RESULT
OF

ASTRONOMICAL OBSERVATIONS

MADE AT
THE HONORABLE,

THE EAST INDIA COMPANY'S OBSERVATORY
 AT MADRAS

BY

THOMAS GLANVILLE T ${ }^{\prime}$

ASTRONOMER TO THE HONORABLE COMPANX

Vol. IV.

For the Years 1836 and 1837.

MDCCCXXXVIIT.

PREFACE.

THe contents of the present volume differs so little from that found in the former volumes of the Madras Observations, as almost to render a preface unnecessary : to conform however to established customs, it is proper for me to remark, that the Observations on the meridian of which the results are here given, have been continued without interruption-principally by the native Assistants, and that those out of the meridian have been made exclusively by myself: In allowing the meridianal Observations to be made by the native assistants, I have been careful frequently to re-examine their bisections with the Mural Circle, and to compare the clock errors from their observations with the Transit Instrument with those determined from my own, when, in no case have I found that their bisections were less accurate than I could have made myself, and the difference between our estimations of time (" $p^{\prime \prime}$ ramial equation") has seldom amounted to two tenths of a second. The observations of the Sun (which have always proved unsati, factory-still continue to exhibit the same want of consistency, and my endeavour to discover the cause have-I regret to state not in the least degree proved successful: the observations of the Planet Mars and of Stars situated near to his path for the purposes of Parallax, have now been continued for three successive oppositions, and the necessary comparisons between these and corresponding observations which have been made at the Cape of Good Hope Observatory, have been instituted -without I fear having in the least advanced the object of enquiry: this result, as well as other observations of measuring angular distances with the Mural Circle, tends to shew-that although a single observation may be de$l^{\prime \prime}$ euled upon to $1^{\prime \prime}, 5$ or $2^{\prime \prime}$, still, the tenth or twentieth part of this amountwhich is the present object of enquiry,-can only be attained by an almost unlimited number of observations. The observation of Moon Culminating Stars and occultations has been continued, as has likewise the Eclipses of Jupiter's Satellites, but not having received the corresponding observations at Greenwich complete, I have delayed for the present to attempt any improvement of the supposed value of the Longitude, and since it would have interfered with the observation of the Star Catalogue to attempt reflection Observations; I have likewise allowed the question of Latitude to remain undisturbed. The reductions have for the most part been performed by myself, and when performed by an Assistant, have invariably undergone-either a recomputation, or a careful revision by myself before they were trusted. On comparing the places of the 2066 Stars which are here given, with Piazzi's

Catalogue; a result similar to that noticed in Vol. III. (as occurring between the Catalogue there given when compared with Piazzi) was here too apparent; in consequence of which, I have gone back to the catalogue given in Vol. II. and have likewise compared it with the places assigned by Piazzi; after combining the results from these three catalogues (containing about 7600 Stars) there still appears a tendency to exhibit a General Proper Motion of the fixed Stars, which can be explained, by supposing a motion of the Solar System towards the North Pole of the Ecliptic: whether the data from which this conclusion has been drawn shall appear sufficient or no, I would beg for the present to claim a little indidyence-- until a comparison of the table of refractions employed by Piazzi (not now at my command) with those at present in use, shall have been instituted-and a reexamination of Latitudes un-dertaken;-this done,-I sball be prepared either to announce this important and somewhat unexpected result, with more precision and certainty, or to acknowledge with humility that I have been in error-

T. G. TAYLOR,
H. C. Astronomer.

1 take this opportunity to acknowledge with very many thanks, the receipt of copies of the Comaissance des Temps and Nautical Almanac, as well as other very valuable works from learned Societies and individuals.

OF THE TRANSIT INSTRUMENT.

T

 HE focal length of the Transit Instrument is 61 Inches, with a clear aperture of 3 委 Inches; but for bright Stars and the Sun an aperture of 2 Inches only has generally been employed. As originally constructed by Dolload the pivuts were of bell metal, but during the first three years of its use these had worn so unequally as to render it necessary to re-turn them, when collars of steel were applied over the bell metal, so as to restore them to their original dimensions; this was accomplished in the years $1834-35$ by Mr. Barrow, the Ifonorable Company's Instrument maker at Calcutta, in a manner which rendered the Instrument as perfect as when it was first erected. Consulting Vol. III. it appears that in January and February 1834 the illuminating pivot was apparently less than the other pivot $\mathbf{1}^{\prime \prime}, 69$ and in December 1835 that it was less. 1,10Since this time-from several inversions of the axis-on the 5th October 1836 the illuminating pivot was apparcully less than the other pivot. . $2^{\prime \prime}, 06$ and on the 21st November 1837

The eye-piece is furnished with five vertical and one horizontal fixed wires, and one vertical moveable wire; the Equatorial intervals between the former were determined from the intervals occupied by several stars situated near the Pole to pass from wire to wire as follows:-

Seconds.
from lst wire to centre. $+54,577$
2d.............................. $+26,961$
4th................................-27,470
5th................................ $-55,289$
rendering necessary the correction. $\frac{-0,244}{\cos . \text { Decln. }}$ to reduce the mean
of the five wires to the centre wire.

Madras Observations.

These numbers hold good up to the 30th October 1836, when the wires were broken in consequence of the shutters on the roof of the Observatory being blown open by the violence of the wind, whereby the instrument was exposed for some minutes to very heavy rain;*-having failed during this time to secure the shutter-the fastenings having given way and one only out of three hinges remaining entire, I was compelled to take the transit off its axis, and deposit it in the safest place I could find; the wind which was blowing from the North, had burst open the Northern door as well as the Southern one immediately opposite; hence there appeared to be no other choice than that of placing it upon the table which stood against the most secure part of the Northern wall of the Observatory; -here, supported by books and a green baize cover, I felt assured that nothing short of the building falling in, would have in the least degree endangered it; at one instant 1 thought of depositing it upon the floor, where it would be sheltered by the table, but streams of water which were flowing through the Observatory determined it otherwise; -at 5 o'clock in the afternoon having completed all that could be of service to secure the Instruments-I left the Observatory to the care of an assistant. At $\frac{1}{4}$ before 7 it blew a perfect hurricane,- -the Dome on the top of the Observatory was blown away, and the stoutest trees and hedges were laid low!at 7 o'clock the wind had much moderated, and at $\frac{1}{4}$ past 7-a lull-a dead calm ensued. I watched the appearance of the sky and fluctuations of the Barometer at this moment with feelings of intense anxiety and interest;-the clouds were passing one another in utter confusion, and although calm below, it was evident that at no great height above the Earth there was a severe conflict among the elements;-I had hardly time to make a note of these appearances and of the height of the Barometer, when the rain-which had ceased during the lull, again set in, accompanied by the sighs and moans of the again returning hurricane:-at a $\frac{1}{4}$ before 8 , the wind-which now blew from the South, had risen to a pitch more fearful than that before experienced; in short-no description can convey an adequate idea of its intense fury; -doors and windows, iron bars and bolts-were with one rude rush scattered and broken! At this moment the southern doors of the Observatory, situated opposite to the northern wall where the Transit Instrument had been deposited-was literally blown to pieces; whereby one of the pieces (about 8 feet by 6 Inches by 2 Inches) which had been blown across the room, had fallen edgewise upon the head of the micrometer attached to the Transit Instrument and very neatly cut it off, without at all disturbing the other parts of the telescope. Other

[^0]injuries had been sustained by the books having been disturbed, whereby the object end of the telescope had fallen upon a pile of books from a height of about 2 feet, whence two slight indentations had been sustained -one on each side of the tube, at 10 or 12 Inches above the object end of the telescope; and the tangentscrew of the setting circle had been hit: but it was evident that the axis had not in the slightest degree been injured; a circumstance of which
. I have since well assured myself from observation.-The first fact that struck my notice on examining the Instrument-was, that the focal length of the object glass had apparently altered; or rather that the telescope had become shorter ; for, in order to render the principal focus coincident with the wires, it was necessary to remove the object glass, 07 of an inch from the position it had hitherto occupied in the cell into which it was secured;-this remedied (which I was enabled to do by interposing three pieces of brass of this thickness between the bottom of the cell and the frame carrying the object glass) it only remained that the micrometer screw should be replaced-this was readily and very neatly accomplished by Mr. Barrow of Calcutta, and six weeks after the date of this calamity all was again in order :-in this interval the olservations were continued without the micrometer (as will be seen in the sequel,) without I apprehend in any material degree endangering their general incourasy.

Up to the date of these misfortunes the illuminating pivot had always reposed upon the eastern Y or Pillar; but the damage sustained by the tangent screw above noticed, rendering its motion stiff and uncertain, I was induced to shift the position of the axis-so as to bring the other setting circle into use; accordingly from the 5th November to the present time the position of the Instrument has been " illuminating Pivot West."

On the 5 th November I put in a new set of Wires, when-from the mean of several Stars situated near to the Pole, the Equatoreal intervals were found to be-

> Seconds.
> from 1st wire to centre. $+54,840$
> 2d................................ $+27,251$
> 4th-27,828
> 5th...................................-54,530
hence to reduce the mean of the five wires to the centre wire, for the fixed
Stars we must apply the correction. $-\frac{\stackrel{s}{0,053}}{\sin \cdot \mathrm{~N} \cdot \mathrm{P} . \mathrm{D} .}$

In volumes I. and II. the value of the micrometer screw had been determined to be $34^{\prime \prime}, 366$ for each revolution, whereas for that now in use (which I requested Mr. Barrow to make of nearly the same degree of fineness)-one revolution corresponds to $32^{\prime \prime}, 94$.

It now only remains for me to state another, though trifling circumstance with regard to the Transit Instrument-namely, that after above six years of constant use, the lacquer had completely disappeared from the eye end of the telescope, and existed in patches only on the other parts; -with a view to arrest the progress of oxidation, as well as to improve its now dingy appearance, -on the 22-25th February 1837, I applied two coats of oil paint over the entire surface, whereby its appearance as well as efficiency is again restored.

ERROR OF LEVEL OF THE TRANSIT AXIS.

The error of level of the Transit Axis has been determined as heretofore by the Spirit level, and the necessary correction for error of level applied to each observations; this is true at least for the observations made before the 30th October 1836, and for those made after the 18th January 1837:-for the observations made between these dates-having from time to time adjusted the axis to horizontality, no correction on this account is necessary. The Column ($L+P$) is obtained from the mean of three readings of the level with the Cross level East, and the same number with Cross level West, viz. one at each extremity, and one in the middle of the pivots; the value of \mathbf{P} or half of the apparent defect of the illuminating pivot which is given at page 1-being applied, leaves the values of \mathbf{L} which have been employed in the reduction of the Observations. It must be noticed however that the correction P applies with a contrary effect after the 5th November 1836 to what it did before that date, in consequence of the illuminating or smaller pivot having been transferred from the Eastern to the Western Pier, as has already been stated at page 3.

Error of Level of the Transit Axis.

[^1]

ERROR OF COLLIMATION OF THE TRANSIT INSTRUMENT.

Having found from experience that the determination of the error of Collimation by inversion of the axis was sometimes liable to uncertainty, (by reason of the great care which is necessary, but which cannot always be afforded, in placing the pivots on their Y 's), I have in the present volume, as heretofore, had recourse to inversion for this purpose but very seldom, and then only have employed it as a check upon other methods. In the early part of 1836 the error of Collimation was determined by measuring with the micrometer

Error of Collimation of the Transit Instrument.

screw, the horizontal angular distance between the North and South Meridian Marks, and comparing this result with the previously known true angular distance ; thus,-if \mathbf{C} represent the collimation error, $\mathbf{N}^{1},-\mathbf{S}^{1}$ the observed azimuths of the centre wire as affected by \mathbf{C}, and $\mathrm{N},-\mathrm{S}$ the azimuths as not so affected, we have

$$
\begin{aligned}
\text { the reading of the North Mark } & =+\mathbb{N}^{1}=+N \pm C \\
\text { South } \quad \text { do. } & =-S^{1}=-S \pm C
\end{aligned}
$$

taking the sum, $N^{1}-S^{1}=N-S \pm 2 C$; in which $N-S$, the true angular distance between the marks being known, we immediately obtain the value of \mathbf{C} :-for the value of $\mathrm{N}-\mathrm{S}(=\theta)$ there were several measures made in the early part of 1835 (see Vol. III p.8.) in which it came out $180^{\circ} 0^{\prime} 26^{\prime \prime}, 03$ and from 5 Inversions on the 13th January 1836 it came out $180^{\circ} 0^{\prime} 25^{\prime \prime}, 77$; the former result however is that which has been employed in the computations. For the observations after 20th March and up to 30th October 1836, the azimuth of the centre wire from the North Mark only has been observed, and in place of the other, an observation has been made on every second or third day with the "Reflecting Collimator." The observation with the "Reflecting Collimator" which has been explained already in Vol. III ;-consists in measuring the angular distance with the micrometer, between the direct image of the centre wire, and its image as reflected from a basin of quicksilver: to accomplish this, I drilled a small hole in the side of the telescope, at about 6 inches from the eye end, so that the light from a lamp after passing through it, might fall uninterruptedly upon the wires ;-I now introduced a silver spe_ culum into one of the eye pieces in front of the lens, so that by varying its inclination, the light from the lamp could be thrown perpendicularly upon the wires, whereby their image as reflected from a basin of quicksilver placed underneath the Transit, was nearly as well defined as the direct image; the speculum was suspended upon an axis passing through the sides of the eye piece, by which it could be adjusted to the proper angle, and was furnished with a small elliptical hole (about, 07 of an In. diameter) through which the wires were seen. In the employment of this method, it is indispensably necessary that the centre wire should describe a vertical circle, and that the moveable wire be parallel to it; this latter precaution however would not be necessary-could the bisection be made at the exact point of its intersection with the horizontal wire; but this not being accomplishable in practise, in consequence of the want of light at this part of the field, by reason of the shadow of the aperture through which the observation is made;-it becomes necessary when paral-
lelism cannot be obtained, to allow for its effect:-In the case of the Madras Transit ;-since the application of the steel pivots, the adjustment of the moveable wire for parallelism has proved insufficient; hence the readings of the Reflecting Collimator which now follow, are not those immediately read off from the instrument, but the readings as corrected for want of parallelism.

In the table which follows, these corrected readings of the Reflecting Collimator divided by 2 , or $\mathbf{C}+\mathrm{L}^{*}$ are given; -in which \mathbf{C} (as noted above) represents the error of collimation, and L the error of Level. The quantity $L+P$, is taken from the level observations at pages 5-7, save that for the days intermediate between those on which the level was observed, I have employed corresponding intermediate values. For the observations between the lst November 1836 and 18th January 1837-having been deprived of the means of measuring angular distances, by the loss of the micrometer, I now placed a small Mark upon the pier which had hitherto supported the old North Meridian Mark, and as nearly as possible in the direction of the meridian ; my object was with the level, to render the amount $\mathrm{L}=0$ by adjustment; and then, the reflecting collimator allowing me to adjust for any amount of Collimation C, the azimuth error would remain the only unknown: hence the obscreations made in the interval just stated do not require correction for error of Collimation. On the 18th January 1837 having applied the new micrometer, and for convenience sake produced a small collimation error-I recommenced the measurement of the errors of Collimation as they had previously been conducted before the Storm.

[^2]| 1836. | Observed
 N.
 N. | Azimuth | $\frac{\mathrm{N}+\mathrm{S}+\theta}{\left[\begin{array}{c} 2 \\ \text { or } \\ \mathrm{C} \end{array}\right.}$ | Remaris, \&c. | $\frac{\text { Ref. Col. }}{\substack{2 \\ \text { or } \\ C+L}}$ | L+P | $\begin{aligned} & \text { Diff or } \\ & \mathrm{C}-\mathrm{P} \end{aligned}$ | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | " | " | " | | " | " | " | " |
| Jan. 1 | +38,35 | -44,24 | +10,07 | | | | | |
| 2 | 38,15 | 44,41 | 9,89 | | | | | |
| 3 | 38,18 | 44,68 | 9,77 | | +14,65 | +3,52 | +11,13 | -1,36 |
| 4 | 38,15 | 44.51 | 9,84 | | 14,45 | 3,49 | 10,96 | 1,12 |
| 5 | 38,18 | 44,75 | 9,73 | | | | | |
| 6 | 38,08 | 44,61 | 9,75 | | | | | |
| 7 | 38,18 | 44,41 | 9,90 | | 14,42 | 2,82 | 11,60 | 1,70 |
| 8 | 38,15 | 44,58 | 9,80 | | | | | |
| 9 | 38,25 | 44,5? | 9,85 | | | | | |
| 10 | 38,12 | 44,58 | 9,78 | Mean $=9^{\prime \prime}, 84$ | 14,24 | 2,87 | 11,37 | 1,59 |
| 11 | 37,95 | 44,55 | 9,71 | | | | | |
| 12 | 38,18 | 44,45 | 9,88 | | | | | |
| 13 | 38,29 | 44,45 | 9,93 | | $\left\{\begin{array}{l}14,61 \\ 14,82\end{array}\right.$ | 3,54 | 11,17 | 1,24 |
| 14 | 38,15 | 44,20 | 9,99 | | | | | |
| 15 | 38,05 | 44,03 | 10,02 | | 14,49 | 3,51 | 10,98 | 0,96 |
| 16 | 38,18 | 44,06 | 10,07 | | 14,16 | 3,48 | 10,68 | 0,61 |
| 17 | 38,22 | 44,10 | 10,07 | | | | | |
| 18 | 38,12 | 43,82 | 10,16 | | | | | |
| 19 | 38,05 | 43,82 | 10,13 | | 13,65 | 3,11 | 10,54 | 0,41 |
| 20 | 37,95 | 44,17 | 9,90 | Mean $=9$ ', 99 | 12,69 | 3,11 | 9,58 | +0,32 |
| 21 | 38,35 | 44,07 | 10,15 | | 13,29 | 3,12 | 10,17 | -0,02 |
| 22 | 38,22 | 44,10 | 10,07 | | | | | |
| 23 | 38,29 | 43,90 | 10,21 | | | | | |
| 24 | 38,39 | 44,31 | 10,06 | | 12,36 | 3,03 | 9,33 | +0,73 |
| 25 | 38,15 | 44,03 | 10,07 | | | | | |
| 26 | 38,25 | 44,07 | 10,10 | | 12,53 | 3.15 | 9,38 | +0.72 |
| 27 | 38,56 | 43,97 | 10,31 | | 14,32 | 3,28 | 11,04 | -0,73 |
| 28 | 38,32 | 44,21 | 10,07 | | 13,13 | 3,22 | 9,91 | +0,16 |
| 29 | 38,39 | 44,41 | 10,00 | | | | | |
| 30 | 38,29 | 44,41 | 9,95 | Mean $=10^{\prime \prime}, 10$ | 12,70 | 2,88 | 9,82 | +0,13 |
| 31 | 38,22 | 44,51 | 9,87 | | 12,87 | 2,88 | 9,99 | -0,12 |
| Feb. 1 | 38,25 | 44,24 | 10,02 | | 12,78 | 2,60 | 10,18 | -0,16 |
| 2 | 38,15 | 44,27 | 9,96 | | | | | |
| 3 | 38,32 | - | -10 | | 13,29 | 2,66 | 10,63 | -0,56 |
| 4 | 38,36 | 44,00 | 10,19 | | 13,47 | 2,75 | 10,72 | -0,53 |
| 5 | 38,12 | 44,17 | 9,99 | | 12,77 | 2,84 | 9,93 | +0,06 |
| 6 | 38,36 | 44,24 | 10,07 | | | | | |
| 7 | 38,43 | 44,07 | 10,19 | | 13,29 | 2,95 | 10,34 | -015 |
| 8 | 38,33 | 44,14 | 10,11 | | 13,47 | 3,06 | 10,41 | -030 |
| 9 | 38,18 | 44,31 | 9.95 10.09 | | | | | |
| 10 | 38,33 | 44,17 | 10,09 | Mean $=10^{\prime \prime}, 05$ | | | | |
| 11 | 38,33 | 44,31 | 10,02 | | | | | |
| 12 | 38,56 | 44,37 | 10,11 | | | | | |
| 13 | 38,63 | 44,71 | 9,97 | | 12,95 | 2,45 | 10,50 | 0,53 |
| 14 | 38,63 | 44,41 | 10,12 | | 12,77 | 2,39 | 10,38 | 0,26 |
| 15 | 38,73 | 44,85 | 9,96 | | | | | 0,34 |
| 16 | 38,65 | 44,85 | 9,91 | | 12,43 | 2,21 | 10,22 | 0,31 |
| 17 | 38,69 | 44,85 | 9,93 | | 12,60 | 2,10 | 20,50 | -0,57 |
| 18 | 38,56 | 44,88 | 9,86 | | | | | |
| 19 | 38,56 | 44,65 | 9,77 | \{ I took out the | | | | |
| 20 | 39,32 | 45,27 | 10,04 | \} object glass. | 11,40 | 1,60 | 9,80 | +0,24 |
| 21 | 39,76 | 45,19 | 10,30 | Mean $=9 \prime \prime, 90$ | 12,43 | 1,60 | 10,83 | $-0,53$ |

Error of Collimation. \&c,

The extreme difficulty which has hitherto attended the keeping in view of the South Meridian Mark, by reason of the rapid growth of the trees which intervene between it and the Observatory, has at length determincd me to give it up altogether; I do this with less reluctance than I otherwise should have done, from the consideration of its instability, and from the persuasion I feel of the Reflecting Collimator being well qualified to supersede the use of two Marks. If we now take the mean of the values in the last column we get $\mathbf{P}=-0^{\prime \prime}, 40$ whereas from a similar number of observations in 1836 , Vol. III. it came out- $0^{\prime \prime}, 77$, and from observations at various times with the spirit level (page 1), we obtained for the value of $\mathrm{P},-0^{\prime \prime}, 83$; hence the assumption of \mathbf{P}, to be- $0^{\prime \prime}, 70$ which has been done in the following computations, cannot be far from the truth.

[^3]

1836.	$\mathrm{L}+\mathrm{P}$	Ref. Col.	$\begin{aligned} & \text { Diff. } \\ & \text { or } \end{aligned}$	Remaris, \&c.
		$\begin{gathered} 2 \\ \text { or } \\ \mathrm{C}+\mathrm{L} \end{gathered}$		
Sept. 21	+1,93	+ 15,36	$+13,43$	$\begin{aligned} \text { Mean of } 14 & =+1^{12}, 86 \\ \therefore \mathrm{C} & =\frac{0,70}{+1} \frac{1,16}{} \end{aligned}$
	1,65			
26	2,52	15,01	12,49	
Oct. $\quad 19$	2,59	14,83	12,24	
$\begin{array}{ll}\text { Oct. } & 1 \\ & 2 \\ & 3 \\ & 6 \\ & 8 \\ & 10 \\ & 12 \\ & 1 \\ & 1 \\ 19 \\ & 2 \\ & 29 \\ 26 \\ & 29 \\ & 30\end{array}$	2,36			
	2,12	15,18	13,06	
	2,23 2,92	15,01 15,35	12,78 12,43	
		-	-10	
	2,23 1,69	12,60 13,38	10,37 11,69	
	1,44	13,12	11,68	
	1,17	13,12	11,95	
	1,81	12,95	11,14	
	1,97	12,95	10,98	
	2,03 1,92	13,21	11,187	Mean of $9=+1^{\prime \prime} 1,25$
	3,73	14,66	10,93	-0,70
				$\therefore \mathrm{C}=\mp-10,55$

A hurricane had shattered the S. E. door of the Observatory to pieces, and broken the micrometer screw of the Transit Instrument-
1836.

Nov. 5, Put in a new set of wires and adjusted the collimation of the centre wire by means of the reflecting collimator.
9, Examined the position of the axis of collimation by the ref. coll.-found correct.

12,	do.	do.	do.	do.
17,	do.	do.	do.	do.
22,	do.	do.	found the wire a little to the E. adjusted it.	
Dec. 1,	do.	do.	found the wire a little to the E. adjusted it.	
6,	do.	do.	do.	found correct.
9,	do.	do.	do.	do.
13,	do.	do.	do.	do.
21,	do.	do.	do.	do.
24,	do.	do.	do.	do.
1837			do.	do.
Jany. 2,	do.	do.	found the wire a little to the E. adjusted it.	
9,	do.	do.	do.	found correct.
14,	do.	do.	found the wire alittle to the E. adjusted it	

18, I purposely moved the wires about $10^{\prime \prime}$ to the East.

1837.	$\mathrm{L}+\mathrm{P}$	Ref. Col.	$\begin{aligned} & \text { Diff. } \\ & \text { or } \\ & \mathrm{C}+\mathrm{P} \end{aligned}$	Remarks, \&c.
		$\begin{gathered} 2 \\ \text { or } \\ \mathrm{C}+\mathrm{L} \end{gathered}$		
	" ${ }^{\prime \prime}$	${ }^{\prime \prime}$	-1192	
Nov. $\begin{array}{rr}8 \\ & 11\end{array}$	$+6,74$ 5,90	$-5,18$ 5,34	$-11,92$ 11,24	
14	5,56	5,18	10,74	
17	5,10	6,00	11,10	
20	4,78	6,50	11,28	
23	5,18	5,89	11,07	
26	5,29	5,51	10,80	
29	5,00	5,67	10,67	
Dec. 2	5,09	5,51	10,60	
5	4,99	5,43	10,42	
8	5,33	5,87	11,20	
11	5,70	5,95	11,65	
14	3,58	7,90	11,48	
17	2,85	7,98	10,83	
20	2,25	10,12	12,37	
23	2,50	9,79	12,29	
26 29	2,40 1,99	9,79 9,46	12,19 11,45	$\begin{array}{cc}\text { Mean of } 18= & =11^{\prime \prime}, 29 \\ \mathbf{P} & =-0^{\prime \prime}, 70\end{array}$
	1,99	9,46	11,45	$\mathrm{C}=-10^{\prime \prime}, 59$

In the reduction of the observations, these mean values of C , together with the reduction to the centre wire (given at pages J-3), and the correction for Diurnal Aberration, have been applied to each observation; thus, for any day in December 1837, the correction in time $=-\frac{, 706+, 053+, 020}{\sin \mathrm{~N} \cdot \mathrm{P} \cdot \mathrm{D} \cdot}=\frac{0,779 s}{\sin \mathrm{~N} \cdot \mathrm{P} \cdot \mathrm{D}}$.

ERROR OF AZIMUTH.

If the Transit Telescope be directed to the north horizon, the Uyviation of the centre wire from the meridian mark is represented by $\mathbf{N}+C$, (where \mathbf{C} represents the error of collimation); and, if a represent the angular deviation of the meridian mark from the meridian, -

The deviation of the centre wire from the Meridian as exhibited by the North Mark will be $= \pm a \pm \mathrm{N} \pm \mathrm{C}$ similarly - - South Mark will be $= \pm a^{1} \pm \mathrm{S}_{\mp} \mathrm{C}$ and the mean result will be $a= \pm \frac{a \pm a^{1} \pm N \pm S}{2}$
In Volume III p. 20, the value of $a-a^{1}$ was found $93^{\prime \prime}, 52$, and, since we have found (page 5) the value of $a+a^{1}$ to be- $26^{\prime \prime}, 03$, we may state the North

Mark to be situated $33^{\prime \prime}, 74$ to the West of the Meridian, and the South Mark to be situated $59^{\prime \prime}, 77$ to the East of the Meridian.

The observations of 1836 furnish a few transits of Polaris with which we will now re-examine the above values-

POLARIS.

1835	Observed Transit.			Correction for		Mean Right Ascension January 1, 1836.
				Level.	$\begin{gathered} \text { Colli- } \\ \text { mation. } \end{gathered}$	
Dec. 24	h. $\begin{array}{ccc}\text { m. } & \text { s. } \\ 1 & 2 & 2,87\end{array}$	m. ${ }_{\text {m. }}$	s. $+3,99$	$\begin{gathered} \text { s. } \\ -2,47 \end{gathered}$	$\begin{gathered} \text { s. } \\ +23,75 \end{gathered}$	$\begin{array}{ccc}\text { h. m. s. } \\ \text { l } & 1 & 17,87\end{array}$
Dec. 25	2,99	12,90	4,81			16,19 $a^{\mathbf{i}} \quad$ -
26	7,27	15,15	5,61			$19,01 \quad a^{\text {ii }} \quad$
27	7,17	15,98	6,38			18,85 $a^{\text {iii }}$
28	8,99	17,37	7,13			$20,03 \quad a^{\text {iv }}$
29	9,71	18,10	7,82			20,71 $a^{\text {v }}$
30	8,75	19,10	8,50			19,43 $a^{\text {vi }}$
$1836{ }^{31}$	6,82	20,80	9,20			16,50 $a^{\text {vif }}$
$\left\lvert\, \begin{array}{cc}1836 \\ \text { Jan. } & 2\end{array}\right.$	8,53	21,83	10,64	-2,31	$+25,44$	21,47 $a^{\text {ix }}$
Jan 3	8,08	22,82	11,40			19,79 $\boldsymbol{a}^{\mathbf{x}} \quad$ - -
4	9,50	23,48	12,19			21,34 $a^{\text {xi }}$
6	4,33	23,23	13,91			18,14 $a^{\text {xiii }}$
7	3,83	22,20	14,80			19,56 $\quad a^{\text {xiv }}$
8	59,27	20,62	15,69			17,47 $a^{\text {xv }}$
10	56,67	18,08	17,39			19,11 $a^{\text {xvi }}$

where $a^{1}, a^{\prime \prime}, \& c$. represent the Azimuth errors in seconds of space.
POLARIS. S. P.

1835.	Observed Transit.			Correction for		Mean Right Ascension January 1, 1836.	
				Level.	$\left\lvert\, \begin{gathered}\text { Collim } \\ \text { mation. }\end{gathered}\right.$		
Dec. 25		$\begin{array}{cc} \mathrm{m} . & \mathrm{s} . \\ -1, & 14,35 \end{array}$	s $+5,21$	$\begin{gathered} \mathrm{s} \\ +1,95 \end{gathered}$	c. ${ }_{\text {s. }}$	h. m. s. $130054,07-a^{\text {i }}$	X 2 ,408
26	$\cdots+\quad 22,95$	16,15	6,00			51,00 $a^{\text {is }}$	\times
27	23,31	16,67	6,75			51,59 $a^{\text {iii }}$	
23	21,48	17,73	7,47			49,42 $a^{\text {iv }}$	
29	24,53	18,55	8,16			52,34 $a^{\text {v }}$	-
$1836{ }^{30}$	27,82	19,90	8,85			$54,97 \quad a^{\text {vi }}$	
Jan. 1)	28,93	21,50	10,29	+1,83	-25,44	54,11 $a^{\text {viii }}$	
- 3	27,67	23,24	11,80			52,62 $a^{\text {x }}$	
5	26,88	23,30	13,48			$53,45 \quad a^{\text {xii }}$	
6	29,35	22,71	14,36			57,39 $a^{\text {xiii }}$	-

We have found above, that any value $a=\frac{a \pm a^{\prime}}{2}+\frac{\mathrm{N} \pm \mathrm{S}}{2}$; in which, -substituting for $\frac{\mathrm{N}-\mathrm{S}}{2}$, the values found at page 10 kc . we determine.

employing these values of $a, a^{1} \& c$. with the above observations, we obtain the
MEAN A. R. OF POLARIS, JAN. 1, 1836.
From observations at the superior culmination.

From observations at the inferior culmination.

h. m. s.
 from which we readily deduce $a-a^{1}=93^{\prime \prime}, 76$; or $a=33^{\prime \prime}, 87$ and $a^{1}=-$ $59^{\prime \prime}, 89$, agreeing very nearly with the hitherto supposed values. In the reduction of the Observations from January 1st to March 16th 1836, the Azimuth correction has consequently been computed from the formulæ $\frac{\mathrm{N}-\mathrm{S}-93^{\prime \prime}, 76}{2}$

For the remaining days of the month of March, and up to the end of October 1836, -in consequence of the difficulty of keeping the South Mark in view, (as has been already explained), the distance of the centre wire from the North Mark, or $a \pm \mathrm{N} \pm \mathrm{C}$ only, was observed; (in which, a has been assumed $33^{\prime \prime}, 87$ as just found, and the values of C have already been given at page $118 c$). On the 3 d November 1836,-being deprived of the means of measuring the distance of the centre wire from the meridian mark, -as a temporary measure, I adjusted it to the eastern side of it, (as being more nearly in the meridian than its centre); finding however that the azimuth corrections was still inconveniently large, -on the 22 d November the Instrument was adjusted to a temporary circular disc, which I had caused to be affixed to the pier which had hitherto supported the old mark; I had intended to have placed this new mark "in the meridian", but from some mistake in the measurement, an alteration of only half the required amount was made;-to remedy this, on the Sth December

[^4]1836, I adjusted the instrument to another mark-(a parallelogram), which I had caused to be permamently affixed to the pier, at a still further distance from the old mark, towards the east; this being conveniently situated,-from the 8th December 1836 I have continued to adjust the centre wire when necessary to the mark, instead of measuring as hitherto its distance from it. Calling a^{n}, the azimuth from the meridian, of the side of the old mark, to which the instrument was adjusted from the 3d to the 22d November inclusive; a^{\prime}, the azimuth of the circular disc employed from 23d November 1836 to 17th January 1837, and a, the azimuth of that since employed we can,-from the observations of Polaris made about this time, compute their values.

POLARIS.

1836	Observed Transit.			Correction for		Mean Right Ascension January 1, 1837.	
				Level.	Collimation.		
Nov. $\begin{array}{rr}7 \\ & 9 \\ & 10 \\ & 11\end{array}$	h. m. s.	m. s.	S.			h. m. s.	
	1031,00	+ 136,35	-17,55	$1149,80-a^{\prime \prime}$	$\times 2,368$
	0 39,00	127,99	16,92		. . .	50,07 -	-
	045,00	124,11	16,58			52,53 -	
	0 47,00	1 21,57	16,23			52,34 - -	
	0 49,00	1 19,65	15,87		-•••	52,78 -	
	118,00	0 24,78	4,56			38,23-a'	$\times 2,370$
	123,65	O 19,50	3,93			39,22	-
	131,67	0 16,60	3,29		2..	44,98	-
	127,20	0 4,25	1,37			30,08-a	$\times 2,370$
	123,00	0 3,23	0,72			25,61 --	
	125,00	$0 \quad 2,24$	-0,05			27,19 --	
	125,10	1 2,73	$+3,42$			30,25 -	
	1 21,00	1 6,42	4,12		.. \cdot.	31,54 - -	
	1 16,00	110.12	4,82			30,94 -	
	1 10,00	1 13,67	5,55			29,22	
	18,00] 17,22	6,28			31,50-	-
	1 0,00	1 24,46	7,77		32,23 -	
	59 59 59,00	127,88	8,50			32,36 -	
	5950,00	134,52	9,98			34,50 -	
1837 Jan. 2	59 28,00	149,40	13,81			31,21	
	59 20,00	153,39	15,40			28,79 -	
	59 19,00	154,12	16,21			29,33	
4	59 15,00	155,88	17,01			27,89 -	
5	59 12,00	1 156,76	17,81			26,57 -	
6	1212,00	- 1 2,50	18,59		28,09 -	
8	2 14,00	$1 \begin{array}{ll}1 & 1,40\end{array}$	19,40			32,00	
9	2 8,50	1100,05	20,20			28,65	
10	210,50	0 - 57,10	20,99 21,78			28,56	
11	2 5,25	$5 \quad 055,60$	22,57			32,18	
12	2 2,75	5053,66	23,37			32,46 -	-

POLARIS S. P.

1836	Observed Transit.	$\begin{aligned} & \text { 西 } \\ & \text { 己 } \end{aligned}$		Correction for		Mean Right Ascension January 1, 1837.
				Level.	$\left\lvert\, \begin{gathered} \text { Colli- } \\ \text { mation. } \end{gathered}\right.$	
	h. m. s.	m. s.	s.			h. m. s,
Dec. 20	$13 \quad 0 \quad 55,75$	+1 15,44	+5,92			$13171711-a \times 2,408$
- 26	125930,00	136,00	10,37	16,37-
Jan. 2	125914,00	153,75	15,81			23,56-
3	5913,00	155,00	16,61		24,61 -
4	$59 \quad 3,25$	156,32	17,41	16,97-
5	$\begin{array}{llr}13 & 2 & 4,33\end{array}$	-1 3,63	18,20	18,90-
6	159,00	1 1,95	18,99	16,04 -
7	152,17	1 1 0,62	19,80		11,35-
8	151,25	\bigcirc 59,32	20,59		12,52-
9	155,25	0 57,85	21,38	18,78-
10	150,75	0 56,21	22,17	16,71 -
11	150,50	054,63	22,97	-•••	18,84 -

Taking the mean, we have from
Mean A. R. Polaris January 1, 1837.

for the determination of $a^{\prime \prime}$ and a^{\prime} we must now employ the already found mean plan for January $1,1837=1 \mathrm{~h} .1 \mathrm{~m} .22,15 \mathrm{~s}$.
when $a^{\prime \prime}=12^{\prime \prime}, 40 \mathrm{West}$
$a^{\prime}=7^{\prime \prime}, 87-$
As a confirmation of the value of a, I have lately measured the angular distance between the old mark and the one now in use, when, from the mean of several measures -

The new mark appeared to be situated $31^{\prime \prime}, 29$ to the East of the old mark.
The old mark we have found to be $33^{\prime \prime}, 87 \quad$ West of the meridian. \therefore The new mark is situated West of the meridian.
And for a confirmation of the situation of the mark which gave rise to the value $a^{\prime \prime}$,-this 1 find to be situated $21^{\prime \prime}, 97$ East of the old mark.

The old mark is situated $33^{\prime \prime}, 87$ West of the meridian.
$\therefore \quad a^{\prime \prime} \quad=\quad 11^{\prime \prime}, 90$ West of the meridian.
We will now proceed with the values of $N \& S$ given at page $11 \& c$. to compute the values of $(A$,$) the deviation in Azimuth-$

1836	N-S		Remarks, \&c.	1836	N-S		Remaris, \&c.
	T"	"			'"	"	
Jan. 1	122.59	-5,58		Feb. 4	122,36	-5.70	
\| 2	22,56	5.60		5	22,29	5.73	
3	22,86	5,45		6	22,60	5,58	
4	22,66	5,55		7	22,50	5,63	
5	22,93	5,41		8	22,47	5,64	
6	22,69	5,53		9	22,49	5,63	
7	22,59	5,58		10	22,50	5,63	Mean of $10=-5^{\prime \prime}, 63$
8	22,73	5,51		11	22,64	5,56	
9	22,83	5,47		12	22,93	5,41	
10	22,70	5,53	Mean of $10=-5^{\prime \prime}, 21$	13	23,34	5,21	
11	22,50	5,63		14	23,04	5,36	
12	22,63	5,56		15	23,58	5,0!	
13	22,74	5,51		16	23,50	5,13	
14	22,35	5,70		17	23,54	5,11	
15	22,08	5,84		18	23,44	5,16	
16	22,24	5,76		19	23,21	5,27	Mean of $9=-5^{\prime \prime}, 26$
17	22,32	5,72		20	24,59	4,59	I took out the object
18	21,94	5,91		21	24,95	4,40	glass to clean it.
19	21,87	5,94		23	25,30	4,23	
20	22,12	5,82	Mean of $10=-5^{\prime \prime}, 74$	24	24,32	4,72	
21	22,42	5,67		25	24,62	4,57	
22	22,32	5,72		26	24,38	4,69	
23	22,19	5,78		\bigcirc	24,46	4,65	
24	22,70	5,53		*28	24,28	4,74	
25	22,18	5,79		29	24,06	4,85	
26	22,32	5,72		March 1	23,87	4,94	
27	22.53	5.61		2	24,00	4,88	
28	22,53	5,61		3	24,14	4,81	
29	22,80	5,48		4	24,06	4,85	
30	22,70	5,53	Mean of $10=-5^{\prime \prime}, 64$	8	23,62	5,07	
31	22,7,3	5,51		10	23,93	4,91	
Feb. 1	22,49	5,63		15	23,82	4,97	
2	22,42	5,67		16	24,14	4,81	Mean of $17=-4^{\prime \prime}, 75$

The South Mark being invisible (by reason of trees having grown in the way) the observation of the North Mark only will be attended to in future.

