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ABSTRACT 

The theory of time-dependent radiative transfer 

is important in the studies of transient phenomena 

taking place in some d the astrophysical objects. 

Time-dependence of the radiation field must be 

considered if the relaxation time of the radiation 
, 

field is comparable to or longer than the characteri-

stic changes in the properties of the medium. It 

must also be considered if the~e is a temporal change 

in the impinging radiation on the medium. 

In chapter I, we discuss the importance of the 

characteristic time scales which occur in the theory 

of time-dependent radiative transfer. 

In chapter II, a numerical solution for the 

monochromatic time-dependent transfer equation is 

presented for the case when the time spent by photon 

in the absorbed state is significant. Two cases are 

considered whose boundary conditions are respectively, 

(1) The surface of a plane-parallel homogeneous medium 

is ill~nated by a pulsed beam, (2) the surface is 

illuminated by a constant radiation input from time 

t = O. We investigated the effects of these boundary 

conditions on the emergent and the reflected radiation 

from the medium. 



II 

In the case (1), we found that the time-dependent 

reflected radiation falls more rapidly for f = 0.2 

compared to that of ~ = 0.7. Here ~ is the cosine 

of the angle made by a ray relative to the normal to 

the surface. For the case (2), time-dependent 

reflected radiation reaches steady ~ate faster for 

fL = 0.2 compared to that of f - 0.7. 

In chapter III, we ~onsider a hornogeneoas medium 

where the time spent by a photon between successive 

acts of scattering is significant. The numerical 

solution based on ~the method of characteristics is 

presented~ For the case when the medium is illuminated 

by an isotropic radiation, the t~e at which the rela

xation of the radiation field to steady state commences 

depends on the optical thickness of the medium. It 

also depends on the angle at which the radiation 

emerges out of the medium. 

In chapter IV, we present numerical methods for 

steady state as well as time-dependent transfer equations 

in spherically symmetric media. These numerical methods 

are based on finite-difference methods. Numerical 

solutions are compared with the known analytical solu

tions wherever it is possible to do so. 



~. INTRODUCTION 

1.1 Imoortance of the time-dependent radiative transfer 

New experimental techniques which increased the 

time resolution of astronomical observations has nece

ssitated the study of tirne-dependent transfer of radi

ation. Many of the celestial objects are found to be 

far from the state of equilibrium. The analysis of the 

time-dependent characteristics of the observed radiation 

provides additional insight into the nature of these 

objects. In particular, time-dependent transfer effects 

will be important in the study of the objects like 

atmospheres of supergiant stars, active galactic nuclei, 

Quasi-stellar objects, supernovae, nova like variables, 

planetary nebulae, and compact objects with accretion 

disks. They may also be important when the source of 

energizing radiation is intrinsically occulted, or 

reinstated, as in planetary atmospheres. 

Two important quantities characterize the time

dependence of the radiation field. One quantity is the 

time spent by a photon in the absorbed state, E: I and 

the other is the time spent by a photon between two 

consecutive acts of scattering, t2.. Usually one 

of these c:aracteristic times is dominant and 

deteDnines the temporal characteristics of the radiation 

field. 

1 



For a resonance line transition, t, is usually of the 
-8 " 

order 10 sec. t!l- is equal to ~ ,where 
11C 

is the absorption coefficient per particle, 11 

K 

is 

the number density of the particles and :C is the 

veloci ty of light. In a low density medium like 

planetary nebulae, for a resonance line (e.g. Lo< ), 
we have -12 t tV '11~11 K::::!10 , then l--

2 10 sec. 

Time-dependence of the radiation field must be 

considered if there is a sudden change in the impinging 

radiation field on the medium or, if tJ or t~ is 

long compared to the typical time scales in which the 

atmospheric system is changed. 

Time-dependent radiative transfer for an isotro-

pically scattering medium in a planar geometry is given 

by 

c1 I (7./ r~1 t) -r J'-1 _ . 
dt 0( f(zJt) 

Where 1(2/ f-4,t) is the specific intensity at positia1'Z. 

and at time t in the direction COS'~ ( f' e [-IJ IJ) 

2 
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W(2.1 t)iS the albedo for single scattering and 8<"2./1:.) 

represents the thermal sources. the mass 

absorption coefficient and f the densi ty of the 

medium could be functions of time and position and 

require the determination of the non-steady state 

populations and dynamics of the medium. 

1.2 Descriptions of the problems studied 

(a) Transfer in a plane-parallel medium 

If the properties of the medium are constant with 

respect to time and position, the equation (1). is 

amenable to analytical and semi-analytical treatment 

under suitable approximations. Most of the techniques 

are based on (1) first Gaussian approximation or 

Eddington approximation (Code, 1970, Code & Eason, 1970) 

(2) principle of invariance or theory of invariant 

imbedding combined with Lapalce transform technique 

(Ma tsumoto, 1974, Bellman et aI, 1964)., (3) Theory of 

successive scattering (Matsumoto,1976,Ganapol,1979;1981). 

But most of these analytical methods deal with 

homogereous semi-infinite or finite media. It is difficult 

to extend these techniques to time-dependent line transfer 

problems where the ratio of time interval~ to optical 

depth intervals vary with frequency in the line. Also 

most of these methods are restricted only to plane 

parallel media. So there is need to develop numerical 

techniques which can handle easily the problems of finite 

inhomogeneous media. 

3 



We used numerical techniques to study in a 

systematic manner the time-dependent radiative transfer 

in a medium with given properties. In chapter II, we 

solved equation (1) by considering only the time spent 

by a photon in the absorbed state. Under this assumption 

time derivative term vanishes from the equation (1). We 

developed a numerical method based on discrete space 

theory of radiative transfer (Grant and Hunt, 1969a). We 

studied the intensity distributions due to the changes 

in the impinging radiation on the medium for various 

optical depths. 

In chapter III, we considered a situation where 

the time spent by a photon between successive acts of 

scatterings exceeds the time spent by a photon in the 

absorbed state. Since we have f:; ,~O 
reduces to 

equation (1) 

To solve the equation (2), we have used a finite diff-

erence scheme based on the method of characteristics. 

We considered a homogeneous time-independent slab illu

minated by an externally imposed radiation field wh~Ch 

4 



enters slab at time t = O. The medium is assumed to 

scatter photons isotropically. Mihalas and Klein ll98 2) 

showed that a finite difference method wi~~ non-const~~t 

space and time intervals car-not accurately represent a 

propogating unscattered wave front. Henc~ we have 

d .stinguished diffuse radiation field due to one or 

more 5catterir.g processes from t.'l(:. directl~" trar1smi tte:: . . .. 

radiation. We have sho'-m in a grs.phical fonn the re

laxation to the steady state of the diffuse emergent 

radiation, and reflected radiation from a ~inite slab 

with a given optical depth. Al so the extension 0 f the 

method to the resonance line transfer under the assum-

ption of complete redistribution is presented. 

1.3 Transfer in sFherically aymrretric medium 

The assumption that the medium is stratified in 

plane parallel layers holds good only when the density 

scale height in the atmosphere is small compared to 

the radius of the star. But many stars, such as, 

supergiants, Wolf Raye't stars have extended atmospherec. 

Atmospheric extension bas important physical ~nd c.bser

vational implications. The stars with extenC':ed er:lvelopl< 

exhibit (see Under:dll, 192~) fentures such i:ie r:il.ution 

effects, -:>resence of large numbers of Balmer lj.nef'l, 

5 



forbidden lines etc. We can assume that the atrnos-

pheres of these stars are spherically symmetric_ ~ .. a 

have an additional curvature term ,- ~'2. c> I in 
~ "d"t-4 

the steady state transfer equation. In addition, if 

time-dependent effects are important. we have the 

additional time derivative term and an exponential 

relaxation factor in the scattering integral. 

In chapterIV, we presented a method to solve the 

steady state equation in spherically symmetric medium. 

Also a first order difference scheme is developed 

for the time-dependent eguation under the assumption 

that t I ~< t,2.. he have checked our algorithm for 

few test cases. 

6 



CHAPTER II 

EFFECT OF THE TIME SPENT BY THE PHOTON IN THE 

ABSORBED STATE ON THE TIME DEPENDENT TRANSFER 

OF RADIATION 

2.1 Introduction 

In this chapter, we shall present a numerical 

solution to the time-dependent monochromatic transfer 

equation when the time spent by a photon in the 

absorbed state is significant. We have considered the 

cases where a slab is illuminated by a pulsed beam of 

radiation and also by a constant source of radiation. 

We studied the emergent and reflected intensity distri

butions for the various optical depths of the medium. 

Milne (1926) derived the transfer equation in his 

investigations of the diffusion of imprisoned radiation 

through a gas. He considered a slab of mercury gas which 

is illuminated by light for sufficiently long time for 

the gas to reach a steady state. If the source of 

illumination is suddenly cut off, the radiation field 

in the gas will not cease instantaneously due to the 

fact that the atoms of mercury will decay with a 

finite mean life time. Chandrashekar (1950)solved this 

problem and obtained a solution which is expressed in a 

series form. 

7 



SObolev ( 1963 ) obtained the reflection function 

by considering the time spent by a photon in the 

absorbed state for semi-infinite media through the 

probabilistic arguments. Using the time dependent 

principle of invariance, Matsumoto (1974) studied 

the reflected intensity distribution from a homogeneous 

semi-infinite atmosphere when the time-dependence of 

incident radiation field is expressed by the Heaviside 

unit step function. 

In section 2.2, we shall present a brief description 

of the Milne's derivation of the transfer equation 

(cf.Chandrasekhar, 1950), and in section 2.3, we shall 

present our numerical solution to the transport equation. 

We shall present the result and discussion in section 2.4. 

2.2 Derivation of the transfer equation 

Let suffixes 1 and 2 denote respectively the normal 

and the excited states of the atom. The Einstein coeffi

cients B12 ' A21 and B21 can be defined in the following 

way. B12 I~ is the probability, per unit time, that 

an atom exposed to isotropic radiation of intensity 

8 

IV d" in the frequency interval ( V I "Y+ "'~ )will absorb 

the quantum h~ and mak~ a transition to the state 2 • 

A is the probability per unit time, that an atom in 
21 



the state 2 will spontaneously emit a quantum ny and 

pass to the state 1, and B21 I~ is the probability 

that the same atom will be induced to undergo the 

same transition. The Einstein coefficients are 

related by 

where gl and g2 are the statistical weights of the 

states 1 and 2, c is the velocity of light and h is 

the ~lanckls constant. The Einstein coefficients are 

properties of the atom only, and are independent of 

the radiation field. 

