24 +110d*2) + 1(5-9)d* 10d*) -14067.674258 -0.000003 
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81. No. CSFs Energy Change in Energy 

25 \6s2 ) + \5d2 ) -14067.6744 68 -0.002990 

26 + \6d2 ) + \5d6d) -14067.6750 81 -0.0006 13 

27 +\7d2 ) + \(5-6)d7d) -14067.6752 29 -0.000148 

28 + \8d2 ) + \(5 -7)d8d) -14067.6752 86 -0.000057 

29 +\9d2 ) + \(5-8)d9d) -14067.6753 14 -0.000028 

30 +\lOd2 ) + \(5-9)d10d) -14067.6753 30 -0.0000 16 

space is increased by one at time and Eo is computed using C1. The CSF space for CI 

is the ground state CSF \~o) and the set of C8Fs which has same angular momentum 

and parity as \~o) generated using the virtual orbitals of the symmetry. Completeness 

of the virtual orbi tal space is assumed when Eo converges to the fourth place of decimal. 

Ground state energy for each of the symmetry are given in the Table 4.2. In the Table 

4.2 the change in energy is the difference between Eo of the present set of CSFs and the 

earlier set. For each symmetry the starting comparison is the ground state CSF energy. 

Table shows that the convergence pattern is different for each symmetry. Compared to 

7 s the inclusion of 6p* orbital introduces a larger change in Eo and is a result of 6p* 

being closer in energy to 6s than 7 s. But the change in Eo with the inclusion of 7p* is 

much smaller than with the inclusion of 7p. Since the energy of 7p is higher than 7p* the 

energy separation from 6s cannot explain this. This is due to the configuration mixing 

between those other than \<1>0)' Energy values for the !* and f are not included as they 

converge with a single virtual orbital. For the computation six bound virtual orbitals for 

each symmetry is taken, the orbital space (1-12)s, (2-11)p*, (2-11)p, (3-10)d*, (3-10)d, 

(4-10)/* and (4-10)f. 

In the continuum orbital space the number of points used in the Gauss-Laguerre quad­

rature decides the number of orbitals to be included [2, 3, 4]. The continuum orbitals 

are identified by the symmetry and the linear momentum k, where a ::; k ::; 00. They 

are assigned negative principal quantum numbers to distinguish from the bound orbitals 

and are generated by using the energy f.k = k 2 /2. To include the complete continuum 

spectrum the contribution from the continuum orbitals has to be integrated over the whole 
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spectrum. Consider the lowest order contribution to the atomic EDM with the continuum 

orbitals as the intermediate orbital 

00 -I 00 

(EDM)cntm = J dk(?jJ6sli5l?jJp_(k))(?jJp_(k)IHpTVI¢6S)(~E(k)) = J dkf(k), 
o 0 

Quadrature within the continuum spectrum can be simplified by discretizing it using 

the Gauss-Laguerre quadrature. This reduces the integration over the entire continuum 

spectrum to a sum over the roots of the Laguerre polynomials. If n is the number of 

roots used in the Gauss-Laguerre quadrature and the ki the ith Laguerre root the above 

integration reduces to 
n 

(EDM)cntm = L Wi e- k; f(kd· 
i=1 

With this form of quadrature the continuum orbitals are required only for energies corres­

ponding to the roots of the Laguerre polynomials. For convenience the roots are normalized 

to 20 such that the new roots are k~ = (20 x ki)/kn and the corresponding energies are 

given by 

_ 1 (20 X ki )2 
Cki - 2" kn 

U sing the normalized roots the integration is 

( 20) ~ k! ') (EDM)cntm = k ~ Wie • f(k i . 
n 1=1 , 

(4.1 ) 

This is the required integration for the continuum spectrum [5]. The same expression can 

also be used for CSFs by reducing the matrix elements to the orbital level. 

4.1.2 The Configuration Space Considered 

The configuration space is spanned by the CSFs constructed from the VN- 1 orbitals. The 

configurations are generated by single or double excitations from the occupied orbitals to 

the bound and the continuum virtual orbitals in all possible ways such that it gives the 

required final angular momentum. For the single reference MBPT the reference CSF of 

Yb is 16s2 ) and from now on it will be referred as 1<1>0). Hence the occupied orbitals are 

(1-6)s,(2-5)p*, (2 -5)p,(3-4)d*, (3-4)d,4f* and 4f respectively. The configuration space 
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generated is not a complete active space but complete for the single and double excitations 

from the most important outer occupied orbitals within the converged orbital orbital space. 

The occupied-orbital shells of the configurations that has been considered are 

single excitation: 14/ *6 4j868), 14/*5682) 14/7682 ), 15p*1 682) 15p3682) and 1581682 ) 

double excitation: 14/*6418), 14fo56s) 14/768), 14fo4682), 14166s2), 14fo54F6s2) 15pi'1 6s), 

15p368), 15p!<14j56s2), 15p341*56s2), 15p!<34j56s2), 15p34j5682),15s16s), 

15s141*5 6s2), 15814/7682), \5s15p*1 682 ) and \5s15p3682). 

The remaining electrons are arranged in the virtual orbitals in all possible ways. Of all the 

CSFs the even parity with CSF with J = 0 and odd parity CSFs with J = 1 are selected. 

Table4.3 gives the number of even and odd parity configurations generated from these in 

non-relativistic notation. Though not included in the table, CSFs with excitations from 

5s are also included in the configuration space. 

Table 4.3: The number of the CSFs with different occupied configurations. 

Sl.no Occupied part Configurations Sl.no Occupied part Configurations 

Even Odd Even Odd 

1 168) 6 12 2 14j14) 147 287 

3 14113682 ) 12 18 4 1411368 1 ) 1224 3618 

5 14f12 682) 3045 7739 6 15p54j14682) 12 30 

7 1·5p541146s 1 ) 1044 1668 8 15p54j1 36s2) 3604 2394 

The total number of odd and even parity CSFs with bound virtual orbitals are 9930 

and 17087 respectively. The modulus of the EN-partitioned energies of the CSFs-the 

diagonal Hamiltonian matrix elements-are as shown in the histograms below The two 

histograms are plotted such the the lowest I EI is shifted to zero and the the range between 

the lowest and the highest are divided into ten units. The zero on lEI axis are 14064.9531 

and 14065.0068 hartrees for the even and odd parity CSFs respectively. Similarly, the 

highest lEI are 14067.6720 and 14067.5996 hartrees respectively. From the histogram the 

number of configurations with low and high energies are less as the number of CSFs that 

can be constructed with the basis set considered are less where as the number of the 

configurations that can give the intermediate energy are large. This has the advantage 
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Figure 4.1: Histogram of lEI for the even parity CSFs. 

that the perturbation series converges fast as only a few of the configurations are quite 

close to I<po) and the energy separation with the rest of the CSFs is quite large. 

N umber of odd parity CSFs in the intermediate energy is more than the even parity 

as the odd parity configuration space can have many possible intermediate couplings to 

give J = 1, to limit the number of CSFs within the memory limitations a filtering has been 

done. In the filtering process double excitations beyond the converged orbitals are not 

included for the d and f symmetries. Another constraint on the choice of configurations 

is: there shouldn't be more than four open shells in the non-relativistic notation and eight 

in the relativistic form, choosing only singly and doubly excited configurations satisfies this 

condition for a closed-shell atom like Yb. This constraint is due to the angular co-efficient 

computation program. 

Continuum orbitals when used in the framework of single particle formulations are 

numerically more appropriate as the error accumulation is less severe. In the CSF approach 

the error accumulation becomes large as the computation of CSF energies requires integrals 

with some of the highly contracted inner occupied orbitals. These integrals can be avoided 

altogether in the single particle approach. The CSF energies of the configurations with 

10 
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continuum spin orbitals are given in Table4.4. In Table4.4 the continuum orbitals are 

Table 4.4: Energy of the CSF 168'IjJ) where'lj; is a continuum orbital and tk is its energy. 

81. No. Orbital tk ~Es C8F CSF Energy ~Ec 

1 -Is 0.0019 46 0.1984 62 168 -Is) -14067.3111 21 0.360357 

2 -2s 0.0543 83 0.2508 99 168 -2s) -14065.8681 66 1.8033 12 

3 -38 0.3324 73 0.5289 89 168 -3s) -14062.9640 38 4.707440 

4 -48 1.1668 80 1.363396 168 -4s) -14058.7320 33 8.939445 

5 -58 3.0737 78 3.270294 168 -58) -14053.1998 19 14.4716 59 

6 -6s 6.8075 28 7.0040 44 16s -68) -14046.0824 58 21.589020 

7 -78 13.4515 33 13.6480 49 168 -78) -14037.3452 57 30.326221 

8 -88 24.5806 82 24.7771 97 16s -8s) -14026.6947 39 40.9767 39 

9 -98 42.5746 12 42.7711 28 16s -9s) -14013.6933 15 53.9781 63 

10 -lOs 71.3005 65 71.4970 81 168 -lOs) -13997.6760 78 69.995400 

distinguished from the bound by the negative principal quantum numbers. Though twelve 

point Gauss-Laguerre quadrature has been chosen, only the first ten configurations of the 

form 168 -ns) have been considered in the table. 

The quantities ~Ec and ~Es are defined as 

and 

A non-single particle Hamiltonian like EN-partitioning includes a part of the static cor­

relation and hence give configuration energy lower than the single particle Hamiltonian 

energy. As the static correlation is included in both configurations and is stronger in the 

ground state configuration, ~Ec should be larger than the single particle value ~Es. Con­

sider the configuration 16878), with EN-partitioning its energy is -14067.5341 25 and !::l.Ec 

is 0.1373 57 hartrees respectively. The single particle energy difference between 78 and 

68 orbitals is 0.1184 08 hartrees and this is the value of ~Es for 16s78). The difference 

between I:!.Ec and 6.Es can be accounted to different strengths of static correlation in l<Po) 
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and \6s78). Where as with the continuum orbitals the difference can be due to numerical 

error accumulation too. 

Energies of Yb+ and Yb2+ computed using the V N- 1 orbitals are -14067.4749 62 and 

-14067.0646 69 hartrees respectively, the corresponding configurations are \5p64f146s) 

and \5p64f14) respectively. Taking the difference with the energy of \<I>o) gives the first 

ionization potential as 0.1965 16 hartrees and the double ionization potential as 0.6068 09 

hartrees. Consider the first two continuum orbitals, their energies are lower than double 

particle excitation energy of 609 shell. Which implies that the energy of 1609 -Is) and 

sl6s -28) should be between that of Yb+ and Yb2+, this is so for the configuration with 

the first but not for the second one. This could be due to decrease in the strength of the 

correlation with higher energies on the other hand as the energy of the continuum orbitals 

increase they get more contracted towards the core and enhance the error accumulation 

in quadratures involving the continuum orbitals. 

4.2 The Matrix elements in EN-Partitioning 

4.2.1 The Residual Coulomb Interaction 

The energy Ei of a CSF l<I>i) in the EN-partitioning can be written in terms of orbitals as 

Ei = (<I>iIHatoml<I>i) = 2;:: A(i,i)\tPiltltPi) + ?:>, B(ij,ij)\~itPil(l- Pt2)r~21~d'i). 
1 1 J 

Where P12 is the exchange permutation operator, A(i, i) and B(ij, ij) are the angular 

factors required in reducing the CSF matrix elements to orbital level. The angular factor 

for the exchange part is B(ij,ji) and B(ij,ij) =I B(ij,ji). Similarly, the Moller-Plesset 

partitioning with Hartree-Fock potential gives the energy of this configuration as 

Erp = \ <I>i IhHF l<I>i) = L: qi€i· 
ielCbi) 

Where qi is the occupation number of the ith orbital and €j is the corresponding single-

particle energy. The EN-energy can be expressed in terms of the Moller-Plesset energy 

for closed-shell CSFs as 

Ei = Erp - L.: [L.: (~i~bl(l- P12)~I¢i~b)l- ~ L.: [L (~r¢bl 
ielCbi) b!i!ICbi) r12 relCbi) bel~.) 
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(1- P12)f-ltPrtPb)] + ~ I: [L (tPrtPs l(l- p12)~ltPrtPs)1· 
12 rEI<l).) sEI~i) T12 

For open-shell CSFs angular factors make it difficult to arrive at a straight forward relation. 

If the model space is spanned by the reference CSF alone then terms other than E~P z 

contributes to a shift in the energy denominator and each of the matrix element combined 

with appropriate numerator is a sum of ladder diagrams to all orders. Ladder diagrams 

can be grouped into three classes: (i) particle-particle (ii) particle-hole and (iii) hole-hole. 

The second and third term in the above equation is particle-hole class and the last term is 

particle-particle class. The summation over hole-hole class of ladder diagrams is given by 

the reference state energy in the energy denominator. Since the diagonal elements are the 

energy in EN-partitioning the histograms in the earlier section gives a comparison of the 

diagonal terms and their range but with V N- 1 potential as the central field potential. 

The residual Coulomb interaction Hes in EN-partitioning is the off-diagonal matrix 

elements of Hatom within the whole of configuration space under consideration and can be 

represented as 

Let the CSF l<I>i) be singly excited wrt I<pj) and both are singly excited wrt the reference 

CSF 1<I>0). One of the possible form of l<I>i) and I<pj) is 

The matrix element. of the residual coulomb interaction between these two CSFs can be 

conv~rt.ed into orbital matrix elements as [6] 

\ <1>:1 ~ (t+ I L) I<I>~) = A(r, s)\ tP.ltltP,) + ~ B(r", sa)\ Mal (1- PI') r:,1Ma) 
( 4.2) 

Where ItPa)s are the orbitals common to both I<I>~) and I<I>~). If {ltPr} E I<p~) and {ltPs} E 

I<p~) then {ltPa)} = {ltPr)} n {ltPs)}. Similarly, for CSFs 1<I>~b) and 1cI>~b) which are doubly 

excited wrt each other and the reference state 1 <Po)· the matrix element that contributes to 

Hes is 
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The single-electron part of the Hamiltonian does not contribute in the above expression 

as it cannot excite two electrons. Similarly, there are doubly excited configurations which 

are coupled by single excitation/de-excitation, the matrix elements of which can be eval­

uated in terms of orbitals. Two configurations which are connected by triple or higher 

excitations/de-excitations are not coupled directly-two configurations are coupled directly 

by an interaction Hamiltonian if its matrix elements wrt the configurations is non-zero-but 

can be coupled when Hesis treated to higher orders. An example of such configurations in 

Yb is 14!*64j86p*2) and 15p*1 6s 16p2), both are doubly excited with respect to the I~o) but 

between them it is a triple excitation. This is a motivation for treating Hesto high orders 

as it includes different forms of configuration coupling. The other possible direct con-
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Figure 4.2: Histogram of I H( ij) I for the even and odd parity CSFs. 
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figuration coupling is between the singly and doubly excited configurations which can be 

evaluated similar to the earlier cases. Expressions (4.2) and (4.3) are typical examples as 

only the particle to particle excitation has been considered. The other forms of excitations 

are hole to hole and hole-particle to hole-particle. 