1836	N	C	$\left\|\begin{array}{c} \mathrm{N}-\mathrm{C}-\mathrm{-} \\ 33^{\prime \prime}, 87 \\ =\mathrm{A} \end{array}\right\|$	Remarks.	1836	N	C	$\stackrel{\substack{\mathrm{N}-\mathrm{C} \\ 33^{\prime}, 87 \\=\\ \mathrm{A}}}{ }$	Remarks.
	"	"	"			"	"	"	
Mar. 22	+38,42	+ 8,62	$-4,07$		Mar. 30	+38,32	+8,62	-4,17	
23	38,12	..	4,37		31	38,29	-8,	. 4.20	
24	38,39	.	4,10		April 1	38,39	-	4,10	Mean of $10=-4^{\prime \prime}, 20$
25	38,32	.	4,17		- 2	38,39	. .	4,10	
26	38,42	.	4,07		3	38.32	.	4,17	
28	38,18	.	- 4,31		4	38,18	..	4,31	
29	38,08	.	4,41		5	38,18	. .	4,31	

1836	N	C	$\left\lvert\, \begin{gathered} \mathrm{N}-\mathrm{C}-\mathrm{O} \\ 33^{\prime \prime}, 87 \\ =\mathrm{A} \end{gathered}\right.$	Remaris.	1836	N	C	$\begin{gathered} \mathrm{N}-\mathrm{C} \\ 33^{\prime \prime}, 87 \\ =\mathrm{A} \end{gathered}$	Remarks.
	"	"	"			"	"	"	
April 6	+38,25	+8,62	-4,24		May 29 30	+43,13	$+12,51$..	$-3,25$ 3,07	Mean of $11=-3^{\prime \prime}, 45$
	38,15 3822	880	4,34 4,45		31	43,13	11,45	2,19	Mean of $11=-3^{\prime \prime}, 45$
9	38,46	..	4,01		June 1	43,21	11,45	2,11	
10	38,25	.	4,42		2	43,34		1,98	
11	38,36	.	4,31	Mean of $10=-4^{\prime \prime}, 27$	3	43.13	.	2,19	
12	37,91	.	4,76		4	43,06	..	2,26	
13	3798	.	4,69		5	43,34	.	1,98	
14	38,29	.	4,38		6	43,95	.	1,37	
15	38,42	.	4,25		7	43,56	.	1,76	
16	38,35	.	4,32		8	43,45	.	1,87	
17	38.65	.	4,02		9	43,56	.	1,76	
18	38,39	.	4,28		10	43,56	.	1,76	
19	38,42	-	4,25		11	43,24	.	2,08	
20	38,29	\cdots	4,38		12	43,49	.	1,83	
21	38,18	-	4,49	Mean of $10=-4^{\prime \prime}, 38$	13	43,31	.	2,01	Mean of $14=-1^{\prime \prime}, 94$
22	38,49	..	4.18		14	43,13	. .	2,19	
23	38,46	9,16	4,57		15	42,65	-	2,67	
24	38.70	,	4,33		16	42,62	.	2,70	
25	38,78	. .	4,25		17	42,83	.	2,49	
26	38,81	.	4,22		18	42,96	.	2,36	
27	38,87	.	4,16		19.	42,89	.	2,43	
28	38,66	.	4,37		20	43,13	.	2,19	
29	38,52	-	4,51		21	42,99	.	2,33	
30	38,66	.	4,37	Mean of $10=-4^{\prime \prime}, 37$	22	43,28	.	2,04	
May 1	38,29	-	4,74		23	42,86	.	2,40	Mean of $10=-2^{\prime \prime}, 39$
2	38,22	\cdots	4,81		24	42,86	.	2,46	
3	38,66	.	4,37		25	42.76	.	2,56	
4	38,49	..	4,54		26	42,96	.	2,36	
5	38,42	.	4,61		27	42,96	.	2,36	
6	38,35	.	4,68		28	42,99	\cdots	2,33	
7	38,35	.	4,68		29	4286	11,59	2,60	
8	38,94	. .	4,09		30	42,89	.	2,57	
9	38,84	.	4,19		July 1	42,62	.	2,84	
10	41,07	12,51	5,31		2	43,21	*	2,25	
11	41,97	..	4,41	Mean of $10=-4^{\prime \prime}, 57$	3	43,13	.	2,33	Mean of $10=-2^{\prime \prime}, 47$
12	41,68	.	4,70		4	42,89	.	2,57	
13	42,00	.	4,38		5	43,06	.	2,40	
14	42,24	.	4,14		6	43,24	.	2,22	
15	41,79	.	4,59		7	43,17	.	2,29	
16	41,61	.	4,77		8	43,14	..	2,32	
17	41,93	.	4,45		9	43,31	.	2,15	
18	42,30	.	4,08		10	4:3,31	.	2,15	
19	42,33	\cdots	4,05	Mean of $8=-4^{\prime \prime}, 39$	11	4,3,31	.	2,15	
20	42,65	.	3,73		12	43,31	.	2,15	
21	42,72	.	3,66		13	43,59	.	1,87	Mean of $10=-2^{\prime \prime}, 23$
22	42,86	. .	3,52		14	43,41	.	2,05	
23	42.86	.	3.52		15	43,66	.	1,80	
24	43,96	.	3,42		16	43,73	.	1,73	
2.5	42,89	.	3,49		17	43,83	.	1,63	
26	42,93	.	3,45		18	43,91	.	1,55	
27	42,96	.	3,52		19	43,76	..	1,70	
28	43.03	\cdots	3,35		20	43,73	.	1,73	

1836	N	C	$\left\|\begin{array}{c} \mathrm{N}-\mathrm{C} \\ 33^{\prime \prime}, 87 \\ =\mathrm{A} \end{array}\right\|$	Remarks.	1836	N	C	$\begin{gathered} \mathrm{N}-\mathrm{C}-87 \\ 33^{\prime}, 877 \\ =\mathrm{A} \end{gathered}$	Remarks.
	"	"	"			"	"	"	
July 21	+43,66	+11,59	-1,80		Sep. 9	+43,21	+12,16	$-2,82$	
22	43,54		1,92	Mean of $9=-1^{\prime \prime}, 77$	10	43,31	+12,	2,72	
23	43,54	10,40	0,73		11	43,13	.	2,90	
24	43,38	..	0,89		12	43,00	.	3,03	
25	43,56	.	0,71		13	42,89	.	3,14	Mean of $10=-2^{\prime \prime}, 75$
26	43,59	\cdots	0,68		14	42,77	. \cdot	3,26	
27	43,63		0,64		15	43,28	.	2,75	
28	43,59		0,68		16	43,03	.	3,00	
30	43,87	\cdots	0,40		17	43,17	.	2,86	
31	43,69	-•	0,58		18	43,20	.	2,83	
Aug. 1	43,48	.	0,79		19	43,03	.	3,00	
	43,66	.	0,61	Mean of $10=-0^{\prime \prime}, 67$	20	43,31	.	2,72	
3	43,63	.	0,64		21	43,03	.	3,00	
4	43,31	.	0,96		22	43,38	.	2,65	
5	43,34	.	0,93		23	43,31	.	2,72	Mean of $10=-2^{\prime \prime}, 88$
6	43,52	.	0,75		24	43,34	.	2,59	
7	43,34	.	0,93		25	43.37	.	2.66	
8	43,17	.	1,10		26	43,31	.	2,72	
9	43,69	.	0,58		27	43,03	.	3,00	
10	43,69	.	0,58		28	43,06	.	2,97	
11	43,34	-•	0,93		Oct. 2	42,88	-•	3.15	
12	43,41	.	0,86	Mean of $10=-0^{\prime \prime}, 83$	3	43,39	.	2,64	
13	44,01	. .	0,26		4	43,00	.	3,03	
14	43,66	-•	0,61		5	43,38	-	2,65	
15	43,52	.	0,75		-6	42,96	.	3,07	
16	4:3.69	.	0,58		7	43,13	.	2,90	
17	43,80	..	0.47		8	43,31	. .	2,72	
18	43,83	.	0,44		9	43,62	\cdots	2,41	Mean of $13=-2^{\prime \prime}, 81$
19	43,90	. .	0,37		10	39,18	10,55	5,24	
20	43,80	..	0,47		11	39,28	..	5,14	
21	43,69	.	0.58		12	39,45	..	4,97	
22	43,59	.	0,68	Mean of $10=-0^{\prime \prime}, 52$	13	39,55	.	4,87	
23	43,90	\cdots	0,37		14	39,52	.	4,90	
24	43,63	.	0,64		1.5	39,76	.	466	
25	43,63	..	0,64		16	40,46	.	*3,96	
26	43,69	\cdots	0,58		17	39,76	-•	4,66	
27	45,30	12,16	0,73	Mean of $5=-0^{\prime \prime}, 59$	18	39,93	.	4.49	
28	44,34	..	1,69		19	39,79	-•	4,63	
29	44,07	-	1,96		20	39,52	.	490	
30	44,14	.	1,89		21	39,93	.	4,49	
31	44,07	.	1,96		22	39,86	.	456	
Sep. 1	44,08	.	1,95		23	39,79	.-	4,63	
2	43,87	.	2,16		24	39.59	.	4,83	
3	43,90	.	2,13	Mean of $7=-1^{\prime \prime}, 96$	25	39,67	-.	4,65	
4	43,21	.	2,82		26	40,03	-	4,39	
5	43,48	. .	2,55		27	40,18	.	4,24	
6	43.55	-	2,48		28	40,36	- 0	4,06	
7	43,76 43,21	...	2,27 2,82		29	39,66	-c	4,76	Mean of $19=-4^{\prime \prime}, 68$
	43,21								

[^5]On the 3rd November 1836 the centre wire was brought to touch the edge of the North mark; hence, from this date up to the 2lst November 1836 the Instrumental error in Azimuth was North 12",40 West.
On the 22d November I adjusted the centre wire to bisect a mark which had been erected to the East of the above;-hence, as has already been shewn; -from this date up to the 7th December 1836 the Instrumental error in Azimuth was North 7",87 West.
On the 8th December the Instrument was adjusted to a perman ent mark, which I had caused to be erected nearly in the direction of the meridian, upon the old Northern Pier ; hence ; -
from the 8th December 1836 to 17th January 1837 the Instru- $\} \mathrm{N} 2^{\prime \prime}, 64 \mathrm{~W}$.
mental error in Azimuth was In the intervals just alluded to, the coincidence of the centre wire with the mark was examined every day at Sun rise and Sun set, and on two occasions -On January 6th, and 8th, a small correction of the bisection was made for a deviation to the East of the meridian.
Since the 18th January 1837, the coincidence of the centre wire with the mark has been examined every day at Sun rise and Sun set, and adjustment made when necessary; hence, if C represent the error of Collimation, the Azimuth error $A=C \pm 2^{\prime \prime}, 64$; thus-

REDUCTIONS EMPLOYED.

The places of the known stars have been corrected for Aberration, Nutation, and Precession, from the values of $a, b, c, d, \& c$. given in the Royal Astronomical Society's Catalogue, in conjunction with those of A, B, C, D, furnished in the Nautical Almanac; save that a correction has been made when necessary to adapt these latter values to the instant of the Star's Transit.

The table of Refractions employed, is that constructed by Mr. Henry Atkinson, and printed in the 2d Volume of the Astronomical Society's Memoirs, using the "in door" thermometer:-The remaining corrections for the Sun or Planets, have been derived either from the Nautical Almanac, or from Mr. Baily's Astronomical Tables.

In the reduction of the Moon's Place, the ratio of the Polar and Equatoreal Axes of the Earth has been taken at 299: 300
from which we get the angle of the vertical $=5^{\prime} 0^{\prime \prime}$
Radius of the Earth $=, 999825$

ERROR AND RATE OF THE TRANSIT CLOCK.

The error of the Transit Clock has been determined with reference to the Madras Results given in Vol. II; selecting those stars only which have been frequently observed-which are situated near to the Equinoctial, and which differ less than one tẻnth of a second from the Greenwich Catalogue.*

In general it has been my custom to divide the hours of observing into " watches" of three hours each, and to observe during each watch three of these

[^6]stars for the determination of the Clock Error ;-by this arrangement, any irregularity in the going of the Clock is rendered of little consequence, since the rate is trusted only for one and a half or two hours at most ; with regard to the Sun, and the Planets Mercury and Venus,-it frequently happens from clouds or haze that no star has been observed within 6 or 8 hours of their passage; in ${ }^{4}$ this case-when the rate has appeared irregular, I have cancelled the observation. In the comparison of the errors of the Clock on one night, with those of another, for the rate, as well as in their employment for the determination of the places of the unknown Stars, it has always been my custom to compare the results of each observer with his own observations only ; by which means, the direct influence of personal equation is avoided; from a recent examination however, I am happy to find, that this perplexing and unaccountable source of error, reaches to a very trifling amount in the observations composing the present volume.

In a former volume I mentioned having endeavored to exclude insects from the works of the clock, by making the case as nearly as practicable air tight; in this particular nowever I have since been compelled to relax a little, in consequence of the extremely faint beat of the clock being lost by the unavoidable noise of the observer at the circle, or by the least noise of natives or conveyances passing in the road; the result has been that on two occasions during the last two years, I have been able satinfactorily to account for the ill going of the clock by finding a spider's line attached to the pendulum; at other times -other causes apparently have operated; thus, on the 27th January 1836 the clock was cleaned, when from some cause not apparent, it continued to lose on its rate until the 8 th March, when it was regulated; after this it continued to lose further upon its rate until the lst May, when the thick state of the oil upon the escapement was the only apparent circumstance to account for the previous ill going; the oil I had applied was ordinary salad oil, but the temperature of from 95 to 105 Fahrenheit (which is usual for several hours during the day at this time of the year) fully accounts for its having become thick.

1836	Daily Rate.	Remaris.	1836	Daily Rate.	Remaris.
	s.			s.	
Jan. 3 4 	$+1,01$ 0,68		Feb. 25	$-4,88$ 3,96	
	-0,09		27	3,72	
	1,17		28	4,71	
8	1,67		29	4,92	
9	1,26		Mar. ${ }^{1}$	5,18	
10	1,23 2		$\begin{array}{r}2 \\ -\quad 3 \\ \hline\end{array}$	4,99	
13	4,80		3 5	4,81 5,44	
14	3,03		6	5,48	
15	4,27		7	5,46	
16	5,00		8		I regulated the Clock.
17	5,85 6,02		9 10	$+1,01$ +1	
19	6,70		11	$+1,01$ $+0,18$	
20	6,41		12	-0,31	
21	6,75		13	0,85	
22	6,60		14	3,70	
23	6,88		15	5,53	
24	7,20		16	5,61	
25	8,31		17	2,69	
26	7,18		18	2,33	
27		On cleaning the Clock I found	19	3,09	
28 29	1,90 2	a spider's line attached to	20	3,16	
30	1,55	the pendulum.	21	2,32 2,83	
31	0,65		23	2,35	
Feb. 1	2,42		25	3,48	
		Wound up the Clock.	26	4,02	
3	2,41		27	4,23	
4	2,41		28	4,18	
5	2,19		29	4,38	
6	3,20		30	4,59	
7	1,72		31	4,77	
8	1,10		April 1	4,72	
9 10	1,05		2	4,99	
10	0,98		3	4,94	
11	0,87		4	5.85	
12	0,76		5	5,36	
13	0,99		6	5,80	
14	1,73		7	5,25	
15	0,91		8	4,59	
16 17	1,42		9	4,85	
17 18 18	1,73		10	4,45	
18 19	2,21		11	4,44	
19	2,76 3.20		12	4,61 4.88	
21	3,87		14	4.88 503	
22	3,38		15	5.07	
23	3,48		16	5,04	
24	3,64		17	5,10	

1836	Daily Rate.	Remarks.	1836	Daily Rate.	Remaris.
April 18	s. $-5,77$		June 19	s.	
April 19	5,38		June 20	4,25	
20	4,77		28	4,95	
21			30	4,73	
22	4,57		July 3	3,05	
23	4,88		4	3,84	
24	4,98		9	4,25	
25			10	3,52	
26	5,05		14	3,95	
27	5,38		15	4,70	
28	5,51		16	4,35	
29	5,8:3		17	5,22	
30	-5,04	Oil thick-cleaned and regulated the clock.	18	2,22	Regulated the Clock.
May 1	+2,51		19	2,25	
12	2,76		22	2,47	
3	2,33		26	2,90	
4	2,33		27	1,63	
5	3,13		28	0,90	7
6	2,86		30	0,92	
8	2.86		Aug. 2	0,08	
9	3,40		4	0,03	
11	5.75		9	+0.96	Continued cloudy weather.
15	3,29	(Wound up the clock, pui	10	1,72	
16		$\{$ it back 3 minutes and re-	11	1,45	
18	-5,75	\ gulated it.	14	1,65	
19	4,17		16	2.13	J
20	4,02		17	2,75	
21	4,27		19	2,21	
22	4,70		21	2,59	
23	4, 00		23	3,51	
24	3,99		27	4.88	
25	4,29			4,54	
26	3,97		Sep. 6		Continued cloudy weather, I regulated the clock
28	4,31		7	-4,26	\% I regulated the clock.
29	4,40		8	3,22	
30	4,33		9	3.64	
31	4,36		10	2,40	
June 1	3,99		11	2,54	
5	4.07		12	1.94	
6	3,86		13	1,55	
7	4,49		14	1.80	
8	4,69		15	0,59	
9	4,46		16	1,75	
10	500		20	2,02	
11	5,04		21	1,96	
12	5,17		23	2,78	
13	5,38		24	1,81	
14	5,02		25	2,75	
15	5,12		26	2,15	
17	4.00		30	2.00	
18	4,70		Oct. 1	2,66	

1836	Daily Rate.	Remaris.	1836	Daily Rate.	Remarks.
Oct. $\begin{array}{rr}2 \\ 3 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 2\end{array}$	s.12		Dec. 19	s.	
	3,88		Dec. 20	3,43	
	2,53		21	3,60	
	1,70		23	3.66	
	1,62		24	3,28	
	2,12		26	3,43	
	1,69		31	2,96	
	2,16		1837		
	2,61 3,16		Jan. $\begin{array}{r}1 \\ \\ \\ \\ \hline\end{array}$	1,72 1,59	
	3,33			1,42	
	2,91			1,22	$\left\{\begin{array}{l}\text { Put clock backward three } \\ \text { minutes. }\end{array}\right.$
	3,10			0,87	
	2,97		8	1,37	
	0,61		9	1,59	
	1,33		10	1,17	
	1,52		11	1,17	
	1,47		12	1,82	
	1,70		13	1,46	
	2,24		15 19	1,10	Wound up the clock.
	2,65		19	3,44 2,00	
	2,80	(${ }^{\text {a }}$ (Mostly cloudy weather. It	21	2,19	
Nov. 7	+2,38		22	1,83	
	3,53		23	1,30	
9	4,28		24	0,94	
10	4,20		25	0,90	
11	1,26		26	1,35	
12	1,78		27	1,30	
13	3,00		28	0,62	
18	3,20		29	1,07	
22	1,06		30	0,38	
23	1,00		- 31	1,20	
24	0,92		Feb. 2	-0,31	
25 26	0,52		3	+0,38	
26 27	0,38		4 5	-0,19 $+0,10$	
27 28	0,48 0,78		5	$+0,10$ $-0,07$	
29	3,00		7	-0,09	
Dec.	2,65		8	1,73	
	4,38		9	0,45	
	3,99		10	0,57	
	4,75		11	0,71	
	5,13		12	0,88	
		\{ applied oil to the pallets.	13	-0,28	
	2,85		14	+0,26	
	0,58		15	0,28	
	0,70		16	0,24	
		Wound up the clock.	17	0,53	
	-3,64		18	0,38	

1837	Daily Rate.	Remaris.	1837	Dily Rate.	Remaris.
Feb. 19	s. $+0,19$		April 18	-1,80	
20	1,38		April 18	-1,76	
21 26	+0,22		20	1,41	
\| 26	$-3,00$	¢ Continued cloudy weather.	21	1,51	
26 28	3,49		22	2,00	
Mar 28	3.74		23	1,97	
Mar. 1	4,78		24	2,35	
2	5,00		25	2,20	
4	5,00		26	2,31	
5	4,18		27	2,25	
6	4,41		28	2,36	
7 8	4,73		29	3,00	
8	3,81		30	1,68	
9	3,96		May 1	2,76	
10	3,32		2	2,45	
11	4,42		3	1,91	
12	4,90		4	1,69	
13	5,35		5	2,16	
14	4,77		9	2,36	
15	4,69		10	2.41	
16	4,37		11	2,90	
17	3,95		12	2,47	
18	3,35		15	2,75	
19	4,20		16	2,68	
20	4,46		17	2,60	
21	3,53		18	2.20	
22	3,12		24	3,04	
23	4,77		28	3,07	
24.	5,62		30	3,98	
25	5,16		31	3,37	
26	4,71		June 6	2,49	
27	3,63		7	1,98	
28	4,51		8	2,18	
29	6,44		9	2,80	
30	5,94		10	2,40	
31	6,75		11	2,82	
April 1	7,30		13	3,28	
2	6,44		14	3,15)
3		moved a fine thread which	16	3,44	Mostly cloudy weather, pe-
4		had been attached to the	20	2,95	(Mostly cloudy weather, pe-
5		pendulum by some mis-	26	3,45	$\}$ soon.
7	-0,60	chievous spider.	29	3,80	soon.
8	-0,85		30	3,20	
9	-1,73		July 3	2,65)
11	+0,26		8	2,50	
12	+0,67		9	2,46	
13	+0,26		10	2,97	
14	-2,79		11	2,73	
15	2,22		13	3,29	
16	1,25		14	3,55	
17	1,50		15	4,36	

1837	Daily Rate.	Remarks.	1837	Daily Rate.	Remarks.
July 16	s.		Oct. 12	s.	
faly 19	-4,59		13	0,86	
20	4,65	\{ Continued cloudy weather.	14	0,56	
Aug. 2	1,50	$\{$ Continued cloudy weather.	15	0,08	
8	1.56		16	1,29	\{The seconds hand tript in
9	1,63		17) winding.
10	1,16		23	1,54	
13	1,65		Nov. 6	1,41	\{ Continued cloudy weather.
20		\{ Continued cloudy weather.	Nov. 7	1,51	
21 22	2,31		8		
22	1,33		12	1,03	
23 27	0,58		17 21		$\{$ backwards in winding.
27	2,34		21	1,71	
28	1,43		24 26	340	
29	0,65		26	3,85	
30	0,44		27	2,90	
Sep. 14	2,75		28	2,27	
15	2,60		29	2.56	
16	2,09		Dec. 15	2,09	
17	1,77		16	2,39	
18	1,40		17	2,20	
19	1,78		18	2,54	
20	1,76		19	2,79	
21	1,78		20	2,57	
22	1,71		21	2,30	
23	1,88		24	4,08	
24	1,38		25	2,85	
25	1,87		26	2,57	
26	1,01		27	2,91	
27	1,51		28	2,55	
28	0,96		29	3,19	
Oct. 10	1,22				

METEOROLOGICAL INSTRUMENTS EMPLOYED.

The Barometer employed at the commencement of 1836 and up to the end of October of that year, was a Standard (No. 6.) by Gilbert which-as has been explained in Vol. III., I had been allowed to select from several, which were supplied to the Surveyor General's Department at Calcutta;-the diameter of the tube was 0,22 inches and the zero correction- 0,006 inches; rendering necessary to the registered observations, the correction for temperature $+0,051-0,006$; or, where in the table of refractions allowance is made for
the temperature of the quicksilver,- the correction,+ 045 is simply necessa-ry.- The thermometers employed during this period were, a Standard by Troughton (which when in England I had carefully compared with the Royal Society's Standard) and one by Jones, which agreed to identity with it; the former being employed outside and the other inside the building. During the Storm on the 31st October neither of these Instruments escaped destruction, so that I had now no remedy left, but that of filling a tube ;-accordingly I availed myself of two unbroken glass tubes and cisterns, and the brass scales of the barometers hitherto employed, and set to work as follows; the quicksilver was purified by repeated washings in diluted nitric acid, and was then heated to a temperature little short of boiling water to drive off moisture: the tube was now heated-the hot mercury gradually poured in, and a small air bubble sent up in the usual way to collect stray bubbles:-after filling two tubes in this way with as much care as it was possible to bestow-finding that a difference of less than one hundredth of an inch existed between them, I concluded that with the exception of finding the specific gravity of the mercury; all that was necessary to ensure a good barometer, and accurate results, had been done; accordingly on the 11 th December 1836 I commenced to employ one of these barometers, making an allowance of $+0,051$ for capilliary action (corresponding to abore of 0,22 inches). In the interim between 1st November and this date, a barometer by Tagliabue was employed, whose correction then appeared to be 0,002 inches subtractive.

The Storm had passed away, and its effects had been forgotten in the busy mornings and evenings of the fine months of January and February, and, with the exception of an occasional glance at the two barometers and a feeling of pleasure at their coincidence-no further thought of them was given until the 10th of May: On this day to ublige a friend I had undertaken, after purifying the mercury in his barometer,--to boil it in the tube; (a precaution I had feared to undertake with my own, having no spare tubes): On comparing the barometer thus constructed with the two "Standards", to my utter astonishment, a correction 0,125 inches additive to both of mine, appeared necessary ; -at first 1 felt convinced that the error lay with the newly tumancted barometer, but after boiling the mercury in the tubes of the two hitherto supposed Standards, they both exhibited increased readings to the above amount-S ince this time I have frequently filled barometer tubes, and have found a coincidence between them and the now considered "Standards" which leaves me confiden t of not being above 0,01 inches in error. To ascertain at what date this correc-
tion ought to commence, or if its progress had been gradual, I compared the meteorological observations of November 1836 with those of former years* when it was at once evident that the correction was due to all observations since the storm. Hence, in the observations of November 1836, and up to 10th May 1837 the correction,+ 125 is necessary for zero error, and,+ 051 for capilliary action, and for subsequent observations, the latter correction only should be employed.

The Thermometers employed since the Storm, are two by Bate, of an ordinary description, which at my request had been sent out to this country for rough purposes by the Honorable Court of Directors: I took the precaution on receiving them (which was a few days before the Storm) to note their difference (at 75°) from the Standard hitherto in use, when neither of them differed more than two tenths of a degree: with this testimony of their accuracy, there need be no fear of their errors at any point in the scale being of importance.

OF THE MURAL CIRCLE.

This Instrument having been minutely described in Vol. I., it is only necessary here to state, that the focal length of the telescope is 49 inches, with a clear asserture of $3 \frac{3}{4}$ inches; and that the diameter of the circle is four feet:The divisions are beautifully cut on a slip of gold (let in upon the circumference of the wheel) to every 5 minutes, and the sub-division of these is effected by four Microscopes situated at 90° apart, viz. two horizontally and two vertically -the readings of each microscope are registered to a tenth of a second, but the error of making a single bisection at either microscope, arising from false light principally, may in some cases amount to $1^{\prime \prime}, 5$ but generally, I think that the half of this may be stated to be the probable mean error of reading of each microscope.

[^7]The eye piece is supplied with five vertical and one horizontal fixed wires, and one horizontal moveable wire; -the power employed for astronomical observations is about 120, and for the observation of the collimation, about 70The stability of the Instrument is equal to any thing that could be desired, a fact, which is well attested, from the circumstance that during the last 4 years I have not had occasion to adjust it either for level or azimuth-and a late examination of the axis, enables me to speak with confidence of its being now after 7 years use, in as grod a condition as when it was first erected.

OBSERVATIONS MADE WITH THE MURAL CIRCLE.

In the years 1836 and 1837 the Mural Circle has contiuued to be employed as heretofore in the measurement of North Polar Distance-taking the mean of the four microscopes at each observation. In the Computation of the Index Error, I have employed the Madras Catalogue published in Vol. 1L., giving always a preference to those stars which differed the least from the Greenwich Catalogue, and restricting the limit of observations for this purpose to within 20° of the zenith; by this arrangement, the anomaly which has been shewn to exist in the Cambridge Mural Circle (depending probably upon flexure of the horizontal wire)-would here necessarily have but a very trifling effect upon the Index Error; to discover its amount when the telescope was directed to the horizon,-in the year 1835 I availed myself of a plan which has already been described in Vol. MII., thus-"I directed the Circle Telescope to the North horizon and opposite to it, (in the window sill of the observatory) placed a 46 -inch telescope by Dolland, with its object glass presented to that of the circle telescope, and its whole length disposed in a right line with it;-turning the circle through 180° to the South horizon, I in a similar way disposed another telescope (Dolland's 5 feet): -into the focus of the 46 telescope I had fitted a pair of cross lines, and the 5 feet telescope was supplied with a double wire micro-meter-matters thus arranged, I took out the circle eye piece and slide, and unscrewed the object glass, leaving a clear aperture of two inches through the circle telescope, by which means, with the assistance of the micrometer wire,

I was unable to adjust the line of collimation of the 5 feet telescope to parallelism with that of the 46 -inch placed in the opposite window, this done I re, placed the eye piece, screwed in the object glass, and immediately measured the angular distance between the telescopes; to guard against movement of the telescopes, the observation was not considered complete, till the object glass of the circle telescope had again been removed, and the parallelism of the two. other telescopes again examined; but the telescopes having been very securely fixed, no movement whatever was detected during the time of making the observations (about three hours)".

The result of several measurements in this way shewed that the angular distance between the two marks was,-(reckoning from the South horizon in the direction through the $\left.N a d i r^{*}\right)=180^{\circ} 0^{\prime} 0^{\prime \prime}, 38$ exhibiting a negative flexure to the amount $0^{\prime \prime}, 19$. Whether this remained constant or no during the early part of 1836, I have now no means of ascertaining ; but on the 27 th August, some rain having leaked through the roof, broken the wires, and wetted the inside of the object glass; I availed myself of the necessity of taking out the object glass to repeat the above experiment. Having put in a new set of silk lines; -from the mean of 5 separate measurements; the angle between the South Telescope through the Nadir up to the North Telescope, was $179^{\circ} 59^{\prime} 58^{\prime \prime}$, 88 : exhibiting a positive flexure of $0^{\prime \prime}, 56$ when directed to the horizon :- Since this period no further observations to this end have been made, which has arisen from a desire of not interrupting the observations, and from a fear of accident in taking out the object glass; -enough however has been done, to shew, that the reduction of the observations by using a common Index Error, entails a very trifling amount of error upon the Madras Results-In addition to the Index Error computed from the observed places of known stars, the observations with the Ru fecting Collimator have continued to be made three or four times every day; viz. at $0,6,12$ and 18 hours; by this means a severe check has always been kept upon the Index Error by the stars, and a very accurate knowledge of the difference between the one method and the other determined, of which I have now some idea of availing myself, by giving up the observation of known stars altogether.

[^8]Index Error of the Mural Circle for 1836 and 1837. 37

38 Index Error of the Mural Circle for 1836 and 1837.

Index Error of the Mural Circle for 1836 and 1837.

40 Index Error of the Mural Circle for 1836 and 1837.

Index Error of the Mural Circle for 1836 and 1837. 41

42 Index Erron of the Mural Circle for 1836 and 1837.

Index Error of the Mural Circle for 1836 and 1837. 43

44 Index Error of the Mural Circle for 1836 and 1837.

Date.		$\begin{gathered} \text { Index Error } \\ \text { by } \\ \text { Stars. } \end{gathered}$	Remaris.		Index Error by Reflecting Collimator.	
1836 Dec. 26 27 28 29 30 31	$\} 9$	-0 42,87		5 2 3 3 3 2 5		$\}^{-0,43}$
1837 Jan.						
	5	42,80		5	42,20	-0,60
	\} 8	44,01		4	42,55	\}-1,61
4 5) 5	44,22		5 5 5	42,25 42,28	${ }^{-1,94}$
6	5	44,00		4	43,27	-0,73
7	5	44,28		5	43,81	-0,47
8	6	43,89		5	43,47	-0,42
9	8	44,44		5	42,97	-1,47
10	6	43,26		3	42,49	-0,77
11	6	42,80		5	42,77	-0,03
12	7	43,46		4	41,75	-1,71
13				2	42,95	
14	\%	43,36		2	41,88	<-1,60
15		43,36		2	41,65	-1,60
16)			3	40,57	
17	6	44,07		3	40,37	-3,70
18	5	43,57		4	41,37	$-2,20$
19	6	43,62		4	40,37	-3,25
20	5	43,51		5	41,06	-2,45
21	4	43,93		2	41,49	-2,44
22	6	44,07		3	41,14	-2,93
23	6	44,02		3	41,07	-2,95
24	7	43,79		3	42,72	-1,07
25	6	42,75		4	42,26	-0,49
26	7	43,81		3	42,59	$-1,22$
27	7	43,93		3	43,22	-0,71
28	5	43,58		4	42,96	-0,62
29	6	44,39		4	43,02	-1,37
30	\} 8	43,96		3 2 2	43,14	$\}-0,93$
Feb. $\begin{array}{lr} \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \\ & \end{array}$	${ }_{7}$	43,75		2 2 2	42,91 44,39	$+0,64$
				4	43,61	
	6	43,63		3	44,27	+0,64
	7	43,65		2	42.30	$-1,35$
	8	43,41		3	42.66	-0,75
	11	43,63		3	43.41	-0,22
	5	43,82		4	41,71	-2,11
	8	44,06		3	41,72	-2,34
	7	44,36		3	42.25	-211
	6	43,65		3	41,78	-1,87
	6	44,22		4	42,09	$-2,13$
	6	43,18		5 5	41.92	$-1,26$ $-0,52$
	6	43,33		5	42,81	$-0,52$

46 Index Error of the Mural Circle for 1836 and 1837.

Date.	$\begin{gathered} \text { Index Error } \\ \text { by } \\ \text { Stars. } \end{gathered}$	Remaris.		Index Error by Reflecting Collimator.	
1837	'"	Mean - 37",36		"	
April 6 7 7	-0 38,75		4 4 4	$\begin{array}{ll}-0 & 39,07 \\ & 38,30\end{array}$	$\}-0,07$
8			2	37,15	
9 ${ }^{1}$ (37,58		2	37,48	$\}+0,07$
10			4	38732	\} 0
118	37,75		5	37,62	-0,13
12 13 10	37,84		4	38,95 38,10	$\}+0,69$
14			3	37,82	
$15\} 9$	37,58		2	37,76	$\}+0,25$
16			2	37,90	
17 -	-		4	38,37	
186	36,81		4	38,26	+1,45
19.6	37,09		4	37,72	+0,63
20.6	37,06		3	37,65	+0,59
$21 \quad 6$	38,19		3	38,12	-0,07
225	38,88		5	37,35	$-1,53$
23.8	38,07		5	37,69	-0,38
24.39	38,04		5	38,43 37	$\}+0,05$
${ }_{26}{ }^{25} 6$	37,01		5	38,01	+1,00
$\left.\begin{array}{l}27 \\ 28\end{array}\right\} 8$	38,73		4 3 3	37,53 36,97	\}-1,48
			3	36,97	
May ${ }^{2}$			3	37,64	
			2	38,50	
	38,54		4	37,73	-0,81
	39,99			38,07 37,33	\} $-2,29$
				37,78)
	38,19		4	36,82	$\}-0,89$
			4	36,56	
				37,26	
	38,00		3	37,47	>-0,50
				37,76	¢ 0,18
	37,63	Mean - $38^{\prime \prime}, 47$	3	37,45	-0,18
	37,08		3	37,55	
	37,08		3	37,67	$\}+0,53$
			4 3 3	37,13	
	37,98		3	38,10	\} -0,11
			3	37,65	$\}-0,11$
	38,39		4 4	37,33 37,65	$\}-0,90$
			4	37,49	
			4	36,87	
			. 4	37,81	
			4	38,23	
			4	37,78	
	37,03		4	4 38,12	
			12	38,28	$\}+1,17$

48 Index Erior of the Mural Circle for 1836 and 1837.

Date.		$\begin{gathered} \text { Index Error } \\ \text { by } \\ \text { Stars. } \end{gathered}$	Remarks.		$\left\lvert\, \begin{gathered} \text { Index Error by } \\ \text { Reflecting } \\ \text { Collimator. } \end{gathered}\right.$	
1837		"			"	
July 12				4	-0 35,78	
13		-0 35,95		4	35,45	-0,50
	\} 10	36,18		3 4 4	35,57 36,49	$\}-0,15$
16	5	36,12		3	36,08	-0,04
17				3	36,15	
18				2	35,76	
19				3	36,34	
20				3	36.35	
21				2	36,12	
22		36,13		2	36,55	+0,42
23				3	36,38	
24				2	36,32	
25				3	35,99	
26				3	35.78	
27				3	36,19	
28				2	36,41	
29				2	35,80	
30				2	36,10	
31				2	36,63	
Aug. $\quad 1$				2	35,66	
2				2	36,33	
3				2	36,62	- 1,06
4		37,11		2	35,66	-1,06
5				2	3,5,95	
				2	36,10	
7		36,56		3	36,22	\} -0,41
8	${ }^{5} 6$			4	3609	\} $-0,41$
		37,42		4	3.5,59	-1,83
10	\} 9	36,58		4	35.60	\} $-1,11$
12		37,32		4	35,20	-2,12
13				2	35,00	
14				2	35.41	
15				2	37,42	
		38,09		2	37.31	-1,74
17				2	36,65	$r^{-1,4}$
18				2	36,60	
20				2	36,51	
				2		
22		38,50		3	36,20 36,75	, $-2,03$
23				2	36,27	
24				2	35,70	
25		36,52		2	36,06	\}-0,10
26		36,52		2	36,30	$\}-0,10$
27				3	37,61	
28	6	37,71		3	37,10	-0,61
29	6	38,04		4	36,46	-1,58

Index Error of the Mural Circle for 1836 and 1837.

Date.		Index Error by Stars.	Remarks.		Index Error by Reflecting Collimator.	
1837		'"			' " 76	
Aug. 30				3	-0 36.13	
31				2	36,66	
Sep. $\quad 1$				2	36,71	
2				2	35,13	
3	$\zeta 6$	-0 38,45		2	35,52	-2,37
4				2	36,21	
5				2	36,02	
6				2	36,27	
7				2	36.05	J
8				2	36,07	
9				2	37,10	
10				2	37,80	
11	$)^{12}$	37,18		2	37,49	+ $+0,10$
12	$)$			3	36.74	
13		38,03		4	36,92	-1.11
14	6	37,96		4	36,69	-1,27
15	5	37,81		4	37,09	-0,72
16	7	38,00		3	36,88	-1,12
17	6	39,34		3	37,15	-2,19
18	6	38,73		3	37,16	-1,57
19	6	37,55		3	36,97	-0,58
20	6	38,29		4	37,47	-0,82
21	9	39,29		4	38,73	-0,56
22	8	38,97		4	39,72.	+0,75
23	5	38,36		4	37,65	-0,71
24	6	38,45		3	37,85	-0,60
25) 9	38,17		3	38,17	
26	${ }_{1} 9$	38,17		3	37,79	$\}-0,19$
27	3 7			3	38,45	$\}+0,28$
28	17	37,74		3	37,60	$\}+0,28$
29				2	37,69	
30				2	37,62	
Oct. 1			Continued cloudy weather.	2	37,70	
Oct. $\quad 2$				2	37,91	
3				2	37,76	
4				2	37,56	
5				2	37,49	
6				2	3840	
7				2	37,67	
8				2	37,46	
9				3	37,66	
10	$\} 10$	37,67		4	38,04	$\}+0,18$
11				2	37,81	
12	6	37,76		4	37,68	-0,08
13	5	39,05		4	38,11	-0,94
14	$\} 8$	38,34		3	37,79	? $-0,40$
15	$\}$	38,34		3	38,09	, -0,40
16	6	38,42		- 4	38,66	+0,24
17	\} 8	38,32		\% 3	38,55	$3+0,27$
18		38,32		- 4	38,63	$1+0,27$
19				2	38,66	

$g 0$ Index Error of the Mural Circle for 1836 and 1837.