If c;- ("))) is the atc',lic abso.rption coefficient 

for frequencY)J, then 

B~2' h") 
4-lT 

where the integral is extended over the absorption line 

corresponding to the transition 1~ 2. By assuming 

that the absorption throughOUF the" width of the lin. 

is 'I1niform, wa can approximate the relation. 

9 
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(2.2) by 

Let 'rll and 111. denote the rnmber of atoms per unit 

volume in the states 1 and 2; Also 'I"} , and 'JJ2.. vary 

throughout the gas an:] are time dependent. Let a pencil 

of radiation of specific intensity I V traverse a path 

length d 5 through the gas. Counting the gains and 

losses of the radiation through a path length 

we get 

where the quanti ties multiplying '1)2., and'l1, represent 

the number of emissions and absorptions (per unit time) 

of the quantum h"V • Dividing the equation (2.4) by 

and making use of the relations (2.1) 

and (2.3) the above transfer equation becomes 

The excess of the number of absorptions over the number 

of emissions must equal the rate of increase of the 

10 

( 2.3) 

(2.5) 



number of atoms in the excited state. Hence 

where the integration is extended over the whole 

solid angle. We shall define the mean intensity 

of the radiation by 

By dividing the equation (2.6) by B12 and rearranging 

the terms, we get 

11 

Assuming that 11,77 112. and time independent, equations 

(2.5) and (2.7) can be written as, 

(2.8) 

and 

(2.9) 

c.'2. 



We assume that the medium is stratified in plane 

parallel layer in Z-direction, and cenote the 

cosine of the angle made by ray with the normal 

to the surface by ~ 

Defining 

N 

and the optical depth 

,~qu.ations (2.8) and (2.9) reduce to 

I (t/l/~) -N (tJ~) 
O(0 L \ 

and for the oppositely directed beam, 

12 

-~ d rCt,<,-f'I) =- I (t,<:,-r) -l'l (I:/l:) (2.10) 

~T 
O({-.f~J 

and 

( 2.11) 



Integrating the equation with respect to the time 

from 0 to t, and simplifying, we get 

o 

Assuming that initially all the atoms are in the 

ground state, we have N (OIL ) ='0. Further writing 

f:. \ :: i;., and substi tuting for N (tl'"C) Al1 (2. 10) 

13 

(2.12) 

We get t 

-r ~ dI (C,7.,Tfi) -=I(t,<::,'t.f"!) --t) -e(t-L)}l.':rU,,-c)d,-l:! 
L 0 

I -tic, 
Also one can see that --s c: is the probability 

that a photon absorbed at t::. 0 will be emitted in 

the time interval (t It ..... '" t ) 

2.3 Method of solution 

In the following section, we shall describe the 

solution of radiative transfer equation in detail. 

First, we shall introduce the Interaction principle 

which explains the relationship between the input 

and output radiation fields from a given medium. We 

shall follow closely the two papers of Grant and 

Hunt (1969 a,b). 

( 2.13) 



c. Interaction Principle 

We divide the medium into N shells. At any level 

we define upward and downward directed intensities 

U-t(""C"Y)}, U C-r-n} Let f'-\ be the cosine of the angle 

made by a ray with the nonnal to the surface in the 

di. rection in which the optical depth increases. We 

select a fin1 te set of values of fA. ' t JUj ; I {. j ~ m.l 
O~ ~I<t··h.···f'-t'm~tnd write U"T(T:Y\)" and UCT'Yl} 
as vectors in m-dimensional Euclidean space 

IT (""( 'Yl ) 

consider a shell bounded by layers T\ 

as shown in Fig.l'a.) 

OJ Uir 

Ou C" pu ~ i.." ltTl • 
-$I..tT;"s 

and '1'\ ... :1 

b---.-------~----~-------~~----...--..----

lut.. FZ~ j(<i) T (;"..1 

14 
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The intensities impinging on this layer are U~(ln) 

and The in~ensities emerging from 

, depend 

linearly on the incident intensities and on the sources 

~-+Cr)1+l/ll1) IL-Ct:11}T"t\1'\1 present within the 

layer. Then we can write (hereafter, we shall omit 

l: and retain its subscripts only) 

or 

S (llJ 7l+~ 
.... 

U;"tl 

The pair t(n+l,n) and t(n,n+l) are the linear operators 

of diffuse transmission and r(n,n+l), r(n+l,n) are of 

diffuse reflection. Equations (2.15) and (2.16) are 

called the Principle of Interaction. 

Now that we have obtained the response function 

for a layer of specified boundaries, we shall proceed 

to calculate the response function for two or more, 

consecutive layers, a process termed as "star productA • 

(see also, Redheffer 1962). 

15 
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II. Star product 

Let there be two layers wi th boundaries t 1"\ ... L )"\-tl 

and l "r'\"t'l. where eN f:; LYl ~ Ly\i' I f: -r 'h1'"2.~.b, Then 

from equation (2.16), we have 

-
Un Ul1-t1 

and 

As C-n, YY\t'1 ' and L"n+'l. are arbitrary, we can write 

again using the interaction principle, 

U;t'l. U; 

16 

(2.17) 

S (n/l\t-2) + L (.,,/)1+ k) 

U11 Ul'l+2 ( 2.18) 

where 

t (111- 2., 11 ) h. ( '11, 1) +1.) 

5 (n, 1)1"2. ) 



-
can obtain (2.18) by eliminating u;f-t, and UrH I 

::>m (2.17). The relation between S(n,n+1), 

n+l,n+2) and S(n,n+2) is called 'Star-product' 

two S-matrices" 
S (11,11 +2.) =- S (11, n+f) *" 5 (llotl) 1\+2.) 

so -I 

17 

()'J+ 2.;n) -::: t ('n1"2, 1\1"1) [] - 11 (n, 11 tl) 'Tl (n.,. 2, 7l1" I'D 1:.(11 t 1,Y1) 

-I 

(-nl "0+2.) -= t. (1\1 111"1) [r. -)t (11.,.2/nt-l) 'll.(n/1Jt-ID t(YltI'l1t~ 

(7) T 2., 7)) c::. It (Yl1"I;n) t t (11 ,lit-I) h (nt2/111"I) _I 

[I - 11 ("0/ "Ot-i) n.(1\+2, Tlt~ t tntVIi) 

h (n1" 1/l1tl.) -t t: ll')1"2/11t-J) ill 11, '~)t .. \) 

-J 

[I - 'hCn-r 2,111" I) ne'll, TltJ5] t (1\+-1,'111'2) 
( 2.19 ) 

here I is the identity operator. 

Let us consider the source term • The 

esul t of adding two layers may be written in terms 

f two linear operators /\ (11 I 1'\t'1 J 11+3.) OJhd A ()'II -nt-llllrz) 

~ (n/I1+2) -:: 1\ (11,ll+l) lli-l) 2. (11/11+') 

-t ;\ ( l1J 111" IJ 111-:2.) 2:= (11+1) )1t2.) 



where 
-1 

t (lltJ., )')tl) [I - n ('hI n+l) it (111-2/11 1-15] 

1\ (n, ntl,lH-2.) - _, 

18 

o 

t:(ll,l1+I) n(l1t 2/)'I+I) [r.-'h(l1'-lltl) n(n-t2i11-tl]] 1 
and 

-I 

1 t LI1t2, I1tl)n.(il/r>+O [i-J1.(~i';l./n+l)il(71,~t~ 

o 
-1 

t: (1111\+0 [1.-Jt(1'\T2./11tl) h.( 1', 'h"l~ 
(2.20) 

So in practical problem, we divide the medium into N 

layers and calculate S for each shell and add them by 

star product. We have for the whole medium# 

A corresponding equation can be written for the source 

(2.21) 

terms. Adding layer by layer at a time one can calculate 

the complete external response. 

III'Calculation of the internal Diffuse radiation field 

To calcu~e the radiation field at any pOint inside 

the medium, one has to solve the simultaneous equations 

( 2.22) 

lFl1 \Tntl 



The details of the procedure is given in Grant and 

Hun-t (1968) and we shall quote only the results. 

Calculate the rand t operators for each shell. 

Conpute, sequentially, for n=1 / 2, ••••••• ,N, the 
+ -

19 

matrices r(l,n) and vectors V"YJof.l. )\1111'1. from 
~ ~ -1 

h ( 1)"r1) = h. ('11, n+l) + i: (Th-I) 11) h (I, n) ~ - n("l1+I,n} n.(J''Y)~ Hn(n+O 

( 2.23) 

-::: i ()1+I,'I1) V~_\ 1- i" (nt-Irn) -j-1\.,1,. '2::. (n, n-tl) 

( 2.24) 

(2.25) 

with the initial conditions r(l,l) = 0, V; == U+(~) 
and where -I 

f. (I'lT " 1'1) -= t ('r1-t I, n ') [I - 71. (vri) n (nt-I) )1 ~ 
(2.26) 

( 2.27) 

and 

and 



On this forward sweep, we need to store the quantities 

r(l,n), t(n,n+l) which represent the diffuse reflection 

and transmission for each shell and it. 
Y'n+! 

'L 
,the 

diffuse source vectors. 

Now we shall calculate the intensities at each 

step by computing sequentially for n=N, N-l,N-2, ••••• , 

2,1. 

+ 
h (l/l1+I) U-n1'1 -t Vn..f:J.. 

2 

with the initial conditions UN+I:: cJ(b.). 

We have seen in the previous section how to 

calculate the diffuse radiation field of general 

physical and geometrical properties. Also the 

calculation of diffuse field requires the correct 

estimation of reflection and transmission matrices 

for each shell or partition of the medium. We 

shall calcul~te the rand t matrices for the 

medium where the time spent by the photon in the 

absorbed state is significant. 

20 

( 2.28) 

( 2.29) 
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IV. Calculation of Transmission and Reflection 

operators in a shell of given physical properties 

We have seen in the section 2.2, the transfer 

equation for a plane-parallel medium when the time 

spent by the photon in the absorbed state is s1gni-

ficant is given by t-t-' 

01 It (t, L, :tty) - Q. 5 f;L t-t')/t l f I (t,L,,..')9i, dt'J 

o -, 

Sometimes, it is convenient to distinguish between 

the reduced incident radiation g( t, ~, I'" ) which 

penetrates to the level c:: at time t wi thout suffering 

any scattering or absorption and the diffuse radiation 

) that results as a consequence of one 

or more scattering processes. 

Then the transfer equation is given by 

t +1 

T (t,-z;, :t)4) - Q. '5J~(~-t.')!tl JI(il-Z:/~)~,df 
o -I 

( 2.30) 



Though we considered only isotropic phase function, 

the extension to arbitrary phase function is 

straight forward. Also we assumed only conservative 

scattering atmosphere without any thermal sources 

present. 