The histogram in the Fig:4.2 gives the number of the offdiagonal coupling terms and the 

log of absolute value of H(ij), which represents the residual coulomb interaction coupling 

between the two CSFs I~i) and I<pj). The solid line is for the odd parity configurations 

and the dashed line for the even parity configurations. It can be inferred that very few 

configurations are coupled very strongly, but several of CSFs couple in the range 10-3-
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10-4 , so when a sufficiently large configuration space is taken these terms will add upto 

to give non-trivial contributions. 

4.2.2 The PT -Violating and Dipole Interaction Terms 

Consider the PT-violating interaction which is dependent on the nuclear density its mat­

rix element between two CSFs is non-zero only when they are connected by a single 

excitation/ de-excitation from s to p* symmetry orbitals or vice-versa. Within the CSF 

space considered, the CSFs that correspond to these effects can connect through the PT­

violating interaction in the following manner (i) l<Po) and singly excited CSFs (ii) between 

singly excited CSFs (iii) singly and doubly excited CSFs and (iv) between doubly excited 

CSFs. The matrix elements of HpTV can be computed in terms of single particle orbitals 

like in the case of Hes by using appropriate radial and angular factors 

Where T(i,j, k, l) is the angular factor to convert from the CSF level to the orbital level. 

The above expression shows that the same single-particle matrix element can contribute 

to many different configuration couplings via HpTV ' An example is: the coupling between 

16s2) and 16s6p*) is the same as between 16s6p*) and 16p*2). In this respect a single particle 

approach will reduce the number of excitations considerably but it introduces complications 

when higher order perturbations are considered as the excited configurations are purely 

defined by the perturbations rather than defined apriori as in EN-partitioning. At the 

single particle level the strength of the coupling can be enhanced in the following cases: 

• when one of the orbitals lie deep in the core, it is highly contracted towards the 

nuclear region and hence the H pTV coupling is quite strong . 

• continuum orbitals due to their high kinetic energy penetrates deeper into the nuclear 

region. As a result the HPTV coupling gets stronger when one of the orbitals involved 

is a continuum. 

But, in both cases the energy difference in the denominator suppresses the contribution to 

the final expectation value of EDM significantly. In the Table4.5 the HpTVreduced matrix 
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element between the 78 and np* are given. The values of the matrix elements has been 

Table 4.5: Matrix element of HpTV wrt np* and 7 s orbital 

S1. No. n (np* IIHpTVII78) 81. No. n (np* IIHpTVI17s) 

1 12 -0.0298 19 2 11 0.0483 86 
~-

3 10 0.0627 50 4 9 0.0656 03 

5 8 0.087994 6 7 -0.172447 

7 6 -0.3191 55 8 5 -1.786683 

9 4 -5.191537 10 3 -10.8463 18 

11 2 -21.8273 41 

parameterized in terms of CTO"Nz x 10-12 , where CT is the TPT coupling constant and 

O"Nz is the component of nuclear-spin along the z-axis. The expression has been computed 

for the z-component. These matrix elements do contribute to the lowest order EDM 

and can contribute through one or more order of residual coulomb interaction too. The 

core p* contributes via coupled perturbed Hartree-Fock terms, whereas virtual p* orbitals 

contribute through correlation terms. One important trend in the matrix elements is the 

flip in sign and the continuous decrease in magnitude towards the outer orbitals. This can 

contribute to cancellations in the value of EDM if there is no corresponding sign flip in 

the dipole contribution. 

Within the configuration space considered l<Po) is coupled to only a few CSFs from the 

odd parity CSF space through the HpTV ' these are single excitations from 68 to virtual 

p* orbitals 168(6-11)p*), from 5p* to the virtual s orbitals 1.5p *1 (7-12)s) and excitations 

from 58 to 168(6 - ll)p*). Only these C8Fs from the odd parity get connected to 1<1>0) 

with HpTvalone as perturbation and hence contribute to n~~~edm' If one considers one 

order of Hes as a perturbation, then ICPo) gets connected to all the CSFs in the even parity 

space as all of them are generated by excitation (s) from 1 <Po). If H PTV is applied as the 

next perturbation, the number of odd parity C8Fs that gets coupled to the even parity 

space is 6447. This is because the whole of the even parity space is coupled directly to 

only 6447 CSFs in the odd parity space through HpTV ' This is a part of n~!:edm but not 

the whole as there is another contribution from applying Hesto n~~~edm' The difference 
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between the two is: in the first component Hesis applied in the even parity space whereas 

in the second case it is applied in the odd parity space. The non-zero coupling from 

the later component are those CSFs that contribute to n~~)edm. Starting from n(2) d all , eS,e m 

the configurations in the odd parity space have non-zero contribution, this is due to the 

configuration coupling due to the residual coulomb interaction. In short the contribution 

to EDM from odd parity configurations other than those contributing to n~~~edm is due to 

the residual coulomb interaction. 

The Dipole interaction term unlike HpTV depends linearly on r and has the selection 

rules !:::.J = 0, ±1 and !:::.M = 0 for the transverse mode. So I~o) is connected to more 

configurations through the dipole term in odd parity space than in the case of HpTV . In 

the present computation the dipole term is not treated as a perturbation. As described 

in earlier sections, the dipole operator is used to compute the expectation value and is 

the required value of the EDM in the ground state of atomic Vb. But the value of EDM 

remains the same when the dipole is treated as the perturbation and the expectation value 

of HpTvis computed. This is more of a theoretical consistency check as in real physical 

systems the dipole term is the measure of the EDM as a linear response to an external 

field. 

4.3 The Lowest Order EDM 

The expression for the lowest order contribution to EDM from the virtual orbital np* is 

where tss and tnp* are the single particle energies of 6s and np* orbitals respectively. 

Combining both HpTvand dipole terms the lowest order contributions to EDM from the 

first few virtual p* orbitals are tabulated in Table4.6. The values in the table above have 

been parameterized in terms of CTO'Nz x 1O-12 eao . This is at the level of single particle. 

A similar computation can be done at the level of configurations using CSFs instead of 

single particle orbitals. The expression for the EDM in terms of the CSFs is 

(Da) = (6s 2 (J=O)I.B16snp* (J=1))(6snp* (J=1)IHpTv I6s 2(J=O)). 
np* Eo - Enp* 
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Table 4.6: Lowest order contribution to EDM at the single earticle level. 

(6sll15llnp* ) (np* IIHpTV 116s) 
.... ... 

n E6s - Enp* (Da)np* Cumulated (Da)np* 

6 3.669693 -9.417666 -0.072060 4.8133 79 4.8133 79 

7 0.213237 -5.088595 -0.142747 0.0762 89 4.889668 

8 -0.065996 2.596551 -0.167278 0.010266 4.899934 

9 -0.037463 1.935825 -0.177622 0.0049 77 4.9049 11 

10 -0.0271 61 1.8516 32 -0.183073 0.0027 57 4.9076 68 

11 -0.018843 1.4277 90 -0.186604 0.001447 4.9091 15 

12 0.0125 74 -0.879899 -0.188995 0.0006 13 4.909728 

Where Enp* is the energy of the CSF 16snp* (J = 1)). The values got using the single 

particle approach and the CSFs should be the same except for the effect of the static 

correlation, which will change the value of the energy denominator from the single particle 

energy denominator. 

From Table4.6 it is clear that at the single particle level the lowest order contribution 

is dominated by 6p* and the contribution from the other virtual p* orbitals is marginal. 

Like in 78 there is a flip in the sign of H PTV matrix element for the intermediate energy 

virtual p* orbitals but a corresponding sign flip in the dipole matrix element maintains 

the sign of EDM. If not for the accompanying sign flip it can lead to cancellations. The 

fall in the contribution from the virtual p* starting from n = 7 is due to a decrease in the 

HpTvcoupling and the widening energy gap between np* and 68. Compared to 6p* the 

15 coupling with 7p* is more than one order of magnitude down and the energy gap is 

almost twice. In addition HpTVcoupling also decreases but at a slower pace compared to 

15 coupling. Over all there is a rapid fall in the jj coupling till 9p* after which it continues 

to fall but at a slower pace. The magnitude of the energy difference falls very fast for the 

first two bound virtual p* but is relatively stable after as the energy separation become 

smaller for the high lying orbitals. 

The contribution from the continuum orbitals to the lowest order can also be computed 

in the same way. To include the whole of continuum p* orbitals space first we have to 

compute the required matrix elements and apply the Gauss-Laguerre quadrature. The 
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Figure 4.3: The contribution from the continuum orbitals. 

individual contributions from the continuum p* orbitals are as in Table4.7. The last 

column in the table gives the total value of EDM till that continuum orbitaL Though the 

12 point Gauss-Laguerre quadrature has been used only the first 9 points have been given 

as the contribution from the rest is very small. The quadrature can be done using the 

expression (4.1). The Fig:4.3 shows the EDM contributions from the bound and continuum 

contributions plotted against the orbital energies. For the continuum orbitals the plot is 

generated with more data points than required for the Gauss-Laguerre quadrature. Trends 

in the contribution from the bound and continuum orbitals are very different and this 

is clearly brought out in the plots. The column for Da in Table4.7 is the individual 

contribution from the continuum orbitals weighted by the corresponding Laguerre weight 

factors. The last column is the cumulated value of (D) and the final value is the total 

contribution from the continuum orbitals. 

The individual contribution from -lp* is larger than the contribution from 7p* but 

its contribution to the overall quadrature gets suppressed as the weight factor is less than 

unity. The dipole matrix element flips in sign with increase in energy but magnitude of 

the energy denominator and the HpTV matrix element increase monotonically. This also 

flips the sign of the contribution to EDM. Since the energy has been scaled to 20 the 

contribution from the whole of the continuum p* spectrum is the final value multiplied 
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by (20/k12 ), which gives the contribution from p* continuum orbitals to the lowest order 

EDM as 0.0145 856CTO'Nz x 1O-12eao. Adding up with the contribution from the bound 

np* virtuals the value of EDM is 4.9243 136CTO'Nz x 1O-12 eao. 

Ts.ble :i.I: Lowest Qrder contribution to EDM frgID ~ontinuuID orbital§ . 
.... .... 

n (6s IIDllnp*) (np* I I HpTV 116s) f6s - f np* Da Cumulated Da 
-1 0.089841 -24.598244 -0.198462 0.0328211 0.0328211 

-2 0.010944 -24.8677 07 -0.2508 99 0.0056 102 0.0384313 

-3 -0.034406 -25.900569 -0.5289 89 -0.0097214 0.0287099 

-4 -0.0169 05 -27.287955 -1.363396 -0.0014750 0.0272349 

-5 -0.007459 -28.274533 -3.270294 -0.0001 618 0.0270 731 

-6 -0.0033 11 -28.871673 -6.6110 12 -0.0000 161 0.0270 569 

-7 -0.001456 -29.284800 -13.648049 -0.0000012 0.0270 557 

-8 -0.000647 -29.617500 -24.7771 29 -0.0000001 0.0270556 

-9 -0.000287 -29.929147 -42.7711 29 -0.0000000 0.0270556 

An importan~ feature of the continuum is that the contribution from -lp* is quite large 

compared to the contribution from the whole of the continuum spectrum. This implies that 

the important contribution from the continuum is from a small region in the k-space near 

the origin. This is evident from the individual values in Table4.7. For completeness of the 

computation the continuum orbitals is important as the contribution from the continuum 

is larger than that of 8p*. At the single particle level 6p* is the most important virtual 

orbital, it accounts for 97.747% of the lowest order EDM. The remaining p* orbitals 

including the continuum accounts for only 2.225% and the continuum alone contributes 

only 0.296% to the total value. 

4.4 The CI and Bloch Equation Based Formulations 

4.4.1 Comparison of the Different Methods 

As described in the previous chapter, atomic EDM can be computed by diagonalizing 

within the whole configuration space. It involves two diagonalization, one within each of 
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the even and the odd-parity sub-spaces. Since atomic EDM is the expectation value of 

the dipole operator wrt the ground state, for atomic Yb only the lowest energy A8F in 

the even parity sub-space is required. Within the odd-parity sub-space all the ASFs are 

required as they are the intermediate states. Though the 5d orbital does not contribute to 

the atomic EDM directly, it is very important for the correlation effects as there are CSFs 

containing 5d which mix strongly with I<po). Other configurations that mix strongly with 

I~o) are the double excitations from 6s 2 to the lower 8 and p orbitals. Among the odd­

parity ASFs the most important CSF is 16s6p*) and similar to the even-parity sub-space 

configurations with excitations to 5d are important. For comparison the value of EDM 

computed with CI, the perturbed CI(PCI) and the Bloch equation based formulation are as 

tabulated in Table4.8. The unit for EDM used in Table4.8 is the same as in earlier tables. 

Table 4.8: Comparison of results from different methods. 

81. No No of CSFs CI PCI MBPT 

Odd 
.... 

[-4] [-8] Even HpTV Da 

1 100 100 6.4263 76 6.4263 76 6.4263 76 6.426427 6.4263 76 

2 100 300 6.4263 71 6.4263 71 6.4263 71 6.426422 6.4263 71 

3 100 500 6.4294 36 6.4294 36 6.429436 6.429495 6.4294 36 

4 100 1000 6.4295 56 6.4295 56 6.429556 6.4296 12 6.429556 

5 500 1000 6.096502 6.0965 02 6.096502 6.096468 6.096502 

6 .500 1500 6.0964 05 6.0964 05 6.096405 6.096372 6.096406 

The CSFs considered are single excitations from 68,4/* and 4/ and double excitations 

with the occupied-orbital configuration 14/1368 1 ). The sequence of the CSFs is arranged 

in increasing principal quantum numbers and corresponds roughly to increasing energy. 

The results using PCI have been given for both the interactions treated as perturbations 

separately. Results under the heading H PTVare computed treating H PTV as the perturbation 

in the PCI formulation and similarly for fj. 

CI and PCI are diagonalization based methods and include the residual coulomb in­

teraction within the configuration space to all order, whereas in the Bloch equation based 

MBPT approach, the order of residual coulomb interaction is decided by the convergence 
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Figure 4.4: The convergence of the wave-operators 

criterion. For the results tabulated the wave-operator is computed till the order which 

contributes more than 10-10 to the CSF coefficients with the residual coulomb interaction. 

With the HpTV included as perturbation two sets of computation are done; one with the 

convergence criteria set to 10-4 and another to 10-8 • These are tabulated in the columns 

labelled as [-4] and [-8] respectively. Higher convergence criteria with HpTvhas been 

chosen as it has a scaling factor of GF • Results in the table emphasizes the following 

points 

• The results from CI and PCI are in perfect agreement thereby suggesting that the 

physical effects incorporated in the two approaches are the same even though the for­

mulations are different. The value of EDM computed with PCI is the same whether 

HpTVor jj is treated as the perturbation . 