Index Error of the Mural Circle for 1836 and 1837. 51

Date. 	$\begin{aligned} & \text { Index Error } \\ & \text { by } \\ & \text { Stars. } \end{aligned}$	Remarks. \mid	Index Error by Reflecting Collimator.	\%
1837	, "		, "'	
Dec. 10		2	-0 32,76	
11		3	33,02	
12		3	33,67	
13		3	32,53	
14 5	-0 34,98	3	33,89	-1,09
$15\} 9$,27	3	32,95	\} -2,21
16 , 9		2	33,17	$\}-2,21$
$17\} 7$		4	33,02	\}-2,17
18 \} 7	35,13	4	32,91	$\}-2,17$
		3	32,91	
$20\} 9$	34,55	4	3:3,03	$\}-1,58$
$21)$		2	33,72	
22 , 7	34,37	2	32,80	-0,96
23		4	33,74	
24		1	33,55	
25.5	33,54	3	33,09	-0,45
26	34,97	3	33,71	-1,26
27 \} 11	34,77	3	33,61	\} $-1,19$
28) 11	34,	4	33,56)-1,19
29 30 ${ }^{7}$	35,42	3 2 2	34,34 36,64	$)^{-1,08}$
$\left.\begin{array}{l}30 \\ 31\end{array}\right\}$	36,17	2	36,64 37,20	$\}+0,75$

Taking the means of the column "difference", and putting $d \mathrm{~L}$ for the error of the Assumed Latitude, and \mathbf{E} for the error of the four divisions employed, we get

from 260 Observations in 1835			
190			
171	1836		
Mean	1837	$\mathrm{E}+d \mathrm{~L}$	$=-0^{\prime \prime}, 06$
	$=-0,65$		
		$=-0,55$	
			$=-0,37$

The discordance here found between the result for 1835 as compared with that for 1836 and 1837 , is, as far as our present knowledge extends, chargeable alone to error of observation: it adds one ion great many other cases of daily occurrence, which shew, that notwithstanding the facility with which an accuracy of one or two seconds may be altained, (even by a single obseriation) still, how little control contin ued observation gives us over the fraction of a second.

RESULT OF OBSERVATIONS MADE WITH THE TRANSIT INSTRUMENT AND MURAL CIRCLE.

It has hitherto been a constant source of regret to me, -that whilst the observations of the fixed Stars and Planets, have come out-in a manner creditable to the Madras Instruments and Observers-still, that the observations of the Sun have been discordant to a degree little calculated to confer credit upon either-It is not that the mean results have differed much at any time, from those determined at other observatories ; but the discordance found among individual results reaches to an amount (occasionally 5 or 6 seconds + or -) which could hardly be credited: during the past two years this subject has occupied no small share of my attention, and the result has been I am sorry to say but little satisfactory. During the Autumn of 1835 and in 1836 and 1837, it had generally been my custom, to compute the Sun's N. P. D.-set the instrument, and read off the 4 Microscopes previously to opening the shutters for the meridian observation; the comparison of these readings with those made at the time of meridian passage, shews that no change is ever effected upon the relative position of the microscopes by the Sun shining upon the Instrument: to discover if the Index Error remained constant under these circumstances, - I made two or three observations with the Reflecting Collimator at a few minutes before Noon; and then, opening the shutter,-allowed the Sun to shine upon the Instrument for 5 minutes before the meridian passage, immediately after which, the Observation with the Reflecting Collimator was repcated; the result shewed, that no appreciable change had occurred from the action of the Sun's rays upon the lustrument for this time:-under these circumstances \mathbb{I} am reluctantly compelled to proceed, and leave this matter still unexplainedIn the table which follows, the meridian observations of the Sun at the Transit have it will be observed, on many occasions been omitted, which has arisen in consequence of no known star having been observed during the day timewhen the uncertainty of the clock's rate would not permit its error to be interpolated from the evening observations.

The observed transit of the 1st and 2 d limb over the five wires, furnishes us with the value of the apparent semidiameter ; from which, the mean horizontal semidiameter $=\left(\frac{\text { Sun's } 2 \mathrm{LL}-1 \mathrm{~L} .}{2}\right) \times 15\left(1+\frac{a^{\prime}-a}{48}\right) \sin$ N. P. D. \times dist. (Earth - Sun)
At the Circle it has been usual to observe either the North limb alternately with the South limb at consecutive transits, or to observe on the same daythe N. P. D. of the one limb at 30 seconds before the meridian passage, and that of the other at 30 seconds after it-whereby the mean vertical semidiameter of the Sun has been computed from the formulæ-
M. V. Semid. $=\frac{\text { N. P. D. Sun's South L. }- \text { N. P. D. Sun's North L. }+d r . \pm d \text { D. }-\mathbf{C}-\mathbf{T} \text {. }}{2} \times$ dist. (SunEarth.) where a^{\prime}, α, represent the A. R. of the Sun at the noon following, and preceding the day of observation; $d r$, the difference of the refractions due to the N . and S . limbs; $d \mathrm{D}$, the change of Declination in $1^{m i}$ of time (the interval between the observations), C a correction due to a small inclination of the horizontal wire; which, up to the 19th June 1836 amounted to $1^{\prime \prime}, 46$ but has since been reduced to 0 ; and $T=2^{\prime \prime}, 42$ is the value of the diameter of the wire.

Comparison of the Observed A. R. and N. P. D. of the Sun, with the places interpolated from the Nautical Almauac, \&c.

1836	Right Ascension		Error of Tables.	North Polar Distance		Error of Tables.	Mean Semidiameter.	
	from Observation	from N. A.		from observation.	$\begin{aligned} & \text { from } \\ & \text { N. A. } \end{aligned}$		Horizontal.	Vertical.
	h. m. s.	s.	"	${ }^{0} 113$ "	"	"	'"	
Jan. $\begin{aligned} & 2 \\ & \\ & \\ & \\ & 3\end{aligned}$	184745,02	44,60	-0,42	$113 \quad 0 \quad 25,15$	28,60	$+3,45$		
3	52 9,79	9,30	-0,49	112558,28	12,50	+ 4,22	$16 \quad 2,01$	
4	56 34,2]	33,70	$-0,51$	1124928,38	29,00	+ 0,022	0,27	
6	$19 \quad 5 \quad 21,47$	21,10	-0,37	1123637,82	40,90	+ 3,08],96	
7	944,65	44,20	-0,45	1122932,95	36,70	+ 3,75	1,87	
8	14 7,04	6,90	-0,14	$\begin{array}{llll}112 & 22 & 5,58\end{array}$	5,70	+ 0,12	3,72	
9	18 28,92	29,00	+ 0,08	$\begin{array}{llll}112 & 14 & 5,82\end{array}$	8,40	+ 2.58	3,68	
10	22 50,95	50,60	-0,35	112543,26	44,80	+ 1,54	2,68	
11	27 12,31	11,80	-0,51	11115652,36	55,40	+3,04	$15 \quad 59,90$	
13	35 52,80	52,30	-0,50	1113758,00	59,70	+1,70	59,80	
14	40 11,93	11,80	$-0,13$	$\begin{array}{llll}111 & 27 & 50,49\end{array}$	53,90	+ 3,41	55,96	
15	44	30,40		$11117 \quad 21,46$	23,20	+1,74	16 3,58	
16	48 48,91	48,60	-0,31	111628,03	27,90	$-0,13$	2,32	
17	53 6,12	5,90	-0,22	$\begin{array}{llll}110 & 55 & 7,89\end{array}$	8,30	+0,41	15 59,66	
18	57 22,85	22,70	-0.15	11104385,71	24,80	$-0,91$	58,27	
19	$20 \quad 1 \begin{array}{lll} \\ & 1 & 39,05\end{array}$	38,70	$-0,35$	$11031 \quad 16,97$	17,80	$+083$	16 1,18	
20	5 54,20	53,90	-0,30					
21 22	10 8,85	8,40	-0,45	$110 \quad 5 \quad 55,61$	54,00	-1,61	1,67	
22	14 22,30	22,10	-0,20	10952 37,44	38,40	+ 0,96	0,47	

54 Result of Observations in 1836 and 1837.

Result of Observations in 1836 and 1837.

1836	Right Ascension		Error of Tables.	North Polar Distance		Error of Tables.	Mean Semidiameter.	
	from observation.	$\begin{aligned} & \text { from } \\ & \text { N. A. } \end{aligned}$		from observation.	$\begin{aligned} & \text { from } \\ & \text { N. A. } \end{aligned}$		Horizontal.	Vertical.
May $\begin{array}{r}6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 14 \\ 15 \\ 16 \\ 18 \\ 19 \\ 2 \\ 2 \\ 2 \\ 2 \\ 24\end{array}$	h. m.	s.	"	${ }^{0}$		"	"	' ${ }^{\prime \prime}$ '
	25259,15	59,60	+ 0,45	732614,79	18,80	+4,01		15 59,28
	5651,77	51.70	-0,07	$\begin{array}{llll}73 & 9 & 33,19\end{array}$	37,80	+4,61	$16 \quad 2,64$	57,26
	3044,32	44,20	-0,12	725311,53	13,40	+1,87	2,88	
				72371125	6,10	+4,85	3,28	59,75
	8 31,65	31,20	-0,45	722113,83	16,00	+2,17	2,21	
	22 25,48	25,40	-0,08	$\begin{array}{llll}72 & 5 & 41,78\end{array}$	43,60	+1,82		
				713531,09	32,50	+1,41	0,70	
				712055,31	54,60	-0,71	0,86	
	28 8,42	8,60	+0,18				0,52	
	$32 \quad 6,23$	6,80	-0,43	705231,89	35,30	+ 3,41	5,40 5,32	$16 \quad 1,64$
	$40 \quad 1,97$	1,90	-0,07				3,56	
	$44 \quad 0,87$	0,90	+0,03	701232,15	32,60	+0,45	6,78	
	$48 \quad 0,18$	0,40	+0,22	6959 55,80	51,80	-4,00	5,96	
	$52 \quad 0,10$	0,30	+0,20	6947 33,68	31,40	-2,28	5,96	
	$56 \quad 0,84$	0,90	+ 0,06	693533,21	31,80	-1,41	3,74	1,26
	4001,66	1,90	+0,24	6923 51,81	53,20	+ 1,39	4,62	2,82
	$4 \quad 3,51$	3,80	+0,29	6912 34,03	35,90	+ 1,87	5,76	0,10
	8 8,52	5,40	-0,12	691235,19	40,00	+ 4,81	5,58	2,54
	$12 \begin{array}{ll}12 & 8,12\end{array}$	7,80	-0,32	6851 1,85	5,80	+ 3,95	1,18	
	2014,56	14,30	-0,26	683058,41	3,10	+ 4,69	1,40	
	$24 \quad 18,42$	18,10	-0,32				2,82	
	28 2, 289	22,50	-0,39	$\begin{array}{lll}68 & 12 & 25,59\end{array}$	30,20	$+4,61$ $+3,29$	2,45 2,70	0,56
June	36 36 3	27,60	-0,27	67 67 65 55 23 23,61	27,30	$+3,29$ $+3,61$	1,46	
	48 50,84	50,80	-0,04			+3,61	3,78	
	52 57,64	57,50	-0,14				1,94	
	57 4,65	4,60	-0,05	671931,42	34,90	+ 3,48	1,35	
	5111,92	11,90	-0,02	6713 31,71	35,20	+ 3,49	1,46	
	5 19,69	19,70	+0,01	$\begin{array}{lll}67 & 7 & 53,48\end{array}$	59,20	+ 5,72	2,38	1,18
	927,86	27,60	-0,26	67 2 654,78	47,30	+ 1,52	$15 \quad 59,40$	1558,12
	13 36,23	36,00	-0,23	66580,04	59,70	-0,34	16 1,28	
	1744,68	44,60	-0,08	$\begin{array}{llll}66 & 53 & 35,48\end{array}$	36,30	+ 0,82		
	2154,05	53,40	-0,65	664934,49	37,20	+2,71	2,10	$16 \quad 1,30$
	26 3,19	2,50	-0,69	$6646 \quad 2,33$	2,60	+0,27	2,82	
	34 21,04	20,90	-0,14	6640 2,00	7,40	+5,40	2,82	
	38 30,55	30,40	-0,15	663745,86	46,80	+ 0,94	3,60	
	42 40,08	39,90	-0,18	663548,77	50,90	+2,13	2,76	1,32
	46 49,66	49,40	-0,26	663418,84	19,80	+0,96	2,60	
	50 58,49	59,00	+0,51	$\begin{array}{llll}66 & 33 & 11,35\end{array}$	13,50	+2,15	2,02	
	55 9,29	8,70	-0,59	663232,33	32,20	-0,13	2,28	
				$\begin{array}{llll}66 & 32 & 12,88\end{array}$	15,70	+2,82	0,38	3,45
				6632 21,88	23,90	+2,02	2,22	
	628 23,74	23,10	-0,64	664153,58	54,00	+ 0,42		
July				66529697	10,30	+ 0,33	1,98	
	$\begin{array}{rr}44 & 56,82 \\ 46 & 4,49\end{array}$	$\begin{array}{r} 56,40 \\ 4,10 \end{array}$	$-0,42$ $-0,39$	665623,07	23,40	+0,33	1,98	1,88
							1,34	
				$\begin{array}{lll}67 & 11 & 28,29\end{array}$	30,90	+2,61	0,44	
				$6717 \quad 21,20$	20,80	-0,40	0,47	

1836	Right Ascension		Error of Tables.	North Polar Distance		Error of Tables.	Mean Semidiameter,	
	from observation.	$\begin{aligned} & \text { from } \\ & \text { N. A. } \end{aligned}$		from observation.	$\begin{aligned} & \text { from } \\ & \text { N. A. } \end{aligned}$		Horizontal.	Vertical.
	h. m. s.	s.	"		34,40	+5,02	62	, "
$\begin{array}{ll}\text { July } & 7 \\ & 9 \\ & 9\end{array}$	713 44,69	44,00	-0,69	$\begin{array}{llll}67 & 37 & 11,21\end{array}$	12,20	+0,99	0,92	15 59,95
10	17 49,94	49,40	-0,54	674433,17	36,00	+2,83	15 59,88	58,30
11	17 4,04			6752 21,46	22,90	+1,44	16 2,18	$16 \quad 1,75$
12				68 0 27,90	32,50	+4,60	,78	
13				$\begin{array}{llll}68 & 9 & 3,34\end{array}$	5,00	+1,66	3,34	
14	$34 \quad 7,47$	6,80	-0,67	681754,87	59,80	+4,93	1,40	
15	3810,26	10,00	-0,26	682713,12	16,90	+3,78	2,52	
16	$42 \quad 13,09$	12,70	-0,39	683655,13	56,10	+0,97	1,90	
17	4615,22	14,80	-0,42	684653,39	57,10	+3,71	2,02	
18				685715,01	19,60	+4,59		
19	54 17,89	17,40	-0,49	$\begin{array}{llll}69 & 8 & 2,44\end{array}$	3,70	+1,26	0,70	
20	58 18,25	17,80	-0,45	691988	8,80	+0,38	1,68	
23				695430,55	28,40	-2,15	1,26 0,72	1,06
26	822 8,02	8,20	+0,18	703248,15	48,70	+0,55	0,72	
27	26 4,95	4,60	-0,35	704618,08	14,40	-3,68	$\begin{array}{rr}15 & 57,72 \\ 16 \\ 1,86\end{array}$	
28	30 0,50	0,20	-0,30	$\begin{array}{llll}71 & 0 & 0,38 \\ 71 & \end{array}$		-1,28	$\begin{array}{lr}16 & 1,86 \\ & -2,18\end{array}$	15 59,12
30 2				$\begin{array}{lll} 71 & 28 & 23,94 \\ 72 & 13 & 22,47 \end{array}$	$\begin{aligned} & 24,50 \\ & \mathbf{1 8}, 90 \end{aligned}$	$+0,56$ $-3,57$	1,18 1,70	
				7213 22,47		-	1,64	
9				$\begin{array}{llll}74 & 8 & 4,46\end{array}$	3,10	$-1,36$	1,30	$16 \quad 0,88$
10				$74 \quad 25$ 34,69	30,40	-4,29	0,86	
14				753752,73	47,30	-5,43		
15				7556 28,58	26,80	-1,78	1,40	15 58,20
16				761519,51	19,70	+0,19	2,40	
17	946 32,10	32,00	-0,10	763422,57	25,60	+3,03	0,62	
18	50 15,95	15,70	-0,25	7653 43,25	44,30	+1,05	1,92	$16 \quad 0,75$
19				771318,33	15,30	-3,03	2,64	
21	10124,21	23,90	-0,31	7812 56,01			3,68 2,42	
23	847,00	46,80	-0,20	$78 \quad 3319,40$	17,20	$\underline{-2,20}$	2,05	
25				7914 25,41	24,10	-1,31	1,80	
27	23 27,74	27,60	-0,14	79 56 17,95	11,70	-6,25	2,30	
Sep. 7	$11 \quad 322,55$	22,40	-0,15				1,28	
	${ }^{6} 58,69$	58,60	-0,09				2,25	
9	10 34,77	34,80	+0,03	844143,17	38,70	-4,47	1,26	
11	17 46,79	46,70	-0,09	$85 \quad 2714,99$	13,90	-1,09	2,00	
12	21 22,28	22,50	+0,22	855011,29	8,90	-2,39	1,62	$15 \quad 59,72$
16	3544,70	44,60	-0,10	87 87 87 22 31,57	29,00	-2,57	1,64	16 162,62 0,84
17				$\begin{aligned} & 87 \\ & 88 \\ & 88\end{aligned} 8541,96$	42,40 58,30	$\begin{aligned} & +0,44 \\ & \hline \end{aligned}$	1,02	$16 \quad 0,84$
18	46 30,92	30,90	+0,08	88 8 55,			1558,00	
20	50 6,42	6,30	-0,12	8855 36,69	36,80	+0,11	59,72	1,66
21	53 42,03	41,80	-0,23	8918 59,54	58,40	-1,14	$16 \quad 1,38$	
22	$57 \quad 17,44$	17,40	-0,04	8942 24,65	21,60	$-3,05$	0,98	3,02
23	12053,26	50,03	-0,26				3,52	
24	428,85	28,80	-0,05				1558.60	
25	8 4,59	4,60	+0,01	$\begin{array}{llll}90 & 52 & 32,54\end{array}$	35,20	+2,66	16 58,20	
26	1140,99	40,70	-0,29	$\begin{array}{llr}91 & 16 & 2,37 \\ 91 & 39 & 25,30\end{array}$	0,00 24,70	$-2,37$ $-0,60$	$\begin{array}{lr}16 & 0,32 \\ 15 & 57,96\end{array}$	
26 28				$\begin{array}{lrr}91 & 39 & 25,30 \\ 92 & 2 & 51,39\end{array}$	24,70	-0,60	[16 $\begin{array}{rr}1,98\end{array}$	

1836	Right Ascension		Error of Tables.	North Polar Distance		Error of Tables.	Mean Semidiameter.	
	from observatiou.	$\begin{aligned} & \text { from } \\ & \text { N. A. } \end{aligned}$		from observation.	from N. A.		Horizontal.	Vertical.
	h. m.	s.	"	0° '" ${ }^{\prime \prime}$	"	"	, "	, "
Sep. 29	$12 \quad 2230,75$	30,40	-0,35	922612,20	11,60	-0,60	$\begin{array}{ll}16 & 0,84\end{array}$	
30	26 7,30	7,30	0,00				15 59,20	
Oct. 1	29 45,01	44,70	-0,31					
	40 38,40	38,40	0,00	$94 \quad 2240,39$	41,10	+0,71	$16 \quad 1630$	
				944551,21	51,40	+0,19	3,16	
6	47 56,08	56,10	+0,02	$\begin{array}{llll}95 & 9 & 0,74\end{array}$	58,10	$-2,64$	1,84	
9	58 55,83	55,60	-0,23	$\begin{array}{lllll}96 & 17 & 54,45\end{array}$	54,50		0,80 3,32	
10	$\begin{array}{ll}13 & 2 \\ 36,57\end{array}$	36,40	-0,17	9640 45,03	43,80	-1,23	2,92	
11	6 17,78	17,60	-0,18	97 3 23,18	27,80	$+4,62$	0,70	
12	9 59,67	59,30	-0,37	9726 2,62	6,00	+3,38	1,40	
13	13 41,89	41,60	-0,29	9748 36,53	38,00	+1,47	2,16	
14	17 23,97	24,30	+0,33	981059,48	3,70	+4,22	1,70	
15	21 7,60	7,60	0,00				3,67	
16	24 51,73	51,40	-0,33				3,84	
17 18 18		20,80	0,00	993933,70	32,40		2,92	
19	36 6,33	6,40	+0,07	$100 \quad 1 \quad 19,10$	19,20	1,3 $+0,10$	4,72	
20	39 52,70	52,60	-0,10	$\begin{array}{llll}100 & 23 & 0,87\end{array}$	57,10	$+3,77$ $-3,06$	3,57	
21	43 39,34	39,30	-0,04	$10044 \quad 25,38$	25,60	+0,22	2,50	
22	47 27,01	26,80	-0,21	101544,16	44,30	+0,14	1,92	
23	51 15,15	14,90	-0,25				15 58,50	
24				$10147 \quad 50,21$	51,40	+1,19	16 0,58	
25	58 53,74	53,20	-0,54	$\begin{array}{llll}102 & 8 & 38,39\end{array}$	39,10	+0,71	2,82	15 59,88
26	141026,42		-0,2	1022913,10	15,50	+2,40	0,82	
Nov. 2				1044743,31	45,40	+2,09		
				10543 38,11	40,10	+1,99		
6	45 47,41	47,90	+0,49	$\begin{array}{llll}106 & 1 & 46,61\end{array}$	47,80	+1,19	4,10	
7	49 48,28	47,80	-0,48	10619 37,40	39,40	+2,00	6,34	
8	53 48,66	48,60	-0,06				6,50	
9	57 50,36	50,20	-0,16	10654 34,34	32,90	-1,44	4,77	$\begin{array}{ll}16 & 1,64\end{array}$
10	151552,81	52,60	-0,21	10711 34,52	34,00	-0,52	3,94	0,96
11	556,57	56,00	-0,57				4,66	
12	10 0,52	0,20	-0,32	1074439,18	42,20	+3,02	4,45	
13				108045,82	48,70	+ 2,88	3,40	
22	5128,00	27,30	-0,70	1101048,53	47,70	$-0,83$	5,62	
23	5540,60	40,40	-0,20	11023 29,13	27,40	$-1,73$	5,54	
24							2,32	
25	$\begin{array}{llr}16 & 4 & 9,13 \\ & 8 & 24,66\end{array}$	9.10 24,50	$-0,03$ $-0,16$	$\begin{array}{lll}110 & 59 & 8,64\end{array}$			$15 \quad 58,70$	
27	1240,86	40,60	-0,26	$\begin{array}{rrrr}110 & 59 & 8,64 \\ 111 & 10 & 14,52\end{array}$	17,30	$+1,26$ $+2,78$	$\begin{array}{lr}16 & 3,48 \\ & 4,77\end{array}$	
28	16 57,68	57,60	-0,08	$11121 \quad 1,82$	0,70	-1.12		
29	21 15,53	15,20	-0,33	1113120,53	20,10	-0,43	2,12	
Dec. 1				1115044,48	44,90	+0,42	2,56	
	34 12,48	12,20	-0,28	11115947,39	50,00	+2,61	8,86	0,80
4	42 53,42	53,50	+0,08	1121643,69	43,30	$+0,39$ $-0,2$	4,00	
5	4715,18	15,00	-0,18	11122429,91	31,20	+1,29	5,02	15 59,87
6 7	5137,10 55	37,10	0,00	1123151,23	52,90	+1,67	4,76	
7	55 59,75	59,70	$-0,05$	1123849,79	48,10	-1,69	2,43	

1837	Right Ascension		Error of Tables.	North Polar Distance		Error of Tables.	Mean Semidiameter.	
	from observation.	from N. A.		from observation.	from N. A.		Horizontal.	Vertical.
	h. m.	s.		0 ' "			'"	, "
Feb. 10	$2135 \quad 8,67$	8,80	+ 0,13	104, 2251,27	55,80	+ 4,53	$16 \quad 2,40$	
11	39 5,92	5,70	$-0,22$	[16,34	18,00	+ 1,66	1,27	16 3,24
12				1034326,17	28,50	+ 2,33		15 59,50
13	46 57,52	57,19	-0,33	23 19,59	24,60	+5,01	2,02	$16 \quad 2,55$
14	50 52,04	51,60	-0,44	3 1,25	7,80	+6,55	1,70	15 59,47
15	54 45,65	45,40	-0,25	1024233,40	38,50	+ 5,10	1,70	16 3,02
16	58 39,21	38,50	-0,71	2156,40	57,00	+ 0,60	1,44	15 59,15
17	$22 \quad 231,79$	30,90	-0,89	1 2,63	3,90	+ 1,27	2,90	161,15
18	6 23,08	22,20	-0,88	1013958,03	59,50	+ 1,47	0,86	1,67
19	10 13,54	13,10	-0,44	18 43,42	44,10	+ 0,68	2,58	4,00
20	14 3,94	3,30	-0,64	1005714,04	18,00	+ 3,96	1.52	
21	1753,19	52,80	-0,39	3541,40	42,10	+0,70	3,00	0,68
24							0,35	
26	3651,43	51,10		984519,56				
27	40 37,34	37,10	$-0,34$ $-0,24$	22 50,37	54,70	$+4,33$	1,40	0,92
28	44 22,94	22,70	-0,24	0 15,85	18,40	+ 2,55	1,70	15 59,84
Mar. 1	48 7,99	7,80	$=0,19$	973733,63	35,10	+ 1,47	1555,37	16 0,81
	52 52,19	52,30	+0,11	1444,47	45,20	+0,73	57,38	15 57,64
3	55 36,17	36,30	+0,13	965151,38	48,90	-2,48	59,08	16 3,67
4	59 19,70	19,80	+0,10	28 46,86	46,90	+0,04	$16 \quad 0,99$	2,61
5	$23 \quad 3 \quad 2,83$	2.80	-0,03	539,77	39,40	-0,37	1,20	
6	645,61	45,40	-0,21	9542 26,66	26,70	+0,04	15 58,74	1,62
7	10 27,32	27,40	+0,08	19 11,29	9,40	- 1,87	16 1,90	15 57,75
8	14 9,22	9,20	-0,02	$9455 \quad 52,63$	47,90	-4.73	0,04	16 1,50
9	17 50,52	50,60	+ 0,08	32 23,38	22,60	-0,78	2,34	3,07
10	21 31,50	31,60	+ 0,10	855,18	53,90	-1,28	1,80	4,78
11	25 12,64	12,40	-0,24	934520,21	22,30	+2,09	1,58	15 59,45
12	28 52,29	52,60	+0,31	21 42,75	48,10	+5,35	2,58	16 1,28
13	32 32,85	32,60	$-0,25$	$\begin{array}{lll}9258 & 9,92\end{array}$	11,70	+1,78	2,47	1558.46
14				34 31,86	33,40	+1,54	0,50	59,66
15				10 53,36	53,70	+ 0,34	3,37	59,74
16				914710,81	12,90	+ 2,09	2,05	161,47
17	$47 \quad 9,35$	9,80	$+0,45$	23 29,01	31,40	+2,39	0,98	0,62
18				905947,86	49.60	+ 1,74	15 59,45	
19				3614.59	7,80	-6,79	16 1,48	$15 \quad 59,62$
20				12 29,46	26,30	$-3,16$	2,82	16 1,84
21				8948 45,32	45,50	$+0,18$	1555,82	
22				$25 \quad 5.56$	6,00	+ 0,44	16 1,88	1,15
23	$0 \quad 8$ 59,74	59,70	-0,04	124,70	26,70	+ 2,00	1,40	0,37
24	12 37,77	37,70	-0,07	883747,97	51,00	+ 3,03	15 59,34	15 59,86
25	14 15,17	15,60	+0,43	$14 \quad 12,12$	16,20	+4,08	16 0,68	
26				875044,10	43,80	-0,30	1,44	
27	23 31,73	31,40	-0,33	27 13,12	14.00	$+0,88$	0,87	16 1,30
28	27 8,95	9,30	+0,35	3 45,31	47,30	+ 1,99	0,84	2,84
29	3046,71	47,30	+0,59	8640 21,81	23,70	+ 1,89	0,48	1,32
30	34 25,55	25,40	-0,15	17 4,74	4,00	$-0,74$	1,25	15 58,95
${ }^{31}$	38 3,24	3,50	+0,26	855347,78	48,20	+ 0,42	1,97	59,87
April 1	41 41,90	41,60	-0,30	30 33,72	36,80	$+3,08$		
2	$45 \quad 19,99$	20,00	+0,01	7 33,40	30,10	-3,30	0,64	
3	48 58,45	58,50	$+0,05$	844434,53	28,50	$-6,03:$	0,35	$16 \quad 1,40$

Result of Observations in 1836 and 1837.

1837	Right Ascension		Error of Tables.	North Polar Distance		Error of Tables.	Mean Semidiameter.	
	from observation.	from N. A.		from observ ation	$\begin{aligned} & \text { from } \\ & \text { N. A. } \end{aligned}$		Horizontal.	Vertical.
June 2	$h . m$.			67	"	+366	${ }^{\prime \prime}{ }^{\prime}$, "
	43938,21	38,30	+0,09	$\begin{array}{rr}67 & 49 \\ 41 \\ 41 \\ 42,13 \\ 48\end{array}$	21,90 41,90	$+3,66$ $-0,23$	$\begin{array}{ll}6 & 0,82 \\ \\ 1,02 \\ 1,31\end{array}$	
				3420,93	25,20	+4,27	1,37	
	45157,48	57,70	+0,22	27 30,29	32,20	+1,91	1,06	$15 \quad 58,87$
	- 56 4,75	4,80	+0,05	20 59,23	2,70	+3,47	2,22	
	$5 \quad 012,30$	12,30	0,00	14 54,06	57,10	+3,04	1.35	
	420,40	20,00	-0,40	9 13,66	15,40	+1,74	1,66	58,76
	828.32	27.90	-0,42	3 55,99	57,90	+1,91	4,40	
	12 36,58	36,20	-0,38	6659 5,40	4,60	-0,80	1,66	
	1645,11	44,60	-0,51	54 34,62	35,60	+0,98	3.54	
	20 53,30	53,30	0,00	5033,05	31,10	-1,95	2,82	
	$25 \quad 2,12$	2,10	-0,02	46 44,64	51,00	+6,36	1,75	
	25 10,98	11,00	+0,02	43 36,19	35,10	-1,09	0,86	
	33 20,60	20,20	-0,40	3043,80	44,40	+0,60	0,57	
	37 29,79	29,40	$-0,39$	3815,72	18,20	+2,48	0,02	
	4138,61	38,70	+0,09	3614.74	16,50	+1,76	0,72	
				3433,70	39,60	+5,90	$15 \quad 59,84$	
				33 26,08	27,50	+1,42	$16 \quad 3,54$	
	6225,94	26,20	+0,26	32 17,08	19,20	+2,12	2,52	
	635,60	35,60	0,00	32 44,25	46,00	+1,75	0,75	
	10 44,76	45.10	+0,34	33 30,50	37,60		15 59,50	
	14 54,20	54.40	+0,20	34 5,90	54,0	,98	,	
	23 12,43	12,90	+0,47	3841,04	40,80	+0,24	$\begin{array}{ll}16 & 0,88\end{array}$	
	3130,61	30,80	+0,19	$44 \quad 2,47$	6,20	+3,73	15 59,95	
	35 39,58	39,40	-0,18	4724.98	25,70	+0,72	57,82	
July				5111,67	9,70	-1,97	59,20	
				55 20,18	18,00	-2,18	-59,95	
	48 4,92	4,00	-0,92				$15 \quad 58,58$	
				$\begin{array}{r}67 \\ 10 \\ \hline 10 \\ \hline 6,79\end{array}$	47,00 8,60	$+0,60$ $+1,81$	$\begin{array}{ll}16 & 0,12 \\ 16 & 0,70 \\ 15\end{array}$	
				15 52, 66	52,00	-0,88	15 59,95	
				$22 \quad 1,37$	0,10	-1,27	$16 \quad 0,92$	
	7839,58	39,00	-0,58	28 23, ${ }^{\prime} 7$	32,90		0,86	
	1244,99	44,80	-0,19	35 26,79	27,00	+0,21	1,35	
	1650,15	50,30	+0,15	4239.51	45,40	+5,89	1,77	
	20 55,43	55,30	-0,13	5028.30	26.80	-1,50	1,30	
	24 59,84	69,80	-0,04	58 25,29	30,90	+5,61	2,4.5	
	28 4,62	3,90	-0,72	68-6 52,95	57,80	+4,85		
	33 8,11	7,50	-0,61	1538,20	47,10		15 59,34	
	3711,58	10,70	-0,88	2458,01	58,60	+0,59	$16 \quad 1,44$	
	41 13,36	13,30	-0,06	3425,74	32,10		1,12	
	49 17,40	16,90	-0,50	44 25,30 54	27,40	+2,10		
	5318,52	18,00	-0,52	69521,21	22,60	+1,39	$16 \quad 2,30$	
	5718,51	18,40	-0,11					
	8 9 16,77	16,50	-0,27	51 28,40	25,00	$-3,40$	1,06	
				$70 \quad 3 \quad 48,69$	47,90	-0,79	0,08	
				16 24,97	29,90	+4,93		
	29 3,04	2,30	-0,74	42 56 29,46	51,80	$+2,61$ $+3,04$	0,37	

Result of Observations in 1836 and 1837.

1837	Right Ascension		Error of Tables.	North Polar Distance		Error of Tables.	Mean Semidiameter.	
	from observation.	$\begin{aligned} & \text { from } \\ & \text { N. A. } \end{aligned}$		from observation.	$\begin{gathered} \text { from } \\ \text { N. A. } \end{gathered}$		Horizontal.	Vertical.
	h. m. s.	s.	s	0' "	"	\%		
July 29				$71 \begin{array}{lll}71 & 10 & 34,87\end{array}$	32,60	-2,27	$\begin{array}{ll}16 & 1,62\end{array}$	
30 31 31				2447,94 3926.92	50,60 26,10	$+2,66$ $-0,82$	$\begin{array}{ll}16 & 2,14 \\ & 2,27\end{array}$	
Aug. 2	4834,21	33,70	$-0,51$	$72 \quad 930,94$	33,10	+2,16	$15 \quad 59,56$	
							$15 \quad 59.07$	
				5653,21	54,00	+0,79	$16 \quad 0,70$	
7	$\begin{array}{llll}9 & 7 & 49,62\end{array}$	49,40	-0,22	732950,51	51,20	+0,69	0,82	
9	15 27,73	27,50	-0,23	$74 \quad 353,13$	52,10	-1,03	1,50	
10	19 16,00	15,70	-0,30	$\begin{array}{lll}21 & 13.34\end{array}$	16,60	+3,26	1,24	
11	$23 \quad 3,65$	3,30	-0.35	3855,51	54,10	-1,41	0,95	
12	26 30	50,20	-0,47	56 75 15 50,33	47,30	-3,03	$16 \quad 1,06$ 0,20	
13 20	30 36,80	36,70	-0,10	$\begin{array}{lll}75 & 15 & 1,03 \\ 77 & 28 & 1,20\end{array}$	5490 4,80	+ 3,60	$\begin{array}{rr}16 & 0,20 \\ 15 & 58,74\end{array}$	
21	$10 \quad 029,38$	28,90	-0,48					
22	$4 \quad 10,69$	10,80	+0,11	$78 \quad 7 \begin{array}{lll}784,37\end{array}$	59,80	+5,43	16 0,64	
23	7 52,48	52,20	-0,28	$28 \quad 9,16$	13,50	+ 4,34	$\begin{array}{lr}16 & 0,24\end{array}$	
24	11 33,31	33,20	-0,11	48 38,59	40,30	+1,71	1559,84	
25				$79 \quad 913,15$	16,90	+3,75	1559,12	
28	261 13,48	13,40	-0,08				16 0,64	
29	2952,51	52,50	$-0,01$	33 22,19	24,80	+ 2,61	1,44	
31				81 16450.96	24,90	- ${ }^{4,96}$	$16 \quad 0,55$	
Sep. ${ }^{1}$				$38 \quad 7,20$	7,70	+ 0,50	15 59,92	
				¢2 59 56,01	57,60	+ 1,59		
4 5				$\begin{array}{rrrr}82 & 44 & 0,57 \\ 83 & 6 & 11,36\end{array}$	2,00 15,00	$+1,43$ $+3,64$	$\begin{array}{ll}16 & 1,10 \\ 16 & 2,98\end{array}$	
6				-284206	35,70	+ 3,64	15 58,65	
7				$50 \quad 57,29$	0,80	+ 3,51	161.80	
8				8413 32,39	33,00	+ 0,61	$15 \quad 59,64$	
9	11943,18	42,70	-0,48	36 11,18	11,90	+ 0,72	$15 \quad 59,70$	
10				58 57,69	53,90	-3,79	$\begin{array}{lr}16 & 2,20 \\ 15 & 59\end{array}$	
11	112030,11	30,00	-0,11	852144,47 44 40,46	42,00 35,80	- $2,4,66$		
13	$24 \quad 5,72$	5,50	-0,22	86732,11	32,10	-0,01	0,60	
14	2741,20	40,90	$-0,30$	30 36,22	33,40	$-2,82$	1,17	
15	31 16,69	16,40	-0,29	$53.37,86$	38.40	+ 0,54	0,52	
16	34 51,78	51,70	-0,08	871648.83	47,00	-1,83	0,37	
17	38 27,60	27,00	-0,60	39 55,75	58,70	+2,95	1,1.5	
18	$42 \quad 2,70$	2,40	-0,30	88311,53	1330	+1.77	0,66	
19	45 37,76	37,80	+0,04	26 31,04	31,60	+ 0,56	1,37	
20	$49 \quad 13.46$	13,20	-0,26	49 51,21	50,20	- 1,01	0,20	
21	$\begin{array}{lll}52 & 48,59 \\ 56 & 24\end{array}$	48,70	+0,11	891314,71	12.60	-2,11	0,22	
22 23	$12 \begin{array}{rrr}56 & 24,38 \\ 0 & 0,02\end{array}$	24,20 0.00	-0,18	$\begin{array}{rrr}36 & 39,94 \\ 90 & 0 & 2,65\end{array}$	34,70 59,10	-5,24 $-3,55$	$\begin{array}{rr}16 & 0,77 \\ 15 & 59,77\end{array}$	
24	3 35,65	35,90	+0,25	23 29,99	24.30	-5.69	$16 \quad 1,44$	
25	712,08	11,80	-0,28	46 51. 60	50,30	- 1,30	$16 \quad 0,55$	
26	121048,25	48,10	-0.15	$9110 \quad 17,76$	16,20	-1,56	$15 \quad 59.97$	
27 28	121424,73	24,50	-0,23	3341.44	42,20	+ 0,76	16 1,06	
 Oct.	18 1,04	1,00	-0,04	5711,49 944021,17	$\begin{array}{r}7,70 \\ 19,50 \\ \hline\end{array}$	- 3,79 $-1,67$	0.22	
6				95 95	27,10	- 4,27	0,48	

64 Result of Observations in 1836 and 1837.

In conformity with the plan followed in former volumes, I have here computed the value of the Mean Semidiameter of the Sun, from the observed transits-not that I have ever for a moment expected to obtain a very accurate determination by this means, - but rather from a desire of tracing the changes, if any, which might result in the method of estimating time from continued practice : the result has been simply this,-that the observer who at first observed a larger diameter than myself, has, after two or three years practice in observing, continued to observe the same larger diameter; and another Assistant who appeared to note the Diameter in defect, has continued to do so: Among the circle observations too, there appears to be the same cause in operation,-each observer either sees the Sun under a different angle, or forms a different judgment with regard to his being in contact with the wire; the results altogether are as follows-

Sclecting from the above observations those made near to the Solstices, we will proceed to compute the value of the Obliquity of the Ecliptic-

Observalions of the Sun made near to the Summer Solstices of 1836 and 1837 applied to the determination of the Obliquity of the Ecliptic.