For a slab atmosphere with no radiation falling 

on the top, the boundary conditions for the equation 

( 2.30) are 

o 

where f( t, fJ.) is a given function of t and ~ 

We shall approximate the angular integral in 

equation (2.30) as 

, 
f I(t/1:/~)d~' J 

L. 1 (c, "rdYj ) Lj 
J ~ I 

o 
( 2. 



Where the coefficients Cj and cosines 14j are 

determined by Gauss-Legendre quadrature of order]. 

Integral over time is approximated as 

for j -= J} . . . r 

Incorporating these approximations in (2.31), 

We get 

Defining 

M= 

~I . 

0 

0 

o -

b 

0 

~2. 

..f-h. ~ = I, '2.,' .• 1:. 

j = (I 2,· .. r 

a 

o 

f'-tr o 

o 

l.Jx IJ" 

23 

(2.33) 

(2.34) 



Defining 

o .... 

o 
We have 

. . 

rV 
o c.' 

c 

o 

o 
o 

:LXI 



and 

lit o· 0 

T~ 
T~.2:.. T22 0 . . 0 

TtJ. ~. . ... IJ' 

~Lt:II~1 14 ,) 

G (~)= ~y:11 1: I I'b) 

d ( t IJ -r. I f" J ) . 
d (tl,,", f'4,) 

J (t.I/'"r, f-iJ) 

-i i (t" 1: I 1. I\.fJ ) U (t)= ,. 

25 
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One can write the system of equations(2.34) as 
(Sy 'W\..e~","2' +JA- ~ & i..N:~tlAi""t 1: c;U.vec.tJ:""...) 

-M c) U- -t V -:::. o· 5 [T C (u+ t UTI - Cr. ( !:. ) 
cJT 

we shall integrate equations (2.36) from ~ to TMI 

and write their corresponding discrete equivalents 

as 

(2.36) 

- M [ 011+1- u"J -t "In T 1. 0,,+1. -:::. o· 5 rc. (U:1T Un+J. .. ~ 
- G, ((1\-ti.) 

where 



~e shall use the diamond scheme to approximate 

the quanti ties 

± 
U Y/-t-l. 

2. 

as 

Then equations (2.37) become, 
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( 2.38) 

M [Un~I- U,.,J + O· 5" C-n+\. (u~+,-t Un) :: 0 ·lsT.:: (ct..; u~rll+\ 

( 2.39) 

- M [ U1\T'- U~ -t 0,5" L'YlT1. (Un .. , T U'Y\) =0- 25 Tc (4.+1"" o,.,)r»+1. 

( 2.40) 

Rearranging the terms. we get 
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[M + o· 5 TnT\. (I - o· S Te)] U~+I - 0- 25 Tc Unlntl,. 

= 0-25 TC Ul1-tILnt'1. + eM -0' 5 LM-\. (I-O.5'TC.~Un 
~ 'ht-l --z: ll1"l 

2 1. 

[M + 0- 5?:nr\ (I -0' 5 TC)] ~ - 0- 25iC ~+I'''tnt1 

= 0- 2S TC u-;, 'tnT-t 1" [M -0- 5Z11T\(I.-O-ST'~lh".1 
- G,1\~ cl\+..L (2.41) 

Here I is the identity matrix of appropriate dfmension. 

It is now straight forward to put.these .equations in the 

canonical form 

h Cn/l1+\) .u\ -+ 
L 

'n-t1. 
+ 

... 
t. (l1/Yl+I) U'hi" L 11+J. .a. 

(:2.42) 

Now we shall express the r and t matrioes in terms 

of the following auxiliary matrices. 



and 

i.e. 

and 

8.11: =O·5TC 
.2.. 

+ 
5 
--

S 

t (I1tl/n) -= r [ ,6T S-+ -th-t i\.'i'] 

t( n JI'I+1) -= t (ni-vn) 

n( 1)1-1,11) -= 2- tt h-t ,,6"T r1 

/1 (Ol/fJ1-l) = CJt (I\-r\/Yl ) 

-t 1-[ ~-1 ::' Chtt t [1+ ~T-t ll-f' 4T C;TJ 

2B 
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From physical considerations. we know that 

reflection and transmission operators rand t must 

be non-negative. For this we need 

and we can achieve this if 

1n;'Y} . 
J (2.44) 

So with the help of these transmission and reflection 

matrices. one can obtain the radiation field as 

described . previously. 

Specific cases considered:-

The transfer equation is solved with different 

types of boundary conditions. The various cases 

considered are given below. 

Case I I Two stream approximation with an incident 

pulsed beam on the lower boundary of the atmosphere i.e. 

where 6 (-l) is 

Dirac.Oelta function. 



To avoid including the highly singular function 

(the ~ - function distribution) in the equation, . 
we distinguish the diffuse field due to one or more 

scatterings from the reduced incident field without 

scatterings. The equation of transfer for the diffuse 

field is 
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(2.45) 

at: l: 

O. S ( - (t-t.')/t.1 .... ) J -tJ t, - (r-t:) 
) 'C' ( 17 + I ~ -t o· 5 e.. . e 

t.. t, o 

where + and - denote the two OPPositely travelling 

beams of radiation. 

Case II : If we consider the full angular scattering 

of the radiation, we have for the diffuse intensity 



with the boundary conditions 

1- ( t I -z: ~ T J {'-I) -=- 0 

rtC t, 7::0) r) -::. 0 

Case III: Search ligh~ beam with Dirac-delta time 

distribution is also considered. ~he incident field 

is given by 

The transfer equ,~tion for diffuse intensities in this 

case is 
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(2.47) 

( 2.4'3) 



with 

f ( t,L: TJ t"i) = 0 

I -r ( t) -r.: 0, " ) -::: 0 

For checking the numerical results. we can make use 

of the following relations 

Denote 

00 

f 1± ( ti, L I ,..') ~ +.' ::: 1""1. ( y, f'4 ) 

o 
By integrating equations (2.46), (2.47) and (2.49i 

with respect to time from 0 to 00 , we obtain the 

following steady state equation for various cases. 
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( 2.49) 

(2.50 ) 



For the case I I 

with --+ ' 1 (Y::O) =-0 
i- (T~T) -=- 0 

For the case II, we have 
+1 

:'\i:t ---t J-C ')d I T ~ _() _.. -t I - = q. 5 1 7: J I~ r 
a1' 

with 

I -/ 

--t 0" s 1 -e (T-r) j{f' d.~1 
o 

"t\ L = (J I t-t) -::. 0 

-r- (c:~ T, f1) =- 0 

for the case III, 

(2.52) 

(2.53) 



with 

The equations (2.46), (2.47), and (2.49) and the 

corresponding steady state equations (2.51),(2.52) 

and (2.53) are solved. The steady state solutions 
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are also obtained by the method of Grant and Hunt (19 69a)'" 

The time dependent solution I( t, '"1: I f-4 ) is integrated 

with respect to time and checked against the steady 

state solution as given below. 

o (2.54) 

The maximum deviati~n from the'steady state value 'is 15% 

which is fact that the abave4~ime integration 

is truncated at a finite time limit. 



Case IV: We also considered the situation where the 

incident radiation distribution with time is given , 

b:: Heav~s:lde unit stap function H (t) .. 

With 

(-:!~ 
<.J; 

with 

o 

I ( C, Y= T) :: H ( -l) 

Ii" ( t, T-:: 0) ~ 0 

where H ( t) ::. 0 

for t. t.. 0 

1 -t ( f:, L:: 01 f-t) -=- 0 

(2.55) 



As intensity distributions reach steady state after 

sufficiently lbng time, one can check the steady 

state values from the following equations 

-+ -

and 

± (, -t -) I (L) - o· 5 ~1. + I 

wi th 1-( (' -=- -r ) -= \ 

'1 T ( 1': 0 ) ::. 0 

+J 
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1.± eLI f'i) - o· 5" ~ I ( "CJ r') clr' 
-, 

with 

Let tJ denote the time spent by the photon in the 

absorbed state and C2.. is the time spent by the 

photon between two successive acts of soatterings. 



Van de Hulst and Irvine (1963) pointed out that 

the non-stationary problem for t. 2 =. 0 (infini te 

veloci ty of propogation) and l::., 1-0 (time spent by 

the photon in the absorbed state is significant) 

is equivalent to the problem of finding the distri-

bution of photon over the number of scatterings. 

2.4 Results and Discussion 

The numerical results are displayed in graphical 

forms for all the cases. In all the cases, we have 

assumed t:, = 1.0. 

Figsl and 2 illustrate the reflected intensity 

distributions for the two stream approximation when 

the medium is illuminated by a pulsed beam. The 

reflection function due to Sobolev (1963) for the semi-

infinite medium is also plotted in Fig.2. Reflected 

radiation starts at time t == 0 wi th the value 0.25 [t- e-1. 
We see that it falls more rapidly for T = 1. Also 

for the semi-infinite medium the radiation drops down 

gradually compared to a medium with total optical 

depth T = 2. This is because the photon spends more 

time in a medium with higher optical depth. Diffuse 

emergent intensities are plotted in Flq.3 and 4 
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respectively. At time t = 0, the intensities starts 

wi th the value 0.5 T..:eT • We see that the time 

at which it falls by ~ is 1.6 and 2.6 for 

T = 1 and T = 2 respectively. From this it is 

evident that emergent intensity for the medium with 

T = 1 decays faster in comparision to the medium 

with T = 2. Similar interpr~tation can be given as 

in the case of reflected intensities. 

When isotropic pulsed beam of radiation falls on 

the medium, the emergent and reflected radiations for 

optical depth T = 1 are displayed in Figs.5 and 6 

respectively. A photon reflected at the grazing 

angle (,..... = 0.2) can be regarded as coming from the 
. 

shallow layers of the medium. Hence it experier 

few scatterings and spends short time before it re

appeares on the surface. On the other hand a photon 

reflected at an angle nearer to the normal (/4 - 0.7) 
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can be regarded as coming from the deeper layers of the 

medium. Hence it experiences more number of scatterings 

and spends. longtime till its ,reappearance. Due to this 

reason, the reflected radiation for fe' 0.2 fa1.l:a ~re .mPdly wi,th 

time compared to that for JV. • 0.7. But the photons 

emerging from the atmosphere along the direction ~- 0.7, 
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experience few scatterings which results in the slow 

dropping of the emergent intensity distribution for 

tt= 0.7. 

When the puls~d beam in a specified direction angle 

~o= 0.5 is incident on the atmosPhere, the correspond

ing reflected and emergent intensities are displayed in 

Figs.7 and 8. EVen though the decay of the reflected 

radiation for~= 0.2 is almost identical to the pre

vious case, we find for~. 0.7 there is some slight 

difference. 