• The result does not change significantly with the inclusion of CSFs which has excit­

ations to high lying orbitals. This is another test for the convergence of the orbital 

basis set in terms of all the interactions involved in the computation where as the 

test for convergence in the single-particle picture was without the residual coloumb 

interaction. 

Though the details of the formalisms are different, the physical effects included in all the 
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procedures are the same, so the results from MBPT should be identical with the CI and 

PCI results. Consider the first column in the MBPT results where the convergence criteria 

is set to 10-\ this result differs from those of CI and PCI by an order of 10-4 . This can 

be accounted as due to different physical effects included. Higher value of the convergence 

criteria mean lower order of residual coloumb interaction in the odd-parity configuration 

sub-space. As shown in the table when the convergence criteria is decreased to 10-8 , 

there is almost perfect agreement between the results from various methods. When the 

convergence criteria is set to 10-4 the order at which the wave-operator converges is 22 for 

nes in the even-parity CSF space and 12 for nes,edm in the odd-parity space, which means 

22 and 12 orders of residual coulomb interaction is included in the even-parity and odd­

parity configuration spaces respectively. This establishes the one to one correspondence 

of the physical effects included in each ()f the methods. 

The MBPT based approach has the best efficiency among the various approaches in 

terms of the memory usage and run time. Consider the last case with 500 even parity 

CSFs and 1500 odd-parity CSFs, the time taken, with CI, PCI and MBPT approaches 

are 5:58:23,00:15:39 and 00:7:07 hrs respectively. Ratio of the time taken with runtime of 

CI normalized to 100 is 100:4.366:1.986, this clearly shows the advantage of the MBPT 

based formalism in terms of run time. For the MBPT approach, the time taken is with 

the convergence criteria set to 10-8 . Part of the CI and PCI approaches which takes most 

time is the matrix diagonalization and the enhanced run time efficiency of MBPT is the 

absence of diagonalization. As shown in the Fig:4.4, the convergence of nes is much faster 

than that of !1es ,edm' This is due to the strong coupling with H pTV ' However one point to 

be noted is that H PTV is parameterized in terms of G F' which will be included later while 

computing Du. 
The computation has been done with excitations from 6s,41* and 4f alone. This 

checks the importance of the high-lying bound virtuals. It is also necessary to check the 

importance of excitations from the occupied orbitals, for which only the lowest virtuals in 

each symmetry are selected and the configurations with excitations from deeper cores are 

included gradually. The result for such a sequence of runs is tabulated in Table 4.8. The 

sequence of runs show that the excitations from the 41 orbitals contribute significantly 
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to the value of EDM but the excitations from the 5p and 58 are not so important. This 

justifies the choice of excitations till the 58 occupied orbital. Configurations with excitation 

from 

Table 4.9: Contributions from the occupied orbitals. 

Sl. no CSFs(non-rel) Value of Da 
Even CSFs Odd CSFs 

1 16s2) + 17 s2) + 16p2) + 15d2 ) 16s6p) + 17 s6p) + 16p5d) 4.8402 78 

+15j2) + 1687s) + 16p5!) +15d5!) 

+14/13(6p + 5f)) +14j13(78 + 5d)) 

+14/136s(7s6p + 7s5/ +14j13 6s(782 + 5d2 + 7s5d 

2 +6p5d + 5d5f)) + 14/12(782 +6p5f)) + 14j12(7s6p 4.784217 

+6p2 + 5d2 + 5j2 + 7s5d +785/ + 6p5d + 5d5f)) 

+6p5f)) 

+15p56p) + 15p56s(7s6p +15p5(7s + 5d)) + 15p56s(7s2 

+7s5/ + 6p5d + 5d5f)) +5d2 + 7s5d + 6p5f)) 

3 +15p54j13(7 s2 + 6p2 + 5d2 +15p54j13(7s6p + 7s5! + 6p5d 4.7486 74 

+5j2 + 7s5d + 6p,5J)) +5d5f)) + 15p4(7s6p + 7s5/ 

+15p4(7s2 + 6p2 + 5d2 + 5j2 +6p5d + 5d5J)) 

+ 7 s5d + 6p5!)) 

+15878) + 15868(7 s2 + 5j2 +15s6p) + 15s6s(7s6p + 7s5d 

+5d2 + ,sF + 7s5d + 6p5!)) +6p5d + 5d5J)) + 15s4f13(782 

4 +15s4jI3(786p + 78,5/ + 6p5d+ +6p2 + 5d2 + 5j2 + 7s5d 4.745089 

+5d.5!)) + 158,5p5(7s6p +6p5f)) + 15s5p5(782 + +6p2 

+785/ + 6p5d + +5d5f)) +5d2 + .Sj2 + 785d + 6p5!)) 

the 4! occupied orbital adds to the contribution from the configurations with excitations 

from 68 but there is a cancellation with the contributions from the 5p and 58 excited 

configurations. 
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4.4.2 Bloch Equation Based MBPT 

4.4.2.1 Computation of Des and Eo 

In the previous section we have compared the results from different methods. In this section 

we shall elaborate to a deeper extent on the results from the Bloch-equation based MBPT 

formalism. As mentioned in earlier sections the matrix approach to the Bloch-equation 

does not distinguish between different effects and the topology of the diagrams involved. 

As a result there are contributions from the size-inconsistent terms both in the energy 

expression as well as the properties computed. The fact that CI is a size-inconsistent 

theory and the result obtained using MBPT is the same as those from 01 and PCI also 

establishes the size inconsistency of the matrix based MBPT method. The first part of 

the computation is the computation of the wave-operator nes, using which the energy of 

the ground state ASF Eo can be computed. The wave-operator nes can be computed in 

an order by order sequence using the Bloch equation given in the previous chapter 

where the definitions of the quantities remain the same. From the wave-operator nes the 

ground state wave-function Iwo) and energy Eo are got as 

Since the computation is done within the framework of EN-partitioning of the Hamiltonian, 

the first order energy correction of the ground state is zero. This is because in EN­

partitioning the diagonal elements of the Hamiltonian matrix are taken as the energy of 

the configuration and offdiagonal elements as the perturbation. 

The whole of the even parity configuration space is spanned by 9930 OSFs of which 

1-4435 has its occupied as 14j14 6s), 14f14), 14f13682)14f136s) and 14j126s2 ), 4436-9094 cor­

responds to occupied of the form 15p54j146s 2 ), 15p54j146s) and 15p54j13) and the remain­

ing CSFs has the occupied configurations 15s5p64P46s 2 ), 15s5p64j1 46s), 15s5p6 4j13), and 

15s5p6 4f146p5). Using this set of configuration the ground state wave-function is 
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-0.0600 6015d2) + 0.0568 6116p7p) - 0.0497 4315d*2) + 0.0480 5416p* 7p* ) 

+0.0443 1816p8p) - 0.0442 1516888) - 0.0320 7315d6d) + .... 

Where the wave-function has been renormalized, the normalization constant is 1.0809 37. 

In the above expression only first ten important CSFs have been selected. As expected 

most ofthe important CSFs in l\lIo) are doubly excited except for 1687 s), this being a single 

excitation does not interact very strongly with the ground state CSF 1682) but contributes 

significantly through other configurations when the residual interaction is taken to very 

high orders. Values of Eo with increasing size of the even configuration space is as given 

in Table4.10. 

Table 4.10: The energy of the ground state ASF with increasing CSF-space size. 

S1. no No of CSF Energy S1. no No of CSF Energy 

1 100 -14067.6714 79 2 500 -14067.6755 69 

3 1000 -14067.6756 60 3 2000 -14067.6942 64 

5 3000 -14067.6942 68 6 4000 -14067.6949 91 

7 4435 -14067.6949 91 8 5435 -14067.6974 13 

9 6435 -14067.6974 21 10 7435 -14067.701928 

11 8435 -14067.7040 97 12 9094 -14067.704097 

13 9594 -14067.7042 26 14 9930 -14067.704226 

Configurations are added to the configuration space in sequence of excitations from 

the occupied orbitals. The sequence of excitations is similar to that of Table 4.2 except 

that the virtual orbital space is much larger and hence the size of the configuration space 

is also large. As the size of the configuration space is increased more many-body effects 

are included in the computation. A direct measure of the importance of the even parity 

configurations added is the energy of the ground state ASF, the size of the change induced 

is a direct indication of the importance of the CSFs added. 

An important quantity that can be derived from the values given in the table is the 

change in Eo. Define t1Eo as the energy difference between the CSF energy of 1682) and the 

energy computed using the configurations in the even-parity CSF space-correlation energy. 
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From the plot of .6..Eo it is evident that the change in the ground state ASF energy is not 

uniform but in steps interrupted by regions of very minimal changes. Most significant 

changes in 6.Eo occur while going from 100 to 500, from 1000 to 2000 and from 6435 to 

7435 CSFs respectively. These changes are not the combined effect of all the CSFs added 

but due to a few important ones. The largest change in !:lEo is in going from 1000 to 

2000 CSFs this corresponds to contribution from the occupied configuration 14j14), that 

is double excitation from the 68 orbital shell. Of the remaining two, the first one is due 

to CSFs with occupied configuration 14j136s) and the other jump is due to the CSFs with 

occupied configuration 15p56s). Each individually contributes -0.0041 82, -0.0179 26 

and -0.0045 07 hartrees respectively, the combined effect amounts to 81.20% of the total 

change in the ground state energy due to correlation effects. The total change in Eo due to 

correlation effects is -0.0304 50 hartrees. From these it can be concluded that, the most 

important CSFs that contribute to the correlation energy are those with the occupied 

configurations 14j13 68), 14j14) and 15p5 68) respectively. As to be expected the doubly 

excited CSFs are most important for capturing the correlation effects and among them 

it is the low lying double excitations from 68 orbital shell that gives the most significant 

contribution to correlation energy, it contributes 54.74% of the correlation energy. 

The plot (b) in Fig:4.5 shows the need to include Hes to high orders to capture the 

correlation effects accurately. As shown in the graph the correlation effect due to one order 

of Hes is -0.0436 033 hartrees and decreases in magnitude monotonically till third order 

to -0.0306 67hartrees but increases in the fourth order to -0.0343 38hartrees. This trend 

of oscillation about the final value of !:lEo -0.0327 48 hartrees continues till it converges. 

The cycle of the oscillation has a period of four orders, that is in four orders it goes to 

the same side of the final value of .6..Eo and the amplitude of the oscillation decreases with 

each cycle. Over all the value of .6..Eo behaves like a damped oscillator with a cycle of four 

orders. If Eo is computed by truncating the perturbation to the first few orders where the 

amplitude of oscillation is quite significant the value of !:lEo can be erroneous. 

The Fig:4.6 shows the trend of wave-operator convergence. The first graph is a plot of 

the value of the convergence criteria against the order of perturbation and second graph 

is plot of loglO of the convergence criteria against the order of perturbation. From the 
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Figure 4.5: The change in energy due to many-body effects introduced by the configura­

tions. 

first graph it is evident that the convergence criteria starts off with a small value but as 

shown in the second graph in terms of order of magnitude, the convergence is not so fast. 

Still the convergence is monotonic with very regular fluctuations. As described in the last 

chapter, the first step for computation of the wave-operator Des,edm is the computation of 

nes , then using it various orders of O,s.edm can be computed. 

4.4.2.2 Computation of Des,edm and Da 

The next step towards EDM computation is the inclusion of odd-parity CSFs within the 

configuration space Ilsed so far, which has been solely spanned by even-parity CSFs. Once 

HPTV is applied to the wave-operator nes , it maps onto the odd-parity component of the 

configuration space and can never be mapped back to the even-parity component as HpTV 

is treated to first order only. This is followed by a sequence of residual coulomb interaction 

He., which accounts for the correlation effects in the odd-parity sub-space. In essence what 

is achieved is a sequence of perturbations applied to the ground state CSF 1682), where 

HpTv is sandwiched hetween all possible arrangements of Hes. After the computation of 

the wave-operator nes , it is stored in an order by order sequence. These are accessed as 
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Figure 4.6: The convergence of the wave-operators 

and when required during the computation of Oes,edm, this is an advantage as nes,edm is 

computed order by order. The wave-operator nes,edm can be computed in an order by 

order sequence using the Bloch equation defined in the earlier chapter 

n-l 

[n(n) R ] P _ (Q H l""I(n) Q V. r\(n-l) ~ l""I(m) P V. l""I(n-m-l)) P es,edm' 0 + - - PTvHes + - esHes,edm - L..J Hes,edm + esHes +. 
m=O 

Where the definition of all the quantities remain the same as defined in the earlier chapter. 

Once the wave-operator nes.edm is computed, the mixed parity ground state wave-function 

l\Ito) can be written in terms of the wave-operators nes and Oes,edm as 

I \It 0) = I \l! 0) + I W~orr) = (nes + nes,edm) I q)o) 

From this expression the value of Da can be calculated using the expression 

While choosing the odd-parity configurations the same criteria as in even-partiy space 

is applied. This is because the criteria used in the even-parity space are valid for odd­

parity also as these were arrived at by considering Da which is a property that involves 

both the even and odd parity configurations. The whole of the odd parity configuration 

sub-space is spanned by 17087 CSFs, where the CSFs 1-11676 have occupied configurations 
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14j146s), 14j14), 14j136s2) and 14j136s) , 11677-15768 CSFs are spanned by occupied con­

figurations 15p54j146s2),15p54P46s) and 15p54j13) and 15769-17087 is spanned by CSFs 

with occupied configurations 15s6s2}, 15868), 15s4j13) and 15s5p}. The majority of the con­

figurations are with the excitations from 41 orbital, because f has the highest total angular 

momentum among all the orbitals considered and the total angular momentum of the CSF 

J = 1 can be got in many intermediate coupling sequences. 

With this choice of configuration space, many forms of correlation effects will be picked 

up. The correction to the ground state IWo} from the opposite parity sub-space due to 

HpTV with all the configurations considered is 

1\II~orr) = A( - 55.1403 7316s6p*) - 17.3681 8416s7p*) + 1O.823~ 8616s6p) 

-9.5064 2315p* 78) - 9.2841 OOI586p*) + 7.8322 721688p*) + 7.1950 5616p* 5d *) 

+5.5464 221689p*) + 5.5189 5816p5d*) + 5.1246 7715p* 8s) + ... ). 

Where A = .J2CT O'NG F • In the expression for l\lf~orr) only the first ten important config­

urations has been listed. Though the coefficients are much larger than unity when scaled 

by the parameter ViG F' it becomes very small. The product of the coupling constant CT 

and nuclear spin aN is retained throughout as a parameter and CT can be estimated by 

combining with the experimental results. The above expression for IW~orr) shows that: 

• As in the lowest order single-particle case, the coefficients of the CSFs 16snpt<} flip sign 

for n ;::: 8. In the lowest order computation a complementary sign flip of the dipole 

matrix element will not change the sign of Da. Here there can be configurations 

where this does not happen. 