1836		N. P. D.	Reduction.	$\odot_{\text {Lat. }}$	Solsticial N. P. D.	Correction for		Mean Solsticial N. P. D. Reduced to Jan.l.
						Dr	$\left\|\begin{array}{l}\odot \\ \text { r Nut. } \\ +\frac{t .0 \prime \prime}{}+46 \\ 365\end{array}\right\|$	
May		0 '"	0 ' ${ }^{\prime}$	"	0	"	"	0 " "
	21	$6947 \quad 33,68$	31516,70	+0,93	$6632 \quad 17,91$	+6,05	-0,51	$6632 \quad 23,45$
	22	693533,21	$3 \quad 316,46$	0,95	17,70	,06	,52	23,24
	23	$69 \quad 23 \quad 51,81$	25138,46	0,93	13,28	,06	,53	18,81
	24	691234,03	240 20,18	0,89	14,74	, 07	,53	20,28
June	25	69135,19	229 24,62	0,81	11,38	,08	,54	16,92
	26	$68 \quad 5111,85$	218 49,76	0,72	12,81	,09	,55	18,35
	28	$68 \quad 30 \quad 58,41$	15847,03	0,48	11,86	,09	, 57	17,38
	30	$6812 \quad 25,59$	14013,33	0,21	12,47	,10	,58	17,99
	31	68 3 44,01	13130,50	0,09	13,60	,11	,60	19,11
	1	$\begin{array}{llll}67 & 55 & 23,69\end{array}$	123 9,60	-0,02	14,07	,12	,61	19,58
	6	$\begin{array}{lllll}67 & 19 & 31,42\end{array}$	04718,15	0,19	13,08	,17	,67	18,58
	7	$\begin{array}{llll}67 & 13 & 31,71\end{array}$	04118,70	0,13	12,88	,18	,68	18,38
	8	67 7653,48	03542,88	0,04	10,56	,19	,69	16,06
	9	$\begin{array}{llll}67 & 2 & 45,78\end{array}$	03031,00	+0,05	14,83	,20	, 71	20,32
	10	$\begin{array}{rrr}66 & 58 & 0,04\end{array}$	02543,39	0,18	16,83	,20	,71	22,32
	11	$\begin{array}{lllll}66 & 53 & 35,48\end{array}$	02120,24	0,30	15,54	,2t	,72	21,03

1836	N. P. D.	Reduction.	$\begin{aligned} & \text { 〇's } \\ & \text { Lat. } \end{aligned}$	Solsticial N. P. D.	Correction for		Mean Solsticial N. P. D. Reduced to Jan. I
					$\begin{gathered} \text { Dr } \\ \text { Nut. } \end{gathered}$	$\left\|\begin{array}{l} \odot \mathrm{r} \text { Nut. } \\ +\frac{t \cdot 0^{\prime \prime}, 46}{365} \end{array}\right\|$	
June 12	0 ' "	0 ' "	"	0 , "	"		0 "
	664934,49	01720,82	+0,43	663214,10	+6,22	-0,72	66 32 19,60
131515161718192028	6646 2,33	01346,15	,56	15,74	, 23	,73	21,24
	$6640 \quad 2,00$	0751,77	,78	11,01	,24	,74	16,51
	$\begin{array}{lllll}66 & 37 & 45,86\end{array}$	$0 \begin{array}{llll}0 & 51,20\end{array}$,85	15,51	,25	,74	21,02
	$\begin{array}{lllllllllll}66 & 35 & 48,77\end{array}$	$0 \quad 335,42$,89	14,24	,26	,75	19,75
	66 3418,84	$0{ }_{0} 024,43$,92	15,33	,26	,75	20,84
	$\begin{array}{llll}66 & 33 & 11,35\end{array}$	$\begin{array}{llll}0 & 0 & 58,40\end{array}$,91	13,86	,27	,75	19,38
	$66 \quad 32 \quad 32,33$	00016,83	,87	16,37	,27	,75	21,89
	664153,58	$\begin{array}{llll}0 & 9 & 38,20\end{array}$	- ,04	15,34	,31	,76	20,92
	$\begin{array}{lllll}66 & 56 & 23,07\end{array}$	$\begin{array}{lll}0 & 24 & 8,50\end{array}$, ,27	14,30	,33	,74	19,89
	673711,21	1 1 4 57,63	+ , 34	13,92	,36	,68	19,60
10	674433,17	11221,32	,47	12,32	,36	,67	18,01
14	6817 54,87	14546,15	,82	9,54	,38	,65	15,27
15	$68 \quad 27 \quad 13,12$	$\begin{array}{lll}1 & 55 & 2,56\end{array}$,85	11,41	,38	,64	17,15
16	683655,13	$2 \begin{array}{llll}2 & 42,26\end{array}$,84	13,71	,39	,61	19,49
17	684653,39	21442,40	,80	11,79	,39	,60	17,58
19	$\begin{array}{lll}69 & 8 & 2,44\end{array}$	23548,40	,65	14,69	,41	,58	'20,52
1837	$6919 \quad 8,42$	24654,97	,54	13,99	,42	,57	19,84
May 242531	$\begin{array}{ccc}69 & 15 & 19,85 \\ 69 & 4 & 18,85\end{array}$	$\begin{array}{lll}2 & 43 & 4,29 \\ 2 & 32 & 2,59\end{array}$	$-0,30$ $-0,29$	63 315,26 15,97	$+7,97$ 7,97		$6632 \quad 22,70$ 23,40
	$68 \quad 545,45$	133 36,11	+0,27	9,61	8,01	,60	17,02
June	6749 18,24	$117.8,00$,53	10,77	,02	,62	18,17
	$\begin{array}{llll}67 & 27 & 30,29\end{array}$	05518,53	, 82	12,58	,03	,66	19,95
	$6720 \quad 59,23$	04848,88	,86	11,21	,03	,67	18,57
	6714 54,06	42 43,15	,89	11,80	,03	,68	19,15
	$\begin{array}{llll}67 & 9 & 13,66\end{array}$	$\begin{array}{ll}37 & 1,03\end{array}$,87	13,50	,04	,69	20,85
	$\begin{array}{llll}67 & 3 & 55,99\end{array}$	3143,60	, 83	13,22	,04	,71	20,55
	$\begin{array}{lllll}66 & 59 & 5,40\end{array}$	26 50,27	,77	15,90	,04	,71	23,23
	665434,62	22 21,10	,67	14,19	,04	,72	21,51
	665033,05	18 16,87	,56	16,74	,05	,72	24,07
	$\begin{array}{llll}66 & 46 & 44,64\end{array}$	1436,63	,43	8,44	,05	,73	15,76
	$\begin{array}{llll}66 & 43 & 36,19\end{array}$	$\begin{array}{r}11 \\ \hline 181,00 \\ \hline\end{array}$, 30	15,49	,05	,73	22,81
	$\begin{array}{llll}66 & 40 & 43,80 \\ 66 & 38 & 15,72\end{array}$	$\begin{array}{lll}0 & 8 & 29,56 \\ & 6 & 3,15\end{array}$	$+0,17$ $+0,06$	14,41	,05	,74	21,72
	$\begin{array}{llll}66 & 38 & 15,72\end{array}$	6 3,15	+0,06	12,63	,06	,74	19,95
		$4 \quad 1,67$	-0,05	14,02	,06	,75	21,33
	$\begin{array}{llll}66 & 32 & 17,08 \\ 66 & 32 & 44,25\end{array}$	${ }_{0}^{0} \begin{array}{r}4,25\end{array}$,22	12,61	, 10	,76	19,95
	$\begin{array}{llll}66 & 32 & 44,25 \\ 66 & 33 & 30,50\end{array}$	1 1 22 22,80	,167	12,93 7,63	,10	,76	20,27 14,97
	663455,90	239,25	+0,03	16,68	,10	,76	14,97 24,02
	663631,31	4 20,67	,15	10,79	,11	,76	18,14
	663841,04	6 26,92	,29	14,41	,11	,76	21,76
	$\begin{array}{llll}66 & 44 & 2,47\end{array}$	11 51,98	,55	11,04	,12	,75	18,41
	664724,98	1511,82	,66	13,82	,12	,75	21,19
July	672823,87	5619,00	,72	5,59	,14	,69	13,04
	$6735 \quad 26,79$	1319,28	,61	8,12	,14	,68	15,58
	674239,51	1031,00	,49	9,00	, 14	,67	16,47
	$6750 \quad 28,30$	1812,75	,35	15,90	,14	,66	23,38
	$6758 \quad 25,29$	26 16,57	,22	8,94	,15	,66	16,43
	$\begin{array}{lll}68 & 6 & 52,95\end{array}$	$34.46,32$,10	6,73	,15	,65	13,23
	681538,20	- 43 33,68	-,01	4,51	,16	,64	12,03

1837	N. P. D.	Reduction.	$\odot ’$Lat.	Solsticial N. P. D.	Correction for		Mean Solsticial N. P. D. Reduced to Jan. 1.
					$\underset{\text { Nut. }}{\text { Di }}$	$\left\lvert\, \begin{gathered}\odot \\ + \text { r Nut. } \\ + \text { t. } 0^{\prime \prime}, 46 \\ 365\end{gathered}\right.$	
July $\begin{array}{r}1 \\ 1 \\ 1 \\ 1 \\ 2\end{array}$	T"	0 " "	"	\bigcirc	"	"	0, "
	68 24 58,01	15246,14	-0,10	663211,77	+8,16	-0,62	6632 19,31
	68 $34 \begin{array}{lll}65,74\end{array}$	$22^{2} 17,60$,17	7,97	, 17	,61	15,53
	$1 \begin{array}{llll}68 & 54 & 35,59\end{array}$	2230,90	,22	4,47	, 17	,59	12,05
	${ }_{69}^{69} 5$	33 9,63	, 20	11,38	,18	,58	18,98
	695128,40	31911,47	+ ,13	17,06	,21	,54	24,73

Observations of the Sun made near to the Winter Solstices of 1836 and 1837 applied to the dicicriminalis" of the Obliquity of the Ecliptic.

1836		N. P. D.	Reduction.	$\odot ' s$ Lat.	Solsticial N. P. D.	Correc	ction for	Mean Solsticial N. P. D. Reduced to Jan. 1.	
						$\underset{\text { Nut. }}{\text { r. }}$	$\left\lvert\, \begin{gathered} \odot \\ +\frac{t \cdot 0^{\prime \prime}, 46}{365} \end{gathered}\right.$		
Jan.		0 "	0 \% "	"	"	"	"	0 '	"
	2	113025,15	+0 2714,78	+0,07	1132740,00	-5,08	+0,49	11327	35,41
	3	11255888	03230,79	+0,18	39,25	,09	,48		33,84
	4	1124928,38	03814,19	$+0,29$	42,86	,10	,47		38,23
	6	$\begin{array}{llll}112 & 36 & 37,82\end{array}$	041 1,94	+0,42	40,18	,11	,45		36,52
	7	1122932,95	058 6,45	+0,44	39,84	,12	,44		35,16
	8	$\begin{array}{lll}112 & 22 & 5,58\end{array}$	1537,05	+0.44	43,07	,13	,43		38,37
	9	$\begin{array}{llll}112 & 14 & 5,82\end{array}$	11333,98	$+0,40$	40,20	,13	,43		35,50
	10	112543,26	12158,35	+0,33	41,94	,14	,42		37,22
	11	$1 \begin{array}{llll}111 & 56 & 52,36\end{array}$	13048,50	+0,23	41,09	,15	,41		36,25
	13	$1 \begin{array}{llll}111 & 37 & 58,00\end{array}$	14944,63	0,00	42,63	,16	,39		37,86
	14	$\begin{array}{llll}111 & 27 & 50,49\end{array}$	15950,06	-0,12	40,41	,17	,38		35,62
	16	11116828,03	221 16,79	-0,37	44,45	,18	,37		39,64
	17	110 55 7,89	23235,98	-0,47	43,40	,19	,34		38,55
	18	$\begin{array}{llll}110 & 43 & 25,71\end{array}$	24419,65	-0,55	44,81	,10	,33		39,94
	19	$1 \begin{array}{llll}110 & 31 & 16,97\end{array}$	25627,53	-0,62	42,88	,21	, 31		37,98
	21	$\begin{array}{llll}110 & 5 & 55,61\end{array}$	32151,55	-0,65	46,51	,23	,27		41,55
Nov.	22	$\begin{array}{llll}110 & 10 & 48,53\end{array}$	31654,52	-0,19	42,86	$-7,11$	+0,68		36,43
	23	$1 \begin{array}{llll}110 & 23 & 29,13\end{array}$	$\begin{array}{llll}3 & 4 & 15,40\end{array}$	-0,06	44,47	,1]	,70		38,06
	26	$\begin{array}{rrrr}110 & 59 & 8,64\end{array}$	22833,48	$+0,23$	42,35	,13	,75		35,97
	27	1111014,52	217 26,00	+0,30	40,82	,14	,77		34,45
	28	1111211,82	2642,67	+0,32	44,81	,14	,79		38,46
	29	11113120,53	15622,90	+0,33	43,76	,15	,80		37,41
Dec.	2	11115947,39	12753,61	+0,15	41,15	,17	,84		34,82
	4	$\begin{array}{lllll}112 & 16 & 43,69\end{array}$	1111,18	-0,08	44,79	,18	,87		38,48
	5	$\begin{array}{llll}112 & 24 & 29,91\end{array}$	$1 \begin{array}{llll}1 & 3 & 13,00\end{array}$	-0,22	42,69	,18	,88		36,39
	6	1123151,23	05551,70	$-0,35$	42,58	,19	,89		36,28
	7	$\begin{array}{llll}112 & 38 & 49,79\end{array}$	04856,56	-0,48	45,87	,19	,90		39,58
	11	$\begin{array}{lll}113 & 1 & 57,36\end{array}$	02544,77	-0,81	41,32	,21	,94		35,05
	12	$\begin{array}{lll}113 & 6 & 38,05\end{array}$	0214,98	-0,83	42,20	, 21	,95		35,94
	17	$\begin{array}{llll}113 & 22 & 57,07\end{array}$	0 ¢ 4 43,08	- $-0,49$	39,66	- ,24	,98		33,40
	19	$\begin{array}{llll}113 & 26 & 16,19\end{array}$	$0 \begin{array}{llll}0 & 1 & 26,56\end{array}$	6-0,23	42,52	, 25	,99		36,26
	23	$\begin{array}{llll}113 & 27 & 10,92\end{array}$	$0 \quad 0 \quad 32,96$	+0,22	44,10	, 27	,99		38,82
	24	$\begin{array}{rrr}113 & 26 & 13,43 \\ 113 & 6 & 20,17\end{array}$	$\begin{array}{lrrr}0 & 1 & 30,33 \\ 0 & 21 & 20,46\end{array}$	+0,28	44,04	4	, 99		38,76
	31	$113 \quad 6 \quad 20,17$	02120,46	6-0,06	40,57	\| ,30	1,97		34,24

1837	N. P. D.	Reduction.	$\stackrel{\odot}{\text { ¢ }}$ L	Solsticial N. P. D.	$\left\lvert\, \frac{\text { Correct }}{\left\|\begin{array}{c} \text { Dr } \\ \text { Nut. } \end{array}\right\| t}\right.$	$\left\|\begin{array}{l} \text { ction for } \\ +\frac{t \cdot 0^{\prime \prime}, 46}{365} \end{array}\right\|$	Mean Solsticial N. P. D. Reduced to Jan. 1.	
Jan. $\begin{array}{rr} & 3 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 1 \\ & 12 \\ & 19 \\ & 20\end{array}$	0 " "	0 "	"	0	"	"	0 ,	"
	1125055,34	03649,08	-0,43	1132743,99	-7,32	+0,49	11327	37,16
	$11238 \quad 19,13$	49 25,07	,65	43,55	,33	,46		36,68
	1123122,36	56 23,83	,73	45,46	,34	,45		38,57
	112241,01	1347,85	,79	48,07	,34	,44		41,17
	$11216 \quad 8,08$	11 40,08	,82	47,34	,35	,43		40,42
	112745,93	1957,60	,81	42,72	,36	,43		35,79
	$11159 \quad 3,92$	28 41,81	,78	44,95	,37	,42		38,00
	1114955.77	3750,82	,72	45,87	,38	,41		38,90
	1114020,05	47 26,00	-0,63	45,42	,38	,40		38,44
	1102151,43	3558,15	+0,21	49,79	,40	,31		42,70
	$\begin{array}{llr}110 & 9 & 2,85\end{array}$	1844,05	+0,29	47,19	,41	,30		40,08
Dec.	$111325 \quad 59,57$	+0 144,67	-0,04	44,20	-8,65	+0,99		36,54
	113274,85	0 41,78	,16	46,47	,65	,99		38,81
	1132735,43	0 7,33	,30	42,46	,66	,99		34,79
	1132632,87	1 13,77	,68	45,96	,68	,99		38,27
	23 26,43	4 19,79	,85	45,37	,69	,98		37,66
	21 9,34	634,94	,90	43,38	,69	,98		35,67
	$1.515,39$	12 30,70	,92	45,17	,71	, ,98		37,44

Taking the means, which it will be observed are the mean values for the commencement of the respective years, and employing the annual variation, ($-0^{\prime \prime}, 46$) we have determined altogether as follows-

Observations of the Sun made near to the Vernal Equinores of 1836 and 1837 applied to the detcrinimation of the crror of the assumed Equinoctial Point.

1836	Observed N. P. D.	Cor.	N. P. D. corrected for \odot 's Latitude.	Computed A. R.	Observed A. R.	Error of Eq. Point.	Remaris.
	0 , "	"		$h m$.	m s. "	"	
Feb. 12	$103 \quad 58 \quad 37,19$	-0,18	1035837,01	$2140 \quad 1,85$	$40 \quad 1,54$	-0,31	
	1033841,35	0,28	1033841,07	43 58,25	43 57,52	-0,73	
	$10318 \quad 37.35$	0,36	1031836,99	47 52,83	47 52,40	-0,43	
	1025814,93	0,42	1025814,51	51 47,71	5147,18	-0,53	
	1023742,53	0.45	1023742,08	5541,53	5541,20	$-0,33$	
	1021658,93	0,46	102 $16 \begin{array}{ll}168.47\end{array}$	59 34,10	5934.09	-0,01	
	$\begin{array}{lll}101 & 56 & 0,78\end{array}$	0.44	$\begin{array}{llr}101 & 56 & 0,34\end{array}$	$\begin{array}{lll}22 \quad 3 & 26.65\end{array}$	3 26,24	$-0,41$	
	1013455,24	0.39	$101345+, 85$	7 17,76	71763	-0.13	
	$1 \begin{array}{lllll}101 & 13 & 37.89\end{array}$	0,31	1011337,58	118,35	11 8,67	+0,32	
	100525.56	-0,21	100525,35	14 59,08	14 58,47	-0,61	
	994639,58	+0,16	9946 39,74	2625.58	$26 \quad 25,28$	-0,30	
	992434,42	027	992434,69	30 12,85	$30 \quad 12,42$	-0,43	
	$\begin{array}{llll}99 & 2 & 16,49\end{array}$	0,39	$\begin{array}{ll}99 & 216,88\end{array}$	$34 \quad 0,28$	3359,81	-0,47	
	983958,42	0,50	$\begin{array}{llll}98 & 39 & 58,92\end{array}$	3745,80	37 46,16	+0,36	
	981725.31	0,57	$\begin{array}{llll}98 & 17 & 25,88\end{array}$	4132,00	4132,06	+0,06	
	9754 48,64	0,63	975449,27	45 17,06	$45 \quad 17,22$	+0,16	
Mar. $\begin{gathered}1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ \\ 7 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 12 \\ 13 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2\end{gathered}$	97323840	0,65	9732405	$49 \quad 1.88$	$49 \quad 2,15$	+0.27	
	$\begin{array}{lll}97 & 9 & 12,18\end{array}$	0,66	$\begin{array}{llll}97 & 9 & 12,84\end{array}$	5246,11	5246,02	-0,09	
	964616,18	0,64	964616,82	5ti 2965	56 29,69	+0,04	
	962310,62	0,59	962311.21	$23 \quad 0 \begin{array}{lll}23 & 13,36\end{array}$	0 13,01	-035	
	$\begin{array}{lll}99 & 0 & 5,74\end{array}$	0,50	$\begin{array}{lll}96 & 0 & 6.24\end{array}$	35567	3 55,67	0,00	
	953655,59	0,40	953655,99	7 37,54	7 37,50	+0,06	
	951340,00	0,31	9513 40,31	11 19,27	11 20,16	+0,89	
	945015,41	0,18	$9450 \quad 15,59$	$15 \quad 1,33$	$\begin{array}{ll}15 & 1,91\end{array}$	+0,58	
	942652,79	+0,06	942652,86	1842,11	1842,62	+0,51	
	$\begin{array}{llll}94 & 3 & 21,03\end{array}$	-0,05	$943 \begin{array}{lll}90,98\end{array}$	22 23,45	22.23 .56	+0,11	
	933949,34	0,16	933949,18	$26 \quad 3,89$	$\begin{array}{ll}26 & 3,86\end{array}$	-0,03	
	931612,32	0,23	931612,09	29 44,59	2944.36	-0,23	
	925238,95	0,30	9225238,65	33 24,00	3324.33	+0,33	
	9228 57,96	0,33	922857,63	3740,03	$37 \quad 4,56$	+0,53	
	914135.63	0,33	-91 41 35,30	$44 \quad 22,58$	44 22,73	+0,15	
	911753,09	0,28	$\begin{array}{llll}91 & 17 & 52,81\end{array}$	48 1,81	$48 \quad 1,66$	-0,15	
	905412,09	0,22	$90.5411,87$	5140,37	51 40,74	+0,37	
	9030 31,33	-0,13	$9030 \quad 31.20$	55 18,71	$55 \quad 19,27$	+0,56	
	$\begin{array}{lll}90 & 6 \\ 46,88\end{array}$	+0,03	$\begin{array}{lll}90 & 646,91\end{array}$	$58 \quad 57,50$	58 57,11	-0,39	
	8919 26,96	0,23	8919 27,19	$\begin{array}{llll}0 & 6 & 13,74\end{array}$	6 14,33	+0,59	
	885545,58	036	885545,94	9 52,22	952.53	+0,31	
	$\begin{array}{llll}88 & 32 & 726\end{array}$	0,47	$8832 \quad 7,73$	13 30,47	13 30,13	-0,34	
	$88 \quad 831.58$	0,57	88832,15	17 8,59	1788.63	+0,04	
	874459.28	0.66	8744 59,94	2046,50	20 46,20	-0.30	
	$\begin{array}{llll}86 & 58 & 5,42\end{array}$	0.76	86586,18	28 2,10	$28 \quad 2,61$	+0.51	
	$\begin{array}{llllllllll}86 & 34 & 41,78 \\ 86 & 11 & 24,35\end{array}$	0,76	863442,54	3140,22	3140,04	$-0,18$	
	8611124,35	0,74	861125,09	3518,06	3518,07	+0.01	
	854814,09	0.70	854814,79	38 55,50	3856,02	+0,52	
April	$\begin{array}{llll}85 & 25 & 2,72\end{array}$	062	$85 \quad 25 \quad 3,34$	42 33,93	4234,32	+0,39	
	$\begin{array}{llll}85 & 1 & 56.19\end{array}$	0,53	85156,72	46 12,50	$46 \quad 12,53$	+0,03	
	84391,80	0,42	8439 2,24	4950.08	4950,93	+0,85	
	835313,11	+0,19	835313,30	57 8,48	577.57	-0,91	
	$\begin{array}{lllll}83 & 30 & 30,82\end{array}$	+0,07	833030,89	1047,51	047,01	-0,50	
	$83 \quad 7 \quad 57,50$	-0,04	$83 \quad 757,46$	4 26,38	4 25,77	-0,61	

1836	Observed N. P. D.	Cor.	N. P. D. corrected for \odot 's Latitude.	Computed A. R .	Observed A. R.	Error of Eq. Point.	Remarks.
	0 " "	"		h. m. s.	8. 5 "	"	
April 8	824587,54	-0,13	8245 27,41	$1 \begin{array}{lll}1 & 8 & 6,03\end{array}$	$8 \quad 5,59$	-0,44	
	$82 \quad 23$ 8,94	0,19	$\begin{array}{lll}82 & 23 & 8,75\end{array}$	1145,27	1145,03	-0,24	
10	82055,77	0,24	82055,53	15 25,13	15 154,87	$-0,26$	
11	813851,77	0,26	813851,51	19 5,07	$19 \quad 5,31$	+0,24	
12	811655,56	0,25	811655,31	22 45,40	$\begin{array}{ll}22 & 45,55\end{array}$	+0,15	
13	$8055 \quad 9,64$	0,21	8055 9,43	$26 \quad 26,41$	$26 \quad 26,35$	-0,06	
15	8012 2,37	-0,06	$8012 \quad 2,31$	33 47,83	3349,10	+*1,27	obsd. by V.
16	795041,31	+0,04	795041,35	$\begin{array}{ll}37 & 29,73 \\ 41 & 12\end{array}$	$\begin{array}{lll}37 & 30,48 \\ 41 & 13 & 38\end{array}$	$+0,75$	${ }^{\text {A }}$ B.
188	$\begin{array}{rrrr}79 & 8 & 24,31 \\ 78 & 47 & 32,44\end{array}$	0,28 0,40	$\begin{array}{rrrr}79 & 8 & 24,59 \\ 78 & 47 & 32,84\end{array}$	44 $4.859,60$ 39,00	$\begin{array}{ll}44 & 55,39 \\ 48 & 38,52\end{array}$	$-0,21$ $-0,48$	
1837							
Feb. 13	1032319,59	+0,06	10323 19,65	214658,27	46 57,52	-0,75	
	$103{ }^{10} 31,25$	0,17	103 3 101,42	50 53,07	$50 \quad 52,04$	-1,03	
15	1024233,40	0,27	1024233,67	54 46,58	54 45,65	-0,93	
16	1022156,40	0,34	1022156,74	58 38,66	$\begin{array}{lll}58 & 39,21 \\ 2 & 31\end{array}$	+0,55	
17	$\begin{array}{lll}102 & 1 & 2,63\end{array}$	0,39	$102 \begin{array}{lll}13 & 1 & 3,02\end{array}$	$\begin{array}{lll}22 & 2 & 31,12\end{array}$	231,89	+0,77	
18	$101 \begin{array}{lll}101 & 39 & 58,03\end{array}$	0,41	$101 \begin{array}{lll}109 & 38,44\end{array}$	6 22,74	6 23,08	+0,34	
19	1011843,42	0,40	1011843,82	10 13,45	10 13,54	+0,09	
20	10057 14,04	0,38	1005714,42	14 4,12	$14 \quad 3,94$	-0,18	
21	1003541,40	0,32	1003541,72	17 53,19	17 53,19	0,00	
26	$9845 \quad 19,55$	-0,20	984519,36	3652,06	3651,43	-0,63	
27	982250,37	0,31	982250,06	36 38,07	40 37,34	-0,73	
28	$\begin{array}{llll}98 & 0 & 15,85\end{array}$	0,41	$98 \quad 0 \quad 15,44$	44 23,20	$44 \quad 22,94$	-0,26	
Mar. 1	9737 33,63	0,50	9737 33,13	48 7,92	$48 \quad 7,99$	+0,07	
	971444,47	0,56	971443,91	5252,19	$52 \quad 52,19$	0,00	
,	965151,38	0,59	965150,79	55 35,60	55 36,17	+0,57	
4	962846,86	0,59	962846,27	59 19,33	59 19,70	+0,37	
5	$\begin{array}{llll}96 & 5 & 39,77\end{array}$	0,57	$96 \quad 539,20$	$\begin{array}{llll}23 & 3 & 2,40\end{array}$	3 2,83	+0,43	
6	9542 26,66	0,51	954226,15	645,06	${ }_{6} 45,61$	+0,55	
7	951911,27	0,45	9519 10,82	10 26,93	10 27,32	+0,39	
8	$94 \quad 55 \quad 52,63$	0,36	945552,27	$14.8,20$	$14 \quad 9,22$	+1,02	
9	$9432 \quad 23,38$	0,24	$94 \cdot 32$ 23,14	1750,26	1750,52	+0,26	
10	$94 \quad 8$ 55,18	0,12	9485506	21 31,20.	21 31,50	+0,30	
11	934520,21	+0,0,1	$\begin{array}{llll}93 & 45 & 20,22\end{array}$	$25 \quad 12,39$	$25 \quad 12,64$	+0,25	
12	932142,75	0,13	932142,88	25 53,18	28 52,29	-0,89	
13	$\begin{array}{llll}92 & 58 & 9,92\end{array}$	0,24	$\begin{array}{llll}92 & 58 & 10,16\end{array}$	32 32,62	3232,85	+0,23	
17	9123 29,01	0,51	912329,52	47 10,01	$\begin{array}{lll}47 & 9,35\end{array}$	-0,66	
23	89124,70	0,16	89 1-24,86	$\begin{array}{llll}0 & 9 & 0,11\end{array}$	8 59,74	-0,37	
24	883747,97	0,05	883748,02	1238,05	1237,77	-0,28	
25	$\begin{array}{llll}88 & 14 & 12,12\end{array}$	$-0,07$	881412,05	14 16,14	$\begin{array}{llll}14 & 15,17\end{array}$	-0,97	
27	872713,12	0,28	872712,34	23 31,51	23 31,73	+0,22	
28	$87 \quad 3$ 45,31	0,38	873 44,93	27 9,51	27 8,95	-0,56	
29	8640 21,81	0,43	8640 21,38	3047,47	3046,71	-0.76	
30	$\begin{array}{llll}86 & 17 & 4,74\end{array}$	0,49	86174,25	34 25,14	34 25,55	+0,41	
31	8553 47,78	0,49	8553 47,29	38 3,35	$38 \quad 3,24$	-0,11	
April 1	853033,72	0,47	853033,25	41 42,01	41 41,90	-0,11	
2	$85 \quad 733,40$	0,42	$85 \quad 7 \quad 32,98$	$45 \quad 19,34$	$45 \quad 19,99$	+0,65	
3	844434,53	0,35	8444 34,18	4857,38	$\begin{array}{rrr}48 & 58,45 \\ 3\end{array}$	+1,07	
7	8313 21,02	+0,10	8313 21,12	$1 \begin{array}{lll}1 & 3 & 33,87 \\ & 7 & 13\end{array}$	3 38,78 7	-0,09	
8 9	$82504.9,49$	0,22	$\begin{array}{llll}82 & 50 & 49,71 \\ 82 & 28 & 26,64\end{array}$	$\begin{array}{r}7 \\ 10 \\ 10 \\ 52,38 \\ \hline\end{array}$	$\begin{array}{r}7 \\ 7 \\ 10 \\ 10,42 \\ \hline\end{array}$	$+0,02$ $+0,03$	

[^9]| 1837 | Observed
 N. P. D. | Cor. | N. P. D. corrected for ©'s Latitude. | Computed A. R. | Observed A. R. | Error of Eq. Point. | Kemaris. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| April 11 | 0 | " | | h. m. s. | m. s." | " | |
| | 81445,52 | +0,52 | 81446,04 | 11812,58 | 18 12,83 | +0,25 | |
| | 81226,05 | 0,60 | 81226,65 | 21 53,01 | 21 52,92 | -0,09 | |
| | 810176,62 | 0,62 | 81018,24 | 25 33,35 | 25 33,83 | +0,48 | |
| | 803838,25 | 0,63 | 803838888 | 29 15,97 | 29 15,06 | -0,91 | |
| | $\begin{array}{llll}80 & 17 & 4,54\end{array}$ | 0,61 | $8017 \quad 5,15$ | 32 55,59 | 32 55,94 | +0,35 | |
| | $\begin{array}{llll}79 & 34 & 33,32\end{array}$ | 0,50 | 793433,82 | 40 18,61 | 40 19,31 | +0,70 | |
| | 7913 25,28 | 0,40 | 7913 25,68 | 44 2,07 | 44 2,02 | -0,05 | |

Observations of the Sun made near to the Autumnal Equinoves of 1836 and 1837 applied to the determination of the error of the Equinoctial Point.

1836	Observed N. P. D.	Cor.	N. P. D. corrected for ©'s Latitude.	Computed A. R.	Observed A. R.	Error of Eq. Point.	Remarins.
	0 \% "	"		h. ${ }^{\text {m }}$.	10		
Sep. 9	844143.17	$+0,53$	844143,70	111035,56	10 34,77	-0,79	
11	852714,99	0,40	852715,39	1746.81	17 46,79	-0,02	
12	$\checkmark 55011,29$	0,31	855011,60	21 22,82	21 22,28	-0,54	
16	872231,57	-0,18	8722 31,39	35 45,01	35 44,70	$-0,31$	
20	$88.5536,69$	$-0,53$	$88 \quad 55$ 36,16	50 6,27	50 6,42	+0,15	
21	89.1854 .54	0,56	891858,98	53 41,93	5342,03	+0,10	
22	8942 24,65	0,57	4942 24,08	57 17,81	57 17,44	-0,37	
25	905232,54	0,41	905232,13	$12 \quad 8 \quad 4,39$	8 4,59	+0,20	
26	$\begin{array}{llll}91 & 16 & 2,37\end{array}$	0,32	9116 2,05	1141,13	1140,99	-0,14	
29	922612,20	+0,04	922612,24	22 30,37	2230,75	+0,38	
Oct. 4	$\begin{array}{lllll}94 & 22 & 40,39\end{array}$	0,43	942240,82	4038,39	40 38,40	+0,01	
6	$\begin{array}{llll}95 & 9 & 0,74\end{array}$	0,43	$\begin{array}{lll}95 & 9 & 1,17\end{array}$	4756,48	47 56,08	-0,40	
8	955502,65	0,31	$\begin{array}{llll}95 & 55 & 2,99\end{array}$	55 15,79	5515,20	-0.59	
9	961754,45	0,22	! $4617 \quad 54,67$	58 55,67	58 55,83	+0,16	
10	964045,03	0,11	964045,14	$13 \quad 236,62$	236,57	-0,05	
11	9732318	-0,01	$97 \quad 323,17$	616,89	6 17,78	+0,89	
12	9726 2,62	0,14	9726 2,48	958,79	9 59,67	+0,88	
13	974836,53	0,27	974836,26	13 41,29	13 41,89	+0,60	
14	981059.48	0,38	981059,10	17 23,59	17 23,97	+0,38	
1%	993933,70	0,66	993933,04	32 20,94	32 20,80	-0,14	
19	$100 \quad 119,10$	0,67	100118,43	36 6,31	36 6,33	+0,02	
20	$10023 \quad 0,87$	0,65	$10023 \quad 0,22$	3953,11	39 52,70	-0,41	
21	100. 4425,38	0,6)	1004424,78	43 39,20	43 39,34	+0,14	
22	101544,16	0,52	101543,64	47 26,63	47 27,01	+0,38	
25	102838,39	0,21	$102838,1 \%$	58 52,98	58 53,74	+0,76	
1837 Sep.	843611,18	-0,30	843610,89	11942,80	9 43,18	+0,38	
Sce. 12	854440,46	-0,29	854440,17	2030,93	2030,11	$-0,82$	
13	¢6 73 32,11	0,24	$\checkmark 66731,87$	$24 \quad 5,57$	$24 \quad 5,72$	+0,15	
14	¢6 30 36,22	0.16	863036,06	27 41,45	27 41,20	-0,25	
15	865337,86	0,06	8653 37,80	31 16,29	$31.16,69$	+0,40	
16	871648,83	+0,05	871648488	34 51,99	34 38 38 1,78	-0,21	
17	873955,75	0,17	873955,92	38 26,56	38 27,0	+1,04	
19	88 3 11,53	0,2×	88 \% 311,81	$42 \quad 2,07$	42 2, 45	$+0,03$ $-0,02$	
19	882631,04	0.39	$88263], 43$	45 37,78	4537,76 49	$-0,02$ $+0,16$	
20	884951,21	0,50	: 84951,71	49 13,30	49 13,46	+0,16	

1837	Observed N. P. D.	Cor.	N. P. D. corrected for O's Latitude.	Computed A. R.	Observed A. R.	Error. of Eq. Puint	Remarks.
Sep.		"		h. m.	$m . s$		
	${ }_{49}{ }_{8} 131314.71$	$+0.57$	891315,28	115249,11	$524^{4}, 59$	-0,52	
	¢9 3639.94	0,63	893640,57	56 25,10	56 24,38	-0,72	
	90 0. 2,65	0,66	$\begin{array}{lll}90 & 0 & 3,31\end{array}$	12000	${ }^{0} 00,02$	-1,67	
	$\begin{array}{lllll}90 & 23 & 29,99\end{array}$	0,66	9323 30,65	3 36,68	3 35,65	-1,03	
	$934651.6)$	0,64	90465224	712,22	712,18	+0,06	
	911017,76	0,59	91 91 10 1018.35	1048.24	104825	+0,01	
	91	0.51	91 91 91 1 54 1191 1195	14 24,23	1424.73	+0,45	
Oct.	96518	-0,39	963517.78	1314367	$1{ }^{1} 104$	-1,05	
	972041,73	0,22	972041.51	96.19	9 6,76	+0,57	
	97435 5,97	0,11		1246,76	12 47,81	+1,05	
	98 5 84,99	0,00	98	162971	1637,42	+0,71	
	9850 4,12	+0.23	9850 4,35	$2355 . \times 6$	2356.83	+0.97	

Taking the means and refering to former Vols. we have determined altogether as follows-

Error of the assumed Equinoctial Point.
Observations in Spring. Observativns in Autumn.

19 observations in 1831	s $+0,055$	m 17 observations in 1931	$0,2$
50 - 1832	- ,140	-48	,399
48 - 1833		29 - - 18.33	,325
56 ——— 1835	+ ,392	29 - 1835	,376
$1>36$	+ ,003	25 -—— 1836	,052
1837	- ,001	837	,050

In Vol. III, I had proposed to reject the result derived from the Spring Observations of 1835 ; but the results from the Autumnal Observations of 1836 and 1837, when compared with former results, exhibiting a similarly large discordance, it would appear preferable to retain it ; accordingly we have

Error of the assumed Equinoctial Point.
From the Observations in Spring $+0,043$

- - - Autumn $+0,245$
\therefore Mean Error or the Assumed Equinoctial Point $+0,144$
The results here obtained from the Observations at the Vernal and Autumnal Equinoxes, as well as those arrived at for the Obliquity, at page 68, exhibit a discordance, such as would be explained by attributing an error to the assumed place of the pole (the Latitude in fact); to understand this matter clearly, it is necessary to recollect, that every measure of North Polar Distance which is contained in this and the previous volumes of the Madras Results, has been derived from the Greenwich Catalogue of 720 Stars for 1825 ; which catalogue reckoned the N. P. D. from a point (supposed to be the pole) situated at an altitude of $51^{\circ} 28^{\prime} 38^{\prime \prime}, 5$ above the north horizon of the Greenwich Royal Ob-
servatory; hence, the error (if any) of this assumption, necessarily affects by its whole amount, the N. P. D. of every Star of the above catalogue, and consequently each and every measure of N. P. D. which has been made at Madras: thus, to render the Solsticial Observations at Madras accordant, we must diminish the Latitude of Greenwich $1^{\prime \prime}, 65$; and to reconcile the Observations at the Equinoxes, we must diminish the Latitude $0^{\prime \prime}, 66$,-rendering it exceedingly probable, that the Latitude of Greenwich as above stated, must be diminished by about one second.*

The presumed Latitude of Greenwich....................... $51^{\circ} 28^{\prime} 37^{\prime \prime}, 5$
In vol. I. Difference of Latitude of Madras and Greenwich. $3824 \quad 29,3$

$$
\text { Latitude of Madras } \ldots \longdiv { 1 3 \quad 4 \quad 8 , 2 }
$$

OBSERVATION OF SPOTS UPON THE SUN'S DISC.