We also considered a medium illuminated by a con

stant input of radiation. Once the radiation field re

aches steady state, the illumination is cut off. The re

sults are shown in Figs.9 and 10. 

Now we shall discuss the cases where the medium is 

illuminated by a constant radiation starting. from time 

t = O. 

When the mediUm is illuminated by a constant radia-
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tion field of intensity 1 £rom time t = 0, the emergent 

intensities are plotted in Fig.ll and 13 for optical depths 

T • 1 and T = 2. Reflected intensities.~ depicted~in Fig. 

-T 
12 & 14. Emergent intensities start with the value e 

and £each steady state after few time units. At time 

t = 0, the. integral in the transfer equation vanishes and 

the formal solution which we get is Ioe-Tfor the emergent 

intensity, Where 10 isthe initial condition. 
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Time during which the relaxation occurs is roughtly 

tw:i.a:e for the medium with T = 2 compared to that of 

the medium with T = 1. 

The angular dependence of the emergent inten

sities for T == 0.5 and T = 2.0 are exhibited in 

Figs.15 and 17, while the reflected intensities are 

plotted in Figs.16 and~. If we consider the relative 
. -- ~ 

reflected intensity I(t,O, ~ )/I(O,f-A)(I(O,f-t) is the 

steady state value) the convergence to unity is faster 

for f'4 = 0.2 compared to that for,... == 0.7. Similarly, 

when we consider the relative emergent intensity, the 

ratio approaces unity faster for ~D 0.7 compared to the 

case ~ = 0.2. This can be explained by the fact that 

reflected photons coming in the direction"':. O. 2 ex

perience few scatterings and hence spends less time 

in the medium. Similarly, the emergent photons coming 

in the direction~ = 0.7 experience few scattering and 

reach steady state faster. These are in quantitative 

agreement with that of Matsumoto (1974). Also one 

can see that for T - 2.0 the emergent intensity for 

~ == 0.7 and reflected intensity for f-'i l1:li 0.2 show 

steeper variation with time compared to T = 0.5 case. 
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CHAPTER III 

A NUMERICAL SOLUTION FOR THE TIME DEPENDENT 
TRANSFER EQUATION 

l.l Introduction 

In this chapter, we shall present the numerical 

~ethod for the problem of time-dependent transfer in 

l finite slab in which the material density is 

>ufficiently low so that the time spent by the photon 

>etween scatterings exceeds the time spent by the 

,hoton in the absorbed state. We have studied the 

\onochromatic tI:atlsfer problem for a homogeneous 

:lab which is illuminated by a constant beam of 

~adiation from time t = O. We solved the problem when 

L pulse of radiation (a ~ - function in time) impinges 

)n the slab under the two stream approximation. Time-

lependent transfer of resonance lines under the assumption 

,f complete redistribution is also investigated. 

The factor , where 0<.. denotes the absorption 

:oefficient and c, the velocity of light, is the time 

:pent by the photon between emission and reabsorption. 

~lso '/c<c. connects the time derivative with other terms 
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in the transfer equation. If it is long compared to 

the typical time scales in which the atmospheric 

system is changed, the time derivative C) IMtis impor

tant .. Klein et al (1976) considered thermal relaxation 

time which is given by the ratio of the internal 

energ} per unit volume to the emission per unit 

volume of a gas. They showea that the ratio of thermal 

relaxation time to the photon' s time of flight is less 

than unity for the typical densities in planetary and 

crab nebula suggesting that the time derivat.i'llemay 

be important in these class of objects. 

Bellman et al (1964)solved the time dependent 

transfer problem by the theory of invariant imbedding 

and L~place transform technique. They obtained 

diffuse reflection function for a finite slab whose 

surface is irradiated with a consta~t net flux of 

radiation. With the aid of time dependent principle 

of invariance and the inverse method of Bellman 

(1966). Matsumoto (1974) .obtained the solution for 

semi-infinite homogeneous media by takinq into 

account both tIlt: 2. "4-0 ( t: I 18 the time spent by a 

photon in the absorbed stat., t:. '2.. 18 the time spent 

by the photon between two successive acta of scatterings). 

Later, he (1976) obtained & convergent serie. solution 

by using Laplace trans form and the theory of order of 



scattering developed by Uesugi and Irvine (1970). The 

series solution is seperable into a time like factor 

add an angle factor. ine angular factors are identical 

to those developed by Uesugi and Irvine. Ganapol (1981) 

developed a time-dependent solution directly from sta

tionary solution. Kunasz (1983) proposed an implicit 

finite difference method for time-dependent line tra

nsfer problem. 

Recently, Ganapol (1986) presented results for the 

reflected photon intensity from an anisotropically scatt

ering semi-infinite medium taking into account a mean free 

time bet-,veen scatteri ngs and a mean time of temporal 

capture. 

Many different numerical schemes have been proposed 

for solving the time-dependent transfer problems (see 

Richmeyer and Morton, 1967). Keller and Wendroff (1957) 

proposed characteristic Sn method to solve the transfer 

equation in spherical geometry. Our method presented 

is similar to their·s. 

In section 3.2, we outline the method of solution 

for th~ monochromatic transfer problem and in section 3.3# 

we discuss the extension of the method to time-dependent 

line transfer. The results and discussion are presented 

in section 3.4. 

3.2 Method of Solutioj! 

The monochromatic time-dependent transfer equation 

for the specific intensity I(Z,fL,t) in slab geometry is 

given by" 
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+1 

0< (z; -q GJ (~ t) f PCt' t') I Cz.) ,..', t) d r./ 
-I 

and for the opposi tely di re'cted beam, 

-c. 
+t 

- 0( C 2) /:, ) [ CJ (~ 1=.) f P (- j4 I ~' ) 1("> I~' c) d. r-/ 

r="1 u. 

-I 

+ ( I - (.) ) B (2, t iJ 0 <. f-I <- I (3' ,) 

where d.. ( 21 t,) 1s the absorption coefficient at 

spatial coordinate -z. and time t c..J (ZJt)is the 

albedo for single scattering and C is the velocity 

of light. The !;lhase function P ( ,..., ~\) gives the 

probabili ty that a photon travelling in the direction 
I 

is scattered into the direction ~ 



We assume that there is no radiation incident 

on the top of the atmosphere and initially at time 

t = 0, there is no radiation present within the 

medium. Then the initial and boundary conditions 

for tha equ~tions (3.1) are given by 

I ( "Z = 0 I {-II t ) -::·i ( ~ J t ) 

I (Z=T,-t',t) = 0 

I (L I -t- ~ J t= 0) -=- 0 
-f-lt 0.( L <.-, 

o ~ J4 L I 

where T is the total geometrical depth of the medium 

and + C ~I t) is a given function of f-t and t \ 

We shall approximate the angular integral in 

equation (3.1) as 
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(3.2) 

I 

J PO-l'~') I (£., r'"" J t ) d ,",I ~ f I PCf',{-lj) vJj r(z,fiht) 
o (3.3) 

whe re W J and f-tj are the weights and roots of the 

Gauss-Legendre quadrature of order.]i. 



Incorporating equation (3.3) in equation (3.1) we get 

-t P ( -t f'j ) - fiJI) L C-z ) -f'i/, l: TI vJi 

+ (1- (J) B (z)Cm 

In these problems, it is convenient to distinguish 

between the reduced incident radiation field d('Z/t) 
at spatial position -Z and time t and the diffuse 

radiation field I ( 7.., :±./4, t) that results as a 

consequence of one or more scattering processes. 

Then the equation (3.4) becomes, 

r 
c 

Cl I (z,::!:~,!:..) + {-Ii sLLc "Z./-:t j'iJJt) 1-
at d-z.. 

c( C 2,1::) 1 (""2/ T. ~r, c) 
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=:.c«-z,c) [ Wl2~t) ~ltP(T('Ij/hl)IC2J r/ 'i ) 

+ p ( -t ho 1 -}'-I /) I ( -Z J - ft / It)) W / -t 

[1- evCZ/t)] B (Z/tU -t ~("2.,i.) (3.5) 

j -= ') 2., ~ - . J 
with initial and boundary conditions given by 

• 

I ( 2 :!. 0 / fj ) 1:) -= 0 

I (2=T,-f1J It) = 0 

The equations (3.S)form a hyperbolic system of 

first order linear partial differential equations. 

The characteristics are the straight lines in theL,t 

planes defined by 

o\t 

- 4 fi j 
Dj 

dAj! C.Dj 

D,) -:: J f"tl+ {i J ..... ) ... -r 
, ... ) ,J 

(3.6) 



Where Jb J repre sen ts the arc-l.ength along the j tf;: 

characteristic with positive slope and ~~ represent 

the arc -length along the j th characteristic wi th 

negative slope •. Denoting 1.. (z,± ri, '=} :: lj-t 

the equations(3.~can be written as 

where 

and 

where 

J' 

Sj -:: 0( { ~ t-I [p (- ~j I ('-I J') I C 2) t f I 1: ) 
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-t P (- {-Ii J - f/) I C 7., - t' ;' I /; )] !V/ T ( 3.9) 

(/-w) 13(:Z/t)} + ~(Z/b) j",-IJo.'"J 

CJh-eRL d..=~l'ZJt) ~ W::;(.J(z/t) 



We shall divide the medium into 'N layers of equal 

depth 6 -Z . Also the time domain is divided into 

equal intervals of time duration 6 t. With this, 

we can construct a two dimensional mesh in space 

and time as shown in Fig.l(~) 

I pj p 

2 

At and.6.z are chosen such that / 

j-= J,'2.;,." T for all 

r::s \..' 