• Most of the important CSFs are singly excited with respect to the ground state 

CSF 16s2), where as in Iwo) doubly excited CSFs were more important. This is 

because the ground state ASF 1\110) is strongly dominated by 1682) and HpTyis a 

single particle operator. So the singly excited odd parity CSFs that connects to 

16s2) through HpTvcontributes very strongly. 

• Singly excited configurations like 16s6p) can contribute through three possible many­

body routes. First HpTV takes 16s2 ) to 168npt<} then a sequence of Hes connects it to 
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16s6p), second a sequence of Hes connects 16s2 ) to 16p*6p) and HpTV takes it to 16s6p) 

and third a sequence of Hes takes 16s2 ) to a CSF \~i) which connects to l~j) via 

HpTvand from there another sequence of Hes takes it to 16s6p). The importance of 

many-body effects is demonstrated by the presence of 16s6p) as the third important 

CSF that contributes to IW~orr)' 

• The two most important doubly excited odd-parity CSFs for the evaluation of EDM 

are 16p* 5et; and \6p5&tc). More interesting is the second as both the virtual orbitals 

involved cannot contribute to the HpTvmatrix elements. Among the possible many­

body routes which can contribute to the co-efficient of \6p5dF) one possibility is 

through the deeper occupied orbitals 5p* and 58, this would contribute to core 

polarization effects. 

The value of Do. as computed using the set of configurations with increasing number of 

configurations is tabulated Table 4.11. In this sequence of runs both even and odd CSFs 

are increased alternately or at the same time. This gives the importance of particular 

occupied orbitals with respect to both the even and odd parity CSF space. 

Another possible sequence of run is to keep the number of either the even or odd CSFs 

fixed to the maximum allowed and then compute the EDM by increasing the number of 

CSFs in the opposite parity CSF space. The results of such a sequence of runs is given in 

the Table 4.12. If the earlier sequence of runs shows the importance of occupied orbitals in 

the whole configuration space, these two runs show the importance of the occupied orbitals 

in CSF sub-space of each parity. 

Like in correlation energy t..Eo there is a significant change in the value of EDM when 

CSFs with double excitations from 6s are included. To see the change more clearly the 

values of Da in the two sequence of the runs are plotted in Fig:4.7. Consider the sequence of 

runs with the number of even-parity CSFs fixed, the value of Da increase as the number of 

the odd-parity CSFs is increased. Which means that there are no appreciable cancellations 

due to addition of CSFs in the odd-parity sub-space. On the other hand in the second 

sequence of runs where the number of odd-parity CSFs is fixed, the value of Du decreases 

as the number of even-parity CSFs is increased. This trend is opposite as compared to 



• - !J2 _4~.~4~.2~.2~:~C~o~m~p~u~t~a~tl~o~n~o~f~n=e~§e~dmm~an~d~D~g __________________________________ ~_~ __ _ 

Table 4 11' Values of Da for different number of even and odd parity configurations. 
-> -81. no No of CSFs Da 81. no No of CSFs Da 

Even Odd Even Odd 

1 100 100 6.4264 27 17 4435 10500 4.172247 

2 100 300 6.4264 22 18 4435 11500 4.1722 47 

3 100 500 6.4294 90 19 4435 12500 4.1741 :3() 

4 100 1000 6.4296 12 20 4435 13500 4.174074 

5 500 1000 6.096468 21 4435 14500 4.2069 56 

6 500 1500 6.0963 72 22 4435 15768 4.2198 86 

7 500 2500 6.1282 87 23 5435 15768 4.5344 87 

8 1000 2500 6.1280 27 24 6435 15768 4.5334 98 

9 1000 3500 6.1242 55 25 7435 15768 4.5000 68 

10 3000 4500 4.1982 77 26 8435 15768 4.4295 81 

11 4000 4500 4.1721 78 27 9094 15768 4.4295 81 

12 4000 5500 4.1721 75 28 9594 15768 4.4424 H;3 

13 4000 6500 4.1722 55 29 9930 15768 4.4424 ():~ 

14 4000 7500 4.1722 61 30 9930 16768 4.44a6 2:) 

15 4000 8500 4.1722 44 31 9930 17087 4.44:38 GH 

16 4435 9500 4.1722 46 
" 

the earlier sequence. In both sequence of runs there is a significant changp in th(· valll(' 

of Da when CSFs with double excitation from 6s orbital are added. But, t.he sip.;l\s of !.Il(' 

change are different, in the even CSF space the inclusion of CSFs with douhl(· PX<'itatiDJl 

from 68 increases the value of Da where as in the odd-parity CSF's the tretld is opposite. 

Consider the expression for EDM it can be expanded as 

Da = 2 (\ <l>oIDOes,edml<Po) + L: \ <Po lo!~n) DOes,edm\<Po) ) . 
n 

Which can be rewritten in terms of configuration coefficients as 

Da = 2 [\<Pol + L:\<PilcJes)]i50es,edml<Po) = 22;: [\<Pol + ~<<pilcJf~S)] i5cy-s'f~dlllllq)J)' 
t J #0 

(·tA) 
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Table 4.12: Values of Da for different number of even and odd parity configurations 

No of CSFs 
.... 

SI. no 
... 

Da No of CSFs Da 

Even CSFs Odd CSFs Even CSFs Odd CSFs 

9930 12 3.3654 83 10 7 17087 8.243089 

9930 30 3.360554 11 19 17087 8.243089 

9930 3648 3.4095 46 12 1243 17087 7.6831 05 

9930 3846 4.3895 21 13 1390 17087 4.264544 

9930 11676 4.3895 43 14 4435 17087 4.2118 95 

9930 14070 4.3916 11 15 4448 17087 4.1837 51 

9930 14100 4.3760 30 16 6713 17087 4.528275 

9930 15768 4.4424 65 17 9094 17087 4.433381 

9930 17087 4.4438 58 18 

Where the definitions of all quantities are the same as defined in previous chapter. Within 

the whole configuration space, the contribution from the first term is 5.4394 39 and the 

contribution from the second term is -0.6417 31, which is just 11.80% of the first term. 

Five most important configurations in the second term from the even-parity sub-space 

are 16p*2), 16p2), 16p* 7p*), 15d*2) and 16p7p) and their contributions are -0.8119 50, 

0.2065 15, -0.1001 58, 0.0738 55 and 0.0599 84 respectively, the values of EDM are in 

units of CT(JN x 10-12 eaQ. All these are doubly excited configurations and mixes with 

the ground state CSF significantly but the singly excited CSF 1687 s) which is the third 

important CSF in 1 Wo) does not contribute strongly. In addition there is shift in the 

sequence of the important CSFs compared to the sequence in terms of contribution to 

Iwo), this is due to difference in dipole and H pTV coupling strengths between different 

CSFs. 

Within the whole CSF space considered the value of Da is 4.4438 58. In absolute terms 

this is down by 0.4804 56 compared to the lowest order result of 4.9243 136 computed 

in an earlier section. A major contribution to this difference is the many-body effects, 

this is because the direct contributions from the CSFs added to the configuration space 

is small. Which implies that the contribution from the many-body effects is just 10.81 % 
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Figure 4.7: The value of Do. 

of the total value and the change is opposite in sign. An added advantage of the order by 

order approach is that the contribution to EDM can be computed in terms of the order 

of residual coulomb interaction. Earlier while computing the ground state ASF energy it 

was shown how a truncation in the order of Hes perturbation can give an inaccurate value 

of Eo. 

4.5 The Size-Consistent Formulations 

4.5.1 Size Consistency with the Linked Diagram Theorem 

The simplest remedy to avoid the size inconsistent terms in the matrix based Bloch­

equation formulation is to select only the linked terms in the computation. A very simple 

method is the CEPA-O formalism. The wave-operators in this approach are computed 

iteratively and the renormalization terms are excluded from the Bloch equation. The wave­

operators are then defined in terms of the excitation amplitudes. From the description in 

the previous chapter, the wave-operator with Hes as the perturbation in the even-parity 

CSF space in terms of excitation amplitudes are: 

Oes(l) = L \4>:)( <I>o\x: and Oes(2) = L \ <I>:b) ( <I>O\X:b' 
ar o.brs 
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Similarly, the wave-operators with the perturbation HpTV included are 

0pTV(1) = L I~)(~olx: and npTv (2) = LI~~)(~olx:b 
ar ar 

The equation for the wave-operators Oes(1) and Oes(2) are 

[n~ {l ), Ho 1 P = ~ [ ( <1>; 1 He. 1 <1>0) + ~ ( <1>; 1 H" 1 <1>;: ) x;', ~,E, ( <1>; 1 H" 1 <I>~;: ) x;::: 1 
I~:)( ~ol 

[n,,( 2), Ho 1 P = f. [(<1>;; IH" 1<1>0) + ~ ( <1>;: IHe·1 <1>;:) x;: ~,f,;Y;: 1 H •• 1<1>;:::) x;::: 1 
I~:b)( ~ol· 

and the equations for the wave-operators 0PTV (1) and npTV (2) are 

[nm (1), Ho 1 P = ~ [(~ IH'TV 1<1>0) + ~ (~IH 'TV 1 <1>;', )x;: + .,f,;" (~I H", 1 <I>~,,: )x;:,: 

+ L (~IHesl<l>~)X~ + L (~IHesl<l>!~)x~~ll~)(~ol (4.5) 
ct cdtu 

[npTV (2), Ho] P = L [ L (~:I HpTV 1~::b;)X::b: 
abrs a'b'r's' 

+ L (~;IHesl~)X~ +L(~~ IHesl~~~)X~dll~~)( ~ol (4.6) 
ct cdtu 

As discussed in the previous chapter, only the connected components are picked up 

from the term (~~bIHesl~~:)x~: in the equation for nes(2). The discussion on the imple­

mentation of the component selection scheme is given in a later section in this chapter. 

The results-the value of Va and energies-obtained when compared with the results from 

cluster approach give a measure of the contribution from the renormalization terms in the 

Bloch-equation. The values of Da computed using the sequence followed in the matrix 

based Bloch-equation are tabulated in Table4.13. In this formalism, the renormalizatioll 

terms and the many-body effects they give rise to are excluded. The value of Da computed 

within the whole CSF space in this formalism is 5.9421 36 and exceeds the result from the 

matrix based method by 1.4982 78. Compared to the lowest order result it is higher by 

1.0178 22. That is, the many-body effects arising from the size-consistent normal terms 

in the Bloch-equation increases the value of Da whereas the effect of the renormalization 
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Table 4.13' Value of jj computed using the CEPA-O formalism a 

51. no No of CSFs Da S1. no No of CSFs Da 
Even Odd Even Odd 

1 9930 12 3.825023 10 7 17087 8.449964 

2 9930 30 3.842696 11 19 17087 8.449964 

3 9930 3648 3.925241 12 1243 17087 8.3408 14 

4 9930 3846 5.778309 13 1390 17087 5.512626 

5 9930 11676 5.7783 88 14 4435 17087 5.5091 16 

6 9930 14070 5.7820 42 15 4448 17087 5.3769 11 

7 9930 14100 5.8370 85 16 6713 17087 5.6132 71 

8 9930 15768 5.943756 17 9094 17087 5.927526 

9 9930 17087 5.9421 36 

terms tend to lower the value of Da. But, the many-body effects from the renormalization 

terms alone cannot be isolated as any change in the renormalization terms effects the other 

terms in the next order. 

4.5.2 Cluster Based Formulation 

The cluster based formalism is not an order by order formalism but an iterative scheme in 

which the Bloch equation is cast in terms of the order of excitation rather than the order 

of perturbation. Except for the cases where there is a change in the order of excitation the 

matrix elements of Hes used in order by order approach can still be used. Where there 

is a change in the order of excitation modifications are required in the matrix element 

generation so that it picks up only the connected components and leave out the unconnected 

contributions. Compared to size of the configuration space these are few and with little 

modifications this can be done. 
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4.5.2.1 The Singly Excited Amplitude Cluster Equation 

Consider the cluster amplitude with only the residual coulomb interaction as the perturb­

ation. The modified Bloch equation for the singly excited cluster amplitudes as given in 

Chapter3 is 

[T~(l), Ho] P - ~ [( if>:IH~Iif>o) + ~ (if>:IH51if>::)r.;' + .,~" (if>:IH~Iif>::t)r.;;f -
(T:W)EPVllq>~)(q>ol· (4.7) 

The diagrammatic representation of the first three terms.in the single-excitation cluster 

operator equation are given in Fig4.8. The different terms in the cluster equation that 

---0 
(a) (b) (c) (d) 

-0 

(e) (f) (g) 

--8 

(h) (i) 0) 

Figure 4.8: Diagrams that contributes to the single-excitation cluster amplitude. 

correspond to each of the diagrams are as described: 

• Diagram (a) contributes to the first term (q>~IHeslq>o) in the cluster equation. This 

term is independent of any cluster amplitudes and is an important term as the 

iteration will proceed from this term. Since it does not involve any of the cluster 

amplitudes at any stage of the iteration the contribution from this term is the same, 

that is what ever be the order of iteration the contribution from this term is always 

first order in Hes. 
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• The diagrams (b),(c),(d),(e) and (f) contributes to the second term (cp~IHeslcp~:)7;". 

Here the Hes matrix element is coupled with the single excitation cluster amplitude. 

It starts contributing from the second iteration, where the cluster amplit~de 7;" is 

just the matrix element (cp~:IHesICPo) in the first iteration . 

• Diagrams (g),(h),(i) and (j) contributes to the third term (cp~IHesl<I>~:~:)7;,~f and 

couple the double excitation cluster amplitude with the Hes matrix element. This 

adds one more order of Hes to the all the terms that contribute to 7;;,~~/, which implies 

that the lowest order in terms of Hes that contribute to this term is two. The same 

is true of the second term too. The first order contribution as stressed earlier is 

always picked up from the first term. 

Consider diagrams (c) and (e), though they resemble the Hartree-Fock potential scattering 

diagram these are quite different. Take the the bubble part in diagram (c), it is summed 

over the occupied orbitals common to both the initial and the final CSFs in the matrix 

element of Res. An example is if the initial and final CSFs are Icp~:Z:) = 1782 ) and Icp:z) = 
17888) respectively, the bubble part in (c) has all the occupied orbitals except the 68 orbital. 

This is because both the CSF does not have 68, where as in the Hartree-Fock scattering 

diagram the bubble should have contribution from all the occupied orbitals. A similar 

description is true of diagrams (d) and (f) too. 

The first three terms does not introduce any unlinked diagrams as the wave-operator 

is linear in cluster operator nes = 1 + Tes{l) + Tes (2). Non-linear terms like Tes(1)2 can 

produce unlinked diagrams that contribute to single excitation cluster amplitude equation. 

The linear approximation is justified as the configurations space is confined only upto 

double excitation and the contribution from the non-linear term Tes(1)2 to the double 

excitation wave operator is small. 