The following observations of the various spots which have from time to time passed over the Sun's disc-have been made at the time of Transit with the Meridianal Instruments, so as not to prevent the ordinary observation of the Limb; at the Transit, one or two wires have mostly been taken; and at the Mural Circle, only two Microscopes could be read off; they are however on the whole, I apprehend-little inferior to the other observations.

Apparent Right Ascension and Declination of Spots observed upon the Sun's Disc, together with their Geocentric and Melioccntric Places.

Madras M. T.	Apparent A. R.	Apparent Deen.	Geocentric		Heliocentric	
			Longitude.	Latitude.	Longitude.	Latitude.
1835 D. h. m.	h. m.	- ${ }^{\prime \prime}$	- ' "		${ }^{0} 1{ }^{\prime \prime}$	${ }^{\circ}{ }^{\prime \prime \prime}$
Dec. 2323 59,5	(1) 188888	$\begin{array}{llll}-23 & 22 & 8,5\end{array}$	$271 \begin{array}{lll}52 & 3,2\end{array}$	+4 46,6	761731	+17 513
$\begin{array}{lll}25 & 0 & 0,0\end{array}$	(1) 1219,41	232032.8	2724942,6	+5 21,1	$\begin{array}{lllll}90 & 41 & 25\end{array}$	$\begin{array}{llll}18 & 55 & 3 \\ 21\end{array}$
$\begin{array}{llll}26 & 0 & 0,5\end{array}$	(1) 1629,93	231839,0	27347 15,0	+5 49,2	1052840	$\begin{array}{llll}21 & 0 & 53\end{array}$
$27 \quad 0 \quad 1,0$	(1) 2041,78	$\begin{array}{llll}23 & 16 & 18,5\end{array}$	$27445 \quad 7,7$	+6 16,7	1192738	$\begin{array}{lllll}22 & 45 & 25\end{array}$
2900	(1) $29 \quad 10,78$	$\begin{array}{llll}23 & 10 & 50,9\end{array}$	2764211,3	+6 640,8	1491633	
$\begin{array}{lll}30 & 0 & 2,5\end{array}$	(1) 3328,37	$23 \quad 734,2$	2774129,3	+6 44,3	$163 \quad 5217$	243211
$\begin{array}{llll}1836 \\ \text { Jan. } & 4 & 0 & 4,9\end{array}$	1855 39,23	224152,0	28249 1,5	-8 48,0	15788	-253728
8 0 6,7	(5) $1913 \quad 31,72$	$22.2843,1$	287114,2	-6 6,9	142220	-22 845
20011,1	20 512,24	201320,5	2991037,1	+7 20,6	1752323	+265618
21 011,4	916,36	$20 \quad 0$ 14,7	$300 \quad 9$ 24,2	+8 7,2	1705833	+30 510
23012,0	(1) $18 \quad 10,58$	193355,3	3021747,2	+6 14,3	$140 \quad 354$	+22 3837

* In Vol. II. page 84, I had arrived at very nearly the same result,-a result which has lately been completely vea rified by the observations at Greenwich.

74 Observation of Spots upon the Sun's Disc.

The numbers (1), (2), \&c. are supplied-to shew when the same spot has been re-observed: If we compare the cases in which the same spot has been re-observed after a complete revolution, we determine approximately.
from No. 1, that the Sun rotates on his axis at the rate of $14^{0} 2^{\prime}$ in 24 hours.

The observation on the 30th April, shews that the position of the spot had shifted 6 or 7 degrees (apparently $1^{\prime} 50^{\prime \prime}$), or that another spot had sprung up in its neighbourhood; and the observation of No. 1 on the 29th December and 23rd January, shews a variation of 2 degrees in the Heliocentric Latitude :* the observation of No. 9, which-embracing 7 revolutions, should be a good one,seems to confirm 1 and 2 in giving a rate of rotation of $14^{\circ} 4^{\prime}$ a day; or it would appear, that the Sun makes one complete sidereal revolution on his axis in 25 days 14 hours. With regard to the position of the Solar Axis, the above observations are sufficient only to furnish a rude approximation: it would appear that the inclination of the Solar Axis to the Pole of the Ecliptic is between 6 and 7 degrees; and that the Heliocentric Longitude of the intersection of the Solar Equator with the Plane of the Ecliptic is about 95°.

Observed Right Ascension and North Polar Distance of Mercury, compared with the places interpolated from the Nautical Almanac.

1836	Madras Mean Time of Observation.	A. R. from Observation.	A. R. from N. A.	Error of N. A.	N. P. D. from Observation.	N. P. D. from N. A.	Error of N. A.	Remaris.
-	h. m. s.	h. m. s.		"	0 , "		"	faint
$\begin{array}{cc}\text { Jan. } & 16 \\ 19 \\ 21 \\ 22 \\ 23 \\ 26 \\ 26 \\ 27 \\ 29 \\ & \end{array}$	03820,1	$2017 \quad 25,55$	24,95	-0,60			-	
	04745,85352,85651,2	$20 \quad 3842,64$	42,34	-0,30	11103315,93	33 8,44	-7,49	
		$\begin{array}{r}20 \quad 52 \\ 59 \\ 59 \\ \hline 38,47 \\ \hline\end{array}$	$\begin{array}{r} 43,11 \\ 38,92 \end{array}$	-0,36	1093326,60	33 17,43	-9,17	
				+0,16	1095858,46	1 3,30	+4,84	
	59 46,1	21630,87	30,92	+0,05	10827 22,78	27 23,91	+1,13	
	180,9	26 36,64	36,68	+0,04	1063829,92	38 29,62	-0,30	
	1033,1	21336,08	5,68	-0,40	$105 \quad 59 \quad 53,09$	59 50,46	-2,63	
	15 12,3	45 37,90	37,54	-0,36	1043948,95	39 48,64	-0,31	
Feb.	22 2,0	22815,89	15,45	-0,44	1015347,26	53 46,75	-0,51	
	23 3,4	13 14,11	13,80	-0,31	1011234,70	12 31,82	-2,88	
	23 44,1	17 51,54	51,41	-0,13	100323,79	$32 \quad 0,13$	-3,66	
	24 2,1	22 6,29	5,77	-0,52	995241,58	52 33,93	-7,65	
	23 54,0	25 54,92	54,59	-0,33	991439,06	14 38,77	-0,29	
	22 12,1	$32 \quad 5,70$	5,23	-0,47	$\begin{array}{llll}98 & 4 & 53,09\end{array}$	454,61	+1,52	
	20 33,2	34. 23,30	22,46	-0,84	973359,29	33 59,28	-0,01	
	18 18,9	36 5,58	4,97	$-0,61$$+0,07$	$\begin{array}{llll}97 & 6 & 16,34\end{array}$	616.00	-0,34	
April	$\begin{array}{llll}23 & 0 & 51,3\end{array}$	03033,76	33,83		891043,41	$10.51,63$	+8,22	
	$23 \quad 3 \quad 20,0$	03659,40	59,05	-0,35	-	-	-	
	14 14,9	1342,17	41,89	-0,28	$\begin{array}{llll}85 & 14 & 16,18\end{array}$	$14.22,09$	+5,91	
	2652,9	328,57	8,65	$\begin{aligned} & +0,08 \\ & +0,15 \end{aligned}$	815203,19	52 4,70	+1,51	
	34 4,8	47 4,50	4,65		80817,06	813,18	$-3,88$	
	$\begin{array}{r}37 \\ \hline\end{array}$	65443,84	43,83	$\begin{aligned} & +0,15 \\ & -0,01 \end{aligned}$	6453 275	53 I, 61	-1,14	
May 31	13853,7	61420,44	20,31	-0,13	$6453 \quad 2,75$	53 1,61	-1,14	

* In case these spots are not situated upon the illuminated surface of the Sum, some part of the discrepancy here found may be explained; but the observation of the Solar spots, are, by reason of their vavied figure-so subject to inaccuracy, that nothing conclusive with regard to their situation or movements, can be expected from the above few observations.

1836		$\begin{gathered} \text { Madras Mean } \\ \text { Time of } \\ \text { Observation. } \end{gathered}$	A. R. from Observation.	A. R. from N. A.	Error of N. A.	N. P. D. from Observation.	$\begin{gathered} \text { N. P. D. } \\ \text { from } \\ \text { N. A. } \end{gathered}$	Error of N. A.	Remarxs.
		h. m. s.	$h . m$. s.	"	"	0 "	0 "	"	
July 1		$\begin{array}{llll}22 & 39 & 39,7\end{array}$	63145,13	45,09	-0,04	$6847 \quad 2,94$	$47 \quad 7,34$	+4,40	
Oct.	6	1.12 29,4	141230,79	30,65	-0,14				
Nov. 2	22	225634,1	$15 \quad 5 \quad 28,70$	28,36	-0,34	$\begin{array}{llll}106 & 19 & 48,47\end{array}$	19 53,30	+4,83	
	25	$23 \quad 316,4$	15240,09	59,94	-0,15	1075351,48	53 55,13	+3,65	
Dec. 1837		25 30,1	21 46,49	46,01	-0,48	1115212,85	52 13,01	+0,16	
Jan.	3	05257,2	1943 49,04	48,91	-0,13	1132846,37	28 48,98	+2,61	
	7	1449,2	201129,49	29,35	-0,14	112331,31	3 30,45	-0,86	
	8	736,8	1814,01	14,22	+0,21	11113824,05	38 26,14	+2,09	
	9	10 18,5	24 52,57	52,29	-0,28	1111155,61	1156,14	+0,53	
	10	12 53,0	3124,32	23,99	-0,33	$11044 \begin{array}{lll}110\end{array}$	44 5,02	+0,11	
	24	2129,0	213513,50	12,82	-0,68	1032522,54	25 20,50	-2,04	
Feb. 1		22 37-21,1	$\begin{array}{rrrr}20 & 37 & 5,09 \\ & 38 & 47 & 81\end{array}$	4,27 47	-0,82	107114,05	11811	$\underline{+4,06}$) invisible to the Circle
Mar.		$\begin{array}{lr}35 & 6,7 \\ 28 & 11,6\end{array}$		47,24 29,78	$-0,57$ $-0,25$	$\begin{array}{lll}107 & 1 & 14,05 \\ 106 & 52 & 16,56\end{array}$	$\begin{array}{rr}1 & 18.11 \\ 52 & 18,07\end{array}$	$+4,06$ $+1,51$) the Circle observer.
		3016,7	2512,03	11,12	-0,91	$\begin{array}{lll}106 & 9 & 41,18\end{array}$	9 48,84	+7,66	
	6	31 6,9	29 59,02	58,73	-0,29	1055534,62	55 38,74	+4,12	
	7	32 5,5	34 53,34	53,08	-0,26	$10540 \quad 1,87$	$40 \quad 519$	+3,32	
	8	33 8,8	3954,01	53,62	-0,39	$105 \quad 23 \quad 5,94$	23 8,58	+2,64	
	9	34 19,0	$45 \quad 0,38$	0,10	-0,28	105447,76	449.95	+2,19	
	10	3533,3	50 12,39	11,70	-0,69	$10445 \quad 7,91$	$45 \quad 10,10$	+2,19	
	13	39 47,2	22616,13	15,80	-0,33	$103 \quad 38 \quad 0,91$	$38 \quad 8,71$	+ 7 , 80	
	16	4439,2	22 58,39	58,36	-0,03	$\begin{array}{llll}102 & 19 & 16,47\end{array}$	19 19,42	+2,95	
	22	56 0,1*	57 59,51	59,29	-0,22	$\begin{array}{llll}99 & 7 & 21,77\end{array}$	7 26,26	$+4,49$	
	23	58 3,8	$\begin{array}{lll}23 & 4 & \text { J,64 }\end{array}$	1,29	-0,35	983059,89	318,69	+8,80	
	24	$23 \quad 0 \quad 12,5$	$10 \quad 6,59$	6,65	+0,06		,	-	
	26	4 41,6	- 22 28,21	27,66	-0,55	$9635 \quad 3,11$	356,14	$+3,03$	
	27	$\begin{array}{ll}6 & 57,3 \\ 9 & 19\end{array}$	- 28 42,92	43,39	+0,47	$\begin{array}{llll}95 & 54 & 2,12\end{array}$	54 4,68	+2,56	
	28	${ }^{9} 19,9$	$35 \quad 2,34$	2,50	+0,16	951156,44	11 54,40	-2,04	
	29	1147,6	41 25,93	25,69	-0,34	942840,79	28 36,44	-4,35	
	30	1416,6	47 52,60	52,58	-0,02	$9344 \begin{array}{lll}7,86\end{array}$	44 11,98	+4,12	
April	19	01643,8	$2 \quad 5 \quad 24,23$	24,26	+0,03		-	-	
	20	2046,6	13 24,54	24,32	-0,22	$\begin{array}{llr}76 & 19 & 5,37 \\ 75 & 26 & 59\end{array}$	19 5,60	+0,23	
	25	24 41 41 1,2 1	$\begin{array}{ll}21 & 26,19 \\ 53 & 30,57\end{array}$	26,18 30,67	$-0,01$ $+0,10$	$\begin{array}{llll}75 & 26 & 59,47 \\ 72 & 12 & 54,94\end{array}$	$\begin{array}{ll}26 & 55,29 \\ 12 & 53,15\end{array}$	-4,18	
	26	43 3,8	3125,05	24,71	-0,34	$\begin{array}{llll}71 & 29 & 1,52\end{array}$	[r $\begin{array}{cr}12 & 53,15 \\ 29 & 3,08\end{array}$	$-1,79$ $+1,56$	
	30	5151,0	32 1,78	2,11	+0,33	685613,28	56 11,70	$+1,56$ $-1,58$	
May	2	$1 \begin{array}{lll}1 & 6 & 23,8 \\ & 9 & 22,5\end{array}$	46 27,64	27,70	+0,06	675434,49	54 32,82	-1,67	
	3	922,5 2455,9	53 43,70 4	23,84	+0,14	672734,07	27 30,03	-4,04	
	11	24 55,9	44032,16	32,38	$+0,22$	$\begin{array}{llll}65 & 7 & 46,01\end{array}$	17 44,34	-1,67	
July	12	2541,1	$\begin{array}{ll}4 & 45 \\ 5 & 13,94\end{array}$	15,03	+0,09	651129,12	112654	$-2,58$	
	11	$\begin{array}{llll}22 & 50 & 26,4\end{array}$	$\begin{array}{rrr}55 & 54,24 \\ 10 & 3,54\end{array}$	54,86 4,12	$+0,62$ $+0,58$	671910,45			
	18	$\begin{array}{llll}23 & 20 & 7,0\end{array}$	$7 \quad 725,62$	25,38	$-0,24$	$6649 \quad 6,65$	$49 \quad 7,74$	$+1,32$ $+1,09$	
	19	23250,3	71619,23	19,72	$+_{0,49}$			+1,09	
Aug.		04638,3	$949 \quad 5,48$	6,04	+0,56				$\}$ the Circle
	9	\| 05531,4	$10 \quad 3 \quad 22,51$	22,81	+0,30	$76 \quad 27 \quad 28,78$	2732,40	$+3,62$	
		3112833,4	115354,96	54,87	-0,09	90638,28	634,25	+4,03	
		1 283780	12573,46	3,34	-0,12	---		-	
	21	15 , 2 12 3,8	$\begin{array}{llrr}13 & 11 & 7,39\end{array}$	7,04	-0,35	1013015,89	30 18,03	+2,14	
	22	839,8	11 12 39,71	59,52 31,26	-0,29	1013919,31	39 21,41	+2,10	
	23	\|	12 41,05	31,26 40,16	-0,45 $-0,89$	$\begin{array}{rrr}101 & 45 & 19,56 \\ 101 & 48 & 6,56\end{array}$	$45 \quad 22,98$	$+3,42$ $+1,42$	

Observed Right Ascension and North Pilar Distance of Venus, compared with the places interpulutud firom the Nautical Almanac.

1836	Madras Mean Time of Observation.	A. R. from Observation.	A. R. fiom N A	$\begin{gathered} \text { Error } \\ \text { of } \\ \text { N. A. } \end{gathered}$	$\underset{\text { N. P. D. }}{\substack{\text { from } \\ \text { Otion. }}}$	$\left\|\begin{array}{c} \text { N.P.D. } \\ \text { from } \\ \text { N. A. } \end{array}\right\|$	Error of N. A.	Remarks.
$\begin{array}{ll}\text { Jan. } & \\ & \\ \\ 18 \\ 10 \\ 19 \\ 20 \\ 21 \\ 22 \\ & 23 \\ & \end{array}$	h. m s.	h. mb. s.	"	"	0 , "	"	"	
	14036.9	$2032 \quad 33,75$	33,38	-0.37	$11029 \quad 18,27$	14,20	-4,07	
	4412,6	$47 \quad 59,41$	59,49	+0,08	1093317,28	12,44	-4,84	
	45 22,0	53 5,58	5,48	-0,10	$10913 \quad 27,65$	24,00	$-3,65$	
	53 47,2	2133509	4,89	-0,20	1061623,19	21,53	-1,66	
	5634,6	4742,64	42.47	-0,17	$105 \quad 225,68$	17,75	-7,93	
	57276	52 32,27	32,39	+0,12	1043651,04	47,18	-3,86	
	58 20,0	57 21,48	21.01	-0,47	1041051,89	53,26	+1,37	
	$59 \quad 9,9$	$\begin{array}{lll}22 & 2 & 7,82\end{array}$	8,38	+0,56	1034434,62	36,51	+1,89	
	59 59,7	6 54,39	54,51	+0,12	1031759,75	58,10	-1,65	
25262829	$\begin{array}{rrr}2 & 1 & 35,1 \\ & 2 & 20,9 \\ & 3 & 49,4\end{array}$	16 23,00	23.06	+0.06	10223 40,78	39,50	-1,28	
		21 5,49	5,60	+0,11	101562,01	0,70	-1,31	
		3027,20	26,86	-0,34	1005949,49	48,04	-1,45	
	431,5	35 6,25	5,86	-0,39	10031 19,69	16,03	-3,66	
Feb. $\begin{array}{ll} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 8\end{array}$	710,3	53 32,57	32,39	-0,18	983433,01	34,73	+1,72	
	748,2	58 6,26	6,60	+0,34	98448,52	49,90	+1,38	
	8 25,0	$23 \quad 239,89$	39,78	-0,11	973451,72	52,91	+1,19	
	9 0,5	7 12,25	12,16	-0,09	$\begin{array}{lll}97 & 4 & 45,74\end{array}$	44,13	-1,61	
	935,5	11 43,88	43,72	-0,16	963426,82	24,72	-2,10	
	10 43,1	20 24,61	24,63	+0,02	953321,26	10,75	--4,51	
9	1115,9	2514,25	14,03	-0,22	$95 \quad 2 \quad 37,72$	30,44	-7,28	
July 31	$23 \quad 20 \quad 5,7$	759 34,83	35,17	+0,34			\square	
Sep.	21527,8	22 15,69	15,65	-0.04	7448 24,60	13,06	--11.54	
	236,4	3114,47	14.83	+0,36	7456 36,90	26,73	--10,17	
	2057 33,9	85744,39	44,21	-0,1\%	$75 \quad 38444,87$	36,74	$-8,13$	
Oct. 3	2054 50,7	94616,22	16,16	-0,06	$77 \quad 5244,79$	42,15	-2,64	
Nov. 25	21940,0	$1330 \quad 5,47$	5,03	-0,44	9713 36,36	35,56	-0,80	
Dec. $\begin{array}{rr}1 \\ & 5 \\ 6 \\ 19\end{array}$	13. 12,8	57 17,26	16,68	-0,58	994453,99	52,74	-1,25	
	15.51,8	141544,12	43,60	-0,55	1012249,65	50,25	+0,60	
	1633,7	20:23;38	28;87	$\sim 0,51$	1014648,75	50,21	+1,46	
	2729,1	152236,33	35;96	-0.37	10633 37,93	38,03	+0,10	
1837								
$\begin{array}{lr}\text { Jan. } & 2 \\ & 19\end{array}$	$2143 \quad 0,4$	$1633 \quad 20,37$	19,96	-0,41	1110 27, 13,29	13,19	-0,10	
	22559,5	18325,93	25,13	-0,80	1124124,05	30,49	+6.44	
Feb.	27 24,0	$1924 \quad 2,33$	1,82	-0,51	1115944	47,71	+3,63	
	$30 \quad 9,4$	34 41,47	40,89	-0,58	1114236,87	43,17	+6,30	
	3142.4	39 59,78	59,48	$-0,30$	$\begin{array}{llll}111 & 33 & 5,82\end{array}$	11,83	+6,01	
	3251,8	$45 \quad 17,64$	17,01	-0,63	1112255,20	61,78	+6,58	
	223413.1	$1950 \quad 34,46$	34,30	-0,16	$111 \quad 12 \quad 6,97$	13,17	+6,20	
	$35 \quad 32,3$	$55 \quad 50,99$	50,52	-0,47	111042,45	46.77	+4,32	
	3651,7	$\begin{array}{llll}20 & 1 & 6,34\end{array}$	5,91	-0,43	1104842,37	42,56	+0,19	
	4533.9	37 28,03	27,18	-0,85	109720,18	25,18	+5,00	
	47 56,0	47 41,74	41,29	-0,45	1083314,10	20,44	+6,34	
	$\begin{array}{lr}49 & 3.5\end{array}$	5246.87	46,38	-0,49	$10815 \quad 24,82$	30,94	+6,12	
	55 32,7	212255,79	55,74	-0,05	1061743,98	49,02	+5,04	
Mar.	5830,1	37 45,51	45,35	-0,16	1051237,33	38,12	+0,79	
	23216,2	57 16,83	16,26	-0,57	1033946,00	52,31	+6,31	
	$4 \quad 2,5$	22655,58	55,36	$-0,22$	102514,85	12,00	+7,15	
	455,1	1143,45	43,33	-0,12	1022616,34	20,00	+3,66	
	b 44, 2	16 30,73	30,37	-0,36	1021507	7,88	+2,81	
	632,7	21 16,90	16,37	$-0,53$	1013531,35	36,21	+4,86	

1837.	Madras Mean Time of Observation.	A. R. from Observation	$\begin{aligned} & \text { A. R. } \\ & \text { from } \\ & \text { N. A. } \end{aligned}$	$\begin{aligned} & \text { Error } \\ & \text { of. } \end{aligned}$	N. P. D. from Observation.	$\begin{array}{\|c} \mathrm{N} \text { P. D. } \\ \text { froma } \\ \mathrm{N} . \end{array}$	$\begin{aligned} & \text { Error } \\ & \text { of } \end{aligned}$	Remaris.
	h.ms.	h. m. s.	"	"	' 11	"	"	
Sep. 13	15129,6	1319 59,89	59,53	-0,36	981051,32	56,26	+4,94	
	52 1,6	24 28,49	28,00	-0,49	984038,49	46,27	+7,78	
20	$55.56,0$	5132,75	32,14	-0,61	1013530,98	3.5,58	+4,60	
21	$\begin{array}{ll}56 & 2,6\end{array}$	56 5,77	5,39	-0,38	$102 \begin{array}{lll}102 & 3 & 53,62\end{array}$	55,49	+1,87	
22	5640,2	0 40,08	39,48	-0,50	1023154,74	59,69	+4,95	
23	57 18,5	515.01	14,44	-0,57	1025940,23	47,34	+7,11	

Observel Right Ascension and North Polar Distance of Mars, compared with the places interpolated from the Nautical Almanac.

1836	Madras Mear Time of Observation.	A. R. from Observation	A. R. from N. A.	$\begin{aligned} & \text { Error } \\ & \text { of } \\ & \text { N. A. } \end{aligned}$	N. P.D. from Observation.	$\begin{array}{\|c} \text { N. P.D. } \\ \text { from } \\ \text { N. A. } \end{array}$	$\begin{aligned} & \text { Error } \\ & \text { of } \\ & \mathrm{N} . \mathrm{A} . \end{aligned}$	Remarks.
	h.m. s.	h. m. s.		"	${ }^{\circ}$	${ }^{\prime \prime}$		
July 18	$2040 \quad 19,2$	428 9,90	9,52	-0,38	682840,56	41.29	+ 0,73	
19	39 19,2	31 4,83	4,54	-0,29	$68 \quad 2127,46$	26,03	- 1,43	
Aug. 26	195822,0	61950,07	49.99	$-0,08$			-	
Sep. ${ }^{9}$	$1941 \quad 7,5$	65744,13	43,59	-0,54	663951,28	45,95	- 5,33	
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	38 30,3 37 11,4	$\begin{array}{llll}7 & 2 & 59,07 \\ 7 & 5 & 36,35\end{array}$	59,28	$+0,21$ $+0,05$	66 45 66 48 16,85	15,46 11,23	$\begin{array}{r}\text { - } 1,39 \\ -688 \\ \hline\end{array}$	
13	3549,6	7812,34	12,64	+0,30	665121,35	16,36	$-6,88$ $-4,99$	
Oct. 13	$1850 \quad 10,4$	82040,78	41,05	+0,27	691452,77	51,19	-8,58	
$\begin{array}{r} 14 \\ 1837^{2} \end{array}$	184826,1	$22 \quad 52,91$	53,46	+0,55				
Jan. 26	131643,4	94018,18	18,00	-0,18	711939,84	27,37	-12,47	
27	1311122,4	3853,01	52,48	-0,53	1132,84	21,41	-11,43	
28	$\begin{array}{llll}13 & 5 & 58,4\end{array}$	37 25,45	25,10	-0,35	323,76	14,12	- 9,64	
29	13 [134,3	3556,24	55.99	-0,25	705518,18	6,21	-11,97	
31	124940,2	32 53,67	53,27	-0,40	39 11,00	58,35	-12,65	
Fcb.	123842,2	29 46,4:3	45,64	-0,79	23 19,06	4.87	-14,19	
3	3310,5	2810,84	10,45	-0,39	1531,87	16,21	-15,66	
4	2738.4	26 35,03	34,59	-0,44	7 49,57	34.20	-15,37	
5	22 6,5	24 58,66	58,26	-0,40	016,20	0,04	-16,16	
6	1634,7	23 22,17	21,61	-0,56	$6952 \quad 50,49$	34,66	-15,83	
7	11 0,9	2145,46	44,89	-0,57	45 32,92	18.51	-14,41	
8	520,5	208.44	8,20	-0.24	38 26,93	14,16	-12,77	
9	115958,1	918 32,49	31.74	-0,75	693132,82	20,48	-12,34	
10	5427,3	1656.68	56,10	-0,58	2550,37	38,95	-11,42	
11	4855,6	15 21,48	21,09	-0,39	18 20,70	11,67	-9,03	
12	4319,6	13 47,21	46,71	-0,50	124.45	55,18	-9,27	
13	3725.8	12 13,99	13,53	-0,46	7 1,36	53,89	- 7.47	
14	32 29,6	10 41,96	41,27	-0,69	0 13,57	7,57	-6,00	
15	$27 \quad 3,7$	911,37	10,87	-0,50	685442,75	35,07	-7,68	
17	16 14,4	614,73	14,40	-0,33	44 23,73	18,02	- 5,71	
18	10 53,8	4 49,42	48,85	-0,57	39 37,07	32,66	- 4,41	
19	634,7	3 25,69	25,21	-0,48	3588,82	2,22	-6,60	
26	1029 25,9	84446,47	45,70	-0,77	1124.99	17.89	-7,10	
27	24 25,6	53 42,33	42,05	-0,28	$\begin{array}{ll}9 & 5,45 \\ 7 & 2,50\end{array}$	59,41	-6.04	
28	19 29,8	52 42,18	41,32	$-0,86$	$7 \quad 2,50$	57,11	- 5,39	
Mar. 1	1436,1	5134,21	43,60	$-0,61$	5 14,93		- 4,38	
4 5	959 14,5	$\begin{array}{ll}49 & 9,21\end{array}$	8,45	-0,76	128,08 0 43,10	24,94 40,23	$\begin{aligned} & -3,14 \\ & -2,87 \end{aligned}$	

1837.	$\begin{aligned} & \text { Madras Mean } \\ & \text { Time of } \\ & \text { Observation. } \end{aligned}$	A. R. from Observation.	A. R. from N. A	Error of N. A.	N. P. D. from Observation.	$\left\|\begin{array}{c} \text { N.P. D. } \\ \text { from } \\ \text { N. A. } \end{array}\right\|$	$\begin{aligned} & \text { Error } \\ & \text { of } \\ & \text { N. } A . \end{aligned}$	Rgmarks.
	$h \mathrm{~m} . \mathrm{s}$.	h. m. s.	"		0			
Mar. 6	95054,5	84741,62	40,96	-0,66	$68 \quad 0012,89$	10,29	-2,60	
	4620,1	$47 \quad 2,73$	2,06	-0,67	675956,98	54,75	-2,23	
8	41 48,7	$46 \quad 27,11$	26,44	-0.67	675955,96	53,67	--2,29	
9	37 20,4	45 54,54	54.05	-0,49	68 0 8,36	667	-1,69	
10	32 55,6	45 25,53	24,91	-0,62	035,87	33,71	-2,16	
11	28 33,5	44 59,53	59,03	-0,50	1 15,99	14.51	-1,48	
12	24 15,6	44 36,94	36,41	-0,53	211,06	8,74	-2,32	
13	19 59,8	4417,53	17,00	-0,53	3 18,38	15,71	-2,67	
16	7 33,6	43 38,65	37,90	-0,75	753,22	53,06	-0,16	
17	3 30,7	43 31,69	31,13	-0,56	950,11	48,55	-1,56	
18	85931,2	43 28,16	27,45	-0,71	1158,38	56,08	-2,30	

Apparent Right Ascension and North Polar Distance of Vesta, compared with the places interpolated from the Nautical Almanac.

1836	Vadras Mean Time of Observation	A. R. from Observation.	A. R. from N. A.	Error of N. A.	$\begin{gathered} \text { N. P. D. } \\ \text { from } \\ \text { Observation. } \end{gathered}$	N. P. D. from N. A.	Error of N. A,	Remarks.
	h. m. s.	h. m. s.		"	0 , "	"	"	
April 23	93059,0	113750,11			752145,89			
	18 19,7				$\begin{array}{llllllllllll}75 & 27 & 19,66\end{array}$			
27	14 6,5	3645,21	边		$\begin{array}{lllllll}75 & 29 & 37,78\end{array}$			
${ }^{28}$	959,1	36 33,34			$\begin{array}{lllll}75 & 32 & 10,81\end{array}$			
1837								
Aug. 27	125156,7	23151514,52	16,13	+1,61	106337,22	20,34	-16,88	
	$47 \quad 9,6$	1422,13	24,39	2,26	1061142,15	26.14	16,01	
29	1142 21,5	1330,21	32,04	1,83	1061944,08	26,87	17,21	
Sep. 13	112941,5	225956,73	58,60	1,87	108335,34	23,72	11,62	
14	$25 \quad 3,3$	$\begin{array}{ll}59 & 4,39\end{array}$	6,02	1,63	$\begin{array}{llll}108 & 9 & 5,66\end{array}$	53,03	12,63	
21	$10 \quad 5145,4$	53 16,73	18,77	2,04	$10841 \quad 15,29$	4,36	10,93	
22	47 4, 0	5231,02	32,88	1,86	1084455,29	44,56	10,73	
23	42 23,6	5146,33	48,09	1,76	10848 20,64	10,45	10,19	
2.4	37 44,3	51 2,68	4,51	1,83	1085131,48	21,98	10,00	
27	24.12,6	48 59,38	1,00	1,62	1085940,51	29,75	10,76	

Apparent Right Ascension and North Polar Distance of Juno, compared with the places interpolated from the Nautical Almanac.

Apparent Right Ascension and North Polar Distance of Pallas, compared with the places interpolated from the Nautical Almanac.

1836	Madras Mean Time of Observation.	A. R. from Observation.	A. R. from N. A.	$\begin{aligned} & \text { Error } \\ & \text { of } \\ & \text { N. A. } \end{aligned}$	N. P. D. from Observation.	N. P. D from N. A.	Error of N. A.	Remarks.
	h. m. s.	h. mb s.	,	1770		3,04	"'	
Aug. 17	1111355	$2058 \quad 27,79$	29,49	+1,70	$\begin{array}{lll}78 & 46 & 25,87 \\ 83 & 22 & 58,84\end{array}$	3,04 30,85	$\begin{array}{r}-22,83 \\ \hline 27,99\end{array}$	thick haze faint
Sep. 10	92453,9	204346,11	47,46	1,35	832258,84	30,85	27,99	faint
1837						25,58	-20,91	
Oct. $\begin{array}{r}13 \\ 16\end{array}$	$\begin{array}{rrr}12 & 48 & 29,5 \\ & 35 & 32,4\end{array}$	$\begin{array}{rrr}218 & 4,00 \\ 15 & 54,80\end{array}$	7,73 58,13	$+3,73$ 3,33	$\begin{array}{lll}108 & 25 & 46,49 \\ 109 & 14 & 5740\end{array}$	42,43	14,97	
23	$\begin{array}{r}35 \\ 2\end{array} 36,4$	10 29,23	32,96	3,73	111057,31	44,09	13,22	
25	$\begin{array}{llll}11 & 53 & 7,6\end{array}$	852,42	56,21	3,79	1112832,49	19,07	13,42	

Apparent Right Ascension and North Polar Distance of Ceres, compared with the places interpolated from the Nautical Almanac.

1836	Madras Mean Time of Observation.	A. R. from Observation.	A. R. from N. A.	$\begin{aligned} & \text { Error } \\ & \text { of } \\ & \text { N. A. } \end{aligned}$	N. P. D. from Observation.	N. P. D from N. A.	Error of N. A.	Remaris.
	$\begin{array}{crcc}\text { h. } & m . & s . \\ 12 & 1 & 0,3\end{array}$	$\begin{array}{ccc}\text { h. } & \text { m, } & s . \\ 23 & 28 & 10,79\end{array}$	10,70	-0,09	$\begin{array}{ccc} & \prime \prime \\ \hline 0 & \prime \prime \\ 110 & 44 & 57,12 \end{array}$	48,64	8,48	
$\begin{array}{ll}\text { Sep. } & 12 \\ \text { Oct. } & 1\end{array}$	$\begin{array}{rrrr}12 & 1 & 0,3 \\ 10 & 31 & 16,5\end{array}$	$\begin{array}{rrr}23 & 28 & 10,9 \\ 13 & 7,18\end{array}$	r-7,04	-0,14	1114216,52	10,08	6,44	
3	223,4	$1]$ 45,90	45,67	-0,23	$\begin{array}{ll}44 & 4,82\end{array}$	1,21	3,61	
6	821,6	9 50,94	51,04	+0,10	45 20,87	15.63	5,24	
7	3 49,8	914.92	14,95	+0.03	45 24,46	16,01	8,45	
8	959 18,8	840,05	39,89	-0,16	4510,90	4,27	6,63	
1837 Dec. 17	111440,6	4 59,17,27	18,35	+1,08	673736.77	28,96	-7,81	
	845,8	57 17,05	17,87	+0,82	35 36,44	58,38	+21,94	Probably a sta

Apparent Right Ascension and North Polar Distance of Jupiter, compared with the places interpolated from the Nautical Almanac.

1836	Madras Mean Time of Observation.	A. R. from Observation.	A. R. from N. A.	Error of N. A.	N. P. D. from Observation.	N. P. D. from N. A		Remaims.
Jan. $\begin{array}{r}2 \\ . \\ \hline\end{array}$	h. -m. s.	h. m. s.	"	"	$0{ }^{0}{ }^{\prime}$	"	"	
	$\begin{array}{lll}12 & 2 & 22,3\end{array}$	64657,33	57,62	+0,29	665453,56	56,42	+3,06	
	1143 9,0	44 37,85	38,19	+0,34	5150,89	49,94	-0,95	
	38 38,4	$44 \quad 3,14$	3,55	+0,41	51 3,99	4,82	+0,83	
	34 8,3	43 28,57	29,04	+0,47	50 20,34	20,40	+0,06	
	$29^{\circ} 38,4$	42 54,34	54,70	+0,36	49 35,37	36,77	+1,40	
	20 37,9	41 46,14	46,60	+0,46	48 9,87	11,62	+1,75	
	1139,4	40 39,09	39,48	+0,39	46 47,54	48,81	+1,27	
	$\begin{array}{ll}7 & 9,7\end{array}$	40 6,08	6,34	+0,26	46 8,92	8,69	$-0,23$	
	105812,8	39 0,08	0.72	+0,64	44 50,35	51.05	+0,70	
	44 50,6	37 25,43	25,98	+0,55	43 3,52	0,41	$-3,11$	
	40 24,0	3654,52	55,15	+0,60	42 27,22	25,10	$-2,12$	
	22 41,9	34			40 12,65	12,45	-0,20	
	9526,8	3151,27	51,39	+0.12	3651,96	52,39	+0,43	
Feb.	47 46,8	3127,27	27,50	+0,23	$36 \quad 27,52$	27.05	-0,47	
	43 27,4	31 3,90	4,24	+0,34	$36 \quad 0.43$	2,54	+2,11	
	39 9,4	3041,60	41,67	+0,07	$35 \quad 38,71$	38,82	+0,11	
	3451,7	3019,84	19,82	-0,02	3514,70	15,81	+1,11	
	3034,5	29 58,75	58,68	-0,07	34 53, 3;	53,40	+0,07	
	$22 \quad 3,6$	$\begin{array}{ll}29 & 18,81\end{array}$	18,64	-0,17	3411,73	11,47	-0,26	
	1748,5	$\begin{array}{rrr}29 & 0,09\end{array}$	59.74	-0,35	3351,93	51,56	-0,37	
	920,9	28 24,60	24.29	$-0,31$	3314,51	13,83	-0,68	
	$\begin{array}{r}5 \\ 8 \\ \hline 86\end{array}$	28 8,03	7,74	-0,29	32 55,86	56,02	+0,16	
	85646,3	27 37,10	36,97	-0,13	32 23,25	22,58	-0,67	
	52 36,9	27 23,24	22,86	-0,38	32 6,65	6,91	+0,26	
	4827,2	$\begin{array}{ll}27 & 9,76\end{array}$	9,57	-0,19	31 53,05	51,84	-1,21	
	(4419,0	26 57,69	57,12	-0.57	31 -	37,47	$\underline{-1}$	
	40 11,5	26 45,92	45,52	-0,40	31 25,73	23,61	$-2,12$	
	\| 36 5,0	26 35,06	34,76	-0,30	3113,23	10,54	-2,69	
	12350,5	26 8,13	7,61	-0,52	29 37,60	35,13	-2,47	
	1544,9	25 54,10	53,81	-0,29	3013,28	14,53	+1,25	

Apparent Right Ascension and North Polar Distance of Jupiter continued.