We identify & wi th an arbi trary p:::>int & -= C z.,..-tf} CJ..tV· 
Through ~draw a characteristic line whose slope is 

I The first intersection of the J'tn back ""'j C. • 
characteristic with the horizontal mesh line is given 

by the point P j (-Z l'1+ J - f'-! j c.. £l t, I:: i ) 



Similarly, if we draw through ~ a characteristic 

whose slope is - ~i C ' it intersects the mesh 

1 i ne a t the po i n t p j ( -Z 1:' t.1 ;- ~ j c.. iJ t) t. i. ) 

Integrating equation \.3.8) along the j t1; chara

cterisitc from Pj to a we get 

Using the modified trapezoidal rule to approximate 

the integrals we can :wri t.e equation (3.10) as' 

where 

;;:: -:. 0\ ( CL) T 0< (J j ) 
2-
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( 3.10) 



Similarly integrating equation (3.9) along the 

characteristic from Pj I to a, we get 

.ti; 
J 
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[Ij (El,)-ljCP/)] 1- ~ [lj(a)-ti(pj)]oI~J~ 

~ [ 5 i C PJ') -t ~. (Sv ~ d ~~ 

~ -= 0{ ( &t ) +0< C P ; J (3.12) 

where 2.. 

since we have 

We can use a formula for linear interpolation 

to approximate the quantities Ij (pj)arid .,1 I j ( Pj') 

It (pj) -:: I: (Zl1+ I -rj 1::,1 t, 1:;) 
- N c. ~Cl~ r/(znJL)+(I-ftj C~~)Ij(~.,l;) 

j 
(3.13) 

Ij (pJ,) -:: Ij (Z",t,.-t-f;CM/t.;} 

-:: ~ c: £) ;7 J:~' (ZlJ+l/t..) + (1- ftj CDc~) ri~~~i¥)t;) 
J 
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Similarly, S-+(Pj), S (pj'J /c{(pj)/W(pj)/O«PJ) 
and W( p jl) can be approximated~ 

" 
. T-+ (L) r-t Denot'.l.ng . - - ( L k ~ - l1"t', j " - - j Z"tJ,L.irnd 

incorporating the relations (3.13) and (3.14) in 

eq~ations (3.11) and (3.12) respectively, we obtain 

-:. d. [ W [{ pC JYj, lyJ) Wj 'l T'" > t;-I'I) + ~j C~l-t ~;) 4 .J "11tl, J ",.j 
J -: I 

-t (\- JiJ' C ~'J I T ,Ct.;)} t PC 14{- /-1;) Wj' ~i (c; .. v 
b"2 1\t ')J l nt', J 

-t- /'-1 J' C {j t I - ,I ( c;) -+ ()- jYj C £U J T J t ~ )JJ 
D-z l1'J 6~ ~t')J ' 
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t ~ I I (ti+/)-t ~j eDt I ~ L) +(l-fi; ~tJf ~t4)} 
2 "'" I I iJ 7. 11".2. J J /) 2 11~' J 

I,T)J J 

=+ c: At 

-t ( \ - f"iJo C. D t ) 1+ (t; J) -t F (- ~ j ,- ~JI) WJ' (r - ~ L-t,) + 
D 2. l' + I}j,l "+',J 

~ 

~ J C 4f:. r ( ~) -t (I - ~ J' C IJ t ) -{ C I:S~l C DL 1 -t 
LJ'"2 "'t1+ 1tJ b -z '1'-+')} I J 

(1_ ~) t !3"t/ (bl) t rj C iJDtz B'JJH Ct;) -t (I-~J ~7:) Bn+l~~ 

C LlI: to{ d 'YIt!'/ L+I) + ~j C D}--z d'l> (t;) + (1-rJ ~~) :rY'f;~ 
eDt] 

.-

Defining the following matrices 

B= 
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I ± (t~+/) 
11+ II.J jX t 

P (Ill,) I'f,) P ( /4J J ~~) ••• P ( (--If) ~J) 

p+t-:= 
p C ~:LI14I) P (~j.J ~,-) p U.fl,fJ) 

P (~J, ~I) P (flJ) ~J) 
:rXJ" 

p(- ~IJ ,...,) 
. - .. P(-~'/ftJ) 

--t P (- tb.1 f"t I) P ( -~2.J ~J) 
P --



E2 

J?tl 

81l+J (tU 

(bYl+f (t ~) 



A 011+1 (L) -t 8 CllH (b) J eDt = ;Z [ qlP tW( u\.Jl::t,) 

4 A u ~+ 1 l t ;) -t B \) "t,;'l.. (c i)) -t (\rJ ( U'(1 + 1 l L + I) + B LJ"l'\+ L (q 

+ A U"I1-1- 1 (t;)) j c 6t -t (/- ~.) [ B""n+, ( t; +,) tAB."., (1:;) 

-\- 8 ~n~l. ( b) JeD D -t o· 5 C b t t ~)1-t1 ([; ... ,) t.l3~;~tJ 

Rearranging the terms we have 

[ I + ~2 C tJ t . I - ~ s4. f T'" W C {J tJ T ( '\ ...,. U11 t l CA+I) 

=. [ 1 - ~ c Dt 1. +- ~ ~ r weLl f] A ()"1I~1 ( *; ) 

,-

-t l 1. - ~ eDt I + .;;;: i p 1" t we£> i J 8 (J.y;t ( C ; ) 

-t ;;: ~ eDt P t- /..i () 111"1 ( b + ,) of;;: ~ eM pr-I-l A Gv,+~t.,) -+ 

d: ~ c. 6 t P t - wB U;, ( L) + u::_~J<[ fj"';,+1 ( f:. + ,) + A 1t"'tlt) 

-+ 813.: (L) ] eDt -+ b'S CD t: t ~~/:;j-t') i Bc..." C t;) T 

A (,.h+1 C t:;J) (}. '-'J 
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[ r -t 0I..._'=; C LJ t I - 5- _~ - - U '2. '" 4 P w c 6 i. J 0n+ 1 (t ;+1 ) 

::: [ 1 - 4:- C cd; T --t :z S r -W C L:l ~ A V.,,-: ILL I 

_+ [ 1 - ~ 12-f:, t 1. + ;;( ~ P-\-.Ic.Dtj B UYlJt;) 

'V' "" """" "" 

-t ;;( r2. Co D t ft W liT')\.t-I (t .-+1) + :< Cf c: D t 
~ ~ 

,...,. ......,. 
_ -t :+ (L) '"'.J "\.J - 1" + (-':) P \,-,J A U "lI-t ,e; -t d.. -Yy c. 6 t. p W B U'rl1"2. ; 

-+ Q- ~2~l ~tl (/::;-tl) + A 1\+1 (L) + B ~~J l:;~c~t 
-t o· C) c: L:l t t Cn ntl ((;;; +') t B ~1'I-tl- (t ;) + A Cn"M~ t;~ 

where I is the identity matrix. 

By setting 

L).+= LI-t 1c:c.tl-~ * pt/C6~:( 
[ 

-I 

t6:: I + ~ c:L'1 t 1 - ~ ~ P-W £:6 ~ 

s+:: [1-~C.6tI-t.;r~ ft l-Jc. 6S 
S = [I -1 c,t; t:. 1--t'; % f hi C.D ~ 



,,+ +1- -t 
L.l S = J 

- -- .;.. 