The renormalization term T:rw has both EPV and EPO terms, out of which only the a 

EPV terms are included in the equation. The EPO part is discarded as these are unlinked 

terms. With suitable rearrangements it can be shown that (7;W)EPV is same as the linked 

EPV contribution from terms non-linear in cluster amplitude in the equation but with a 

negative sign. which is taken care of by the negative sign of the renormalization term. 
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With these terms in the equation, terms non-linear in cluster amplitude are included in 

the expression for the wave-operator. The non-linear terms included through (7:W)EPV 

are Tes(1)2 and Tes(1)Tes(2), that is second order terms involving Tes(1) amplitude will be 

included in the single excitation amplitude equation; This implies that the wave-operator 

assumes the form 

(4.8) 

Terms that are not included in the single excitation cluster amplitude equation are 

In a later section will discuss how to choose the EPV terms that originate from the renor­

malization term. 

4.5.2.2 The Doubly Excited Cluster Amplitude Equation 

The modified Bloch equation for the doubly excited cluster amplitudes as given in Chapter:3 

IS 

L [\ ~:~IHesl~o) + L \ q,:bIHesl~::)7;" + I: \ q,:bIHesl<I>::b}T;~~' -
abrs a'r' a'/lr',/ 

(Ta'bSW ) EPvll~:b)( <I>o I. (4.9) 

The diagrammatic representation of the first three terms in the above equation are given 

in Fig4.9. The terms in the double-excitation cluster-operator equation can be simplified 

further. The first term is quite trivial and is the double excitation counter part of the 

first term in the single excitation cluster amplitude equation. The second term can be 

expanded to individual terms as 

L (<I>:bIHesl<I>::)T;" = 
air' 

(<I>:b IHeslq,:)7; + L (q,:bIHesl<I>:,)7; + L: (<I>:bI Hes l<I>:')7;' 
a':;f:a,b r' :;f:r,s 

+ I: (~:bIHesl<I>~, )Ia~ + I: (<I>:b IHes I <I>b'}'7( 
a':;f:a,b r':;f:r,s 

The first term on the right has both connected and disconnected terms, for cluster equa­

tions only the connected term should be retained. The remaining terms are connected and 
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(e) (1) (g) (h) 

(I) (j) (k) 

Figure 4.9: The diagrams for the terms in doubly-excited cluster operator equation. 

hence linked too. Terms with a' =j:. a, b; r' # r, s does not contribute as these are triple 

excitations. The above equation can then be written as 

L (~~bIHesl~~:)T;;' = [( ~:bIHesl~~)7;] + E (Oa'a + Oa'b) ( ~~bIHesl<P~:)T;" 
a'r' conn r':/:r,B 

+ L (Or'r + 5r's)(CP:bIHe51<P~:)T;;' 
a':/:a,b 

Similarly, the third term can be expanded to 

L (~~bIHesl<P~:b:)T;'~~' = L L (<P:bIHesl<P~b:)Tabf + E [( <P~bIHesl<p:~s)T:;8 
a'b'r's' b':/:a,h':/:r,s r':/:r,s 

+ L( ~:bIHeslcp:~s')T:;s'll L [( <P:bIHesl<P:~b)7;b 
s':/:r,s Ya':/:a,b 

+ E (~~bIHesICP:~b' )T;'i,,]. 
b':/:a,b 

Here all the terms are connected and terms that are triply and quadruply excited have 

been excluded. Each of the diagrams will have an exchange diagram too. Terms that 

correspond to each of the diagrams are: 

• Diagram (a) correspond to the first term in the cluster equation and has no depend­

ence any of the cluster amplitude . 

• (<P:bIHesl<p:)T; contribute to diagrams (b) and (c). The final CSF in this term has a 

pair of hole-particle pair in common with the cluster amplitude, which means when 
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the connected diagrams from this term are considered one hole/particle state does 

not change after the Hes interaction. This type of diagram belong to the first type of 

EPV term as classified by Kelly. The diagram (b) correspond to the hole line EPV 

diagram and diagram (c) to particle line EPV diagram. 

• (Oa1a + Jalb)(4)~bIHesl4>~:)7;'' contribute to diagram (c). Though the topology of the 

diagram is same as that of (4)~bIHesl4>~)7:, it is an EPO diagram. Here the Hes 

interaction changes the state of the particle and picks up the effect of core-virtual 

correlation, which can be classified as core-polarization effect. 

• (JrJr+Jrls)(~~bIHesl~~;)7;" contribute to diagram (b). This also has sirnilartopology 

with (<I>~bIHesl<I>~)7: but is again an EPO diagram. In this term the hole state get 

changed and correspond to core-core correlation effect, where one of the core gets 

excited to virtual state and the hole state in the cluster amplitude just change its 

state. 

• (4)~bIHesl<I>~b:),J:'i,1' contribute to diagram (h) and (i). These are EPO diagrams 

where a hole-particle change to another hole-particle pair. These are the terms 

which include the core-virtual correlation effects. 

• The term (<I>~bIHesl<I>:~S)7ab's contribute to diagrams (f) and (g). These are EPO 

diagrams where one of the particle states in 7;;8 has been excited to another particle 

state. This term can also contribute to EPV diagrams of the first kind, if it is a 

hole-line EPV diagram then it will correspond to (h) and (i) and if it is particle line 

EPV then diagram (j). 

• (~:bIHesl~:t),T,:;sl contribute to diagram (j). This is a double excitation where the 

particle states from the cluster amplitude 7;;SI are excited different particle states 

but the hole states in the remain the same. These terms can capture the correlation 

effects due to the virtual-virtual orbitals. 

• (<I>~bIHesl4>~7b)7;'b contribute to diagram (d) and (e). This term correspond to change 

of the hole and captures the single-body hole-hole interaction component. These are 
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both EPO diagrams with the effective single-body interaction. It can contribute to 

the EPV diagrams, the hole line EPV diagram arising from this term is (k) and the 

particle line EPV diagrams are (h) and (i) . 

• (~~tIHesl~~~bl )7;'bl contribute to (j) and is the hole-hole correlation term. 

Thus terms in the cluster equation contributes to different physical effects. So far only 

the first three terms in the cluster equation have been considered. The last term in the 

doubly excited cluster amplitude (Ta'bsW)EPV is a renormalization term. It picks up a set 

of terms non-linear in cluster amplitude and these are: 

That is, this term picks up a selected class of EPV terms having the cluster amplitude 

Tes(2) and non-linear in cluster amplitude. Consider the expression for W 

W = P Hes (Tes(1) + Tes(2)) P. 

The non-linear cluster amplitude term Tes(l )Tes(2) is picked up through the term P Hes Tes(1 )P 

in W. This implies that the term (Tabs P HesTes(1 ))EPV can have one hole/particle EPV line 

or a pair of hole-particle EPV lines. Where as in the single excitation cluster amplitude 

equation, contribution from Tes(1 )Tes(2) is captured through the term (7: P Hes Tes(2) )EPV 

in (7:W)EPV. The number of EPV hole-lines or EPV particle-lines in this term is the 

same as in P HesTes(l )P. In general the number of EPV hole-lines and particle-lines in 

(Tes(n)PHesTes(m)p)EPV is limited by by Hes if m,n > 2 and by cluster amplitudes if 

m < 2 or n < 2. Though the term Tes(1 )Tes(2) is included in both the single as well as 

the double excitation cluster amplitude the topology of their diagrammatic representations 

are different. Diagrams from (7;W)EPV has only a pair of hole-particle lines where as 

(TabsW)EPV has two pairs of hole-particle lines. 

4.5.2.3 Selection of EPV Terms and Connected Terms 

As the formulation is based on CSF matrix elements, terms linear in the cluster amplitude 

does not introduce EPV diagrams. Because, terms linear in cluster amplitude can be 
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EPV only when there are CSFs which violate exclusion principle, which is not possible. 

The EPV diagrams arises from renormalization terms which are non-linear in cluster 

amplitude. The diagrams representing the renormalization terms are just the cluster 

diagrams multiplied by energy diagrams and hence unlinked but these can suitably be 

rearranged to give connected diagrams. 

As a step in selecting the EPV terms all the orbitals-the occupied as well as the virtual­

are given integer labels. These labels are chosen to be prime numbers. Since each CSF 

can be identified by the hole and particle states in it, each CSF can be identified by the 

product of the prime number labels of these holes and particles. For the ith CSF let this 

number be Ni • Along with this, the labels of the holes and particles are also retained and 

for the ith CSF let these be ki' ii, mi and ni. These five numbers-the hole/particle labels 

and their product-are sufficient to identify a CSF as the configuration space has CSFs till 

double excitation only. If the CSF is singly excited, then only three numbers are required 

to identify it-the label for the hole and particle and their product. To maintain consistency 

the remaining two indices are filled with another prime number not used in labeling the 

occupied/virtual orbitals. Let this prime number be Np• According to this scheme, the 

ground/reference state is identified by (Np )4, Np , Np , NpandNp• Similarly, labels are also 

given to the cluster amplitudes. 

Once the CSFs and cluster amplitudes are labelled the required terms cr;W)EPV are 

those where the number N identifying the CSF in W can be divided by one or more of the 

numbers in kimn identifying the cluster amplitude T;. The number of possible division 

is the number of common hole/particle lines between r; and W. During the selection 

process division by Np should be discarded as this does not represent any hole of particle 

states. 

The term (<P~bIHesl<I>~:)T;" in the doubly excited cluster amplitude equation has dis­

connected components if both the hole and particle states in the initial CSF are present 

in the final CSF. These should be discarded and only the connected components should 

be chosen. This is implemented while computing the matrix elements of Hes. During the 

matrix element computation using the initial and final CSF labels the total number of hole 

states are computed. If this is equal to three then these are the terms that will contribute 
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to (cP:b I Hes I cP:: ),T;". In the next step the connected component is chosen by selecting the 

Hes matrix element which has r'o With this the doubly excited cluster amplitude equation 

has only connected components. Though disconnected the discarded components are still 

linked. 

4.5.2.4 The computation of the cluster amplitudes T pTV (1) and T pTV (2) 

After computing the cluster amplitudes Tes(l) and Tes(2), to compute the expectation 

value Da the next step is the computation of cluster amplitudes TpTv(l) and T pTV (2). The 

equation for the cluster amplitude T pTV (1) from Chapter3 is 

(TpTV (1), Ho] P = ~ [(~IHpTv IcPo) + ~ (~IHpTv Icp:',)T;" +a,f,;}W:\HpTV \<b::Z;)T;'~~' 
+ L (~\Hes\()T~ + L (~IHesl(~)~~ 

ct cdtu 

_ (r:W) EPV) \~)( CPa \ (4.10) 

and the equation for the cluster amplitude TpTV (2) is: 

[r'TV (2), Ho 1 P = f. ["f,;" (~:IH'TV 1<1>::::)7;;:' + ~ (~:IH .. I<I>:)7: + 

L (~~\Hes\(~)~~ - (T:~W) EPV) \~~)( CPo\. (4.11) 
edt1/. 

In the above equations T: and T~s are the cluster amplitudes computed with Hes as 

perturbation. As it is a single-reference computation W has no contribution from the 

odd-parity CSF space. It is the same as in the computation of Tes(l) and Tes(2). The 

same procedure in computing Tes(l) and Tes(2) are used to select the connected terms 

from the cluster amplitude equation of TpTv(l) and TpTV (2). To understand the effect 

of size inconsistent terms, three sequences of computations are done. First Tes is com­

puted with EPV renormalization terms but TpTV (1) and TpTV (1) are computed without the 

renormalization terms, second Tes are computed with the EPV renormalization terms and 

TpTV (1) and TpTV (1) are computed with the full renormalization term and finally all the 

cluster amplitudes are computed by selecting only the EPV terms in the cluster equations. 

The results of these computations are the contents of the next section. 
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Once all the required cluster amplitudes are computed the wave-operators are defined 

as 

nes = Tes(1) + Tes(2) and n •• ,edm = TpTV (1) + TpTV (2). 

Using these cluster amplitudes the expectation value Do. can be computed using the ex-

preSSIOn 

In terms of computation the selection procedure of the EPV terms make it slower compared 

to the ordinary matrix based Bloch-equation implementation. This is due to the conditional 

statements required during the EPV renormalization term selection procedure, due to 

which this method compromises the gain in using Bloch-equation based formulations over 

the matrix diagonalization schemes. But this method has the advantage of a stronger 

foundation on many-body physics as it is a size-consistent method. As pointed out earlier 

it does leave out certain size-consistent terms which are non-linear in the cluster amplitude 

and EPO but it is a very good approximation as the contribution from these terms is 

expected to be very small. 

4.5.2.5 Results 

The computation of Da requires the wave-operators nes and Oes,edm' As described in the 

earlier section an important part of the non-linear cluster amplitudes can be included 

in the cluster amplitude equation by choosing appropriate terms. Consider the cluster 

amplitudes Tes computed with the equations (4.10) and (4.11) but cluster amplitudes 

Tes,edm are computed using the equations 

[TpTv(l),Ho]P = ~ [{~IHpTvl<I>o) + ~(~IHpTVI<p::)T;" +a'f,;s,(~IHpTVI<P::b:)T;,~f 

+ L (~IHesl<P!)T! + L: (~IHesl<P!~)7!~ - r:wll~)( <Pol (4.12) 
ct cdtu 

and 

- I: [ L: (~~IHpTV 1<I>::b:)7;~~J + I: (~~IHesl~)~ 
abrs a'b1r' s' ct 

+ I: (~~IHesl~~)~~ - r::wll~~)( <Pol· (4.13) 
cdtu 
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That is the cluster amplitudes r: and r:: are computed along with the EPO-renormalization 

terms (T:W)EPO and cr::W)EPO, which are size-inconsistent terms as they are unlinked. 

From these cluster amplitudes the wave-operators nes and nes.edm can be computed. The 

wave-operator nes is size-consistent and nes,edm is different from the matrix based Bloch 

equation implementation in the following ways 

• The terms other than the renormalization in equations (4.12) and (4.13) doesn~t 

introduce disconnected terms. But in the matrix based Bloch equation the non­

renormalization terms include disconnected terms and leads to inclusion of size­

inconsistent terms. 

• nes is connected and enters into the cluster amplitudes r: and r:: through T: and 

TJ/ in eq(4.5) and (4.6). 

The results for a sequence of runs are tabulated in Table4.14. As in the Bloch-equation 

case the computation has two sequences, first the number of even-parity CSF is kept 

fixed and the number of odd-parity CSF is increased and in the second this is reversed. 

Comparing the value of Va calculated using cluster amplitudes T;,T:bs, r: and r:: and 

matrix Bloch-equation gives a measure of the following contributions: 

• Terms other than the connected-EPV terms in nes,edm) that is the contribution from 

(TesW)EPO. 

• The disconnected components in the non-renormalization terms. This is because 

computation in matrix Bloch-equation does not distinguish between different terms, 

where as in cluster approach only the connected terms from the non-renormalization 

terms are selected. 