1836	Madras Mean Time of Observation.	A. R. from Observation.	A. R. from N. A.	Error of N. A.	N. P. D. from Observation.	$\begin{array}{\|c\|} \hline \text { N. P. D } \\ \text { from } \\ \text { N. A. } \end{array}$	Error of N. A.	Remarks.
	h. m. s.	h. m. s.	"	"	"	"	"	
Fub. 26	8 3 42,6	625 39,63	39,62	-0,01	662949,59	49,03	-0,56	
27	$\begin{array}{lllll}7 & 59 & 43,6\end{array}$	25 36,69	35,82	-0,87	29 40,27	40,62	+0,35	
Mar. 14	65755,1	26 43,43	43,41	-0,02	2855,84	57,65	+1,81	
	46 43,8	27 19,37	19,43	+0,06	29 7,25	6,15	$-1,10$	
18	43 1,2	27 32,89	32,87	-0,02	2988	10,16	+1,91	
19	39 20,2	27 47,77	46,90	-0,87		14,88	-	
June 15	15053,8	2530,81	30,55	-0,26	674057,52	54,34	-3,18	
Sep. 9	21271,2	43 54,63	54,35	-0,28	712244,39	42,30	-2,09	
12	211734,2	46 15,62	15,83	+0,21	32 25,11	21,51	-3,60	
20	20528,8	52 19,45	18,91	-0,54	5514,36	13,0'7	-1,29	
Oct. 2	$20 \quad 1317,3$	9039,90	39,82	-0,08	$72 \quad 27 \quad 37,17$	38,85	+1,68	
3	2010	1 18,98	18,92	-0,06	3013,32	10,76	$-2,56$	
6	$20 \quad 0 \quad 7,5$	313,54	13,25	-0,29	37 48,45	49,23	+0,78	
12	$1940 \quad 4,2$	6 49,94	49,89	-0,05	52 14,50	15,62	+1,12	
13	3646,0	7 24,98	24,25	-0,73	54 35,48	35,05	-0,43	
14	33 24,3	7 58,53	58,16	-0,37	56 50,97	50,71	-0,26	
19	1621,1	1040,39	39,81	-0,58	$\begin{array}{lll}73 & 7 & 46,61\end{array}$	44,83	-1,78	
Jdu. 26	124319,7	9649,00	48,29	-0,71	722915,51	14,28	-1,23	
27	3852,4	617,72	16,93	0,79	2651,27	50,01	1,26	
28	34 24,4	546,19	45,41	0,78	24 25,75	25,70	0,05	
29	29 57,4	514,30	13,76	0,54	22 1,82	1,49	0,33	
31	21 1,9	410,71	10,16	0,55	17 15,35	13,57	1,78	
Feb. 2	12 7,1	3 6,95	6,31	0,64	12 32,37	27,37	5,00	
	738,2	235,13	34,41	0,72	10 8,34	5,06	3,28	
4	3 10,6	2 3,31	2,53	0,78	746,85	43,75	3,10	
5	115842,8	131,10	30,68	0,42	5 24,68	22,99	1,69	
6	5416,4	0 59,56	58,90	0,66	3 6,13	3,13	3,00	
7	49 46,8	0.27,79	27,21	0,58	044,61	44,27	0,34	
8	$45 \quad 21,5$	85956,18	55,64	0,54	715828,37	26,51	1,86	
9	$40 \quad 53,7$	59 24,85	24,20	0,65	56 9,43	10,05	+0,62	
10	36 27,1	$58 \quad 53,50$	52,93	0,57	53 55,91	54,79	-1,12	
11	3159,2	58 22,30	21,81	0,49	51 44,00	40.93	3,07	
12	26 26,3	57 51,39	50,97	0,42	49 28,67	28,57	0,10	
13	23 6,8	57 21,05	20,33	0,72	47 18,95	17,80	1,15	
14	18 39,5	5650,52	49,80	0,72	45 9,30	8,05	1,25	
15	1414,9	56 20,46	19,72	0,74	43 3,05	1,60	1,45	
17	$\begin{aligned} & 5 \\ & 0\end{aligned} 22,3$	55 21,05	20.49	0,56	3853,68	52,60	1,08	
18	0 58,4	54 52,10	51,38	0,72	3653,07	51,05	2,02	
19	1056	55 23,22	22,63	0,59	3452,83	51,59	1,24	
20	52 9,7	55 54,95	54,26	0,69	3252,66	54,14	+1,48	
21	$47 \quad 45,5$	53 26,69	26,29	0,40	31 2,09	58,73	-3,36	
26	$24.53,7$	5013,59	13,04	0,55	21 57,26	56,45	-0,81	
27	2032,3	49 48,41	47,84	0,57	20 16,65	15,34	-1,31	

Apparent Right Ascension and North Polar Distance of Saturn, compared with the places interpolated from the Nautical Almanac.

1836	Madras Mean Time of Observation.	A. R. from Observation.	A. R. from N. A.	Error of N. A.	$\begin{gathered} \text { N. P. D. } \\ \text { Observation. } \end{gathered}$	N. P. D from N. A.	Error of N. A.	Remaris.
	h. m. s.	h. m. s.	"	"	0' "	"	"	
April 13	123721,5	14521,56	21,60	+0,04	994837,10	53,39	+16,29	
14	33 8,6	54,47	4,56	+0,09	47 3,42	19,93	16,51	
	28 55,0	4 47,23	47,45	+0,22	45 28,80	46,37	17,57	
16	24 43,4	430,29	30,11	-0,18	43 54,80	12,45	17,65	
17	20 29,0	4 12,89	13,03	+0,14	42 21,36	39,05	17,69	
19	12 3,0	3 38,20	38,43	+0,23	39 13,78	31,83	18,05	
20	749,7	3 20,97	21,09	+0,12	37 41,46	58,67	17,21	
22	115923,4	246,34	46,36	+0,02	35 33,45	52,55	19,10	
23	$55 \quad 9,8$	2 28,86	28,99	+0,13	33 2,50	19,89	17,39	
24	50 57,2	2 11,59	11,64	+0,05	31 27,80	47,63	19,83	
26	42 32,7	136,90	36,99	+0,09	28 25,63	44,31	18,68	
28	34 4,4	1 2,32	2,47	+0,15	25 23,37	42,69	19,32	
29	29 50,6	045,15	45,28	+0,13	23 51,92	12,65	20,73	
May 1	21 25,3	0 10,91	11,14	+0,23	20 54,84	14,61	19,77	
	847,2	1359 20,85	20,59	-0,26	16 31,82	53,49	21,67	
5	435,2	59 4,03	3,94	-0,09	15 6,10	28,12	22,02	
7	105610,3	58 31,13	31,80	+0,67	12 18,97	39,91	20,94	haze.
8	52 1,0	58 14,95	14,71	--0,24	10 59,32	17,28	17,96	
9	47 44,9	57 58,60	58,56	-0,04	934,70	55,35	20,65	
11	39 22,5	57 26,68	26,71	+0,03	6 55,93	15,19	19,26	
15	22 38,2	56 25,19	24,98	-0,21	146,42	8,87	22,45	
18	10 5,2	5540,63	40,72	+0,09	$\begin{array}{llll}98 & 58 & 12,24\end{array}$	32,98	20,74	
19	555,1	55 26,35	26,39	+0,04	$57 \quad 3,42$	23,85	20,43	
23	949 17,0	54 31,37	31,38	+0,01	52 40,93	2,13	21,20	
28	28 34,1	53 28,28	28,32	+0,04	37 47,90	11,61	23,71	
June 10	83517,1	51 17,72	17,90	+0,18	38 40,47	4,31	23,84	
11	31 13,9	51 10,34	10,07	-0,27	38 10,83	35,73	24,90	
12	27 9,8	$51 \quad 2,68$	2,58	-0,10	3745,21	9,15	23,94	
13	23 6,8	50 55,73	55,43	-0,30	37 22,83	44,57	21,74	
14	19 4,4	50 48,89	48,63	-0,26	36 58,22	22,09	23,87	
17	$6 \quad 2,2$	50 30,38	30,30	-0,08	36 4,61	27,24	22,63	
20	${ }^{7} 5241,2$	50 15,29	15,16	-0,13	35 28,40	50,48	22,08	
28	23 3,8	49 51,06	50,80	-0,26	35 24,73	47,10	22,37	
- 30	15 9,5	49 48,69	48,13	-0,46	3544,33	7,74	23,41	
July 2	716,5	49 47,61	47,41	-0,20		-	-.	
$1837{ }^{4}$	65925,3	49 48,16	47,87	-0,29		-	\cdots	
Mar. 2	1619 23,2	$\begin{array}{lll}15 & 1 & 27,46\end{array}$	27,17	-0,29	1043548,49	6,56	18,07	
8	155526,9	1 7,60	6,15	-0,45	33 3,73	19,72	15,99	
May 1	121135,7	144932,50	31,85	-0,65	1033615,28	39,22	23,94	
2	722,1	49 14,13	14,15	+0,02	3455,87	20,41	24,54	
3	388	47 56,67	56,42	-0.25	33 36,82	59,80	22,98	
4	115854,6	48 39,01	38,68	-0,33	32 17,72	41,39	23,67	
11	2919,9	4635,43	34,94	-0,49	23 19,44	42,22	22,78	
12	25 6,6	46 17,91	17,42	-0,49	$22 \quad 4,95$	26,81	21,86	
14	16 40,0	45 43,12	42,14	-0,98		-		
15	12277	45 25,98	25,38	-0,60	-	-	-	
30	$\begin{array}{lll}10 & 9 & 26,3\end{array}$	41 23,17	22,23	-0,94	138,44	58,32	19,88	
July 11	71813,1	3517,05	16,77	-0,28	1024243,60	3,22	19,62	
Aug. 81	52953,4	37 3,82	3,12	-0,70	1025855,10	15,56	20,46	

Apparent: Right Ascension and North Polar Distance of Georgian, compared with the interpolated place from the Nautical Almanac.

1836	Madras Mean Time of Observation.	A. R. from Observation.	A. R. from N. A.	Error of N. A.	$\begin{gathered} \text { N. P. D. } \\ \text { from } \\ \text { Observation. } \end{gathered}$	$\left\|\begin{array}{c} \text { N.P. D } \\ \text { from } \\ \text { N. A. } \end{array}\right\|$	Error of N. A.	Remarks.
	h. m. s.	h. m. s	"	"	,	"	"	
Sep. 16	1033 18,2	$\begin{array}{llll}22 & 16 & 0,62\end{array}$	4,23	+3,61	1013729,65	21,93	-7,72	
23	4 51,0	$15 \quad 5,11$	8,76	3,65	42 34,57	26,20	8,37	
Oct. 1	932 26,9	14 7,93	11,49	3,56	47 43,17	36,12	7,05	
	24 22,0	13 54,96	57,39	2,43	4853,13	46,28	6,85	
6	1215,6	13 35,99	39,73	3,74	5032,85	25,72	7,13	
7	814,2	13 30,22	33,79	3,57	51 2,40	57,20	5,20	
8	411,3	13 24,49	28,03	$\because, 54$	51 33,63	27,78	5,85	
10	856 9,4	1313,40	16,83	3,43	52 35,21	26,44	8,77	
11	52 7,9	$13 \quad 7,90$	11,48	3,58	53 3,26	54,52	8,74	
12	48 6,4	13 2,60	6,30	3,70	53 29,29	21,70	7,59	
13	44 6,2	1257,72	- 1,26	3,54	53 55,54	47,88	7,66	
14	$40 \quad 5,3$	1252,90	56,39	3,49	54 21,03	13,06	7,97	
15	36 4,8	1248,43	51,68	3,25	54 44,75	37,37	7,38	
1837 Aug. 28	121120,8	223428,67	32,89	$+4,22$	995142,94	27,19	-15,75	
Aug. 28	121120,8 318,0	$\begin{array}{llll}22 & 34 & 19,78\end{array}$	23,92	$+4,22$ 4,14	$\begin{array}{r}99 \\ 52 \\ \hline 17,60\end{array}$	20,30	$-15,3$ 17.30	
Sep. 13	$\begin{array}{lll}11 & 2 & 5,5\end{array}$	32 6,16	10,41	4,25	100536,65	21,10	15,55	
14	$1058 \quad 1,0$	3157,58	1,81	4,23	6 26,69	10,88	15,81	
21	29 31,7	3059,38	3,33	3,95	12 3,89	47,80	16,09	
22	25 27,9	3051,50	55,27	3,77	12 49,62	33,96	15,66	
23	21 24,0	30) 43,32	47,29	3,97	1338,22	19,62	18,60	
24	1720.3	30 35,38	39,30	3,92	14 20,42	4,78	15,64	
27	5 9,0	$30 \quad 12,10$	16,14	4,04	16 33,32	16,26	17,06	

Conaparison of the Observed Right Ascension and North Polar Distance of the Moon, with the interpolated place from the Nautical Almanac.

1836	Madras Mean Tine.		Observed A. R. of D's Centre.	A. R. from N. A.	Firor of Tables.	$\dot{\sim}$	Observed N. P. D. of D's Centre.	N. P.D. from N. A.	$\begin{gathered} \text { Error } \\ \text { of } \\ \text { Tables. } \end{gathered}$	Remarks.
Jan. $\begin{array}{rr} \\ & \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ & 3\end{array}$	h. m. s.		h. m. s.	s.	s.			"		Fl. Clds.
	$\begin{array}{llll}11 & 0 & 18,4\end{array}$	1	$546 \quad 59,37$	58,73	-0,64	N.	$64 \quad 646,9$	48,9	+ 2,0	
	115131,4	1	64218,46	18,03	-, 43	N.	$\begin{array}{lllll}65 & 30 & 40,8\end{array}$	43,2	2,4	
	55146,9	1	2714,75	14,92	+, 17	S.	79 8-		-	
	63429,8	1	2550,18	0,48	+, ,30	N.	7435			
	71844,8	1	343 21,2]	21,09	- , 12	S.	$6955-$		-	
	$8 \quad 511,4$		433 52,99	52,66	- ,33	S.	664821,4	18,6	- 2,8	
	103637,1	I	71735,39	34,73	-, 66	N.	634722,0	22,0	0,0	
Feb.	112826,5	1	813 29,73	29,17	- ,56	N.	$65 \quad 2719,2$	14,6	- 4,6	
	122017,1	Cent.	$\begin{array}{llll}9 & 8 & 19,24\end{array}$	18,91	-, 33	N.	$\begin{array}{llll}68 & 25 & 32,4\end{array}$	35,2	+ 2,8	
	73611,8	1	55910,51	10,45	-,06	S.	$\begin{array}{llll}63 & 32 & 29,2\end{array}$	35,9	+ 6,6	
	82734,0	1	65438,38	38,51	+, 13	N.	$\begin{array}{llll}63 & 19 & 7,6\end{array}$	7,5	- 0,1	
	91924,1	1	75033,56	32,95	-, 61	N.	642745,0	43,0	- 2,0	
	101040,3	1	84554,09	53,31	-, 78	N.	$\begin{array}{llll}66 & 57 & 28,7\end{array}$	28,3	- 0,4	
Mar.	11038,8	1	93956,50	55,57	-,93	N.	$\begin{array}{llll}70 & 42 & 3,9\end{array}$	57,9	-6,0	
	$\begin{array}{llll}11 & 49 & 4,4\end{array}$	1	$10 \quad 32 \quad 25,39$	24,61	-, 78	N.	$\begin{array}{lllll}75 & 30 & 19,9\end{array}$	14,9	- 5,0	
	123822,4	2	1112340,54	39,90	-, 64	N.	81828,2	27,1	- 1,1	
	61810,5	1	63120,65	20,19	-, 46	N.	6316,8	2,6	$-4,2$	

Comparison of the Observed Right Ascension and North. Polar Distance of the Mom contimucd.

1836	Madras Mean Time.	准淢	Observed A. R. of D's Centre.	A. R from N. A.	Error of Tables.		Ob.erved N. P. D of D's Centre.	$\begin{gathered} \text { N. P. D. } \\ \text { from } \\ \text { N. A. } \end{gathered}$		Remarks.
	h. m. s.		h. m. s.	45.74	+0,18		0 $\prime \prime$ 63 35 18,7	36,2	$-2,5$	
Mar. 26	$\begin{array}{llll}7 & 9 & 30,7\end{array}$	1	$\begin{array}{llll}7 & 26 & 45,56\end{array}$	45,74 53,11	$+0,18$ $+\quad, 27$	$\stackrel{N}{\mathrm{~N}} \mathrm{~N}$.	$\begin{array}{llll}63 & 35 & 38,7 \\ 65 & 31 & 14,3\end{array}$	36,2 7,6	- 0,7	
	$8 \quad 0 \quad 33,2$	1	8 21 52,84 9 15 59	53,11 59,53	$+0,27$ $+\quad, 35$	$\stackrel{N}{\mathrm{~N} .}$	$\begin{array}{llll}65 & 31 & 14,3 \\ 68 & 43 & 42,1\end{array}$			
28	85035.2	1	915 59,88	59,53	-, 35	N.	6843 42,1	38,0	- 4,	
29	93920,5	1	108847,36	46,42	-,94	N.	$\begin{array}{llll}73 & 5 & 16,0\end{array}$, 2		
30	102653,2	1	11023,89	23,25	-,64	N.	782441,8	40,0	- 1,8	
31	$11 \begin{array}{lll}13 & 49,9\end{array}$	1	115124,81	24,29	- ,52	N.	842746,8	43,0	- 3,8	
April 1	$12 \begin{array}{lll}12 & 2 & 9,2\end{array}$	Cent.	124244,91	44,54	-, 37	N.	$\begin{array}{lllll}90 & 57 & 27,2\end{array}$	24,7	- 2.5	
- 24	64135,1	1	$4.531,31$	1,10	-, 21	N.	$\begin{array}{llll}67 & 4 & 24,8\end{array}$	22,6	- 2,2	
26	81652,9	1	$\begin{array}{llll}10 & 36 & 29,49\end{array}$	29,28	-, 21	N.	7543 26,6	22,6	- 4,0	
27	9311,1	1	112651,58	50,96	-,62	N.	8123 26,6	25,2	- 1,4	
28	94936,8	1	1217 21,58	21,16	- ,42	N.	$8740 \quad 2,2$	1,1	- 1,1	
29	$\begin{array}{llll}10 & 37 & 18,4\end{array}$	1	$\begin{array}{llll}13 & 9 & 6,85\end{array}$	6,59	-, 26	N.	$\begin{array}{llll}94 & 16 & 18,0\end{array}$	17,1	$-0,9$	
30	112725,0	1	$14 \quad 3 \quad 21,86$	21,87	+ ,01	N.	1005931,1	35,1	+ 4,0	
May 26	82539,3	1	1243 33,97	33,86	-, 11	N.	91 1 44,2	43,7	-0,5	
28	$\begin{array}{llll}10 & 4 & 37,5\end{array}$	1	143045,25	44,96	- ,29	N.	1035298	11,7	+ 2.1	
July 26	$\begin{array}{llll}10 & 35 & 18,7\end{array}$	1	185415,57	15,50	- ,07	S.	$\begin{array}{lll}117 & 1 & 26,9\end{array}$	31,1	+ 4,2	
Aug. 21	71525,1	1	$17 \quad 1617,22$	17,21	-,01	N.	$116 \quad 325,6$	22,9	- 2,7	
Sep. 18	$610 \quad 7,3$	1	18111,79	11,70	-,09	N.	1171836,3	35,2	- 1,1	
19	71246,9	1	$\begin{array}{llll}19 & 7 & 58,78\end{array}$	58,87	+ ,09	S.	$11710 \quad 9,6$	9,6	0,0	
20	81424,9	1	201342,79	42,76	-,03	S.	115437,2	29,0	-8,2	
22	$\begin{array}{llll}10 & 7 & 26,7\end{array}$	1	2214 51,33	51,80	+ ,47	S.	106714,0	3,7	$-10,3$	
23	1058 6,6	1	$23 \quad 934,23$	34,64	+ ,41	S.	100647,9	36,2	-11,7	
Oct. 17	$\begin{array}{llll}5 & 8 & 37,8\end{array}$	1	$19 \quad 54 \quad 1,84$	1,91	+ ,07	S.	$116 \quad 234,1$	34,1	0,0	
18	$7 \quad 717,0$	1	205646,03	46,20	$+, 17$	S.	1124550,6	524	+ 1,8	
19	$8 \quad 149,3$	1	2155 20,36	20,64	+ ,28	S .	10862,5	57,2	- 5.3	
20	852 20,8	1	2249 54,74	54,68	-,06	S.	1022812,3	6,8	- 5,5	
21	93944,0	1	234120,27	20,47	+ , 20	S.	$\begin{array}{llll}96 & 16 & 32,0\end{array}$	25,6	- 6,4	
22	$102.57,1$	1	03046,95	46,97	+ ,02	S	895231,4	19,4	-12,0	
Nov. 17	73748,6	1	2325 32,91	33,0:3	+ ,12	S.	$\begin{array}{llll}98 & 15 & 1,9\end{array}$	0,5	$-1,4$	
18	32254,1	1	01440,50	40,53	+ ,03	S.	915854,9	51,1	- 3,8	
22	112141,3	1	329 45,94	45,68	-, 26	N.	69412,5	13,9	+11,4	
23	$12 \quad 12 \quad 28,7$	2	42228,07	27,28	- ,79	N.	66 l 25,7	24,5	$-1,2$	
Dec. 16	$7 \quad 5 \quad 57,4$	1	047 54,87	54,56	-, 31	S.	$8730 \quad 7,8$	4,0	- 3,6	
17	74925.3	1	13525,93	26,02	+ ,09	S.	812823,6	18,5	- 5,1	
18	83318,6	1	22325,05	24,90	-,15	S.	755531,6	27,6	- - 4, 0	
19	$\begin{array}{lllll}9 & 18 & 38,8\end{array}$	1	31248,90	48,78	-,12	S.	71420,5	14,1	$\cdots 6,4$	
20	$\begin{array}{llll}10 & 5 & 58,7\end{array}$	1	$\begin{array}{llll}4 & 4 & 13,34\end{array}$	12,76	-,58	S.	$\begin{array}{llll}67 & 7 & 29,7\end{array}$	25,5	- 4,2	
1837	$1055 \quad 20,5$	1	4. 5742,05	41,47	- ,58	N.	641712,1	11,1	- 1,0	.
Jan. 17	85151,2		$\begin{array}{llll}4 & 40 & 18,98\end{array}$	19,22	+ ,24	S.	$6452-$	-		of l M
18	942 6,0	1	53442,28	41,53	-, 75	N.	$\begin{array}{lll}63 & 0 & 4,6\end{array}$	4,4	- 0,2	at Tram-
19	$1 \begin{array}{llll}10 & 33 & 19,6\end{array}$,	62958,78	58,09	- ,69	N.	622430,5	31,6	+ 1,1	(sit.
20	1124 16,6	1	$\begin{array}{lll}7 & 25 & 0,20\end{array}$	59,46	- ,74	N.	6311 1,3	1,3	0,0	
21	121458,5	Cent.	81840,27	39.59	-, 68	N.	651543,5	42,4	- 1,1	
Feb. 12	55829,5	1	$\begin{array}{lll}3 & 29 & 5,36\end{array}$	5,05	-,31	S.	691313,9	12,0	- 1,9	
13	$\begin{array}{lllllllllllllll}6 & 47 & 16,4\end{array}$	1	$\begin{array}{llll}4 & 21 & 51,26\end{array}$	51,18	-,08	S.	$\begin{array}{llll}65 & 38 & 27,8\end{array}$	276	- 0,2	
14	$\begin{array}{llll}7 & 37 & 27,3\end{array}$	1	$\begin{array}{rrrr}5 & 16 & 7,48\end{array}$	7,47	-, 01	S.	63171721,4	$25^{\prime} 6$	+ 4,2	
15	82835,5	1	611 20,74	20,70	- ,04	N.	621632,0	31,3	$+0,2$ $-0,7$	

Compurnison of the Obser reed Right Ascension and North Polar Distance of the Moon continued.

Comparison of the Observed Right Ascension and North Polar Distance of ithe Moon continued.

1837	Madras Mean Time.	藘	Observed A. R. of D's Centre.	$\begin{aligned} & \text { A. R. } \\ & \text { from } \\ & \text { N. A. } \end{aligned}$	$\begin{aligned} & \text { Error } \\ & \text { of } \\ & \text { Tables } \end{aligned}$		Observed N. P. D. of D's Centre.	$\begin{aligned} & \text { N.P D. } \\ & \text { from } \\ & \text { N. A. } \end{aligned}$	$\begin{gathered} \text { Error } \\ \text { of } \\ \text { Tables. } \end{gathered}$	Remaris.
	h.m. s.		h. m. s.	${ }^{\text {s. }}$	s.		0	"	"	
Sep. 19	162441,1	2	4186,05	5,76	-0,29	N.	645351	56,2	-8,9	
	171817,3	2	51547,13	46,89	-0,24	N.	$62 \quad 2937,8$	35,7	$-2,1$	
Oct. 9	81017,9	1	2123 30,59	30,90	+0,31	S.	1102237,4	34,4	-3.0	
10	9 4 50,6	1	$22 \quad 22$ 6,68	6,25	-0,43	S.	10434 14,6	3,7	-10,9	
12	$1046 \quad 17,3$,	01141,71	41,41	-0,30	S.	904242,6	36,0	-6,6	
13	113526,4	1	1454,41	54,50	+0,09	S.	833517,4	10,1	- 7,3	
Nov. 6	65841,0	1	$\begin{array}{llll}22 & 2 & 3,49\end{array}$	3,23	$-0,26$	S.	10640 57, 1	53,6	-3,5	
	74934,2	1	225659,54	59,40	-0,14	S.	1002636,5	37,3	+ 0,8	
Dec. 16	155422,6	2	934 45,03	44,25	-0,78	S.	705654.3	55,3	+ 1,0	

On looking over the observations of the last seven years; there have I find been a few observations of the Transit of both limbs of the Moon over the Meridian, which, in the former volumes of the Madras Results I had omitted ; they are as follows.

Date.		Madras Mean Tine.	$\left\lvert\, \begin{gathered} \text { Sidereal } \\ \text { Tume of } \\ \text { C's Diam. } \\ \text { passiug. } \end{gathered}\right.$
1831		h. m	m.
February	26	121748,7	27,48
April	26	115347,9	3,06
May	26	12534,1	7,80
September 1833		115130,6	12,48
May	3	114932,2	14,26
$\text { July }_{1834}$	1	115039,6	15,70
February 1835	23	121527,8	23,48
March	14	12911,4	18,16
April	13	$12 \quad 3047,8$	20,02
May	12	$\begin{array}{lll}12 & 6 & 2,7\end{array}$	26,62
June	10	114629,1	31,68
February	2	122017,1	15,68
April	1	$12 \quad 29,2$	13,16
1837			
January	21	121445,5	14,70
March	21	115011,2	5,32
April	20	115458,4	12,08

In addition to the above,-observation of the Moon, and of several Stars culminating near to her (Moon culminating Stars), have been made, as follows.

Moon Culminating Stars.

1836	Names.		Observed Transit.	1836	Names		Observed Transit.
April 28			h. m. s.				
	η Virginis		121332,73	Oct. 20	- Aquarii		$\begin{array}{lll} 22 & 44 \\ 22 & 43,27 \\ 22 \end{array}$
	Moon	1 st Limb	$\begin{array}{llllll}12 & 18 & 18,26\end{array}$		Moon	1st Limb	22 47 23 38
	δ Virginis		1249 22,75		n Piscium		$\begin{array}{rrrr}23 & 38 & 17,48 \\ 23 & 9 & 11 & 17\end{array}$
	θ -		$13 \quad 3$ 30,02	21	ψ^{3} Aquarii		$\begin{array}{rrrr}23 & 9 & 11,17\end{array}$
29	-		124928,55		Moon	1st Limb	233859,61
	$\bar{\theta}$		13335,85	22	t Piscium		01544,06
	Moon	1 st Limb	$1310 \quad 8,52$		Moon	1st Limb	02825,60
	k Virginis		146617,56		e Piscium		058 39,88
	-		$\begin{array}{lll}14 & 9 & 33,62\end{array}$	Nov. 17	ϕ Aquarii		$\begin{array}{ll}23 & 4 \\ 46,89\end{array}$
30	Moon	1 st Limb	14427,03		ψ^{3}		$\begin{array}{lll}23 & 9 & 22,71\end{array}$
	${ }^{\text {c Virginis }}$		$14 \quad 938,84$		Moon	1st Limb	232324,05
	α^{2} Libræ		$1444 \quad 2,77$		t Piscium		015 57,44
	ξ^{2}		$\begin{array}{llll}14 & 50 & 6,46\end{array}$	18	Moon	1 st Limb	01236,69
May 20	γ^{1} Virginis		123250,72		m Ceti		043 39,31
	Moon	1 st Limb	124158,73		ε Piscium		0 5 0
	k Virginis		$14 \quad 3 \quad 30,03$	22	Moon	1st Limb	02745,62
	λ -		$14 \quad 935,47$		A^{1} Tauri		$354 \quad 8,14$
	Moon	1st Limb	142856,56		$\omega^{2}-$		$4 \quad 647,09$
	ι^{1} Libræ		$\begin{array}{llll}15 & 2 & 13,83\end{array}$	23	A^{1} Tauri		354 9,23
	$\gamma^{1}-$		$\begin{array}{lll}15 & 25 & 42,39\end{array}$		ω^{2}		4648,21
July 26	λ Sumilatii		$\begin{array}{llll}18 & 17 & 10,77\end{array}$		Moon	2nd Limb	423 38,42
	σ -		184425,29	Dec. 16	m Ceti		04342,30
	Moon	1st Limb	185217,82		Moon	1st Limb	04554,53
	59 Sagittarii		1946 12,30	17	μ Piscium		12035,09
	c -		195153,71		$\boldsymbol{\gamma}$ M-		13153,72
Aug. 21	θ Ophiuchi		$\begin{array}{llll}17 & 11 & 38,30\end{array}$		${ }_{\text {y }}$ Moon	1st Limb	$\begin{array}{llll}1 & 33 & 20,55\end{array}$
	Moon	1st Limb	$\begin{array}{llll}17 & 14 & 44,29\end{array}$		$\xi^{\xi^{1}}$ Ceti		$\begin{array}{lrr}2 & 3 & 18,59 \\ 2 & 18 & 26,47\end{array}$
$\begin{array}{ll}\text { Sep. } & 18 \\ & 1 \\ & \\ 20 \\ 20\end{array}$	γ^{2}		$\begin{array}{lll}18 & 17 & 33,19 \\ 17 & 55 & 20,02\end{array}$	18	ξ^{1} -		$\begin{array}{rrrr}2 & 18 & 26,47 \\ 2 & 3 & 14,95\end{array}$
	Moon	1st Limb	$\begin{array}{lll}17 & 59 & 0,75\end{array}$		ξ^{2} -		21822,81
	σ Sagittarii		$1845 \quad 8,33$		Moon	1st Limb	22115,27
	ζ ¢		185213,07		ε Arietis		24847,25
	Moon	1st Limb	$\begin{array}{ll}19 & 6 \\ 46,20\end{array}$	19	δ -		$\begin{array}{llll}3 & 1 & 8,78\end{array}$
	Moon	1st Limb	2012 29,35		Moon	1st Limb	310 34,98
	- Aquarii		215731,05	20	A 1 Tauri		35350,16
	θ -		$\begin{array}{llrl}22 & 8 & 6,97\end{array}$		Moon	1st Limb	3154,25
	Moon	1st Limb	$\begin{array}{llll}22 & 13 & 38,00\end{array}$		ω^{2} Tauri		$4 \quad 6 \quad 29,17$
	δ Aquarii		$23 \quad 45 \quad 50,72$	21	τ -		43110,42
	ϕ -		$\begin{array}{llll}23 & 5 & 43,78 \\ 23 & 8\end{array}$		Moon	1st Limb	$455 \quad 17,94$
	Moon	1st Limb	$\begin{array}{llll}23 & 8 & 20,36\end{array}$	1837			
Oct.	h^{2} Sagittarii		$\begin{array}{llll}19 & 25 & 31,58 \\ 19 & 51\end{array}$	Jan. 17	Moon	1st Limb	44024,70
	c -		195122,53	18	β Tauri		$517 \quad 1,95$
	Moon	1st Limb	195136,35		ζ -		52856,52
	ψ Capricorni		203511,38		Moon	1 st Limb	53437,42
	η -		205452,59	19	\% Aurigæ		$6 \quad 5 \quad 58,19$
	ψ		203511,16		μ Geminor.		614 4,46
	Moon	1st Limb	2054 22,65		Moon	1st Limb	62950,14
	\% Capricorni		213647,84		δ Geminor.		711 21,60
	γ -		2129 47,86		a^{2} -		72510,10
	δ -		213647,08	20	δ -		711 18,54
	Moon	1st Limb			Moon	1st Limb	72448,93
	τ^{2} Aquarii		223942,49		6 Cancri		75425,57
	¢ -		2244 44,72	21	Moon	Cent.	819 32,79
	τ^{3}		223940,93		ρ^{4} Cancri		84646,70
					\% -		$9 \quad 052,11$

Moon Culminatryg Stars.

Eclipses and Occultations.

Observation of the Eclipses of Jupiter's Satellites in the Years 1836 and 1837.

1836	Satellite.	Im. or Em.	Telescope.	Power.	Madras Mean Time.	Remaris.
Jan. 27	II	Emersion.	5 fect.	110	h. m. s. 8 10 54,3	
Feb. 1	I	Emersion.	5 feet.	150	75628,3	
3	II	Emersion.	5 fect.	110	$1047 \quad 15,9$	
15	1	Emersion.	42 inches.	75	114649,6	
27	III	Immersion.	5 feet.	110	63520,4	
27	III	Emersion.	5 feet.	110	94827,2	
28	15	Emersion.	42 inches.	75	8022,6	
Mar. 2	I	Emersion.	5 feet.	110	$10 \quad 527,8$	
5	III	Immersion.	5 feet.	110	103257,9	
6	II	Emersion.	5 feet.	110	$\begin{array}{lllll}10 & 33 & 14,3\end{array}$	
9	I	Emersion.	5 feet.	110	12059,1	
18	I	Emersion.	5 feet.	150	82515,6	
25	I	Emersion.	5 feet.	110	102041,6	Moon near the Planet.
29	IV	Emersion.	5 feet.	150	83935,8	
31	II	Emersion.	5 feet.	150	74119,2	
April 10	I	Emersion.	5 feet.	110	84040,3	
$\cdots 10$	III	Emersion.	5 feet.	110	95328,6	
17	III	Immersion.	5 feet.	110	103349,7	Planet low. Clear-observation satisfactory.

Eclipses and Occultations.

1836	Satellite.	Im. or Em.	Telescope.	Power.	Madras Mean Time.	Remaris.
17	I	Emersion.	5 feet.	110	$\begin{array}{ccc} \hline h . & m . & s . \\ 10 & 36 & 54,2 \end{array}$	Planet low. Clear observation satisfactory.
May 19	I	Emersion.	42 inches.	75	$\begin{array}{llll}7 & 17 & 1,7\end{array}$	
Oct. 12	II	Immersion.	5 feet.	480	$1549 \quad 2,9$	
13	III	Immersion.	42 inches.	75	$\begin{array}{llll}14 & 13 & 5,6\end{array}$	
Nov. 6	II	Immersion.	42 inches.	75	124910,1	
25	III	Immersion.	5 feet.	110	$\begin{array}{llll}14 & 1 & 23,6\end{array}$	
Nov. 25	III	Emersion.	5 feet.	110	$\begin{array}{llll}17 & 32 & 11,7\end{array}$	
Dec. 1	I	Immersion.	5 feet.	110	154730,0	
5	IV	Emersion.	5 feet.	110	$\begin{array}{llll}16 & 8 & 20,6\end{array}$	
10	I	1 mmersion .	5 feet.	110	128840,6	
17	1	Immersion.	5 feet.	110	14239,6	
26	I	Immersion.	5 feet.	110	102413,6	
1837						
Jan. 9	I	Immersion.	5 feet.	110	$\begin{array}{llll}14 & 9 & 37,3\end{array}$	
11	I	Immersion.	5 feet.	60	838778	Unsatisfactory; planet near the horizon.
Feb. 10	I	Emersion.	5 feet.	110	125720,5	
10	II	Emersion.	5 feet.	110	144940,0	Dew rapidly deposited on the O.G.
12	I	Emersion.	5 feet.	110	72550,4	good observation.
12	III	Emersion.	5 feet.	110	131343,5	good observation.
17	I	Emersion.	5 feet.	110	14516,9	very good obs.
19	I	Emersion.	42 inches.	75	91935,3	The proximity of the Moon unfavorable.
21	11	Emersion.	5 feet.	110	64431,3	very good obs.
26	I	Emersion.	5 feet.	110	11142	good observation.
27	IV	Emersion.	5 feet.	110	$10 \quad 13 \quad 58,6$	
Mar. 7	I	Emersion.	5 feet.	110	73653,9	$\}$ rood observations.
	I	Emersion.	42 inches.	. 70	73654,9	¢ good observations.
7	II	Emersion.	5 feet.	110	115836,2	3 rood observations.
7	II	Emersion.	42 inches.	. 70	115841,2	$\}$ good observations.
7	I	Emersion.	5 feet.	70	93124,3	? rood observations.
7	I	Emersion,	42 inches.	. 110	93131,3	g good observations.
14	II	Emersion.	42 inches.	. 110	143548,1	good observation.
20	III	Emersion.	5 feet.	110	$\begin{array}{lllll}9 & 8 & 18,6\end{array}$	
21	I	Emersion.	5 feet.	110	112548,7	
25	II	Emersion.	5 feet.	60	63254,2	good observation.
'27	III	Emersion.	5 feet.	60	13526,4	haze.
28	I	Emersion.	5 feet.	60	132021,1	haze,-planet low.
April 1	1 II	Emersion.	5 feet.	60	9853,2	very good obs.
6	6	Emersion.	5 feet.	60	94331,4	
18	8 IV	Immersion,	. 5 feet.		113654,2	
22	2 I	Emersion.	5 feet.	60	$8 \quad 239,4$	
29	I I	Emersion.	5 feet.	140	$958 \quad 5,3$	very good obs.

1837	Satellite.	Im. or Em.	Telescope.	Power.	Madras Mean Time.	Remarks.
May 2	III	Emersion.	5 feet.	110	$\begin{array}{ccc} \\ \hline & \text { m. } & s . \\ \hline \end{array}$	
- 3	II	Emersion.	5 feet	110	15430,2	
5	IV	Emersion.	5 feet.	110	102245,2	
9	III	Immersion.	5 feet.	110	93117,1	
15	I	Emersion.	5 feet.	110	815 59,4	
Dec. 16	II	Immersion.	5 feet.	60	$16 \quad 24 \quad 5,3$	
17	III	Immersion.	5 feet.	110	124722,4	
17	III	Emersion.	5 feet.	110	$\begin{array}{llll}16 & 12 & 8,2\end{array}$	
29	1	Immersion.	5 feet.	110	$13 \quad 25 \quad 8,3$	

Occultation of Stars by the Moon.

1836

March 23 Immersion of Tauri behind the Moon's dark limb, observed

Oct. 13 Immersion of δ Scorpii behind the Moon's dark limb, observed with 5 feet Achromatic power 110................. at
15 Immersion of a star in Sugillarius behind the Moon's dark limb, observed with 42 iuch, power 75................ at

> Madras
> Mean Time.
h. m. s, $8 \quad 632,7$

63241,3
S37 limb, observed with 42 iuch, power 75 . at
Jan. 4 Immersion of A OpRiuchi behind the Moon's culightenod limb, observed with 5 feet Achromatic power 110........... at $17 \quad 42$ 39,5
March 9 Immersion of o Piscium behind the Moon's dark limb, observed with 5 feet Achromatic power wheel............ at 65934,3

* 10 Immersion of a small star behind the Moon's dark limb, observed with 5 feet Achromatic power at

7637,0
+11 Immersion of a small star behind the Moon's dark limb, observed with 5 feet Achromatic power $60 . \ldots . . .$.

84815,5
April 12 Immersion of v Geminorum behind the Moon's dark limb, observed with 5 feet Achromatic power 110...:........ at 1010 19,7

Lunar Eclipses.

Observation of the Eclipse of the Moon on the 24th October 1836. Madras Mean Time. h. m, s.
 End of the Ecipse... 7 . 7 25,7

[^10]The state of the air was unfavorable for accurate observations, in consequence of which, these times are little to be depended upon. Observed with 5 feet Achromatic power 60.

Observation of the Eclipse of the Moon on the 20th April 1837. Madras

 Mean Time.h. m. s.