.6 S = I 
- -t -+ 
6a-::: R 
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z= -t- ~( \_ w)A B~+, (ti+l) + A Bl)+,L !i) + B B Lt·.) 1 CLS t 
~~~ ~ ~ ~ J 

+ 0'5' c.c.t~ ~'l'l) .. ti"") + B G, .... (ti) + A C;'l'lt/ (1::;)} 

L- ~(I ~)5 B~+,(I::i .. ,) +A Bl1 +,(h)-t 88"t/b)}C~l:. 
1)T~ L 

~ O. s<:-l.ES l ~'\'l 't'S tj-T') + B &,1)t2. (b) + A ~'tl+1 (1;;) 1 
l j (3.22) 

we get 

U:-tl (ti+') :: -fA 0'1\:' Ctih"1 B (j~ (q 

+ R- U~1'1 (!:i+/) + R-A U;+,(b) 

+ R-e,(J:;; (ti)-r ~-t (ti) (3.23) 

h+.l. 
1. 
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+ + + + ( .) + 'R U nt I ( ti-tl) + R A U71 -t} t, 

( 3.24) 

Eliminating UJtl ( ti-tl) from the equation (3.24) . 

using.equation (3.23) w:,get, 

UnT,(ti+I):: [1- R i<J ~ R-t r+ R")A Un7ll: i) 

+ ( RT r;t-t T) A UYlT! (I:i) + ,R r BU~ (b) 

+ RT RB U-n (ti) -t R LT ( b;) + T-BU~i-2(q 
Tl-tl z.. 

+ 'R-r B U'r17.. (-1:;) -t L.--- ( 1:;)1 
'l1 t3h '~ ( 3.25) 

From the initial values, one can calculate the 

U'Y\~I (t z.) for 11= N-I)' ... " 0'-. And then 

these values are used to obtain U:t l tz.) for 11-: I" .. N~' . ')'\ t , 



This procedure is repeated for 1:.3 ) t:.4J· . '. I etc. 

3.3. Extension of the method to calculate the time

dependent line profiles. 

The time-dependent transfer equation for a two 

level atom under the assumption of complete re

distribution is given by 

+kL(2, r.) q(x) rCz.'±f1,1,)t) 
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+00 t-I 

=- kL (2, t.) ~()() [ ti J [~(X') rC-Z, ",'/.x,t)dt<l~ 
-00 _I 

+ E: B ( 'X, L I -l:: j] 0 c:. 1'-1 <. \ 
(3.26) 

We have neglected continuous absorption in writing the 

equation (3.26). )( is the frequency measured in Doppler 

units and is defined by X'= ty- 10 YLlSII Dc;, being some 

standard f'requency interval. k L (7.) t) is the line 

centre absorption coefficient and ~ C~ ) is the absor

ption profile function. 



is the probability per scatter that a photon will be 

destroyed by collisional de-excitation. C21 is the 

rate coefficient for collisional de-exci tation of the 

a tom and A2., is the Einstein coefficient for spont-

aneous emission. ~ and k are the Plan::k and 

Boltzman constants and -y~ is the electron temperature 

of the gas. 

Other symbols in equation (3.26) have the usual 

meaning. The assumption of complete redistribution 

supposes that there is no correlation between the 

frequencies of the absorbed and the emitted photons. 

We have assumed that the profile function is the Voigt 

function H (OJ,X)given by 

cp ex):: \--t (OJ,x) -

68 

(3.27) 

(3.28) 

where a is the damping constant for the upper level of the 

transition. We have considered isotropic scattering. 



We discretized the angular integral by Gauss-quadrature 

of order :r. We discretized the frequency integral 

also by Gauss-quadrature of order K. 
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o J'-\ 2···J - } ) 

( 3.29 ) 

Since the problem has symmetric solution with respect 

to the line centre, we have considered only positive 

frequency grid. Using (3.29) in (3.26), we get 

1- d I C-2 , -T ~j,XI</ t) -1- fYj Q.!. (z./-t ~j ,)(I<, b) 
C. at 2f2 

\<": I) 2) ... , k 
J ':: t, 1., .. , J" 

(3.30) 
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As these equations form hyperbolic system of linear 

partial differential equations, we use the same 

computational procedure as described in section 3.2. 

3.~ Results and discussion 

We have set 0(= <? = 1 in eqn.~~J:a.-~Ilceo( --1, the~otal. 

optical depth of the medium is same as the geometrical 

depth T. 

Case I To check the numerical algorithm, we considered 

a pure absorption case. The transfer equation solved is 

with 

I (L ::>. OJ ~It) ::.-0.": 1:7/0 

I ( "2. J (-1, /:::. 0) :::.. 0 ") 

and ~~ \ for t 7/ 0 

The analytical solution when ~ and 'B are constant 

with respect to the time and position -z.. is given by 

(3.31) 



B(I- ctJ 
B ( \ - -'1"') 

) 

(3.32) 

The numerical solution agrees with the above solution. 

The results for ~':'O' 2) and 0·18 are plotted in £ig.l. 

Case II A slab is constantly illuminated by a bear: 

of radiation in ? specified direction ~o-:.O' 5" from time 

The transfer equation for diffuse intensity is 

where H ( t) is a Heavi;=lideuni t step function. 

The initial and boundary conditions for equation (3.32) 

are 

I(z=o, [4, t) ::: 0 

I(L:J/-~Jt:)= 0 
t //0 
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0.6 

+ 
I "..L.t) 

0.4 

0.2 

0·78 

tOl 2.02 3.03 4.0q 5.05 

t 
FiB'. 1 

The intensity dist~ibution ror a 
pure absorbing medium with a constant 
the::nnal souroe« 
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As the intensity distributions reach steady state 

after sufficiently long time, the steady state solutions 

are checked by solving the equation 

with 

Emergent intensity distributions for total optical 

depths 1 and 2 are plotted in Figs 2 and 3 respectively. 

Van de Hulst and Irvine (1962) pointed out that the 

non-stationary problem for t. = 0 is equivalent to the 

problem of finding the distribution of photons over 

the pathlengths in a homogeneous medium. 

We know that in a medium with optical depth-Y , 

the photon path length is at least fe~ multiples ofli· 

73 

(3.35) 

For T:: 2. one can see that the time at which the relaxation 

to steady state commences is nearly twice that of T = 1. 

Reflected radiation distributions are plotted in 

figs4 and 5 respectively. The reflected radiation 
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0.78 
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t 
Fig.2 

The emergent intensity distri
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for f " 0.21 and 0.78 when a 
s.l;.;ab of' total. optical. depth 
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in a directi.on fa • 0.5. 
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re:flected 
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74 O~4r-------______________________ ~ 
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Same as in f'ig.2 Cor a slab 
with T • 2.0 

~ig.5 

t'or a slah 



reach steady state faster than the emergent radiation. 

This can be explained by the fact that most of the 

reflected photons emerge from the shallow layers of 

the medium and hence travel less pathlength. 

Also if we examine the steady state values 

for the emergent radiation, the value for 0.21 is 

slightly larger compared to that of J~ :.0'7 for the 

medium with T= "0. This is in qualitative agreement 

with Chandrasekhar'sresult (See, Chandrasekar 1950). 

Case III A slab is constantly illuminated by an 

isotropic radiation field. We set 1 ('2:: 0; /-«' t)~ H ( -l:) 
at one boundary of the medium and zero incidence 

at the other boundary. Transfer equation for the 

diffuse intensity is 

-I o 

Tte steady state values are checked by $olving the 

equation 

75 

(3.36) 



With 

1 (7::0; )\4)::: 0 

I (Z-:T/ -~)-=-o 

The reflected intensity distributions are plotted in 

Figs 6,7 and 8 for T = 1,2 and 5. The corresponding 

em~rgent intensity distributions are plotted in Figs. 

9,10,and 11. 

The behavior of the reflected radiation is almost 

identical in all the cases except for the fact that 

the time at which the relaxation commences is more for 

the medium with higher optical thickness. Same quali

tati ve reasons hold good as in the case ! I' ~ 
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(3.37) 

(3.38) 
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0.1 
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FIG. 6 

The re£lected intensity distribution 
when a slab with T • 1.0 is illumi
nated by an isotropic radiation £ield. 

77 

I.Or-------____ _ 

1J.a 0.21 

.F'ig.l 
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same as in fig.l0 w~th T ~:~~ 

78 

T: 2·0 

6.83 8·85 10.8Z 

t 
Fig.l0 

fig.9 with T • 2.0 



Case IV A slab is illuminated by a pulsed beam. 

The transfer equation under the two stream appro-

ximation is 

with 

IT(O/t)= S(c) 

f (T ) f.) -=- 0 o-.)t~ t ~ V P3 

-Here I-T and 'I refer to two oppositely directed 

streams of radiation. By setting 1..-= ~ 0/2. Z ~ ''.a-=- 0/2-
we can transfonn the equations (3.39) to 

d r-+ C) r-t -rlT = -
+ I 

C)~. d~ 

-r 
C)I Or +1-=-I 
2J~ C)X 

with I -r (XO,y) .... 6CY) -
I-(x,y) - 0 -

where 

X = J3j{ T/ 1<0': 0 
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( 3.39) 

(3.40) 

( 3.41) 

(3.42) 



Code (1970) solves the above set of equati.oIllJ (3.40) 

(3.41) and (3.42) using a technique developed by 

Chandrasekhar (1950). Also note that 

± 
"I (t) 

To check the numerical results, we can derive some 

relations which connect the time-dependent solutions 

to the steady state solution. 

(i) The characteristic of the equation (3.40) is 

given by 

- 1. 

X 
Integrating equation (3.40) from (lo/~ -1C.1--'o)to 0-}~) 
along the characteristic, ( see Fig 2 (a) ), we obtain 

80 

(3.43) 
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J 

i\lJJ) = I(l.oJ::J-l-T1o) -eJ-t -e~ J i{(d'_'<W~J~)d~ 
~ -1. 1l.t> 

Boundary condition (3.42)~is 

Integrating the relation (3.45) from T(x) to 00 

where T (X J is the travel time for the pulse to 

reach the depth point Il of the medium, we obtain 

(3. 45 ) 

00 1. ~ J r(1-,':Oolj = el(~ f ~1.'_)l) J iU,-{t'a -).)cb c;\j 

T("l) ~o TL).) (3.46) 

If we set 

l ( 1) ~I) c\ ~ -:: 1-+ (1.) 

J('A) 

and 
oQ 

i i ( ~j )\t~-)l)d d:: f-(x? 
j("{) 

(3.47) 



we obtain 

- Ie-X .. ) 
t -+ 

x 

(ii) The characteristic of the equation (3.41) is 

given by, (see fig .301) 

c:\ ~1 .. 
o\D 

-:::: - 1 
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( 3.49) 

, ) 
Integrating the equation (3 .. 41) trom (}t)'j) to (X, ;"-;(T/./, 

we get x 

- ~ +( r f) j t 
e I -X/"X-"l.+-~ yll 

( 3.50) 



Since the re~lected radiation at any point X of 

the medium starts only after the arrival of the 

pulse, we integrate (3.50) from '1 to dO 

where 'j 7 "/ }.... 

':Uhen 

00 X 

JJ(~/))~~ = J Cl -+( I ') , '--1 I I ).' J J.. - ). -t i1 C1 d V1 It 

d It J 
o.a 

If we set J t (1'/ 1- -J -t ~) 0\ ~ :: IT ex') 
and dol) 

we obtain x 
ITx) = f -c i i+( ~I) q X' 

/l 

The equations (3.49) and (3.53) are the integral 

solutions of the steady state equations 