With the condition that the contribution from the EPO connected terms is less important 

compared to the EPV terms, the difference between this result and matrix based Bloch­

equation result gives an estimate of the contribution from the size inconsistent terms. For 

·the first sequence, where the number of even-parity CSF is fixed and odd-parity CSF IS 

slowly increased, the maximum difference here is compared with the Bloch-equation. 
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Table 4.14: Values of Do. computed with the EPO components included in the cluster 
amplitudes T. 

I 

S1. no No of CSFs 
.... 

Do. 81. no No of C8Fs Do. 
Even Odd Even Odd 

1 9930 12 3.170491 10 7 17087 8.449964 

2 9930 30 3.168267 11 19 17087 8.4499 64 

3 9930 3648 3.2196 53 12 1243 17087 7.8521 84 

4 9930 3846 4.213096 13 1390 17087 4.378345 

5 9930 11676 4.213054 14 4435 17087 4.304271 

6 9930 14070 4.214705 15 4448 17087 4.233239 

7 9930 14100 4.203941 16 6713 17087 4.280230 

8 9930 15768 4.253959 17 9094 17087 4.237523 

9 9930 17087 4.244691 18 

In the plot given in Figure:4.l0 ~Da denotes the difference in the value of Do. computed 

with the matrix Bloch-equation formalism and the wave-operator Des,edm which has the 

EPO com ponent in the renormalization term. The maximum difference occurs for the 

run with 6713 even-parity C8Fs and 17087 odd-parity C8Fs, here the value of 6.Do. is 

0.29.50 36 and is 6.53% of the total value. That is, computing the wave-operator fles in 

a size consistent form with only the EPV renormalization terms included in the cluster 

equation suppresses 150. by 6.52%. As to be expected, the change in the slope of the plots 

shows that the effect of the term (TW)EPO depends on the form of the CSFs included. 

Another property that can be compared to gain an insight on the contribution of the 

size-inconsistent term is the energy of the ground state Eo. The value of Eo computed us­

ing the wave-operator Des derived here has no contribution from the size inconsistent terms 

but it excludes some of the less important size-consistent terms. The difference in the value 

Eo computed using the Bloch-equation and Des derived from the cluster equation gives the 

contribution from the size inconsistent terms. Like in 150. the approximation is that the con­

tribution form the EPO size consistent terms non-linear in cluster amplitudes is very small. 

then the difference in the result can in principle be accounted to the size inconsistent terms. 
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Figure 4.10: The difference in the value of Da computed with the Bloch-equation method 

and the one computed with the EPO terms included in Oes,edm 

Table 4.15: Values of Da computed with 7 and 7 without the renormalization terms 

S1. no No of CSFs Da S1. no No of CSFs Da 
Even Odd Even Odd 

1 9930 12 4.0881 90 10 7 17087 8.4499 64 

2 9930 30 4.106868 11 19 17087 8.4499 64 

3 9930 3648 4.1930 93 12 1243 17087 8.3422 09 

4 9930 3846 6.0871 38 13 1390 17087 5.8034 52 

5 9930 11676 6.087228 14 4435 17087 5.7982 02 

6 9930 14070 6.0911 65 15 4448 17087 5.6605 25 

7 9930 14100 6.150787 16 6713 17087 5.9071 87 

8 9930 15768 6.2649 69 17 9094 17087 6.2474 91 

9 9930 17087 6.263539 

One way to check the contribution from a particular term is to do the computation with 

and without it, then compare the results. The earlier sequence of runs have established 

the magnitude of the contribution from the EPO terms. The over all contributioll of 

the renormalization term in the cluster amplitudes 7 can be estimated by cornputing 

the cluster amplitudes r: and r:: without the renormalization terms, then comparE' the 
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results with the values computed with the renormalization terms included. These cluster 

amplitudes can be computed using the cluster equations (4.5) and (4.6), except that the 

Table 4 16' Values of D computed with CEPA-2 a. 

S1. no No of CSFs 
.... .... 

Do. S1. no No of CSFs Da 

Even Odd Even Odd 

1 9930 12 3.313075 10 7 17087 8.449964 

2 9930 30 3.313386 11 19 17087 8.449964 

3 9930 3648 3.368439 12 1243 17087 7.852823 

4 9930 3846 4.458969 13 1390 17087 4.3791 81 

5 9930 11676 4.458933 14 4435 17087 4.375871 

6 9930 14070 4.460815 15 4448 17087 4.355836 

7 9930 14100 4.4581 78 16 6713 17087 4.454738 

8 9930 15768 4.514907 17 9094 17087 4.498125 

9 9930 17087 4.506525 

excitation amplitudes in these equations should be replaced with the cluster amplitudes. 

The cluster amplitudes T: and r~s which includes the effect of renormalization terms are 

computed using the equations (4.7) and (4.9).The value of Do. calculated using the wave­

operator got from the cluster amplitudes computed using the above cluster equations are 

as given in Table 4.15. The form of the wave-operators nes and nes,edm in the earlier 

computations do not include the EPV-renormalization terms at the same time. All the 

cluster amplitudes can be made size consistent using the cluster amplitude equations with 

only the EPV-renormalization terms. The Values of Do. computed using the sequence of 

runs followed so far are tabulated in Table 4.16. 

4.6 Schiff Moment in Atomic Yb 

Unlike the atomic EDM due to TPT-electron-nucleus interaction, only the first order 

computation of Schiff moment induced atomic EDM is presented. This is more of an 

exploratory computation. Computation of Schiff moment require B given in eq(2.7). To 

get 8, (Pn/1(r)Pn- 1 (r) + Qn/l(r)Qn-l(r)) is evaluated at the first ten grid points and a 
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power series is fitted using general least square fit as in eq(2.8). The power series is then 

divided by r3. Which giyes 

For the 6p* orbital using a power series with N = 5 gives the value of a3 = -4605.340479. 

To get the Schiff moment induced atomic EDM this is to be multiplied by appropriate 

factors arising from the nuclear sector. A similar evaluation can be done by changing the 

number of grid points considered in the product of the orbitals and terms in the power 

series expansion. An important result got from the fit is that the coefficients al and a2 

are very small and can be neglected, if it were not value of B would have diverge. 

The next step in the computation of the atomic EDM due to the Schiff moment is 

to compute the expectation value of the dipole operator. That is, the expression for the 

atomic EDM arising from the Schiff moment involving only the most important orbitals 

IS 

... _ 2(6s1/21.B16P1/2)(6Pl/2IHsI6s1/2) 
Da - . 

f.681/2 - f.6Pl/2 

Where (.681/2 and f.6Pl/2 are the single particle energies of the spin orbitals 651/2 and 6P1/2 

respectively. For the orbitals considered the values of the single particle energies are 

t6S I / 2 = -0.196516 hartrees and f.6PI/2 = -0.124456 respectively. Substituting the earlier 

results and considering the stretched nuclear spin-state Iz = ! this can be written as 

At this stage there is an order of magnitude enhancement as the energy difference f.6S I / 2 -

t6Pl/2 = -0.072006 is very small. It also introduces a sign flip. The value of the required 

dipole matrix element is 1.4981 46, using this in the above expression gives the value of 

Da = 12.7661 63 x 104 S eao. Where e is the charge of electron and ao is the Bohr radius. 

The value of the atomic EDM is parameterized in terms of the Schiff moment S, one can 

make an estimate using nuclear structure computations. Such calculations have been done 

for 131 Xe, 199,201 Hg and 203,205TI [7]. Here computation is done in the electronic space and 

the nuclear contribution S has been retained as a parameter. The computation can be 

extended to other P* symmetry orbitals. Since the nuclear excitation energies are large as 
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Table 4.17: Single ;earticle lowest order Schiff moment induced atomic EDM. 

(6s IIDllnp*) 
...... .... n Bnp* f68 - €np* Do. Cumulated Do. 

6 3.669693 -4605.340479 -0.072060 -12.7661 63 -12.7661 63 

7 0.213237 -2061.240186 -0.142747 -0.167605 -12.9337 68 

8 -0.065996 1399.014659 -0.167278 0.030044 -12.903724 

9 -0.037463 1009.373929 -0.177622 0.011588 -12.8921 36 

10 -0.0271 61 728.937467 -0.183073 0.005887 -12.886249 

11 -0.018843 -581.4480 19 -0.1866 04 -0.003196 -12.889445 

12 0.0125 74 -496.006243 -0.188995 -0.001796 -12.891241 

compared to the atomic excitation energies, the nuclear part can be taken the same. The 

values of B, dipole matrix elements and the value of Do. along with the cumulated values 

are given in Table 4.17. The total lowest contribution to Schiff moment from the virtual 

p* symmetry is -12.891241 x 104Seao. Like in the TPT electron-nucleus atomic EDM, 

here too the major contribution is from the 6p*. But unlike in the TPT case, the change 

in the sign of B is not compensated by a sign change in the dipole matrix element. As a 

result there is a small cancellation in the contribution from the high the intermediate p* 
symmetry bound virtual orbitals. 
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Parity-Nonconservation in Atomic Yb 

5.1 Introduction 

One of the possible odd parity electromagnetic moments of a nucleus is the anapole mo­

ment. This is purely magnetic in character and arises due to a toroidal current distribution 

in the nucleus. The electromagnetic interaction between the nuclear anapole moment and 

the atomic electrons gives rise to a nuclear spin-dependent(NSD) parity non-conserving 

interaction which leads to a mixing of opposite parity atomic states. This results in a fi­

nite E1 amplitude between two atomic states of the same parity. Being a magnetic dipole 

moment of the nucleus, it is dependent on the nuclear spin. In addition to the interaction 

arising from the anapole moment of the nucleus there is another nuclear spin-dependent 

PNC interaction which is due to the neutral weak current. So the nuclear spin-dependent 

PNC E1 amplitude is in general a combination of these two contributions. The total 

interaction Hamiltonian that is odd under parity in an atom is therefore 

(5.1 ) 

where GF is the Fermi coupling constant, Qw is the weak charge of the nucleus,! is the 

nuclear spin, l's.andai are the Dirac matrices for the electrons, pN(rd is the nuclear density 

and /-lw' can be considered as a weak nuclear moment arising from both types of NSD­

PNC interaction .. In (5.1) the first term is the nuclear-spin independent neutral weak 

current interaction and the second term which is dependent on the nuclear spin is the 

combined contribution from the nuclear anapole moment and the neutral weak current. In 

113 
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our calculations we do not distinguish between the two nuclear spin-dependent components 

but major part of the contribution is from the nuclear anapole moment[l]. 

With the recent discovery of the nuclear anapole moment in atomic caesium[2] the first 

step in the long quest for this peculiar moment has been taken. It will be of great signific­

ance if it can be measured in other atomic systems too. In this paper we show that atomic 

Yb maybe a promising candidate for nuclear anapole experiments. The advantage of using 

atomic Yb lies in the presence of very closely spaced states 6s6p(l pt) and 6s5de Dd [3], 

this leads to a large El amplitude for the NSD-PNC interaction between the ground state 

682 (1 So) and the excited state 6s5de Dd. Using 6s5d(3 D1 ) as the final state mixes the 

contribution from both spin-independent and NSD-PNC effects. The added advantage in 

selecting atomic Yb is the presence of 685d(3 D2 ) [4] whose energy level ~s just below. and 

closer to 6s6p(l Pd as compared with the 6s5d(3 Dd energy level. When this is used as 

the final state only the spin-dependent PNC interaction contributes to the El amplitude 

and unlike the case of 6s5d(3 D1 ) there will be no contribution from the spin-independent 

component of the PNC interaction. 

5.2 Effective Hamiltonian for the Atomic 

Pari ty-N onconservation 

5.2.1 Nuclear Spin-Dependent Effective Hamiltonian 

Let I Wi) and I W J) be the initial and final hyperfine atomic states between which the El 

transition amplitude is to be computed. These states are of same parity. Here hyperfine 

states states are considered as the PNC interaction has a nuclear spin-dependent compon­

ent. Due to the presence of PNC interaction these atomic states mix with atomic states 

of opposite parity and assume the form IWi ) and I~J) respectively. These are given by 

I ~ i) = I tIl i) + L: E. ~ Ii I WI) (\IF I I H:;: I \IF i ) 
I#i z 0 

and 
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where IW I) is of opposite parity to IWi) and Iw f) and Ho represents the atomic Hamiltonian . 
... 

Let D be the electric dipole operator, the E1 transition amplitude between these mixed 

parity states is 

Dfi = (\If fli5l\If i) = L (Wfli5I\l!I)(\l!IIH:;~lwi) + L (\l!fIH:;~lwI)(WIIJ3IWi) (5.2) 
I=;.!:.i Ei - EI I=;t.J Ef - EI 

With appropriate rearrangement of the above terms the nuclear spin part can be separated 

out and derive an effective Hamiltonian in the electronic space alone[5J. This can be done 

by rewriting expression (5.2) as: 

L (WfID E- ~ Ii IWI)(WIIH:;~IWi) + L (WjIH:;~IWI)(WIIE ~ R i5IWi), (5.3) I=;.!:.i t 0 I=;t.J f 0 

since the intermediate states are of opposite parity to the initial and the final states, the 

inequality condition in the summation can be dropped. Then using the completeness 

condition of the intermediate states we can avoid the summation over the intermediate 

states in the first term by using the identity 

2t IWr)(Wrl Ef ~ Ho = Ej ~ Ho· 

Similarly, the second term can also be modified, then expression (5.3) assumes the form 

( I ( ... 1 NSD NSD 1 D) Iw.) 
W J D Ei _ Ho HpNC + HpNC Ej _ Ho t • 

Define 
NSD _ - 1 NSD H NSD 1 D 

Deff - D E [{, HpNC + PNC E IT ' 
i - 0 f - flO 

. NSD 

then the nuclear spin-dependent E1 transition amplitude reduced matrix element E1PNC 

IS 

E1::~ = (w j IID:;n II Wi). 
Redefine the nuclear spin-dependent PNC part as 

HNSD _ GjJ.Lwl f· A 
PNC - 2V2! ' 

h A- '"' - () Then uSI·ng the relation for coupling of two tensor operators the were = L.Ji Ct.iPN ri . 

expression for the effective dipole operator can be written as 

DNSD=GFI-lWI~(_1)[kP/2{r[(D 1 X)k+(_1/(.4 1 D)k]}l 
eff 2V21 7 J3 Ei - Ho EJ - Ho 
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At this stage the separation of the nuclear spin and the electron part is at the operator 

level. By decoupling the hyperfine states we can completely separate out the nuclear spin 

part and the integration over the electron coordinates. The reduced matrix element T 1 :-;'SD 

in El transition amplitude that depends on the electron coordinate alone is: 

Where r f is'the additional quantum numbers required to define the atomic state uniquely 

and k = 0,1,2. The complete expression for the matrix element is as given in the 

Appendix:A. Define fj.J = i1 - ii, then for each value of k the allowed values of !:J..i 

are: k = 0, t:J.i = 0; k = 1, t:J.J = 0, ±1 and k = 2, t:J.J = O,±l, ±2 respectively. 