Beginning of the Eclipse. 1110 50,6
Touches Grimaldus.. . . 12 30,3
Covers do. .. 13 53,1
Covers Gallilius.. 17 36,5
Covers Aristarchus. 28 3,8
Touches Tycho. 34 51,7
Covers do. ... 35 46,5
Touches Plato.. . . 48 56,3
Covers do. ... 50 16,1
No. 28 disappeared. 52 53,7
Censorinus do. ... 57 17,0
Proclus do. .. 12 . 5 53,6
Touches Mare Christium. 6 45,5
Covers do. do. 10 1,0
Totally Eclipsed... . 11 46,6
End of total darkness.. 1449 26,7
Covers Grimaldus.. . 55 13,7
Leaves do. ... 56 17,5
Leaves Aristarchus.. 15 24,5
Tycho covered......... 18 9,9
Leaves Tycho.. . . . 19 7,7
End of the Eclipse. 50 46,8
The Earth's shadow was exceedingly well defined, and the air particularly clear : the times of beginning and end as well as those of contact with the various spots, are I believe, as accurate as observations of this nature will permit; but the times of "Totally Eclipsed," and "End of total darkness,"-from the rapidity with which the last thread of light was dissolved and formed, are by far the most accurate portion of the observations; these cannot I think be more than two seconds in error-

Observed with the 5 feet Achromatic with a power of 60 .

Observation of the Eclipse of the Moon on the 13th October 1837.

Observed North Polar Distance of the Planet Mars and of Stars situated near to his path at the opposition of 1837 .

1837	Names.	Bar.	\square		Observed N. P. D.	Remarks.
Jan. 26		$\begin{aligned} & \text { Inches. } \\ & 30,050 \end{aligned}$	${ }_{71,2}^{0}$	66,7		
27		30,066 30,050	71,0 71,0	67,0 76,0	71 8 48,5 712 120,8 72 27 30,3 1	
28		30,096 30,064	74,0 72,4	71,7 69,0	71 0 37,0 72 27 31,7 71 4 11,9 70	
29		30,128	75,2	73,7	70 53 16,0 70 56 6,4 72 27 30,3	
31		30,110 30,094	74,8 74,8	71,0 69,8	70 39 59,4 70 35 1,3 72 27 31,7 70	
$\overline{\text { Feb. } 2}$	Centrum k 12 38,6 Leonis	30,100 30,090	73,5 72,0	68,6 68,0	70 15 19,2 70 24 7,7 72 27 31,7	
3		30,144 30,126 30,124	75,6 74,7 74,5	70,6 70,0 69,7	70 15 17,9 70 16 20,6 72 27 32,0 70 108	
4		30,114 30,102	75,0 74,0	73,0 72,3	$\begin{array}{cccc}70 & 1 & 16,7 \\ 70 & 8 & 38,4 \\ 7 & 5 & \end{array}$	
5		30,032 30,010	74,2 74,0	70,6 69,7	$\begin{array}{cccc}71 & 15 & 52,5 \\ 69 & 50 & 37,2 \\ 70 & 1 & 5,1 \\ 71 & \end{array}$	
6	O Cancri $*$ \% Centrum	30,024 30,020	74,2 74,0 73,8 78.	71,7 70,0	71 15 52,4 69 50 36,6 69 53 39,5	
7		${ }_{3}^{30,072} 3$	$\begin{aligned} & 76,0 \\ & 75,8 \end{aligned}$	74,3 73,7	71 15 52,6 69 46 22,1 69 41 18,0	
8		$\begin{aligned} & 30,116 \\ & 30,084 \end{aligned}$	$\begin{aligned} & 76,0 \\ & 76,0 \end{aligned}$	74,3 73,7	$\begin{array}{llll}71 & 15 & 53,1 \\ 69 & 31 & 36,9 \\ 69 & 39 & 16,2\end{array}$	
		30,094 30,078	75,3 75,0	72,0 72,0	71 15 52,7 69 31 36,1 69 32 22,2	
10		$\left\lvert\, \begin{aligned} & 30,092 \\ & 30,080 \\ & 30,070 \end{aligned}\right.$	$\begin{aligned} & 77,2 \\ & 76,9 \\ & 76,5 \end{aligned}$	75.5 75,2 74,0	71 15 51,3 69 25 39,8 69 17 24,8 71	
1	$\substack{\delta \\ \text { ioncri } \\ \text { O }}$ Centrum 1149,0	$\left\lvert\, \begin{aligned} & 30,012 \\ & 29,994\end{aligned}\right.$	77,5 ${ }^{77} \mid$	74,6 74,0	71 15 51,2 69 19 10,2 69 17 24,6 115 51,2	
	\% Cancri 1	129,944	78,0 1	76,6	7115 51,2	

Observed North Polar Distance, of Mars, \&c. continued.

Observed North Polar Distance, of Mars, \&c. continued.

1837	Names.	Mulras Me.an Time.	Bar.	$\begin{gathered} \begin{array}{r} \mathrm{Th} \\ \mathrm{mom} \end{array} \\ \hline \text { in } \end{gathered}$	ter. out	Ohserved N. P. D.	Remaris.
Mar. 7	${ }_{*}^{*}$ Centrum	$\begin{array}{rl}\text { h. } & \text { m. } \\ 9 & 46,4\end{array}$	Iuches.	\bigcirc		$\begin{array}{ccc}0 & \prime & \prime \prime \\ 68 & 0 & 44 \\ 68 & 2 & 19,3\end{array}$	-
8	γ γ_{γ}^{γ} Cancri * Centrum	941,9	30,106	79,9	78,0	$\begin{array}{rrr}67 & 57 & 42,6 \\ 68 & 0 & 43,3 \\ 68 & 2 & 20,0\end{array}$	
9	$\begin{array}{ll}\gamma & \text { Cancri } \\ \delta^{*} \text { Centrum } \\ *\end{array}$	937,4	30,124	79,9	77,7	$\begin{array}{rrr}67 & 57 & 43,5 \\ 68 & 0 & 5,5,7 \\ 68 & 2 & 20,4\end{array}$	
10	$\begin{array}{ll}\gamma & \text { Cancri } \\ \delta \\ \delta & \text { Centrum }\end{array}$	933,0	30,072	79,7	78,5	67 57 41,7 68 1 23,2 68 2 20,2	
11	γ Cancri ϕ Centrum	928,7	30,024	80,3	80,2	$\begin{array}{rrr}67 & 57 & 42,6 \\ 68 & 2 & 3,3\end{array}$	
12	$\begin{array}{ll}\gamma & \text { Cancri } \\ \text { \% } & \text { Centrum }\end{array}$	924,4	30,076	80,2	79,7	$\begin{array}{rrr}67 & 57 & 41,4 \\ 68 & 2 & 58,4\end{array}$	
13	γ Cancri O Centrnm	920,2	30,076	81,0	79,0	67 57 43,1 68 4 5,7 68 2 18,9	
14	γ	916,0	29,990 29,986	81,8 80,5	80,0 79,8	67 57 42,2 68 5 24,5 68 2 23,4	
15	$\gamma-$ Cancri δ^{γ} Centrum	9 10,7	29,960 29,958	80,6	79,5 79,0	67 57 42,4 68 6 57,8 68 13 2,9	
16	$\begin{array}{ll}\gamma & \text { Cancri } \\ \text { or } \\ \text { O }\end{array}$	9 7,6	30,000	80,5	79,6	67 57 43,3 68 8 40,5 68 13 4,1	
17	${ }_{*}^{*}$ Centrum	93,5	30,044	80,4	80,0	68 10 37,4 68 13 3,3	
18	γ	859,4	30,054	80,7	78,2	67 57 42,6 68 12 45,7 68 13 2,8	
19	γ Cancri ${ }_{\text {o }}$ Ce ntrum $*$	855,5	29,998 30,010	82,3	81,8 81,2	67 57 42,3 68 15 1,2 68 13 4,2	
20	C Centrum	851,6	29,990	82,0	80,0	$68 \quad 17 \quad 34,1$	

The above observations have been given here-out of their proper place,to enable me (without loss of time) to avail myself of the corresponding observations made at the Cape of Good Hope Observatory, with which, through the kindness of the Astronomer Royal I have just been favoured : thus, putting $p^{\prime}, p^{\prime \prime}, \& c$. to represent the equatoreal horizontal parallax of the Planet Mars; and computing the values of $d r$, (the difference of refraction between the. Planet and Star) and of $\Delta \delta$, the change of Declination in the interval oc: cupied by the Planet in passing from one meridian to the other, we get

Observed North Polar Distance of Mars, \&c.

Resolving the above equations, and employing the log. distance of the Planet from the Earth-furnished in the Nautical Almanac-for the moment intermediate between the transit of the Planet over the two Observatories; we get π, the Equatoreal Horizontal Parallax of the Sun.

Mean $=$	$9^{\prime \prime}, 486$
Whereas from a similar series of observations at the	9,912
opposition of 1832-33 we obtained for π	
Do. Du. 1834-35	8,595
Giving to each series the same weight, we obtain the mean Equatoreal Hor. Pa. of the Sun, or $\pi=$	9,331

OBSERVATIONS OF THE FIXED STARS.

The observations of the Fixed Stars in $1836 \& 1837$ have been principally confined to a Catalogue of 2070 Stars, which, with those given in Vols. II. \& III. completes the re-observation of Piazzi's Catalogue. It was my intention in 1836 to have made four observations of each Star at each Instrumenttwo in the first year, and two in the second, whereby any error in the observation or reduction would readily be detected; -this plon has for the most part been accomplished,-the principal deviation therefrom being in the hours XX \& XXI, where, having to encounter a large number of Stars (from 140150 in each hour) and that too at a time of the year little favorable to Observation, -I have been unable to make more than two or three, and in some cases only one observation of each Star; but, taking into account the accuracy to which each single observation may lay claim, I have thought it proper, rather to give this single observation, than to omit the Star from the Catalogue. The Magnitudes are from the mean of all the observations at both instruments, save that in the case where half a magnitude had to be decided between the two instruments, I have given it in favor of the Transit, as being derived from the better instrument of the two, and from the most skilful observers. The Corrections which have been employed, are those resulting from the values of a, b, c, d, of the Catalogue in conjunction with the values of $\mathbf{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, given in the Nautical Almanac;-these values of $a, b, c, \& c$. have been computed for the year 1840, by applying to the A. R. and Declination given in Piazzi's Catalogue-the amount of 40 times the annual precession there given, whereby the places for 1840 , are for this purpose obtained to a sufficient degree of accuracy. The formulæ employed (which has been explained at full length by Mr. Bailly in the appendix to the second volume of the Memoirs of the Royal Astronomical Society), is as follows

$$
\begin{aligned}
& a=+\operatorname{Cos} \alpha \cdot \sec \delta \\
& b=+\sin \alpha \cdot \sec \delta \\
& c=+46^{\prime \prime} 024+20^{\prime \prime}, 042 \sin \alpha \cdot \tan \delta \\
& a=+\cos \alpha \cdot \tan \delta \\
& a^{\prime}=+\tan \omega \cdot \cos \delta-\sin \alpha \cdot \sin \delta \\
& b^{\prime}=+\cos \alpha \cdot \sin \delta \\
& c^{\prime}=+20^{\prime \prime}, 042 \cos \alpha . \\
& d^{\prime}=-\sin \alpha .
\end{aligned}
$$

and the values of A, B, C, D from the Nautical Almanac are computed from the formulæ

$$
\begin{aligned}
& A=-18^{\prime \prime}, 6768 \cos . \odot \\
& B=-20^{\prime \prime}, 3600 \sin . \odot \\
& C=t-0,02495 \sin .2 \odot-0,34362 \sin . \Omega+0,00413 \sin .2 \Omega-0,004 \sin .2 \mathbb{} \quad \\
& D=-0^{\prime \prime}, 54470 \cos .2 \odot-9^{\prime \prime}, 25000 \cos . \Omega+0^{\prime \prime}, 09030 \cos .2 \Omega-0^{\prime \prime}, 090 \cos .2 \mathbb{Q}
\end{aligned}
$$

from which we deduce
Apparent A. R. in arc. $=a+\mathrm{A} a+\mathrm{B} b+\mathrm{C} c+\mathrm{D} d$.
Apparent Declination $=\delta+\mathrm{A} a^{\prime}+\mathrm{B} b^{\prime}+\mathrm{C} c^{\prime}+\mathrm{D} d^{\prime}$.
where t denotes the time from the beginning of the year, a represents the A. R. of the Star, δ its Declination, and ω the Obliquity of the ecliptic. To guard against mistakes, the computations of these values as well as the places for 1840 -have all been performed in duplicate, thus; -when the first computation had once been completed, the resulting values properly arranged -were neatly registered in a book which it was intended should be eventually employed in the ulterior computations, and the said book together with the details of the computation carefully locked up;-the computation was now again gone over anew, the results carefully compared with those registered in the fair book, and the discrepancies set right by a re-examination of each of the original computations; when the error, if occurring in the first computation, was rectified by neatly erasing the erroneous figures in the fair book: in the examination of the press, the proof sheet has always been compared with this original document, by which means, errors (with the exception of those given in the errata) have I hope been completely avoided.

A

SUBSIDIARY CATALOGUE (No. 2.)

OF

THE FIXED STARS

REDUCED TO JANUARY 1, 1836.

Together with the values of $a, b, c, d, \& c$.
computed for the year 1840.
$\& c$.

No.	No. Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
				a^{\prime}	${ }^{\prime}$	${ }^{\prime}$	d^{\prime}		A. R.	Decn.
	4	$\begin{array}{cc} 0 \prime \prime \prime \\ +2744 & 25,21 \end{array}$	+20,042							
2	4	$\begin{array}{r} +274425,21 \\ -124152,32 \end{array}$	$+20,042$ 20,042	$+9,5798$ $+9,6284$	$+9,6682$ $-9,3415$	$+1,3019$, 3019	-7,0822	2 3 4	,+ 015 ,+ 017	-, 12
3	3	- 41359,77	20,041	+9,6375	-8,8664	,3019	8,1072	4	+,007	+,01
4	4	$\begin{array}{lll}-36 & 3 & 4,44\end{array}$	20,041	+9,5563	-9,7695	,3019	8,1961	7	+ +020	+ , 15
5	4	+27 4153,98	20,041	+9,5763	+9,6675	,3019	8,2119	8	+,012	-,13
6	4	-6 913,33	20,038	+9;6345	-9,0286	+1,3019	-8,3387	10	+,004	-,03
7	3	-3844 3 3,78	20,038	+9,5478	-9,7961	,3019	,3502	11	+,010	+,11
8	2	+40 74.84	20,036	+9,4983	+9,8091	,3018	,4322	13	+,010	-,14
9	3	+75423,98	20,035	+9,6294	+9,1388	,3019	,4680	17	+,008	-, ,06
10	3	+30 3725,13	20,035	+9,5539	+9,7072	,3018	,4723	18	+,020	-,08
11	3	+26 2222,46	20,035	+9,5752	+9,6478	+1,3018	-8,4765	19	+ , 011	,00
12	3	-7 $\begin{array}{r}251,22 \\ \hline\end{array}$	20,034	+9,6385	-9,0877	,3018	,4890	21	+,016	+,01
13	3	+ 71218,30	20,032	+9,6307	+9,0988	,3017	,5355	22	+,007	,00
14	3	-32 2125,50	20,031	+9,5866	-9,7279	,3017	,5464	23	+,018	- ,03
15	3	+60 3718,21	20,030	+9,2577	+9,9400	,3017	,5640	25	+,019	+ , 02
16	3	+ 05618,68	20,030	+9,6365	+8,2268	+1,3017	$-8,5674$	26	+,014	+,01
17	4	$-12575,65$	20,0:38	+9,6355	-9,3496	,3016	,5907	29	+,016	+ ,07
18	4	-19 5749.75	20,026	+9,6253	-9,53,233	,3016	,6128	31	+,001	-,09
19	4	-246 26,43	20,026	+9,6385	-8,6807	,3016	,6219	34	+,005	-,05
20	3	-2 2531,96	20,024	+9,6385	-8,7037	,3015	,6454	36	+,011	+,02
21	3	+30 3620,98	20,024	+9,5441	+9,7067	+1,3015	-8,6539	38	+,016	+,03
22	2	-11 51333,80	20,022	+9,6385	-9,3114	,3015	,6677	39	+,017	+ ,04
23	2	-44 8 89,42	20,022	$+9,5378$	$\underline{-9,8422}$,3015	,6701	40	+,004	-,02
24	5	+253234,73	20,020	+9,5682	+9,6345	,3015	,6837	41	+,011	+,18
25	5	-13 5821,54	20,015	- $-9,6375$	-9,3815	,3014	,7212	44	+,007	-,01
26	4	+371630,25	20,010	+9,4914	+9,7817	+1,3012	-8,7601	47	+,014	-,01
27	3	-36 42 27,21	20,010	+9,5832	-9,7755	,3012	,7623	48	-,001	
28	3	$\begin{array}{lll}-17 & 7 & 3,92\end{array}$	20,009	+9,6355	-9,4677	,3012	,76888	4.9	+,014	- ,03
29	3	-23 54 45,33	20,007	+9,6243	-9,6065	,3012	,7794	51	+,008	-,10
30	3	+61 1955,73	20,005	+9,1875	+9,9424	,3011	,7898	52	+,032	+ , 10
31	1	+61 2414,33	20,003	+9,1818	+9,9427	+ 1,3011	-8,8019	54	+,015	,00
32		-1651 14,31	20,001	+9,6:375	-9,4609		,8137	56	+,009	+ ,01
33	4	-31 5645,67	19,998	+9,6053	-9,7222	,3010	,8213	57	,000	-, 04
34	4	+30 2747,36	19,993	+9,5289	+9,6985	,3009	,8507	59	+,011	-,08
35	4	$\begin{array}{lll}-12 & 37 & 8,62\end{array}$	19,990	+9,6434	$-9,3376$,3008	,8630	62	+,003	+,06
36	4	-16 5615,66	19,990	+9,6395	$-9,4627$	+1,3008	$-8,8647$	63	+,022	- , 06
37	4	-9 1536,46	19,983	+9,6444	-9,2040	,3007	,8842	67	+,012	+ ,01
38	4	+19 14143,97	19,983	+9,5843	+9,5172	,3007	,8882	66	+ +014	-, 09
39	4	+24 8 8,01	19,976	+9,5599	+9,6104	,3005	,9119	71	+,006	-, 04
40	3	- 55442,26	19,975	+9,6434	-9,0093	,3005	,9165	72	+,009	-, ,11
41	4	+ 15422,70	19,973	+9,6345	+8,5266	+1,3004	-8,9211	73	+,006	-, 04
42	3	-12 33 57,32	19,967	+9,6464	$-9,3354$,3003	,9374	78	+,006	,00
43	4	+ $+355932,66$	19,964	+9,4757	+9,7677	,3002	,9503	80	+,005	+,04
44	4	-12 30 22,15	19,958	+9,6474	-9,3329	,3001	,96:28	82	+,016	+ , ,06
45	4	- 42239,17	19,956	+9,6434	-8,878I	,3001	,9682	83	+,006	-,07

No.	No. Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\begin{gathered} \text { B } \\ \text { B } \\ \text { ※ } \\ \text { ※ } \end{gathered}$	Annual P. M.	
				a^{\prime}	6°	c^{\prime}	d^{\prime}		A. R.	Decn.
		-41 34 20,66	+19055						s. ,+ 009	
46	3	-41 3420,66	+19,955	+9,5877	-9,8198	+1,3001	-8,9723	84	+,009	$+, 04$
47	4	+ 75352,85	19,955	- + -9,6201	+9,1,571	,3000	,9736	85	+,015	- ,09
48	2	+43 223,45	19,952	+9,3979	+9,8321	,2998	,9945	93	+,001	- ,01
49	3	-4150 49,72	19,952	+9,5899	-9,8220	,2998	,9945	94	+,006	- , ,10
50	3	-10 59 27,68	19,943	+9,6484	--9,2771	,2998	,9983	96	$+, 015$	- ,02
51	2	+15 654,09	19,940	+9,5933	+9,4145	+1,2997	-9,0070	97	+,006	- ,22
52	3	+ 35625,89	19,936	+9,6294	+8,8376	,2996	,0119	98	,000	-, 02
53	3	-19 7 7 36,65	19,935	+9,6474	-9,5124	,2995	,0204	100	+,010	+ ,01
54	2	+2722 27,75	19,930	+9,5263	+9,6605	,2995	,0264	103		+ ,02
55	1	+5938 29,27	19,928	+9,1038	+9,9335	,2995	,0299	104	+,0011	-,16
56	3	-4.4516,82	19,924	+9,6444	-8,9139	+1,2994	--9,0380	106	+,016	- ,14
57	3	$-13047,72$	19,922	+9,6405	-8,4104	,2993	,0415	107	+,013	-, 02
58	2	+ 4229,76	19,920	+9,6284	+8,8481	,2993	,0437	108	+,002	+ ,07
59	2	+605736,55	19,912	+9,0414	+9,9389	,2991	,0583	112	+,004	+ ,06
60	3	+53 17 53,82	19,909	+9,2201	+9,9012	,2990	,0637	114	+,018	-, 02
61	3	+24 12 2,07	19,905	+9,5416	+9,6099	+1,2989	-9,0702	116	+,016	-, 14
62	2	+1056 30,52	19,902	+9,6053	+9,2762	,2989	,0734	119	, ,000	-,10
63	2	+23 7 17,18	19,897	+9,5465	+9,5914	,2988	,0818	121	+,019	,00
64	3	- 41813,79	19,885	+9,6454	-8,8698	,2985	,0981	129	+,010	-, 04
65	3	+34 2942,83	19,885	+9,4564	+9,7499	,2985	,0981	128	$+, 010$	-,03
66	3	-654 4,71	19,874	+9,6503	- 9,0749	+1,2983	-9,1128	132	+,011	-, 01
67	3	+ 7050,19	19,864	+9,6180	+9,0840	,2981	,1252	135	+,007	- ,01
68	3	+ 213 4,23	19,862	+9,6325	+8,5868	,2980	,1271	137	+,059	+ ,22
69	3	+103749,08	19,856	+9,6031	+9,2626	,2979	,1345	140	+,018	- ,08
70	3	$-12 \quad 252,18$	19,852	+9,6561	-9,3143	,2978	,1390	142	$+, 013$	- ,16
71	3	+20 7 7,31	1, 7,841	+9,553,9	$+9,5327$	+1,2976	-9,1516	145	-,006	- ,10
72	3	+12 3 44,55	19,834	+9,5955	+9,3163	,2974	,1603	149	+,013	- ,09
73	3	+1914 19,66	19,833	+9,5587	+9,5139	,2974	,1603	150	+,018	- ,07
74	3	-21 12 2,56	19,829	+9,6609	-9,5533	,2973	,1637	151	+,010	+ ,04
75	3	-44 1129,35	19,819	+9,6191	$-9,8369$,2971	,1739	153	+,007	-, 20
76	4	$-1254 \begin{array}{ll}4,00\end{array}$	19,800	+9,6609	$-9,3429$	$+1,2967$	-9,1911	161	-,007	-, 15
77	4	- 03837,26	19,784	+9,6395	-8,0263	,2963	,2053	167	+,027	-, 16
78	2	$-13 \quad 226,12$	19,783	+9,6618	-9,3469	,2963	,2061	169	+,016	+, ,14
79	1	+54 24 25,45	19,781	+9,0828	+9,9046	,2962	,2077	168	+,023	- ,02
80	3	+25 1628,19	19,779	+9,509,2	+9,6250	,2962	,2092	170	+,018	-,09
81	4	-43 3412,61	19,778	+9,6304	-9,8324	+1,2962	-9,2107	173	-,001	- ,08
82	3	-171920,44	19,773	+9,6656	-9,4670	,2961	,2138	174	+,017	-,02
83	3	+30 248,14	19,771	+9,4683	+9,6939	,2960	,2153	175	+,015	-,18
84	3	$\begin{array}{lrr}+30 & 3 & 13,96 \\ +25 & 3 & 37,00\end{array}$	19,770	$+9,4669$ $+9,5038$	+9,6941	,2960	,2161	176	+,020	- , 18
85	4	+25 2337,00	19,751	+9,5038	+9,6263	,2956	,2310	184	+,022	-, 12
86	3	-6 $53.17,20$	19,742	+9,6551	-9,0710	+1,2954	-9,2375	188	+,003	+,01
87	4	+1725 8,32	19,733	+9,5587	+9,4702	,2952	,2439	191	-,004	+ ,08
88	3	+ 7335,88	19,719	+9,6117	+9,0839	,2949	,2531	197	+,016	-, 01
86	3	-1427 7,79	19,717	+9,6674	-9,3895	,2948	,2544	198	+,019	-, 09
90	4	- 844 39,36	19,713	+9,6590	-9,1733	,2947	,2572	200	+,009	- ,02

No.	Star's name and Mag.			$\left\lvert\, \begin{gathered} \text { No. } \\ \mathrm{Obs} . \end{gathered}\right.$	$\begin{gathered} \text { Right } \\ \text { Ascension } \\ \text { Jan. 1, } 1836 . \end{gathered}$	Annual Precession.	Logarithms of				
				$a \quad$			$b \quad$		d		
91		Piscium	8		3	$$	+3,139	+8,8339	+8,1040	+0,4968	+8,2773
92		Phœnicis	7.8	2	- 42 22,07	2,827	,9614	,2357	,4513	-8,8052	
93		Piscium	8	3	42 25,47	3,099	,8198	,0940	,4512	+7,9168	
94			7.8	4	4234,95	3,094	,8187	,0950	,4905	+7,8403	
95			7.8	3	43 0,31	3,121	,8256	,1061	,4943	+8,1405	
96		Piscium	8	4	44 48,76	3,154	+8,8378	+8,1365	+0,4989	+8,3532	
97			8.9	3	44 51,99	3,151	,8361	,1354	,4984	+8,3151	
98			8.9	3	4453,40	3,083	,8161	,1155	,4890	+ 7,5652	
99			8.9	3	$45 \quad 29,76$	3,091	,8168	,1221	,4901	+7,7528	
100		Ceti	8		4530,06	2,998	,8299	,1351	,4768	-8,2372	
101		Andromedæ	8	3	4623,00	3,180	+8,8494	+8,1637	+0,5024	+8,4332	
102		Cassiopeæ	7.8	4	47 53,12	3,417	9,0188	,3475	,5336	+8,9116	
103		Pisclum	8	4	47 55,89	3,201	8,8586	,1874	,5053	+8,4921	
104		Cassiopeæ	7.8	3	48 27,89	3,419	9,0177	,3513	,5339	+8,9098	
105		Andromedæ	7.8	2	48 45,72	3,175	8,8426	,1793	,5017	+8,3893	
106		Piscium	8.9	3	48 49,56	3,070	+8,8139	+8,1506	+0,4871	+6,7548	
107		Andromedæ	7	2	49 16,21	3,254	,8905	,2315	,5124	+8,6276	
108		Piscium	8	3	49 18,79	3,125	,8220	,1636	,4948	+8,1097	
109			8	4	4935,60	3,176	,8421	,1860	,5019	+8,3871	
110			8	4	49 53,60	3,126	,8219	,1688	,4950	+8,1127	
111		Messoris	8.9	3	50 44,93	3,531	+9,0828	+8,4375	+0,5479	+9,0089	
112		Piscium	8	3	50 59,65	3,068	8,8129	,1705	,4869	-5,9756	
113			7	2	5143,88	3,179	8,8407	,2035	,5021	$1+8,3827$	
114			8	3	52 39,98	3,124	8,8193	,1901	,4947	+8,0724	
115			8	3	52 41,21	3,106	8,8156	,1870	,4922	+7,9117	
116		Piscium	8	2	52 46,92	3,128	+8,8203	+8,1922	+0,4953	+8,1029	
117			8	4	55 17,01	3,101	8,8133	,2063	,4915	+7,8253	
118			8.9	3	5518,53	3,103	8,8131	,2141	,4918	+7,8453	
119		Cassiopeæ	7	,	5639,72	3,710	9,1521	,5558	,5694	+9,1017	
120	74	Piscium seq.	6.7	2	56 54,90	3,192	8,8390	,2448	,5041	+8,3853	
121		Piscium se	8	3	5722,75	3,091	$+8,8111$	+8,2207	+0,4901	$+7,6601$	
122			8	3	57 27,74	3,200	, 8419	,2519	,5051	+8,4095	
123		Ceti	8.9		5813,80	3,005	,8171	,2329	,4778	-8,0825	
124		Piscium	7.8	3	58 21,96	3,186	,8546	,2520	,5032	+8,3535	
125		Ceti	8	3	59 48,01	3,123	,8143	,2423	,4946	+8,0110	
126		Pbænicis	7.8	2	0 17,67	2,751	+8,9398	+8,3714	+0,4395	-8,7681	
127		Piscium	8	4	0 32,65	3,210	8,8415	,2750	,5065	+8,4160	
128			7.8	3	0 35,25	3,207	8,8404	,2745	,5061	+8,4086	
129		Cassiopeæ	8	3	2 4,28	3,809	9,1681	,6136	,5808	+9,1223	
130		Piscium	7.8	3	219,24	3,123	8,8126	,2595	,4946	+7,9923	
131		Piscium	8	3	250,60	3,215	+8,8397	+8,2905	+0,5072	+8,4107	
132			8	3	3 58,63	3,274	,8657	,3247	, 5151	+8,5543	
133		App. Sculp.	8	3	$\begin{array}{ll}5 & 9,51\end{array}$	2,795	,8983	,3653	,4464	-8,6681	
134		Piscium	7.8	3	5 511,68	3,112	,8090	,2764	,4930	+7,8770	
135			8	3	538,53	3,193	,8283	,2989	,5042	+8,3252	

No.	No. Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\begin{aligned} & \dot{\circ} \\ & \text { 药 } \\ & \text { 荡 } \end{aligned}$	Annual P. M.	
					b^{\prime}		d^{\prime}		A. R.	Decn.
91	4	+16 $5 \quad 53,93$	+19,704	+9,5635	+9,4360	+1,2946	-9,2627	202	+,008	
92	2	-44 $17 \begin{aligned} & \text { 24,07 }\end{aligned}$	+19,04	+9,6434	$\underline{+9,8363}$	+1,2944	--, 2667	205	+,006	
93		+ 7913,47	19,697	+9,6107	+9,089.5	,2944	,2667	204	+,010	-, 01
94	4	+ 6019,43	19,695	+9,6159	+9,0140	,2943	,2687	206	-,001	-,02
95	3	+11 53 33,44	19,688	+9,5866	+9,3071	,2942	,2727	208	+,016	+ ,03
96	4	+18 129,66	19,658	+9,5453	+9,4869	+1,2935	-9,2902	214	+,005	+ , 03
97	4	+1730 8,69	19,657	+9,5502	+9,4705	,2935	,2909	215	+,003	-, 01
98	3	+ 31143,38	19,657	+9,6253	+8,7406	,2935	,2909	216	+,015	- ,11
99	4	+ 45455,71	19,647	+9,6180	+8,9273	,2933	,2965	218	+,007	- ,19
100	3	-14 48 48,49	19,647	+9,6730	$-9,3986$,2933	,2965	219	+,014	- ,12
101	2	+22 3125,79	19,631	+9,5105	+9,5747	+1,2929	-9,3052	224	+,028	+ ,06
102	1	+5121 4,28	19,603	+9,0334	+9,8831	,2923	,3191	233	+,012	+ ,03
103	3	+25 2659,64	19,603	+9,4800	+9,6238	,2923	,3191	236	+,013	-, 06
104	3	+51 1456,75	19,593	+9,0334	+9,8823	,2921	,3238	237	+,021	+ ,04
105	3	+2035 55,94	19,587	+9,5198	+9,5367	,2920	,3267	239	+,026	-, 10
106	2	+ 02828,19	19,587	+9,6355	+7,9308	+1,2920	$-9,3267$	240	+,001	- ,21
107	2	+33 $\quad 3 \begin{aligned} & \text { 53,69 }\end{aligned}$	19,578	+9,3927	+9,7269	,2918	,3307	242	+,008	-, 17
108	2	+11 912,34	19,577	+9,5843	+9,2775	,2917	,3313	244	+,004	-, 02
109	4	+20 3059,30	19,572	$+9,5185$	+9,5347	,2916	,3336	245	+,008	-, 04
110	2	+11 1428,09	19,566	+9,5843	+9,2804	,2915	,3365	247	-,003	-,03
111	2	$+572840,80$	19,549	+8,6721	+9,9152	$+1,2911$	-9,3438	248	+,022	+,03
112		- 0615,81	19,542	+9,6375	$-7,1517$,2910	,3466	251	+,005	-, 32
113	2	+20 2146,77	19,531	+9,5172	+9,5307	,2907	,3515	253	+,010	- ,06
114	3	+10 1744,36	19,512	+9,5866	+9,2414	,2903	,3591	255	+,012	-, 15
115	3	+ 7 9 0,42	19,511	+9,6042	+9,0844	,2903	,3597	256	+,004	-,07
116	3	+11 1138,48	19,510	+9,5821	+9,2708	+1,2902	-9,3602	257	+,011	+ ,02
117	4	+ 5 52 59,12	19,458	+9,6096	+8,9991	,2891	,3801	269	+,007	-,03
118	4	+610 11,51	19,436	+9,6074	+9,0189	,2886	,3877	271	+,021	-, 04
119	2	+62 5332,75	19,430	-8,3222	+9,9360	,2885	,3902	272	+,014	-, 05
120	2	+20 358,29	19,424	+9,5038	+9,5327	,2883	,3922	276	+,005	-,06
121	3	+ 423 3,91	19,414	+9,6180	$+8,8351$	+1,2881	-9,3957	281	-,003	-, 12
122	4	+214017,07	19,412	+9,4928	+9,5537	,2881	,3961	282	+,019	+ ,07
123		-1038	19,396	+9,6749	-9,2511	,2877	,4015	288		
124	4	+19 1617,29	19,392	+9,5145	+9,5045	,2876	,4030	289	+,905	- ,08
125	3	+ 9148,53	19,360	+9,5888	+9,1817	,2869	,4130	297	+,011	-,08
126	4	-42 2157,64	19,350	+9,6964	$-9,8130$	+1,2867	-9,4163	303	-,005	-, 15
127	3	+22 1 52,60	19,344	+9,4829	+9,5591	,2865	,4181	302	+,005	+ , 11
128	2	+21428,32	19,342	+9,4857	+9,5527	,2865	,4186		+,024	-,04
129	3	+64 8 6,49	19,306	-8,7243	+9,9379	,2857	,4292	312	+,011	- ,05
130	3	+ 84042,65	19,302	+9,5888	+9,1634	,2856	,4305	4	+,010	+ ,24
131	4	+215059,81	19,289	+9,4800	+9,5544	+1,2853	-9,4341	7	+,006	+ , ,03
132	3	+29 1132,53	19,262	+9,3874	+9,6712	,2847	,4417	11	+,014	-,12
133	3	-36 4 38,72	19,234	+9,7126	-9,7518	,2841	,4490	18	+,019	-, 06
134	2	+ 64235,10	19,232	+9,5999	+9,0501	,2840		17		+ ,04
135	3	+18 15 24,86	19,222	+9,5092	+9,4787	,2838	,4525	21	+,017	$+. .03$

No.	$\begin{gathered} \text { No. } \\ \text { Obs. } \end{gathered}$	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
				a^{\prime}	${ }^{\prime}$	c^{\prime}	d^{\prime}		A. R.	Decn.
136	3	$-84735,27$	+19,210	+9,6739	-9,1646	+1,2835	-9,4555	22	s. ,+ 021 +0.	$\begin{aligned} & ", 33 \\ & +, 3 \end{aligned}$
137	3	+ 6513,03	+19,187	+9,6021	-9,0074 $+9,08$	+1,28:30	-9,4650	28	+,0015	+
138	3	+5645 52,91	19,180	-7,6990	+9,9034	,2828	,4630	27	-,010	+, ,07
139	4	+ 34753,16	19,142	+9,6159	+8,8051	,2×20	,4721	34	+,016	-, 05
140	2	+57 20 37,10	19,119	-8,2787	+9,9048	,2815	,4773	35	+,006	+ ,02
141	3	+63 4833,40	19,103	-8,9031	+9,9322	+1,2811	-9,4805	39	+,077	-,01
142	4	+ 34719,45	19,100	+9,6159	+8,8004	,2810	,4817	42	+,011	-,07
143	4	+ 63356,93	19,100	+9,5977	+9,0384	,2810	,4817	43	+,019	+,02
144	4	+ 63737,19	19,084	+9,5977	+9,0424	,2807	,485:3	45	+,022	,00
145	4	+ 51748,94	19,076	+9,6064	+8,9454	,2805	,4869	46	+,013	-,07
146	4	+46 2515,83	19,050	+8,8633	$+9,8380$	+1,2799	-9,4927	49	+,020	+ , 11
147	4	+ 423 30,12	19,004	+9,6117	+8,8634	,2788	, 5022	54	+,007	-,11
148	4	+42 17 2,66	18,980	+9,0212	+9,8045	,2783	,5071	61	+,006	+,03
149	4	-44 27 49,99	18,970	+9,7292	-9,8214	,2781	,5089	65	+,024	+ 02
150	4	+ 4274,63	18,964	+9,6107	+8,8674	,2779	,5101	64	+,013	-,07
151	4	+33 43 39,18	18,923	+9,2504	+9,7197	$+1,2770$	-9,5181	70	+,038	-, 12
152	3	-45 23 6,12	18,901	+9,7340	-9,8266	,2765	,5221	78	,000	-, 04
153	4	+50 57 17,48	18,897	+8,1461	+9,8647	,2764	,5228	71	+,005	
154	3	+ 7625,19	18,833	+9,5899	+9,0670	,2749	,5344	87	+,009	+ ,02
155	5	+24 2525,33	18,816	+9,4031	+9,5895	,2745	,5372	90	+,013	-,02
156	4	+69 10 15,07	18,812	-9,2253	+9,9432	+1,2744	-9,5378	86	+,025	-, 02
157	3	+31 20 20,36	18,793	+9,2787	+9,6884	,2740	,5413	93	+,012	+
158		+3623 38,96	18,678	+9,1271	+9,7429	,2713	,5595	104	+,007	+ ,07
159	8	+1143 1,83	18,638	+9,5428	+9,2766	,2703	,5660	112	$+, 012$	-,04
160	4	+ 72557,36	18,633	+9,58:21	+9,0811	,2703	,5663	114	+,005	-,04
161	4	+472829,98	18,615	+8,3010	+9,8355	+1,2698	-9,5692	115	+,013	-, 03
162	4	+473422,85	18,587	+8,2304	+9,8355	,2692	,5733	121	+,029	+,05
163	4	+111425,10	18,547	+9,5465	$+9,2572$,2683	,5788	128	+,027	+ , 02
164	4	$+255116,96$ +15472761	18,531 18,497	$+9,7459$ $+9,4955$	$+9,6052$ $+9,4006$,2679	, 5810	134	,+ 028 ,+ 006	- ,02
165	4	+154727,61	18,497	+9,4955	+9,4006	,2671	,5856	135	+,006	-,06
166	2	+59 4253,84	18,455	$-9,0719$	+9,9005	+1,2661	-9,5913	139	+,031	- ,09
167	3	+24 54 49,94	18,434	+9,3598	+9,5886	,2657	,5937	145	+,011	-,09
168	3	-38 1820,43	18,427	+9,7672	-9,7550	,2655	,5948	147	+,008	+ , ,17
169	4	+ 81425,08	18,417	+9,5705	$+9,1209$ +9898	,2652	,5963	149	,+ 006 ,+ 032	$\begin{array}{r}\text { + } \\ +, 01 \\ \hline, 05\end{array}$
170	3	$+593620,65$	18,411	-9,0864	+9,8989	,2651	,5969	46	+,032	-,05
171	2	-22 33 3,45	18,395	$\underline{+9,7427}$	-9,5462	+1,2647	-9,5989	153	+,,019	-,08
172	2	+49 46 56,58	18,388	-8,3802	+9,8455	,2645	,5998	152	+,027	-, 20
173	5	+19 1449,21	18,305	+9,4425	+9,4744	,2626	,61999	161	+,006	-, 01
174	3	+81 8131,49	18,291	-9,5276	$+9,9551$ $+9,1945$,2622	,6116	155	+,137	+ 116
175	4	$\begin{array}{lll}+10 & 1 & 14,93\end{array}$	18,214	+9,5490	+9,1995	,2604	,6205	169	+,009	-, 15
176	3	+31 5124,39	18,183	+9,1673	+9,6803	+1,2597	-9,6240	171	-,010	+,36
177	4	+1612 1,83,	18,178	+9,4757	+9,4036	,2595	,6246	174	+,001	+ 08
178	4	+54 2353,76	18,163	-8,9590	+9,8674	,2592	,626:2	173	+,020	-, 116
179 180	4 4	$\begin{array}{llr}-27 & 4 & 22,80 \\ -11 & 31 & 2,54\end{array}$	1×118 18,108	$+9,7634$ $+9,7076$	- 9,6139 $-9,2556$,2581 2579			+,00;	$1 \pm$
	4	-11 312,54		+9,7076	-9,2556					