""+ 
I -= 
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( 3.51) 



with 
.-......J 

It(o) -::: 1 
.-...../ 

J-(x)-::Q. 
one can note that 

X-A. 

, -+ X 

The relations (3.47) and (3.49) 

and 

i.e. 

J 
are useful in checking the time-dependent ~olution 

at e·.::ch depth point of the atmo:aphe~.,. 
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(3.54) 



Since the Dirac-delta distribution is difficult 

to treat numerically, for the reflected radiation 

we imposed the condi tions UYl't I (tll-t I ) -=- 0 • S" -e t.nt I 

and added a source term O. S e t'h+l. to the equation 

(3.25) to obtain {J1\-:, (~l\+:l:,) • 

Two cases which are identical to Cbde's (1970) 

are considered to check our numerical results. The 

emergent intensities are plotted in Fig. 12. for 

X = 0.433 and X = 0.866 respectively. 

-x 
A pulse of radiation with a value ~ emerges 

out of the medium at time y = X • Following this 

pulse, the multiple scattered radiation falls off 

approximately as 1: Yx • Reflected intensity 

distributions are plotted in Fig 13. Reflected 

radiation commences at '7~O and initially decays 

as O' S :e.y 

values of X 
• Its behavior is identical for all 

until '1-=.2.}(' which corresponds to 

twice the transit time. Then the radiation falls 

off to a low value. 

Also ilie results for fJ ';. -h } T:= 3· C are plotted 

in Figs 14 and 15. We see that the sudden drop of the 

reflected radiation at twice the transit time reduces 

gradually and smoothen out at higher optical depths. 

One can note that Code's methods works only for 

T <.. 1.8138 but . our method does not have any such. 

restriction. 

85 



)(: 0·t.33 0·866 

:(3) 
y 

.Fig« 12 

The p.mergent intensity distri
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"--
1.732 259h 

y 

fleeted intensity distri
ltion!br the same caSA as in 
.g.12. 

1'1 tJ 
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Case V A slab is subject to an isotropic white radiation 

field. The boundary conditions imposed are 

kCt) / t: I/O 

with zero incidence at the boundaries. 

Since the computational algorithm is ,time 

cnnsuming, we have calculated the line profiles only 

for two cases. After adding the contribution of the 
,.:::. t: cf> ( 1 ) 

directly transmitted light '-~ to the 

diffuse intensity, we have plotted the emergent line 

profiles for II = 5.0 and-~= 25.0 in Figs 16 and 17. 

At earlier times, we see deeper absorption profiles, 

Since the optical depth in the wing is very small 

Cof order ~ 10-4 ), one can see the immedia.te 

convergence to the steady state in the 'Wl.t;l.g".re¢on 

of the line profile. 

8 "'1 , , 
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CHAPTER IV 

TIME DEPENDENT TRANSFER IN SPHERICALLY 

SYMMETRIC MEDIA 

4.1 Introduction 

In this chapter, we shall present the numerical 

methods for the steady state and time-dependent 

transfer equations in spherically symmetric media. 

Reflected intensity distributions with respect to 

time are illustrated for the various ratios B/A 

where B is the outer and A is the inner radius of 

the atmosphere. 

The assumption of plane-parallel stratification 

of the atmosphere holds good only when the actual 

thickness of the atmosphere is very small, i.e. i~I~~o 

where ~'iS the thickness of the atmosphere and '" 

is the radius of the star. However, many stars, 

such as the supergiant stars and wolf-Rayet stars, 

have extended atmospheres whose thicknesses are an 

appreciable. fraction of a stellar radius. As a 

first approximation, one can assume that thes'a 

atmospheres are spherically symmetrie. 

Hummer and Rybicki 

Eddington factor method to solve the",' .... ~ .~~ 

transfer equation in spherical s~~. ~, 
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and Grant (1973) have proposed a numerical method 

based on discrete space theory of Grant and Hunt 

(1968,1969a,1969 b). Peraiah and Grant derived 

simple conditions for their method to be stable 

and give non-negative solutions. In section 4.2) 

we present our numerical method to solve the 

steady state transfer equation. 

There are several numerical methods proposed 

to solve the time-dependent transfer equation in 

spherically symmetric media. Carlson (1953) proposed 

S;n method for neutron transport calculations. 

Keller and Wendroff ( i957 ) suggested the variant 

of S~method and they also discussed the stability 

and the convergence of the method. Grant (1968) has 

solved the time-dependent transfer equation in 

purely absorbing media using a method developed by 

Lathrop and Carlson (1967). He has written difference 

equations in a matri~ form and studied the stability 

and the non-negativity of the solutions. 

The method to solve the time-dependent transfer 

equation is given in section 4.3. Results are dis

cussed in section 4.4. 

4.2 A numerical method for solving steady sta~ 

transfer equation in spherical geometry 

Transfer equation is given by 
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~ d I (~) 1'-') -t \- ML ~ ('l1) /"I) + ~ ( h-) I ('}1., f'-\ ) 
3'h. )l.. dfJ +1 

~ u-(~) [( 1- W("-) J 8(x) + { w(,,-)), I (~~)~~~J 
O<f-i~1 

for the outward going ray, and 

- t-1 0 I (h,-('-t) - tK d I ('h/-~) -fa-(cn.) I (<>n,-{'1) 
d<tt lL d fY 1-1 

:: ere"-) ftl-W(~) ~ BC~}t W~) f I()\., ~)d 1~4.2) 
L" - I 0 <. f-t ~ I 

for the inward going rays, where we restricted r 
to lie in the interval [0,11. We have asswned 

isotropic scattering in writing the equations 

(4.1) and (4.2). The integral over I-A is 

approximated by Radau-quadrature formula based on 

the zeros of polynomial of degree 2J over (-i,i] 

-tJ J T J I( h., ~') d ('-" ~ ~ I (~I ~j)Wj -t~ rC,,-,-/4,)WJ 
-1 J- J-I (4.3) 

We shall denote I (en I ± ~j) --:. Ij . We replace 

the ~ derivation in the equation (4.1) and 

(4.2) by (Ij-tf -lj) I {j ~ aent:.* at. /4./+1. "~j-f-pf'-



By approximating the other terms centered at the 

same point# we obtain 

and 

-{ QJj ad~+'- -i CUj cJ~j: -6~ (lJ:I-~·)-+~(l~~rj+,J 

= ..- [ ~ f,~(Ij -+ f.J) -t Q-w) 8('l\-)} j:: /," .J 

( 4.5) 

The quantities OJj, OJj and 6j are determined in 

such a way that the approximations; 

-- b· (:t 'I-S) J I - I --;:L j1' • ,J 
I 

(4.6) 



ave a minimum truncation error. Keller and 

fendroff (1957) listed some possible choice of 

:he coefficients Wj IOJj and bj. The co-

!fficients OJj, OJj are listed in Table 1 and 

:or the bj Table 2. 

Table 1 

... 
A B J=\:o L. 

OJj -b-. (f.-4j-rf-tj-tl) ~ ('- ~jTI t- ~{j ) {-1j"t1 

- .1 (~J-t~j-tl) ~ (f-lj+ I of 2{'-1j ) {-lJ (ljj 
2-

Table 2 

--li-o A B c.. 

lL IHht/'j.~ 
- 2.. 't:" 

.1 ~-(Hl;Ntt+,+}4A J. [I - f;j + /1,,1 'bj ~~ '. 2._ ~/./ 3- 6~ -2._ 

Keller and i'Jendrofi (1957) have chosen the coefficients 

A in the tables which reduce the equations (4.6) and 

(~.7) to the normal form. The entries in the column B 

)f~ the tables 1 and 2 are used by Carlson (1955) and 
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are determined by assuming that intensities vary 

linearly with f'" over the sub-intervals and inte

grating across each interval. The coefficients 

C in the tables can be determined by integrating 

equations (4.1) and (4.2) over ~j to f-tj -t I and appro

ximating 
('-tj-tl 

J :t~ 

and~: 
I 1.J1/ 

f i , 
I d~ 

f-lJ 
At ~ = ± 1, the curvature tenus vanish from the equa-

tions (4.4) and (4.5) 

Writing 

T 
I . . . . . . [T'I-~ 
) 
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M= 

1\= 

lOJ, 
2.. 

o 

o 

~OJ2 
2. 

1-
- CU2.. . 
2. 

o 

o 

. OJJ 

o· 5 0·5······,· 0 

o 0·5 o· 5 . o 

1 
JX"J 

o 

o 

,0 ...,.. ""'t' 
':,J:X"",; 
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W-= 

W, .' 

Ix} 

8 (71) 

--

B(x) 



We have for the outward going rays, 

and for the inward going rays, 

We shall divide the medium into N spherical 

shells. To perform discretization with respect to 

the radial coordinate, we integrate equations (4.9) 

and (4.10) from Jrh to Jr"'ofJgivinq 
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and 

-+ 
and g~+~ are the suitable averages over the cell. 

1-

98 

(4.12) 

We shall define 6'hn-t1. -= 'h111"'-~1l) l}11'l-=-CJ--n+1 6 'n..)'H"J. 

and f= ..6"n. d1 -t-IfJ..{ where ~ )'1-1.1,(,... is mean radius.l (~ i:"\ 
7~ll''lTJ. ';J... 2 Jl'ntl I\'Y\) ° 

2.. 
We shall use the conventional "Diamond It scheme to 

approximate the quanti ties LJ± as "ll+\ 

1- [u"± -+ u:!l 
2. 111" J 'YlJ 

(4.13) 

NO\.{ we can arrange these equatioI" 3 (4.11) and (4.12) 

in the canonical form 

en. (1), ll-t I) U;, -+ 

l/-n+7 
t (1rtI/h) L1\T..l (4.14) 

J. 

+: 
;... 

lJ~ ~(l1'H/l) ) t:. (7)/ n +/) Ulltl. .~ J. 
, ,")lot . , .a 



no 
\.' ;:J 

where h. and t are the reflection and transmission 

operators defined below: 

writing aT - ~W- fA_ -
1)+.1 2 

""C n-t.1 2-
2.. 

r-..J wW ~1)",~ -- 2-

-t- M --b: r)1~t (T - &'11:i) S --

£::\- W W ~ ·f/\ 
\..J.J n-t\ -= -y J 

L"n+-l 

S::: M-~ll1-t1.C-T-s.:)H\) 

S = -k Tnt},. a'll~1 
-I 

rund .6:: [M --rrntt (T - ~:+\ ~ 
-I 

6 - [ M - ~ Tl1+~(T - a1'+\~ -

nT= 6-t S (4.15) 

- - ~ 

}L - 6S -
-1 

tT - [1- JLf)iJ 
-I 

- [1- h ii] t --



Then 

-1: (l/+L 11) -l1- [ 6--t l + K" )1: l 
t (l1/~TI) [[ Li S -+ h. ){] 

-- ~ 
R (lli"tJ 11) - 2.in.6 M -

h-( 7L 0) 1- I) 
-t 

}{ 6- P1 2-1: 
and 

We have solved the set of equa.tions (4.14) using the 

method outlined in chapter 2. We tested the method 

for a pure absorbing medium with constant thermal 

source where we know the analytic expression for the 

radiation field. For a pure scattering medium, we 

checked the solutions with that of Perai.A and G+ent 

(1973) • Our method does not seem to impose any t'es-
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trictions on the optical thickness It of aD 

elementary shell. and on the .. aspect ratio II 

f -= 6. ~ J ~ · Also we found that the choice 

of the coefficients C in the tables 1 and 2 

give better results compared to the coefficients 

A and B. This may be due to the Radau quadrature 

pOints which we have employed. 

4.3 Numerical Solution of the time-dependent 

transfer equation in spherically symmetric 

media 

Time-dependent transfer equation is given by 

-I 