Suppose if a similar effective Hamiltonian were to be derived for the spin-independent 

component of the PNC then instead of A there will be a scalar. Then possible value of 

k is 1 and the corresponding selection rule is fj.J = 0, ±l , this implies that only the 

spin-dependent component can have t::.J = ±2. This could be of immense importance to 

conduct experiments for the detection of anapole moments. 

The electron part is computed first and then it is multiplied by the required factors 

for the nuclear spin-dependent part to get the full expression. 

5.2.2 Nuclear Spin-Independent Effective Hamiltonian 

Consider the first part in the interaction Hamiltonian (5.1), the nuclear spin-independent 

part of the atomic parity-nonconservation. Define H:~~ as the NSI-PNC Hamiltonian. 

then 
N'SI _ GFQw" i (r.) = GFQw B. 

HpNC - 2v2 ~ 15PN t 2J2 

Where B = Li I'~PN(ri)' Similar to the H:;~, an effective dipole operator for H:;~ can 

also be derived. Let D::I be the effective PNC-NSI dipole transition operator, then using 

the earlier definitions 

NSI _ - 1 N'51 HNS1 1 D. 
D elf - D Ei _ Ho HpNC + PNC E 1 - Ho 



5.3:Method of Computation 

The full expression of D:;l is 

Using which the PNC-NSI dipole transition amplitude EI NS1 can be computed as 
PNC 

The expression for n:;l is independent of the nuclear-spin I but as the initial and final 

atomic states are hyperfine states the angular factor depend on the nuclear spin. In the 
. ~ E NSI h .. NSI expreSSIOn lor IpNc' t e contnbutlOn from the electron part Tl is: 

(5.5) 

The full expression for El::~ is given in Appendix:B. As mentioned in the earlier section 

on PNC-NSD, the selection rule for the initial and fi"nal states is AJ = 0, ±l, where 

t1J = .Jj - li. 

The PNC-NSI dipole transition amplitude El:;~ are computed with the ground state 

1682 (ISO)) as the initial state and 16s5d(3 Dd) as the final state. But NSD computation 

is analyzed in greater detail as the PNC-NSI computation is an extension to the earlier 

work of Bhanu Das[6], which include an indepth analysis. 

The next sections discusses the method of computation and analyze the shielded two­

electron potential. All these are done with respect to the NSD-PNC Hamiltonian but 

are applicable to the NSI-PNC case too. This can be done just by replacing the X in 

NSD-PNC with B and by modifying the angular factors appropriately. 

5.3 Method of Computation 

For our computation we use an orbital basis set generated using the VN- 1 potential. 

First a Dirac-Fock run is done with the ground state configuration 1682 e So)), then the 

virtual orbital V;i is got by doing a computation using the configuration 16s~h(J))· While 

generating the virtual orbitals, the core orbitals till 68 are frozen and J is taken to be the 

lowest value obtained by coupling the angular momentum of 68 and 1/Jj. Using the set of 
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orbitals so obtained a set of configuration state functions(CSF) is constructed. From these 

configurations using the method of configuration-Interaction( CI), we get a set of atomic 

state functions(ASFs). An ASF can be written as 

IW(fJM)) = ~C(rJM)I<p(tJM)), 
2 

where Ii represe~ts additional quantum numbers required to describe each of the CSFs 

uniquely. That is, an ASF is a linear combination of a set of CSFs with the same angular 

momentum quantum numbers. This is in the electron space alone. To get the hyperfine 

states the nuclear-spin need to be coupled with the net angular momentum from the 

electrons. After doing the CI computation we will get the required I Wi)' I WI) and I WI), 

which can be use for computing the contribution from the electron part of the El transition 

amplitude. Consider the expression (5.4), introducing a set of intermediate states, the 

contribution from the electronic part of the wave-function can be written as 

r~" [< lJi(r IJI) 11 15 ll lJi(r" 2 ~~l(r" J") IIXlllJi(r,J;) 

_ k (w(r I JI ) 1I1 I1 w(r" J") ) (W(f" JII)" 13 IIw(riJi) ) 1 
+( 1) E E . 

1 - I 
(5.6) 

After computing this the value of the El transition element can be got in terms of hyperfine 

states using the multiplying factors as given in the appendix. Consider the first term in 

expression (5.6), in terms of CSFs this can written as: 

-y'''ft" [ (t1 C (-y.JI M I )C ( ,;' J" M") < <!> (-y. JI ) 11 15 11 <!>b;' J") ») x 

(~C(-y:'..J" M")C(-ynJ,M;J < <!>b:'..Ji l ~~~bnJ')) 1 
For each intermediate state the expression within the parentheses is computed separately 

and final result is the sum of the product of the two. 

Yb being an atom with two-electrons in the valence shell, the valence-valence correla­

tion is very important. Though the valence shell is similar to the alkaline earth elements 

the additional complication in Yb is the presence of filled 4f shell and unfilled 5d shell. 

Both are energetically located close to the ground state valence shell 68, hence the contri­

bution from the core-valence correlation is quite significant. To include these correlation 
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effects a large orbital basis set is required with the usual CJ approach but with suitable 

modification[6] of the atomic Hamiltonian very useful results can be got from a limited 

basis set. In our computation we have used an orbital basis of limited size and included 

shielding parameters in the atomic Hamiltonian. The orbital basis has the most import­

ant virtual orbitals namely 5d1c, 5d,6ptc and 6p. Using these a set of configurations is 

constructed. 

With the configurations obtained from the orbital basis under consideration, the values 

of the energies are not very good compared to the experimental values. To get energies 

comparable to the experimental values we use shielding parameters in the two-electron 

term of the atomic Hamiltonian [7]. The essence of which is as described below. Consider 

the two-electron term in the atomic Hamiltonian at the CSF level, it's matrix element 

between two CSFs 1cI>(-y'J'M')) and 1cI>(,"J"M")) is given by: 

Wi th the introduction of shielding parameters the two-electron part get modified to the 

following form 

K 

L OK( cI>( "/ J' M')I (C~ (1) . C~ (2)) (~:l) I~(," J" Mil)), 
K,q r> 

where OkS are the shielding parameters. The values of shielding parameters lies within 

the range 0-1 and are adjusted such that the energy levels got after doing CI matches 

well with the experimental values. To maintain consistency the orbital ~asis set is also 

generated using the shielding parameters. Inconsistency results if shielding parameters 

are used at the cr stage alone as orbitals does not feel the effect of shielding parameter. 

In which case the matrix elements computed for the El transition amplitude has energy 

denominator computed with the shielding parameters and numerators completely devoid of 

the effects of shielding parameters. While fine-tuning the values of the shielding parameters 

importance is given to the difference in the energy level than their absolute values. This 

is because in the expression for the El transition amplitude the difference in the energy 

contributes directly to the denominator. As the size of the configuration space is increased 

more correlation effect will be taken care of by the configuration mixing and the values 
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of aK will tend toward unity. When the configuration space is complete the values of 

the shielding parameters should all be unity. All computations were done by suitably 

modifying the GRASP code [8}. 

5.4 The Shielded Two-Electron Potential 

To understand the effect of shielding parameters let us consider the simple case of a closed­

shell configuration l<Po) and let {1'Ij1i)} be a complete set of electron orbitals. The matrix 

element of the two-electron part of the Hamiltonian is: 

where N is the total number of electron in the configuration. Selecting out the ith orbital 

the interaction with the rest of electrons in the configuration is given by: 

N N K 

L (~j'lj1j!r~2 (1- P12)!~i~j) = ~ \vJi'lj1j!I:
K 

r(~~I) CK (l). CK (2)(1 - P12)!'Ij1j'lj1j). 
J J > 

When j is summed over electrons in a closed shell by selection rule only J( = 0 contributes 

in the direct term. When shielding parameters are introduced the contribution from the 

direct part depend on the shielding parameter ao alone. Thus in a closed shell CSF ao 

controls the contribution from the direct part of the two-electron term. On the other hand 

exchange part can have contribution from other higher multipoles too. So, for a closed 

shell CSF ajS with i > 0 modify the contribution from the exchange part alone. Here we 

have considered the expectation value of the atomic Hamiltonian w.r.t. a closed shell CSF 

and without configuration mixing. 

Consider the CSFs I <Po) and I <P I ), where the CSF 1 <l> I) is got by exciting two electrons 

a and l in 1 <Po ) to virtual orbitals rand s respectively. Then using Slater-Condon rules 

the matrix element of the two-electron part between these two CSFs is: 

(.5.7) 

where C(O, I) is an angular factor. This will contribute to the configuration mixing. Here 

both the direct and the exchange terms can have contribution from K > O. Since the virtual 
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orbitals are very small in the small r region and due to r;(K+1) dependence of the f{th mul­

tipole component the contribution from f{ > 1 are negligibly small. Use time-independent 

perturbation theory with Epstein-Nesbet partitioning of the atomic Hamiltonian. Includ­

ing the first order contribution from 1 cP I)' the CSF 1 cpo) assumes the form: 

where H is the atomic Hamiltonian, Eo = (CPoIHIq>o) and Er = (IPrIHIIPrl' The corres­

ponding energy using intermediate normalization is: 

(5.8) 

Since 1<1> I) is doubly excited with respect to Icpo), only the two-electron part of the Hamilto­

nian will contribute in the second term. Then expression (5.8) assumes the form: 

(5.9) 

Using the form of the matrix element defined in expression (5.7), 

(5.10) 

This is like introducing an extra term in the atomic Hamiltonian which effects only the 

electron orbitals a and l in the CSF ICPo). Consider only the dipole component of the 

two-electron interaction in the second term, introducing shielding parameter 01 it can be 

written as: 

Including all the other multipole moments and denoting the energy with the shielded two­

electron potential by E' 0 gives 

_ [ ( rK ?' I~r~s)( ~r~sl r K' 
Eb=E~+C(O,It~= (oKaKI-I)X(~a~11 K~lCK(1).CK(2) E'-E' K~+l x 

K,K' r> 0 r'> 

eK' (1) . eK' (2)) l~a1Pl) + (~a~l\ ( ~t CK (1) . CK (2) l,p,::;( ~,,p'1 ~~~, X 
r> 0 - r r> 

CKI(l). CKI (2)) I~a~l)l (5.11) 
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Where E~ is the expectation value of the atomic Hamiltonian with respect to the CSF 

Icpo) with the shielding parameters included. Since 0 ~ aK ~ 1, (oKaK' - 1) < O. Define 

i3KK' = jaKaK' - 11, the above expression can be rewritten in the form 

Eb = 

Compare the second order term in the above expression with the one without shielding 

parameters (5.10), the shielding parameters introduces two forms of correction: first a 

decrease characterize by i3KK' and second the scaling of the whole expression by a factor 

A(O, 1)=(Eo - EI)/(E~ - ED. Thus the change in energy due to shielding parameters in 

the second order depends on i3KK' and A(O, I). Depending on these parameters the change 

in the energy fl..Eo = E~ - Eo can be positive or negative. This can be extended to other 

higher orders in perturbation. 

5.5 Results 

5.5.1 The NSD-Parity-Nonconservation 

Using CSFs constructed from the orbital basis set we have computed the E1 transition 

amplitude between the ground state 16s2(1 So)) and j6s5d(3 Dd) as the final state for both 

the spin-independent and the spin-dependent case. In both cases the intermediate states 

can be either with total angular momentum J = 1 or J = O. As both the spin-indepenrlent 

and spin-dependent component contributes, the two cannot be separated in the final res­

ult. Using the orbital basis under consideration set of even parity CSFs got by including 

single excitations from 4j and 5p orbitals in non-relativistic notation with J = 1 are: 

16s2)), 16p2), 16p2) ,j5d2 ), 15p56s26p),15p5 5~6p),j5p56s5d6p),14j136s26p), 14j135d26p) , 

14j136s5d6p) , 

and those with J = 1 are: 



5.5.1:The NSD-Parity-Nonconservation 

15d2), 16s5d), 15p56s26p), /5p55d26p) , /5p56s5d6p) , /4j136s26p) , /4j135d26p) , 

14j136s5d6p). 

Similarly, the odd parity CSFs that can be constructed with J = 0 are: 

123 

16s6p), 15d6p), 15p56s25d), 15p56s6p2}, 15p55d6p2), 14fl36s25d),15p56s5cP),14j136s5d2 ), 

14j136s6p2), /4fl35d6p2), 

and odd parity CSFs with J = 1 are: 

16s6p), 15d6p), /5p56s25d), /5p56s5d2), /5p56s6p2), /5p55d6p2), 14j136s 25d}, /4f136s5d2), 

/4j135d6p2). 

With this set of configurations the values of the energy level computed using cr without 

the use of shielding parameters are as given in the Table below, for comparison the exper­

imental values are also given: 

Table 5.1: Values of the energy levels without shielding parameters. The energies are given 

in units of cm- l 

s1. no. Configuration Term Energy ( expt ) Energy(Cr) 

l. 6s6p 3H 17992.007 14551. 7791 

2. 6s6p lH 25068.222 24145.7777 

3. 6s5d 3Dl 24489.102 24561.3827 

4. 6s5d 3D2 24751.948 24797.6955 

One thing to be noted in the above table is that the sequence of the energy level from 

the cr computation is not in correct order as compared to the the experimental results. 

Here the difficulty is two-fold as not only the sequence of the energy levels but the energy 

difference also need to be matched. The difficulty lies in the closeness of the 16s6p(l Pd) 

and the 16s5de Dd) levels but this is also the advantage in choosing t~e Yb as the possible 

candidate for PNC experiments. After choosing the shielding parameters ao = 0.997, 

al = 0.667,a2 = 0.980 and rest equal to unity the values of the energy levels obtained are 

as given in the Table below 

Here the values of the shielding parameters have been adjusted such that the individual 

energy level are off by the same order. Where special attention has been given to the energy 

levels of 16s5d(3 Dd) and 16s6pe Pd) as they are the energy levels of interest. 
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Table 5.2: Values of the energy levels with shielding parameters. The energies are given 

in units of cm-1 

s1. no. Configuration Term Energy( expt ) Energy(CI) 

1. 6s6p 3Pl 17992.007 17675.6423 

2. 6s5d 3Dl 24489.102 24429.4055 

3. 6s5d 3D2 24751.948 24707.3242 

4. 6s6p lPt 25068.222 25004.6888 

With this set of configurations using 16s2(1So)) and 15d6s(3 Dd) as initial and final 

states respectively, the value of the spin-dependent E1 transition amplitude reduced matrix 

element with hyperfine states is 0.865 X 10-11 /-Lw' eao, the contribution from the electronic 

part without the nuclear-spin part is 1.059 x 10-11 /-Lw,eao. These calculations are done 

for the isotope I71Yb10 which has a nuclear spin 1/2, the initial and final states has total 

angular momentum Fi = 1/2 and Fj = 3/2. The major contribution come from the term 

(6s5d(3 DdllJI16s6pe Pd)( 6s6p(1 PdllnI16s2(1So)) 
E(6s5d 2 DI ) - E(6s6p I H) 

This term alone gives 0.731 x 10-11 /-Lw,eao which amounts to 84.41 % of the total contri­

bution and the contribution in the electron part alone is 0.894 x 10-11 /-Lw,eao. This is 

because of two reasons: first the close spacing between 16s6p(1 Pd) and 16s5de Dd) as 

compared to the spacing between 16s2(1So)) and IBs6p(1 PI)) and second, mixing between 

configurations IBs6p(J = 1)) and 16p5d(J = 1)). 

Now consider the 15d6p(l D2 )) state, it is located very close to the intermediate state 

16s6p(l PI)) as compared to the separation of 579.113 cm-I between the states 16s5de DI )) 

and 16s6p(1 Pd), the separation between 16s5de D2 )) and 16s6p(1 Pd) is 316.274cm-1 only. 

When 16s5de D2 )) state is used as the final state, by selection rule only the spin-dependent 

component of the PNC contribute to the E1 transition amplitude. The only worry is 

whether there will be large cancellations as it is an intercombination state. Our compu­

tation shows there are no major cancellations. This is because the value of E1 transition 

amplitude is not governed by the configurations that goes into the final states alone but 

also depends on the configurations that goes into the intermediate states too. The value 
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of the E1 transition amplitude reduced matrix element with the nuclear-spin included is 

-4.657 x 10-11 J.lw,eao and in the electron space alone it is 3.293 X 10-11 j.lw,eao. In this 

case the major intermediate contribution is from the state !6s6p(lpI))' To understand why 

there are no major cancellation consider the ASFs !6s6p(lPr» and !6s5de D2 )), below are 

given the contribution from the five most important CSFs in each case: 

16s6p(l PI)) = O.846616s6p) + 0.422016s6p* ) - O.223515d6p) - O.220615d* 6p* ) 

+O.076015d* 6p) + .. . (5.13) 

15d6s (3 D2 )) = O.799416s5d*) - O.598116s5d) - 0.0137!4j76s5d6p*) 

-0.0121!4F5d5d* 6p* ) - O.0111!4j76s5d5d* 6p) +... (5.14) 

In the above expression for the ASFs the angular momentum for each of the orbital shells 

are coupled in a sequence but the intermediate values are not given. That is, there will be 

many CSFs with the same orbitals and same final angular momentum but with different 

intermediate angular momenta. Here the intermediate angular momenta has been avoided 

as no CSF from the same orbitals doesn't contribute to the first five most important CSFs 

for each of the ASFs. 

Consider the expression for the most important intermediate state !6s6p(l Pd), there 

is a significant contribution from the CSF !5d* 6p* (J = 1)). This in combination with 

the CSFs !6s5d* (J = 2)) in the final ASF give a large contribution to the E1 transition 

amplitude. Which means that there is no cancellation at the level of the most significant 

contribution. The individual contribution from the CSFs !6s5dotc (J = 2)) and !6s5d( J = 2)) 

in the electronic part are as given below: 

,,(6s5d* (J = 2)I!VIIWI(J = l))(WI(J = 1)111116s2 (lSo)) _ 
C1 Lr Ei _ EI - -320.6850 

C'L (6s5d* (J ~ 2)IIXIIIJi[(JE= l)~(IJi[(J = 1)IIOI16s'('So) = -3701.5687 
[ f - I 

(6s5d5/ 2(J = 2)IIVIlWI(J = l))(WI(J = 1)\\1\\6s2(1So)) C211 Ei _ EI = -58.0524 

and 
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respectively, where Cl = 0.7994, C2 = -0.5981, Ei is the energy of the initial state and 

Ej for the final state. Thus the major contribution is from the second term and in this 

term the most important contribution are: 

C1 (6s5d* (J = 2)iiXii5d* 6p* (J = 1)) ((6S6pe ~~i~~~S2eSo))) = -4978.7637 

and 

These are the two most important cancellations in the computation in the computation 

for the El transition amplitude with 5d6s(3 D2 ) as the final state. 

The result discuss so far correspond to the isotope 171 Yb70 and its natural abundance 

is 14.31%. The other isotope of Yb which we have chosen for our computation is 173Yb70. 

Its abundance and nuclear spin are 16.13% and 5/2 respectively. We have chosen these 

two isotopes on account of their abundance, nuclear spin and stability. The result for these 

two isotopes for different initial and final hyperfine states are as given in following Table: 

Table 5.3: Results for different isotopes with different hyperfine states. T1 NSD and EI NSD 

are in units of eaoJ.tw' x 10-11 • 

Isotope Nuclear Jj Pi PJ T1NSD E1 NSD 
PNC k 

171 1/2 1 1/2 1/2 1.0598 -1.2238 1 

" " " " 3/2 1.0598 0.8654 1 

" " 2 " 3/2 -3.2934 -4.6575 2 

173 5/2 1 5/2 3/2 1.0593 -1.2108 1 

" " " " 5/2 1.0593 -0.4237 1 

" " " " 7/2 1.0593 1.2231 1 

" " 
2 

" 3/2 -3.2195 -1.9079 2 

" " 
2 

" 5/2 -3.2195 -3.3308 2 

" " 
2 

" 7/2 -3.2195 -3.9498 2 

Among all the isotopes of Yb the most abundant one is 174Yb70, this might be suitable 

for doing a measurement for the nuclear spin-independent E1 transition amplitude but not 
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for the nuclear spin-dependent component. For the nuclear spin-dependent component it 

needs to couple with the nuclear spin. For better comparison the result of the two isotopes 

are as given in the table. 

5.5.2 The NSI-Parity-Nonconservation 

The result doesn't differ qualitatively from those given in [6]. The difference is the larger 

CSF space used, which induces a change in the shielding parameters. The added CSFs 

also pick up many forms of correlation but these are not so significant. Yet, in terms of 

accuracy which is not relative but absolute these are not negligible. The additional CSFs 

included in this computation are the CSFs with excitations from the core orbitals Sp and 

4/. 

As in NSD-PNC, here too the major contribution to the intermediate state IWI) is the 

16s6pe PI)) state, given in expression (S.13). The final ASF j6sSd(3 Dd) has the form 

16sSd(3 DI )) = 0.998316sSd*) + 0.018814/16s5d6p* ) - 0.013914/16sSd* 5d6p) 

+0.013514/5* Sd* 6p* ) - 0.0131!Sp3 6sSd6p* ) + ... 

With this set of configuration the value of E1:;~ is -0.879 x lO-llieaoQw, which is not 

much different from the result of Das[6] -0.768 x lO-llieaoQw. 
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Conclusion and Future Directions 

6.1 Conclusion 

Till date the closed-shell atoms for which EDM computations have been done are Xe and 

Hg. Atomic Yb has-the same advantage like these atoms as a probe for atomic EDM which 

are nuclear in origin. 

Compared to Xe, Yb has the advantage of higher Z and when compared to Hg it has 

the advantage of an odd parity atomic state which is energetically closer to the ground 

state. In Hg the ground state configuration is 14j145dID6s2 ) and the most important odd 

parity configuration is 14j145d106s6p*), which is separated from the ground state by 1. 7957 

hartrees. Whereas in Yb the most important odd parity configuration 14/146s6p* (J = 1)) 

is separated from the ground state by 0.8197 hartrees and is 0.4565 times the value in 

Hg. Since the atomic ED M is inversely proportional to the energy difference, Yb has an 

enhancement of 2.12 over Hg but Hg has the advantage of higher Z. The dependence of 

the TPT atomic EDM on Z scales as Z2, which makes the enhancement in Hg 1.30 times 

that of Yb. This is smaller than the enhancement in Yb due to inverse energy dependence. 

Though in terms of the energy and the Z dependence Yb enjoys an edge over Hg, it is 

difficult to conclude which is the better of the two as the dipole matrix is not yet included. 

This is the theoretical estimate, more important is the experimental considerations, for 

which too it is difficult to arrive at a particular choice. 

The unfilled 5d* and 5d orbitals in Yb contribute significantly to the many-body effects 

as these are located very close to 68 orbital. The orbital 5d* and 5d are higher than 6s 
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by 0.096474 and 0.117699 hartrees respectively. In the even parity CSF-space 14j145dtc2 ) 

and 14j145£P) mix strongly with the ground state CSF 1682) and within the odd parity 

CSF space, the two most important doubly excited CSFs that contribute to IW~orr) are 

14j146p5d*) and 14j146p* 5d). Though 5d* is closer to 68 energetically 14j145£l2) contri­

bution to l\lIo) is larger than the contribution from 14j145dtc2). As to be expected at the 

single particle level the most important orbital in the atomic EDM computation is 6p*. 

and accounts for 97.747% of the lowest order atomic EDM. In terms of configurations it 

is the CSF 14j14686p*) which has the largest contribution to Da from the odd parity CSF 

space. The other important configurations are the double excitations from 682 , which is 

brought out by the plots in Fig4.5. 

At the lowest order single particle level the contribution from the continuum orbitals is 

extremely small. The continuum p* orbitals account for just 0.296%. The computations 

at the CSF level are without the continuum orbitals, this is because the error accumulation 

is severe as it requires integrals with the deep core orbitals. 

The results from the computations using CI, PCI and matrix based Bloch equation con­

firms the equivalence of these methods within the restricted active CSF space considered. 

An important result of the comparison is the importance of contribution from higher order 

terms to the ground state energy Eo. As Eo oscillates with the order of perturbation a 

truncation in the perturbation series while computing Eo can give inaccurate results. This 

is als.o true of Da and is clearly brought out in Table:4.7. In can be clearly stated that for 

accurate computations inclusion of high order terms is desirable. By comparing the lowest 

order computation at the single particle level with the result from the matrix based Bloch 

equation, it is observed that the many-body effect do contribute but they are relatively 

small-just 10.81 %-compared to the lowest order contribution. It is to be noted that the 

lowest order computation has no many-body effects. Another important result from the 

computation of atomic EDM with various forms of CEPA method is the small size of the 

contribution from the size-inconsistent terms. Comparing the results from CEPA-2 and 

the matrix based Bloch equation, the contribution from the size-inconsistent terms is at 

the most is 1.206%: From these it can be concluded that for high accuracy computation, 

one must include higher order terms and avoid size-inconsistent terms. For computations 
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to estimate atomic EDMs these are not necessary but to do a computation to the accuracy 

of 1 % these are required. 

With the successful laser cooling and trapping of atomic Yb, using these techniques 

with Yb to measure its atomic EDM will be a good contribution to the search of atomic 

EDMs. 

The present calculation of El:;~ includes the most important low lying orbitals and 

configurations using a shielded potential. Though not complete it incorporates some of 

the dominant many-body effects and serves as an important guideline for both theoretical 

and experimental work related to nuclear spin dependent PNC in atomic Vb. From the 

results of calculations, one can arrive at the following conclusions: 

1. The 3 Dl --+1 So E1 transition amplitude in atomic Yb is larger than that of Cs. 

Hence Yb maybe a very good candidate to look for the nuclear anapole moment. 

2. The NSD-PNC E1 transition amplitude for 3 D2 --+1 So as expected is larger than 

the corresponding transition amplitude for 3 Dl --+1 So. It is worthwhile to explore 

whether one can do an experiment to observe the nuclear anapole using the former 

transition. 

Though the configuration space considered here is slightly larger than the one used by 

Das[l], there is no significant change in El:;~, which implies that the configuration space 

used by Das has all the important configurations. 

6.2 Future Directions 

The size of the CSF grows significantly when the orbital space becomes large. In addition, 

inclusion of higher excitation CSPs also increases the size of CSP space enormously. These 

problems are less formidable if the whole procedure is implemented at the single particle 

level. An important extension of the present work would be to develop it towards a single 

particle approach. 

The coupled-cluster method has been used by Liu and Kelly[2] to calculate the electron 

EDM enhancement factor for thallium and Shukla, Das and Mukherjee[3] have recently 
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proposed a coupled-cluster formalism for the EDM of atoms and molecules based on linear 

response theory. With these preceding works it is a logical step would be to proceed 

towards coupled-cluster method. The CEPA-2 is very close to the coupled-cluster method 

but it requires some more modifications to make it in complete agreement with the latter 

theory. This requires the inclusion of non-linear terms in cluster amplitude, which can be 

done with less complications at the single particle level. The computation here is single 

configuration, making it multi-configuration would make it possible to do computation for 

open-shell systems. 

A good test of different many-body effects and correctness of the various components 

that goes into the computation would be to compute the excitation energies. In short the 

present work can be enhanced further in two ways: first make the orbital space larger, 

which would make the present computation more accurate and second improve the method 

of computation by including many-body effects that are not included here. 
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Appendix:A 

Expression for El NSD 
PNC 

The expression for the E1:;~ transition amplitude reduced matrix element in terms of 

the hyperfine states I Wi)a and I W f) is given by: 

EI::~ = (WJI { [1 { D E. ~ H.xt + (_I)' {A EJ ~ Ho D}'] r Iw.). 
After introducing a complete set of intermediate states between the dipole and the spin­

dependent PNC, then decoupling the nuclear-spin part from the electron part, the redllced 

matrix element (E1 NSD )red assumes the form 

( EINSD) = 
?NC red 

[1, Fh Fi ] [(21 + 1)(1 + 1)1]1/2 (21 + 1)1/2 
I 

I I 1 

Jf Ji k 

Ff Fi 1 
P'J" 

{
II k} [(W(ffJf)IIDIIW(fIlJII))(W(fllJIf)IIXI W(fiJi)1 
Ji Jf JII Ei - ErllJII 

+( _l)k (W(f fJf )//l//W(flf JII))( W(flf J")II.BIIW(fJi) )] 
Ef - ErllJII 

From this expression the electronic part Tl NSD can be separated out, it is given by: 
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Appendix:B 

Expression for El:~~ 

~he expression for the E1NS1 transition amplitude reduced matrix element in terms of . 

l.yperfine states I W i)a and I WI) is given by: 

El::~ = (W/I {D E, ~ Ho B+ B EI ~ Ho Dr IWi). 
r introducing a complete set of intermediate states between the dipole and the spin­

~ndent PNC, then decoupling the nuclear-spin part from the electron part, the reduced 

[" ix element (E1 NSI )red assumes the form 

1 NSI = 
PNC 

I J Po I { F" 1 Fi} [(W(f IJ1 )IID"IIW(f" JII))(W(f" J II )IIBII'l1{ 
(-1) + ,+ i+1[FI' FiP 2 X 

Ji I J" Ei - Erll JII 

+ (W(f IJ1) IIBII'l1(fll JII)) ( 'l1(f" J")lliJIIW(fdi) )] 
EI - ErllJII 

::n this expression the electronic part T1 NSI can be separated out, it is given by: 
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