Again we use the coefficients ~ in table, 1 snc:} 2 

discussed in section 4.2 to discret,1s,e the t-t 
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(4.17) 



variable •. Using the same notation which we employed 

in section 4.21 we can write equations (4.17) as 

J- "1 d u -r(~/1:J + M () ut"(cn,t) + 1\ UT (", t) 
C. cJt dh. h. 
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-j-G"" (tl, -1::)"1 U + ('h, t ) -:::: <:J (~, t.) l Wl{-0 W (U~+ U) 

-+ (1- w (71, i)) Be 'h, t ~ (4.18) 

and 

1- T oG(T\,~ -M ()u('h,t:) _~u(i\,t.) 
C de di\. Jt 
-\-u('lvt)Tu(",-t:) ~ 0-( h, l::)L W(J'I;.~ W (v-tu") 

+ C 1- w (~,,"t)) B' (~, t)] (4.19) 

We divide the medium into N layers. We use forward 

time differences to represent d (J-I. For l47 0 J 

ot . 
we use backward space differences and fot ~ ~ a, we 

use forward one~ Then we shall obtain .. 

-1 T r u-+ (tl-tl) - U: (h) 
C l ,HI liT' 

~l: 

-+M 

D's-~, [ LJ~", (tiTI) -t LJ+l1 .. , (t i)] -t O· 5' 01( U.,lb) + U~t/U;,~ 



::: ~ t 0-2 S" W [ hJ ( Ut,~, (ti-ol) -t (J~+I (tj~ 

+ 'y.J~U-;'tl(-I:i"') + lJ~",(tj~ -+ D.5"(I-W) 

[B~tl (-I:i) -t B~tl (ti-tI)]]fOr n = 1 ••••• N-l 

and 

(4.20) 

---- Ul1tJ C;i-I) T Unt-l ' -t- O· 5 c;-
- (). 5 /\ - (L '\ - (t ')J - (""""V T 

n.llt-t 
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[ LJ~tl Ct.;) -r Ulltl ( titl) J ::: c:=- [ 0- 2. 5 W [ W (lJ~./~;~ U:~~3J 

+ w (l.J~+I(ti) -t LJ~+I (tiT/))J -t 0- S(I- W) 

[ ~tl (-I:;)-t ~1l'/ t iT1)]] 

for n = N-1, •...• O. (4.21) 

where ;; = 0 - 5 t ci- C 'h.ll+l, t i",) + u.-('lLl'I-t I, '=i) J 
W -= 0- S ~ W ('It:ntl J ti",) + W (">HI J l,-) } 



Since we have used only first order differences in 

space and time, the truncation error of the scheme 

• As the method follows 

the characteristics in a certain sense, there is a 

cancel~ation of the errors coming from the' deri

vative terms. To make other terms accurate up to 

second order, we replaced the un-differentiated terms 

U~+I (ti-tJ) etc. by the averages 

OS [ U~'I (ti-+') + U~t' lti~ 
Denoting 
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-I 

o· 5 /\<:6 ~ -t o· 5 cr=:- Tc6 t - 0 · 2 5 W W C L\ -t l 
JLYI+I ~ 

5= 1-
Mc~ t - O· S j\c6 t _ O·s (i- TcJ.j I: -t 02.5"" c:JhJc~t 

6:n. /L"Yl+I 

-I 

is -=-1-1- 05 Ac6J +0-5 2'Tc.6.t-O-2.SWW CL\tl 
L nl1t-1 J 

S--=. \- Mc6c 
6h. 

1- O~0.~t _O·5~Tc.6t 
~ -n +1 

........., + o' 2S wWCfjt 



1 0 r~ ..... U 

(4.22) 

we have 
-:t ( I ) _ + -t- + { t. oj -+ T ( ) -t - (0 U'l'I+I t.; .. I _ .6 5 U'Y1+' \.. + LJ D lJ." L + CI &. U'Y'H L+t) 

-+.6.+ &. 0"11+' (L) + o· 5 6+(1- w) [ ~+,(L)-+ B~,(I:.;-t,)j 
and (4.23) cDt-

U,\,\-rl (C-+,) -:: 6" D U'lli"l. (I;J.t- f). S UMI (L) + 6 &.LJ~,c~ 
+ L:l- $v U"I1+1 (b-+,) -t o· 5" ~ CI-C:;) C l:>t [~tI(l:,;ltrti~ 

(4.24) 

Eliminating U+ (Lo:\ ::> 11+1 C:"1-yfrom equation (4.24) using 

equation (4.23), we get 

V'l'I-t,(t.+,) -:: [T-.6 Q. iSsJ' [~-])U;+2(t;) 
+ 6-& ()y,~, (l:.) + 6- S- U1\-t1 (L) -t O· 5 (I-C:l) 

C LH 6,- t B~+, (L) t (3~+I(.t;-tI) } T 6-~ [t,TS+~tllt~ 
+6-+ DU:(L)+6T Cl., U~-t, (t;) -t-o·S-U-W')Cb~ 

!J+ t 13 t-tl ( t;) + 8"tn-t I (b "')JJ ] (4.25) 



From the initial values at t lone can use the 

equation (4.25) to obtain the values U~-+ I l tl.) 
for n = N-1, ••••••. ,O. Using these values in 

(4.23), we get U~+I l tl..) for 11= \,2/- .- N-} ~ 

We repeat the procedure to obtain the radiation 

field at the time points t 2../ t ~ etc: 

Since the matrices M and T. are not normal matri

ces, it is difficult to perform Von-neumann 

stability analysis. 

4.4 Results and Discussion 

We have considered the following cases. In 

all the cases, we have set C. = 1. 

Case I We have considered a purely absorbing 

medium with constant thermal source. The ratio 

of outer to inner radius is chosen as 2 and the 

absorption coefficient 0{ as 1. 

The source function B is given by 

B It) ~ I V t 7/0 

The analytical solution is given by 
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(4.26) 



where 

The numerical solutions for ~ = O.~9,O.87 and 1.0 

agree quite well with the analytical solutions and 

they are plotted in Fig 1. Solutions for~ = 0.2 

show slight instability. 

Case II We considered a homogeneous atmosphere 

with conservative scattering. The boundary condi-

tions chosen are 

where 

I ( h ::. hA ) ('-t, t ) 

I ( 9-L -: RB J - j11 -l ) 

H (1:) 

o 

H (t) = 1 for t 7/0 

= 0 for C ~ 0 

We distinguish the diffuse field due to one or 

more scatterings from the reduced incident field 

without scatterings. Since the directly trans

mi tted intensity at position en. and at time t 
in the direction ~ is 
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0.8.-----------.... 

0.6 

I (J..L.t) 
0.4 

0·2 

~: 0.5 

BIA = 2~0 
a.: ,·0 

0.8 

1.0 

0.0 ..... --:-Io::--~~--L....---' 
0.6 1.2 '·8 

t 
Fig.l 

Fig.l.Intensity distribution for a homogeneous 
purely absorbing medium with constant 
thermal source. 
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~8~-------------------, 

0·6 

fQJ.t) 
0.' 

0.2 alA = 5 
a.:: 5 

0.0 '-----'"'-----'----......L-__ ...L-..... 

FIG.2 

Fig.2. 

0.9 1.8 2.7 3.6 0.0 L----2-..I,.S6---5~.1':"2 ---:7.~.68 
Fi.g. 4 t t 

Reflected intensity 
distribution when a 
sphere is su~ected to 

Same as in Fig 2 with 
B/A -~ 5, 0(-= .5.0 

a constant radiation 
for B/A • 2.5,0( • 4.0. 

0.8".__--------------, 

0.6 

COJ.,t) 

O.L. 

0·2 

~:0.2 

B/A :: 2 
a. :: 5 

---

0·0 1.-------L2.0------:'41.:.0-----:S.-::-0 

t 
FiS,:3 

Same as in Fig.Z. with 0(. S.O"S/A=-Z 
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( Where ), the transfer equation for 

the diffuse intensity is 

ot+ ±-~ c)I~ ± I-l'? ell +«I('h}f)t) 
C)t oJL h 2Jt"i I 

o. bJ I r (~I ~' ) l:.) oL~'-tO' 51 H [I:. -~ ~ -r 'rlA -rlQ-~ 
J ~(h}-t-Jl\t-~(J-r 

-I 0 --e d!~ 

Since we are solving for the diffuse field, the 

boundary conditions are 

I (~~ ltA/ j'-41t) -=- 0 

I ( /L,=~B J-~I t) -:: 0 

Reflected intensity distribution is plotted in 

Fig 2 for B/A = 2.5 and 0( = 4.0. For ~ p(;= 5.0, 

Figs 3 and 4 give the corresponding results for 

B/A = 2.0 and B/A = 5.0. The ratios of the time-

dependent reflected intensity at a particular time 

to the steady values for various ratios are given in 

Tables 3,4 and 5. Steady state values are calculated 

from the algorithm described in section 4.2. 

(4.27) 
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Table 3 

- ~o(=y, 

/vi 1 (t,ILA I~) B/A -:: 5"' 

I (~AJ~) 
c:U ir;;e t ;: 2> . L.s 

0·2.,1· o· '1 b 

o· 5'j Q. 81 

o· 8"1 Q' el 
,. 0 0 Q. 81 

Table 4 

- - -

~ 
1-( (;-, '1lA J 1-1) +tL 0(:: s-. (j 
I - ( itA J t--t) 'B/A ':: 2-0 

1:=-;).-0 i t.-= b'O I 

- I 

O·.2..l 0- g4 O· '1 q 

(J. s 9 o· 6'1 o· \S 5 

0·81 o· 67 Q. Sb 

\- 0 0 o· bl Q. 8-£ 

Table 5 

jY 
i (t:/~/~) ~ 0( :: !l- () 

J- ( 'h.A I ('f) B/A -:: 5'-

- t::2-0 t:h·7 

o·~t 0- ~o o· 97 

O' 5'9 o· 5"6 0-11. 

o - ~ 7 0- 6"2- o· 11 

I· 00 0·5'1 o· 10 



O.09r-----______ ...... 

0.06 

r~ Il, tl 

0.03 

8/1\=2.0 
CX:5.0 

O.OO-:--~~--'---... --J.....I '.2 6.0 

Fig.5 

Emergent intensity for the 
same case as in ~ig.3 
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In all the cases, convergence to unity increases 

for the photons reflected at the grazing angle 

(i .e. (U. '::!. 0.2). From tables 4 and 5, we see that 

at time t = 2.0, the ratio is less at ~~ 1 for 

B/A = 5.0 compared to that of B/A = 2.0. This is 

due to the increase in the path length for the 

photons reflected in the normal direction in a 

medium with larger spheriCity. 

We have plotted the diffuse emergent intensity 

distributions at l\.t = 1.0 for B/A = 2.0 and at. = 5.0 . 

in Fig 5 up to the time pOint t = 6.0. 

113 



CHAPTER V 

CONCLUSION AND FUTURE WORK 

In this chapter, we shall briefly summarise our 

results. 

We found that the time-dependent problem for 

f ,» tz (t I is the time spent by the photon in 

the absorbed state, . tz is the time spent by the 

photon between two consecutive acts of scatterings)# 

is equivalent to the problem of finding distribution 

of photons over the number of scatterings. When a 

pulsed beam of radiation falls on the medium, the 

reflected intensity distribution falls gradually 

with time as the reflected ray approaches the normal 

direction. If the medium is subjected to an isotropic 

114 

radiation of constant intensity, the reflected intensity 

distribution reaches the steady state faster as the 

angle of reflection approaches the grazing angle. 

The emergent intensity distribution reaches steady 

state faster when the emergent ray approaches the 

normal direction. 

The method of characteristics which we proposed is 

stable and solves the problem when tz »t l 

time dependent problem for t I = 0", tzt 0 

• 

is 

The 

equivalent to the ,problem of finding the distribution 
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of photons over the path lengths in a homogeneous medium. 

For t2~tl' when a slab is illuminated by an isotropic 

radiation, the behaviour of the reflected radiation is 

nearly the same, except for the fact that the time at 

which the relaxation to ~eady state commences is more 

for the medium with high optical depth. When the slab 

is subjected to a pulsed beam of radiation, under the 

two stream approximation, we found that the sudden drop 

of the radiation at twice the transit time reduces gra

dually and smootheness out at higher optical depths. 

The method, which we presented to solve the steady 

state equation in spherical media is stable and gives 

non-negative solutions. The results agree well with 

that of Peraiah and Grant (1973). 

For t 27.>t1 , the reflected radiation in the normal 

direction reaches steady state slowly in a medium with 

a larger sphericity. 

FUTURE WORK 

Using the numerical methods presented in the pre

vious chapter, we can consider the situations where the 

properties of medium vary with time and position. Be

haviour of the radiation field in line as well as COD

tinuum in planar and spherical media when both tl and 

t2 a~e important has to be studied. Also one has to con~ 

sider the realistic atmospheric models to campare the 

theoretical results with the observations. 
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