No.	No. Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
					8	c^{\prime}	d^{\prime}		A. R.	Decn.
		+								"
181	4	$+31851,23$	+18,040	+9,6107	+8,7187	+1,2562	-9,6395	189	+,005	,00
182	4	+ 959444,00	18,033	+9,5453	+9,1944	,2560	,6403	191	+,011	- ,22
183	2	+182932,36	17,987	+9,4330	+9,4548	,2549	,6447	196	+,007	+ ,15
184	4	+75 852,66	17,945	-9,5051	+9,9373	,2539	,6488	195	+,037	-, 07
185	4	+46 1730,49	17,859	-8,4472	$+9,8091$,2518	,6570	207	+,005	+,09
186	4	+ 6715,70	17,706	+9,5821	+8,9761	$+1,2481$	-9,6709	227	+,008	+,05
187	4	+ 33527,02	17,695	+9,6053	+8,7458	,2478	,6718	228	,000	+ ,03
188	4	+63 3533,51	17,647	-9,3655	+9,8969	,2467	,6759	230	+,009	+ ,06
189	4	+ 7418,39	17,639	+9,5705	+9,0365	,2465	,6766	234	+,,021	-, 08
190	2	+4132 26,99	17,612	+7,9031	+9,7657	,2458	,6789	237	+,017	-, 08
191	3	$\begin{array}{lll}+25 & 7 & 40,17\end{array}$	17,562	+9,2742	$+9,5710$	+1,2446	-9,6830	245	+,014	- ,17
192	4	- 5725,14	17,556	+9,6767	-8,8914	,2445	,6835	246	+,018	-, 07
193	4	+ 8340,93	17,396	+9,5563	+9,0865	,2404	,6961	258	+,014	,00
194	4	+53 3256,16	17,387	$-9,1523$	+9,8438	,2402	,6968	255	+,035	-, 14
195	5	+ 846,01	17,367	+9,5563	+9,0858	,2397	,6983	261	+,011	-, 10
196	4	-3 635,54	17,311	+9,6628	-8,6694	+1,2383	-9,7024	265	+,001	-, 02
197	4	+20 $36 \quad 2,97$	17,252	+9,3560	+9,4815	,2368	,7067	1	+,031	+ ,02
198	4	+19 252,21	17,177	+9,3838	+9,4471	,2350	,7120	12	+,007	- ,08
199	4	- 3955,97	17,154	+9,6637	-8,6723	,2343	,7137	17	+,028	- ,08
200	4	$+33049,38$	17,147	+9,6031	+8,7220	,2342	,7141	19	+,009	-,02
201	2	+56 1542,10	17,108	-9,2833	$+9,8512$	+1,2332	-9,7168	21	+,013	+ ,03
202	3	-3 48 4,41	17,108	+9,6693	$-8,7507$,2332	,7168	26	+,013	+ ,05
203	4	+56 $17 \quad 17,27$	17,102	-9,2856	+9,8511	,2330	,7173	22	$+, 014$	+ , ,11
204	4	$\begin{array}{lll}+ \\ +48 & 6 & 40,02\end{array}$	17,084	-8,9956	+9,8026	,2326	,7185	25	+,017	-,01
205	2	+5715 19,79	17,078	-9,3117	$+9,8553$,2324	,7189	24	+,002	+ ,03
206	4	+ 05431,15	17,074	+9,6284	+8,1422	+1,2323	-9,7193	31	+,014	-, 05
207	3	+5622 23,96	17,005	-9,3032	+9,8491	,2305	,7238	35	+,002	+ , 10
208	3	$+27592,02$	16,992	+9,1271	+9,5999	,2302	,7246	38	+,028	+ , 29
209	4	+2759 2,42	16,994	+9,1271	+9,5999	,2302	,7246	39	+,019	- ,09
210	3	+ 12826,94	16,988	+9,6232	+8,3461	,2301	,7248	40	+,009	+ ,07
211	2	$-3406,08$	16,964	+9,6693	-8,7314	+1,2295	-9,7264	44	+,009	+ ,03
212	4	+ 43541,79	16,954	+9,5911	+8,8330	,2293	,7270	45	+,019	- , 12
213	3	-41 50 7,81	16,954	+9,8319	-9,7512	,2292	,7272	50	-,009	+ ,03
214	2	-72031,50	16,951	+9,6972	$-9,0322$,2292	,727\%	48	-,004	+ ,03
215	6	$-34328,35$	16,842	+9,6702	-8,7341	,2263	,7343	57		-,17
216	4	+40 4338,09	16,765	-8,4624	+9,7372	+1,2244	-9,7388	62	+,040	-, 01
217	4	+ 65954,75	16,758	+9,5611	+9,0092	,2242	,7392	63	+,002	+ ,07
218	4	- 34247,68	16,732	+9,6712	-8,7314	,2236	,7407	67	+,001	+ ,07
219	4	- 16614,24	16,734	+9,6474	$-8,1983$,2237	,7405	66	+,008	-, 14
220	4	+ 01255,87	16,732	+9,6355	+7,5315	,2236	,7407	68	+,007	-, 13
221	4	+29 8 8,31	16,610	+9,0253	+9,6062	+1,2204	-9,7479	74	+,014	-,05
222	4	- 0632,94	16,571	+9,6385	-7,0801	,2193	,7502	81	+,016	-, 21
223	4	+5148 26,73	16,561	-9,2430	+9,8127	,2191	,7507	78	+,010	+ ,04
224	4	+ 94535,10	16,561	$+9,5211$	+9,1474	,2191	,7507	82	+,016	-,17
225	4	+ 95415,81	16,537	+9,5185	+9,1533	,2185	,7520	83	+,008	-,34

No．	$\begin{aligned} & \text { No. } \\ & \text { Obs. } \end{aligned}$	Declination Jan．1， 1836.	Annual Preces－ sion．	Logarithms of				$\begin{aligned} & \dot{\Delta} \\ & \text { 艺 } \\ & \text { 感 } \\ & \hline \end{aligned}$	Annual P．M．	
				${ }^{\prime}$			d^{\prime}		A．R．	Deen．
		${ }^{\circ}{ }^{\prime}{ }^{\prime \prime}{ }^{\prime \prime}$								2
227	4	$\begin{array}{r}+29 \\ +28 \\ +28 \\ \hline\end{array}$	$+16,477$ 16,452	9，0086 9,0128	＋9，6026	＋1，2169	，75	89 92		－0，04
228	4	＋33 56533,69	16，295	8，5401	9，6572	，21：20	，7652	103	＋，008	
22	3	＋61347，29	16，188	9，5647	8，944	，2092	，7706	111	＋，030	＋，，11
230	4	＋34 0 13，33	16，140	8，4314	9，6527	，2070	，7747	117	＋，035	
231	4	＋49 45 22，00	16，039	－－9	＋9，7861	1，2052	9，7779	119	007	，17
234	4	－ 410 43，13	15，0，32	＋9，6785	－8，7644	，2051	，7781	127	， 16	，04
233	4.	＋1133 12，77	15，948	＋9，4829	＋9，2028	，2027	，7823	$1: 3$	，024	＋，04
234	2	＋4850 51，86	15，926	－9，2355	＋9，7770	，2021	，7833	133	，024	＋，02
235	4	－12 2734,61	15，819	＋9，7451	－9，2302	，1991	，7884	1.45	，013	
236	4	＋ 52149,08	15，754	＋9，5729	＋8，8677	1，1974	9，7911	151	＋，002	，06
2：37	5	＋284547，06	15，625	＋8，8921	9，5744	，1938	，7968	160	，007	
238	2	＋272，94	15，602	＋4，6138	8，4621	，1932	，7978	163	，00	，05
2：39	4	＋ 45730,15	15，569	＋9，5775	8，8291	，1923	，7992	165	，016	\ldots
240	4	＋50 5130,43	15，525	－9，3365	9，7787	，1909	，8013	169	，004	＋，04
241	2	＋ 410001	15，525	＋9，5899	＋8，7362	1，1910	－9，8010	171	＋，016	－， 04
242	2	＋4829 35，28	15，470	－9，2765	9，7621	，1895	，8034	172	，013	
243		＋． 45355,45	15，4．1	＋9，5775	8，8207	，1897	，8030	174	，023	
244	3	＋1134 9，04	15，459	＋9，4728	9，1904	，1891	，8040	177	，019	＋，01
245	4	＋51 3550,55	15，341	－9，3674	9，7796	，1873	，8066	180	，006	
245	4	－38 216,63	15，320	＋9，8686	$-9,6728$	1，1853	9，8094	187	＋，025	，01
247	5	＋51316，60	15，309	－9，3711	＋，7767	，1849	，8099	184	，021	
248	4	－33 3 46，08	15，207	＋9，8567	－， 6164	，1820	，8139	196	，007	，24
24.9	4	－31 29 54，32	15，20：3	$+9,8513$	－，, 5976	，1819	，8140	197	，004	＋，04
250	5	－93123，11	15，030	$+9,7300$	－，0926	，1770	，8205	209	，004	－， 07
2.51	6	＋60 3731,65	14，947	－9，5658	＋9，8128	＋1，1745	9，8237	211	＋，012	＋，09
25.	2	＋514140，02	14，805	－9，4150	＋，7633	，1704	，8287	$22 \cdot 3$	－，006	＋，10
253	4	＋3728 25，27	14，772	－8，8261	＋， 6520	，1695	，8298	223	－，006	－，05
254	4	＋35 2738,65	14，702	－8，6232	＋，6292	，1674	， 83323	227	＋，002	
255	4	－40 57 F2，78	14，647	＋9，8893	－，6803	，1657	，8342	239	－， 007	＋，04
256	4	－33 9 47，02	14，595	＋9，8681	$-0,6001$	＋1，1642	－9，8359	243		
257	4	＋19 13 37，17	1．4，157	＋9，4：377	＋，1751	，1509	，8500	263	＋，013	－，08
258	4	＋163756，72	14，132	＋9，3234	＋	， 1502	，8507	266	，010	－， 02
259	3	+47 + +	1．4，032	－9，3074	$+\quad, 7126$ $+\quad, 7131$	，1470	，8539	268	，000	二， 14
260	4	$+473315,82$	14，032	－9，3642	＋，7131	，1470	，8539	269	, 008 $+\quad, 001$	－， 02 $-\quad 07$
261	2	＋65 226,76	13，948	$-9,6702$ $+9 \times 669$	$\begin{array}{r}+9,8001 \\ -\quad 5354 \\ \hline, 539\end{array}$	1,1445 +1415	$-9,8562$	10		二
262	4		13,452 13,822	$+9,8669$ $+8,1461$	－	，1415	$\begin{aligned} & 8590 \\ & \hline, 8598 \end{aligned}$	10	二，001	二， 10
263	4	$+295623,31$ +165752.28 +18285	13	$+8,1461$ $+9,3032$	＋ $+\quad, 369$ $+\quad, 2989$	，1353	，8645	21	＋，015	＋，06
264	4		13,657 13,498	$+9,3032$ $+9,2480$	$+\quad, 2989$ $+\quad, 3298$	，1353	，8688	33	，012	＋
265	6	＋18 2832,25	13，498	$+9,2480$ $+9,1643$,+ 3298 $+9,3633$					
266		$\begin{array}{r}+2022 \\ +49 \\ +48 \\ \hline\end{array}$	$\begin{aligned} & 13,278 \\ & 13,132 \end{aligned}$	$\begin{array}{r} +9,1643 \\ { }_{-9,4579} \end{array}$	$\begin{array}{r} +9,3633 \\ \mathbf{6} 5445 \end{array}$	$\begin{array}{r} +1,1231 \\ , 1183 \end{array}$	$\begin{array}{r} -9,8747 \\ \hline 8782 \end{array}$	52	$\begin{array}{r} +, 000 \\ -, 002 \end{array}$	－
267 268 268	2 1 1		13,132 13,101	$-9,4579$ $-9,4456$	$\begin{aligned} & , 6945 \\ & , 6898 \end{aligned}$	，1173	，8790	5	＋，008	－，09
269	4	＋54 4757,10	13，017	－9，5694	，7249	，1145	，8810	－ 58	＋，023	
270	2	＋－47 2413,98	12，977	－－9，4265	，6783	，1132	，8820	61	＋，023	，10

No.	No.Obs.	Declination Jan. J, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
				a^{\prime}	b^{\prime}		d^{\prime}		A. R.	Decn.
									$\stackrel{\text { s. }}{ }$	
317	4	-10 3613,10	$+9,651$ 9,625	$+9,732$ $+9,4232$	-8,7836 $+8,9468$	+0,9846	-9,9427	15	,+ 024 ,+ 010	$\begin{array}{r}+0,06 \\ -, 10 \\ \hline\end{array}$
318	4	+ 54710,52	9,492	+9,5353	+8,6799	,9774	,9448	24	-,001	- , 29
319	5	+ 64451,33	9,430	+9,5145	+8,7440	,9748	,9456	28	+,009	-, 07
320	3	+50 2731,31	9,068	-9,6149	+9,5428	,9575	,9503	44	+,018	+,17
321	4	- 019 25,37	9,048	+9,6425	-7,3973	+0,9568	-9,9505	52	+,014	-,02
322	2	-44 40 3,36	8,928	+9,9722	-9,4956	,9507	,9520	65	+,022	-, 38
323	4	+21532,03	8,723	+8,9085	+9,1953	,9407	,9544	76	+,018	+ ,04
324	4	+80 124,43	8,608	-9,9117	+9,6265	,9349	,9557	59	+,022	-, 08
325	4	+21 1456,21	8,587	+8,8808	+9,1914	,9338	,9560	82	+,019	+ ,09
326	3	+15 5546,11	8,534	+9,2253	+9,0682	+0,9311	-9,9566	86	+,009	+ , 07
327	4	+80 19 15,02	8,375	-9,9154	+9,6148	,9230	,9583	77	$+0,032$	-, 11
328		+1419	8,301	+9,2878	+9,0113	,9191	,9591	106	+,010	
329	4	+42 4357,80	8,248	-9,4757	+9,4461	,9163	,9597	107	-,008	-, 0:3
330	4	+19 3728,03	7,965	+9,0043	+9,1256	,9012	,9627	119	+,011	-, 07
331	3	+ 94934,73	7,928	+9,4330	+8,8311	+0,8999	-9,9630	127	+,006	--, 16
332	4	- 8386 6,83	7,858	9,7536	-8,7698	,8953	,9638	131	+,001	+,02
- 33	,	- 84547,06	7,713	9,7551	-8,7683	,8872	,9652	141	+,005	+ , 18
334	4	- 25849,90	7,697	9,6821	-8,2983	,8863	,9653	142	+,006	+ ,07
335	4	-31 3111,00	7,616	9,9289	-9,2920	,8817	,9661	151	-,010	-,04
336		-833	7,579	+9,7536	-8,7498	+0,8796	-9,9665	152	-,004	
337	2	-12 27 10,10	7,557	9,7945	-8,9094	,8783	,9667	154	+,012	+,02
338	3	-31 44 31,85	7,541	9,9325	-9,2964	,8774	,9669	156	+,008	+ ,04
339	2	+22 3715,56	7,460	8,6335	+9,1560	,8727	,9676	158	--,001	-,08
340	4	-23 29333,58	7,215	9,8865	-9,1567	,8583	,9699	171	+,014	+ ,06
341	3	- 9629,35	7,188	+9,7604	-8,7537	+0,8566	-9,9701	173	-, ,010	+ ,04
342	2	- 32841,50	7,172	9,6893	-8,33.52	,8556	,9702	174	+,023	+ ,03
343	4	+18 2937,46	7,123	9,0607	+9,0522	,8527	,9707	177	+,002	-,01
344	4	-28 15 22,07	7,014	9,9164	--9,2191	,8460	,9716	188	+,014	+ ,08
345	4	-21 3519,32	7,003	9,8745	-9,1090	,8453	,9717	186	+,016	+ ,03
346	3	+66 -9 1,11	6,976	-9,8338	+9,5028	+0,8436	-9,9720	180	-,037	,00
347	3	+15 3545,34	6,828	+9,2175	+8,9624	,8343	,9732	194	+,026	-, 01
34	4	+6730 1,61	6,746	-9,8476	+9,4927	,8290	,9739	193	-,009	+ ,06
349	,	+ 63936,84	6,718	$+9,5079$	$+8,5901$,8272	,9741.	205	+,012	+ ,09
350	3	-35 22 46,52	6,580	+9,9542	$-9,2788$,8183	,9752	220	+,019	+ ,03
351	3	- 53932,89	6,542	+9,7202	$-8,5070$	$+0,8157$	-9,9755	219	+,023	-, 01
352	3	-35 2312,90	6,520	+9,9547	--9,2748	,8142	,9757	223	+,030	+ ,01
353	2	+7350 27,53	6,324	-9,8976	+9,4817	,8010	,9772	218	-,030	-,03
354	4	- 32952,83	6,321	+9,6911	$-8,2845$,8008	,9772	238	+,017	+ ,08
355	4	+65 1838,30	6,293	-9,8338	+9,4554	,7989	,9775	225	-,006	-,06
356	4	- 53523,97	6,177	+9,7202	-8,4769	+0,7908	-9,9783	248	+,012	-,08
357	2	+ 3116,02	6,144	+9,5821	+8,2101	,7884	,9786	249	+,020	+ ,03
358	4	+60 1015,31	6,100	-9,7853	+9,4216	,7853	,9789	242	-,013 +015	20
359 360	4 1	$+112458,22$ $+\quad 141729,19$	6,044 6,038	$+9,6128$ $+9,2672$	$+7,8724$ $+8,8716$, 7813 , 7809	,9793	258	,+ 015 ,+ 014	

No.	No.Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
					6^{\prime}	c^{\prime}	d^{\prime}		A. R.	Decn.
362	${ }_{2}^{4 .}$	$\begin{array}{r}+10810,37 \\ +\quad 92648,70 \\ \hline\end{array}$	$+5,927$ 5,899	$+9,4133$ 9,4330	$+8,7169$ $+8,6842$	$\begin{array}{r}+0,7728 \\ \hline, 7708\end{array}$,9803	265	,022	, 12
363	4	-18 3 44,48	5,888	9,8506	-8,9591	,7700	,9804	268	+,,011	+ , ,05
364	4	+ 048 9,45	5,721	9,6232	+7,6094	,7574	,9815	277	+,021	+ ,09
365	4	+ 12151,71	5,715	9,6138	+7,8378	,7570	,9816	279	-,001	- ,20
366	4	-20 1746,51	5,653	+9,8692	-8,9902	+0,7523	-9,9820	285	+,012	- , 04
367	4	+ 61143,28	5,340	+9,5145	+8,4589	,7275	,9840	299	+,0:34	-, 01
368	4	- 52326,16	5,272	+9,7177	-8,3923	,7220	,9844	306	+,023	-,16
369	4	+464341,56	5,200	-9,6085	+9,2766	,7164	,9848	301	+,013	+ ,17
370	3	- 4352,09	5,001	+9,7007	-8,2479	,6991	,9860	2	+,007	,00
371	4	-11 5130,74	4,928	+9,7952	-8,7032	+0,6927	-9,9865	4	+,025	-, 01
372	4	+78 749,21	4,866	-9,9345	+9,3758	,6872	,9868	311	+,(1).9	+,05
373	4	+7748 24,75	4,776	-9,9330	+9,3671	,6790	,9873	317	+,010	- ,02
374	4	-815 54,98	4,741	+9,7543	--8,5308	,6759	,4875	12	+,030	+,03
375	4	- 82046,09	4,690	+9,7559	$-8,5304$,6712	,9878	15	+,012	+,04
376	4	+1815 0,00	4,565	+9,0294	+8,8533	+0,6595	-9,9884	20	+,017	+,10
377	4	- 65951,23	4,560	9,7396	$-9,4418$,6589	,9885	24	+,002	+ ,08
378	4	+195653,04	4,503	8,8751	+8,8849	,6535	,9887	25	+,,006	-, 14
379	4	-36 lll 3 l,76	4,497	9,9657	$-9,1202$,6530	,9888	30	+,006	-, ,04
380	4	-27 9 21,86	4,492	9,9196	-9,0097	,6524	,9888	29	+,007	+,10
381	2	+33 4814,12	4,435	-9,2601	+9,0904	+0,6469	-9,9891	27	+,002	-,01
322	4	-7 7 21,38	4,406	+9,7419	-8,4352	,6441	,9892	33	+,007	-,08
383	5	+13 2313,12	4,350	+9,2923	+8,7015	,6384	,9895	38	-,007	-,02
384	6	+1322 23,49	4,247	+9,2923	+8,6901	,6281	,9900	46	+,008	-,08
385	3	+ 22033,34	4,213	+9,5955	+7,9354	,6246	,9902	49	+,015	-,07
386		+281814,44	4,087	$-8,9138$	+8,9853	+0,6114	-9,9908	53	+,015	+,04
387	3	+571842,32	4,065	-9,7708	+9,2322	,6090	,9909	50	+,006	+ ,06
388	4	+ 1739,25	3,928	+9,6180	+7,5883	,5941	,9915	67	+,018	+ ,07
389	4	+ 32138,10	3,813	+9,5740	+8,0481	,5813	,9920	73	+,007	+,08
390	4	- 23914,63	3,773	+9,6794	-7,9397	,5767	,9922	82	-,050	,00
391	4	+1150,81	3,756	+9,6191	+7,5288	+0,5747	-9,9922	83	+,013	00
392	4	+ 1468855	3,744	9,6053	+7,7644	,5734	,9923	84	-,001	-,03
39	4	+15 5335,53	3,624	9,1703	+8,6949	,5592	,,9928	89	+,012	+
394	3	-13 16 48,16	3,624	9,8116	-8,6180	,5592	,9928	93	+,009	-,06
395	3	$\begin{array}{llll}-13 & 3 & 13,86\end{array}$	3,590	9,8096	-8,6068	,5550	,9929	96	$+, 007$	+ ,28
396	4	+2017 59,52	3,526	+8,8129	+8,7859	+0,5473	-9,9932	100	+,012	-, 17
397		- 82812,90	3,475	9,7589	-8,4061	,5409	,9934	104	+,006	+,06
398	4	+22 2414,29	3,429	8,4150	+8,8142	,5351	,9935	105	+,006	+,06
399	3	- 83057,11	3,394	9,7597	-8,3993	,5307	,99337	109	+,018	+ ,09
400	4	- 11929,84	3,354	9,6599	-7,5849	,5256	,9938	110	+,020	-,17
401	4	- 05613,40	3,348	+9,6532	-7,4269	$+0,5248$	-9,9938	111	+, 010	-, 07
402	4	+26 5113,49	3,268	-8,7634	+8,8671	,5143	,99:88	115	+,011	+.,08
403	4	+ 31316,87	3,251	+9,5775	+7,9590	,5120	,9942	121	+, 004	-,05
404	3	+541831,16	3,181	$-9,7551$	+9,1157	,5026	,9945	117	-,035	-.,05
405	4	+26 5127,37	3,049	-8,7781	+8,8372	,4842	,9949	131	+,013	,00

No.	$\begin{gathered} \mathrm{No.} \\ \mathrm{Obs} . \end{gathered}$	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
						c^{\prime}	d^{\prime}		A. R.	Decn.
40	4	+6130 20,19	+2,795	-9,8215	+9,0884	+0,4464	-9,9957	143	-,023	11
407	4	+53 2414,80	2,755	-9,7292	+9,0428	-4401	-,9959	146	+,011	,51
408	3	+3247 54,55	2,576	-9,2355	+8,8307	,4109	,9964.	168	+,016	-,,08
409	4	+ 4 - 217,88	2,570	+9,5599	+7,9569	,4099	,9964	170	+,017	- ,08
410	2	-2420,19	2,553	+9,6803	-7,7754	,4070	,9964	173	+,005	+ ,04
41	4	- 24140,42	2,553	+9,6803	-7,7754	+0,4070	-9,9964	174	-,001	+ ,07
412	2	- 51740,06	2,518	9,7185	-8,0632	,4010	,9965	175	+,010	- ,05
413	4	-28 43 35,82	2,495	9,9335	$-8,7767$,3970	,9966	181	+,008	+ ,08
414	4	-28 $56 \quad 7,35$	2,414	9,9345	-8,7654	,3827	,9968	190	-,007	+ ,07
415	3	+1836 18	2,356	8,9731	+8,5743	,3721	,9970	187	-,003	+ ,08
416	2	+185359,16	2,350	+8,9494	+8,5799	+0,3711	-9,9970	189	+,013	-, ,15
417	4	-29 48 38,62	2,350	+9,9400	-8,7657	,3711	,9970	193	+,,026	-, 28
418	4	+184511,58	2,194	+8,9638	+8,5463	,3412	,9974	198	+,013	+ ,03
419	2	+53 54 43,76	2,094	-9,73.96	+8,9270	,3212	,9976	199	+,012	+
420	4	+15 39 11,26	1,886	+9,1732	+8,4046	,2756	,9981	218	+,010	-,07
42	4	+3143 33,14	1,788	-9,1903	+8,6712	+0,2523	-9,9983	225	+,003	+,05
422	4	+135143,21	1,717	+9,2601	8,3126	;2350	,9984	232	+,019	- ,03
423	4	+192811,32	1,538	+8,8808	8,4080	,1869	,9987	245	+,009	- ,01
424	4	+6949,69	1,410	+9,5105	7,8783	,1491	,9989	255	+,025	+ ,06
425	4	+1350 52,22	1,346	+9,2601	8,2066	,1290	,9990	258	+,011	,00
426	2	-20 5310,16	1,328	+9,8808	-8,3730	+0,1233	-9,9990	263	+,019	- ,27
427	4	+61244,78	1,323	+9,5092	+7,8552	,1214	,9990	260	+,010	-, 04
428	3	-35 5711,72	1,195	+9,9717	-8,5437	,0772	,9992	270	+,010	-, 11
429		+2732 18,61	0,955	-8,8865	+8,3433	9,9804	,9995	279	+,004	+,04
430	4	+14959,26	0,880	+9,6042	+7,1476	,9445	,9996	282	+,024	+ ,01
431	4	+114433,16	0,838	+9,3463	+7,9302	+9,9239	-9,9996	284	+,009	+ ,07
43	4	+173932,32	0,559	+9,0414	7,9281	,7479	,9998	300	+,015	+
433	2	+2734 6,12	0,5:30	-8,8921	8,0833	,7247	,9998	303	+,012	+ ,09
434	4	+ 74129,39	0,530	+9,4713	7,5498	,7247	,9998	305	+,015	-,11
435	4	+15 $27 \begin{aligned} & 3,97\end{aligned}$	0,350	+9,1818	7,6674	,5438	,9999	317	+,001	- ,04
436	4	+263155,48	0,315	-8,7708	$+7,8461$	+9,4981	-9,9999	319	+,013	+ ,08
437	4	+ 52518,79	0,305	+9,5276	,1643	9,4499	9,9999	321	-,003	-,06
438	4	+38 5 24,38	0,30:3	-9,4409	,9700	9,4817	9,9999	318	+,006	- ,04
439	4	$+12299,58$	0,257	+9,3181	,4425	9,4091	0,0000	324	+,013	+ ,02
440	4	+69 3032,98	0,058	-9,8949	,4354	8,7657	0,0000	326	,(100	-, 06
441	2	+48 4414,55	+0,058	-9,6684	+7,3398	+8,7657	-0,0000	333	+,026	,00
442		-23 4	-0,017	+9,8982	+6,5342	-8,2428	0,0000	345		
44	4	+59 15 2,26	0,163	-9,8041	-7,8451	-9,2128	0,0000	343	+,012	-,06
444	4	$\begin{array}{llll}-37 & 1 & 4,47\end{array}$	0,158	+9,9768	+7,6747	-9,1970	0,0000	4	+,006	+ ,09
445	4	+46 2555,93	0,268	-9,6284	-7,9865	$-9,4284$	0,0000	1	-,001	+ 19
446	5	+24 126,03	0,379	-8,0414	-7,8865	-9,5786	-9,9999	13	, 022	
447	4	+23 5928,10	0,38:3	-8,0414	-7,89:5	, 5×52	,9999	14	,0	- ,09
448	4	+59 3626,39	0,420	-9;80 2	-8,2569	,62.30	,9999	10	+,008	-, 12
449	4	+16 433,38	0,483	+9,1461	$-7,8253$,6847	,9999	24	,000	+,14
450	2	-6 9 40,27	0,699	+9,7308	+ ,5739	,8448	,9997	44	+,013	-,01

No.	$\text { No. }\left\|\begin{array}{c} \text { No. } \end{array}\right\|$	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\begin{aligned} & \dot{0} \\ & \dot{\sim} \\ & \underset{\sim}{N} \\ & \text { N } \end{aligned}$	Annual P. M.	
				a^{\prime}	6	c^{\prime}	d^{\prime}		A. R.	Decn.
451		-1240	-0,734	+9,8082	+7,9056	-9,8660	-9,9997	46	s. ,+ 016	
452	8	-12 4122,93	0,746	+9,8082	+7,9130	,8728	,9997	48		+,02
453	1	-68811,50	0,752	+9,7308	+7,6029	,8762	,9997	47	+,010	+ ,05
454	4	$+523451,48$	0,764	-9,7243	-8,4808	,882 ${ }^{\text {¢ }}$,9497	39	+,014	- ,07
465	4	-2238 55,92	0,903	+9,8949	+8,2395	,9559	,9996	59	+,027	- ,19
456	3	+63 4244,18	0,921	-9,8414	-8,6148	-9,9642	-9,9995	50	+,027	- ,05
457	4	+12 2113,74	0,923	+9,3222	-7,9979	9,9697	,4995	58	+,016	+,03
458	4	-1329 27,96	1,()72	+9,8162	+8,0965	0,0303	,9994	72	+,005	+ ,03
459	2	+5829 47,27	1,113	-9,7952	-8,6753	,0465	,9993	61	+,,013	-, ,02
460	4	- 15727,66	1,218	+9,6702	+7,3154	,0×56	,9992	76	+,026	-, 08
461	2	+ 350 5,75	1,264	+9,5635	-7,6250	-0,1019	-9,9991	77	+,010	- ,07
462	3	+ 442 8,60	1,340	9,545:3	--7,7371	,1271	,,9990	85	-,004	-,30
463	1	+141035,19	1,450	9,2480	-8,2488	,1615	,9989	94	+,012	-, 07
464	3	-33 4728,72	1,462	9,9614	+8,6081	,1650	,9988	97	+,014	+,07
465		+2052	1,590	8,6990	-8,4514	,2014	,9986	99	+,013	
466	3	+102444,93	1,613	+9,3927	-8,1629	-0,2077	-9,9986	102	+,019	- , 18
467	4	+ 03139,12	1,619	+9,6284	-6,8762	,2093	,9986	105	+,026	-, 12
468	2	-36 37 5,38	1,619	+9,9745	+8,6829	,2093	,9986	112	-,001	- ,06
469	4	+ 591825,64	1,776	-9,8028	-8,8819	,2494	,9983	106	+,001	-,18
470	4	+20 3126,62	1,851	+8,7559	-8,5102	,2675	,9981	120	$+, 023$	$+, 15$
471	4	$\begin{array}{lll}-32 & 4 & 1,82\end{array}$	1,845	+9,9528	+8,6892	-0,2661	-9,9981	127	+,015	-, 08
472	2	+15 5739,02	1,950	,1584	- ,4271	,2\%00	,9979	129	+,005	-, 06
473	4	+10 2 42,67	1,950	,40:31	-, 2999	,2910	,9979	131	+,014	-, 12
474	3	+175315,62	2,008	,0294	- , 4×81	,3028	,9978	134	,000	+,04
475	3	+ 72124,09	2,194	,4814	-, 1462	,3412	,9974	149	$+, 016$	+,06
476	4	+313610,58	2,234	-9,1818	-8,7665	-0,3491	-9,9973	150	+,013	+,02
477	4	+1653 6,42	2;240	+9,1004	-,.5113	,3502	,9973	153	$+, 005$	+ ,07
478	4	-16 3417,01	2,321	+9,1238	-, 5188	,3657	,9971	157	+,0171	+ ,03
479	4	$+24353,10$	2,483	-8,2553	-,7121	,3950	,9966	168	+,009	-,06
480	2	-1831 44,89	2,558	+9,8609	+ ,6082	,4080	,9964	178	$+, 009$	+ ,09
481	3	-31 45 16,99	2,657	+9,9499	$+8,8437$	-0,4243	-9,9961	187	$+, 019$	- ,13
482	4	$\begin{array}{llll}-32 & 5 & 16,63\end{array}$	2,703	+ ,9557	+8,8551	,4318	,9960	191	+,035	-, 03
483	3	+59 3551,24	2,795	-, 8021	-9,0802	,4464	,9957	184	-,005	-, 10
484	4	-18 238,86	2,795	+ ,8573	+8,6356	,4464	,9957	196	+,014	+,14
485	3	+ 41735,13	2,858	+ ,5551	-8,0275	,4562	,9955	200	+,016	-,13
486	4	+5312 16,50	3,205	-9,7243	$-9,1073$	-0,5058	-9,9944	215	+,018	-, 03
487	4	+ 23949,87	3,262	+ ,5877	-7,8792	, 5135	, 9942	221	+,015	- ,17
488	4	$-16341,68$	3,268	+ ,8432	+8,6673	,5143	,9941	225	+,011	- ,05
489	3	+462137,52	3,320	-, 6180	-9,0787	,5211	,9940	220	+,017	-, ,03
490	3	-20 3625,96	3,400	+ ,8768.	+8,7759	,5315	,99:37	233	$+, 023$	+ ,01
491	4	-20 26 19,65	3,412	+9,8756	+8,7739	-0,5329	-9,9936	235	$+, 014$	-,10
492	2	-20)35 6,50	3,417	+ ,8762	+8,7777	,5337	,9936	236	+,0:29	- ,02
493	5	-20 55 43,69	3,498	+ ,8791	+8,7948	,5438	,9933	24.	+,027	- ,04
494	3	-14 12 39,49	3,612	+ ,8215	+8,6460	,5578	,9928	249	+,016	,00
495	3	+39 320,68	3,653	-, 4518	-9,0601	,5626	,99:27	244	+,013	-,13

No.	No.Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\left\lvert\, \begin{gathered} \circ \\ \text { 足 } \\ \text { 俞 } \end{gathered}\right.$	Annual P. M.	
						c^{\prime}	d^{\prime}		A. R.	Decn.
541	4	+ 33738,16	7,390	+9,5729	-8,3685	-0,8686	-9,9683	143	¢. ,+ 018	02
542	4	-28 12 57,90	7,470	+9,9143	+9,2461	,8733	,9675	148	+,013	
543	4	+ 61311,63	7,514	+9,5198	-8,6085	,8759	,9671	150	+,001	+ , 14
544	4	+ 545 55,05	7,579	+9,5302	-8,5797	,8796	,9665	158	+,013	+ , 02
545	2	-23 1122,97	7,660	+9,8831	+9,1743	,8808	,9663	165	+,003	+ ,05
546	1	+65 3213,62	7,724	-9,8195	-9,5450	$-0,8878$	-9,9651	159	-,018	+,15
547	7	+65 32 21,66	7,724	-9,8195	$-9,5450$,8878	,9651	160	-,013	+, 08
548	3	-26 26 6, 4,51	7,853	+9,9025	+9,2416	, 8950	,9638	177		+,12
549	2	+ 4274,75	7,863	+9,5575	-8,4818	,8956	,9637	174	+,007	+,10
550	4	+24 3735,06	8,024	+8,1139	-9,2221	,9044	,9621	182	+,001	-,07
551	4	+ 03416,72	8,062	+9,6284	-7,6000	-0,9064	-9,9617	189	+,010	-,03
552	4	- 51714,34	8,296	,7126	+8,5824	,9188	,9592	202	+,011	-, 11
553		-35 49 47,52	8,307	,9469	+9,3849	,9194	,9591	206	+,017	-, 04
554	4	-14 1733,84	8,317	,8102	+9,0107	,9200	,9590	204	+,019	-,12
555		-14 1750,11	8,322	,8102	+9,0110	,9202	,9589	205	+,007	-, 15
55	4	+79 5433,10	8,418	-9,9124	-9,6164	-0,9252	-9,9579	187	-,017	-, 16
557	2	-37 19 52,61	8,375	+ ,9523	+9,4038	,9230	,9583	209	+,046	+,01
558		-37 32	8,508	+ ,9523	+9,4126	,9298	,9569	218	+,013	
559	4	+33 3824,41	8,529	-,1492	-9,3723	,9309	,9566	215	+ + +,008	+,01
560	2	- 84628,91	8,665	+ ,7536	$+8,8197$,9378	,9551	228	+,018	,00
561	4	- 311 15,83	8,671	+9,6839	+8,3829	-0,9381	-9,9550	227	+,009	+,03
562	4	-17 5630,56	8,833	+ ,8395	+9,1330	,9461	,9531	241	+,017	+ , 15
563	4	+32 4225,37	8,844	- ,0792	$-9,3773$,9466	,9530	238	-,013	-, 10
564	,	- 5030887	8,8.54	+ ,7076	+8,5869	,9472	,9528	242	+,105	-,17
565	3	+65 1040,78	8,901	- ,8000	-9,6053	,9495	,9523	236	+,022	-, 19
566	5	- 22220,04	8,980	+9,6730	+8,2702	-0,9533	-9,9513	247	+,005	,00
567	4	+ 9425,41	9,146	+ ,4609	$-8,8568$,9612	,9493	258	+,006	-,05
568	3	-22 3416,13	9,229	+ ,8704	+9,2475	,9652	,9483	264	+,029	+,05
569	4	+54 34 26,35	9,276	-,6730	$-9,5764$,9673	,9477	260	+,007	-, 11
570	4	- 31159,49	9,291	+ , 6830	+8,4129	,9681	,9475	268	+,014	+,08
571	4	+20 15 32,10	9,368	+9,0043	-9,2089	-0,9717	-9,9465	272	+,003	-, 08
572	4	+20 11 4,42	9,471	,0128	-9,2123	,9764	,9451	280	+,013	-,15
573	4	-22 5422,60	9,502	,8710	+9,2662	,9778	,9447	287	+,025	+, 04
574	4	+15 2355,59	9,538	,2648	-9,1016	,9795	,9442	286	+,009	-,05
575	4	- 327 7,98	9,925	,6803	+8,4123	,9907	,9408	300	+,014	+,18
576	4	+35 5621,18	10,003	-9,1987	$-9,4666$	-1,0001	-9,9378	308	+,022	- ,27
577	4	+105858,13	10,042	+ ,4166	-8,9791	,(018	,9372	313	+,019	-,01
578	1	+ 05557,61	10,067	+ ,6232	--7,9128	,0029	,9369	315	+,004	+
579	4	+ 93839,70	10,142	+ , 4533	$-8,9278$,0061	,9358	322	+,004	-,06
580	1	-61557,88	10,193	+ ,7202	+8,7455	,0083	,9350	2	+,026	-,04
581	1	+18 756,40	10,247	+9,1614	-9,2017	-1,0106	-9,9342	6	+,016	-, 37
582	4	-18 2929,07	10,313	+ ,8351	+ ,2129	,0134	,9333	12	+,019	+,03
583	4	+112019,62	10,382	+ , 4099	-, 0077	,0163	,93321	13	+,010	-, 01
584	4	+54 3826,97	10,46.	-, 6484	-, 6291	,0196	,9309	15	+,014	-, 15
585	4	+18 4 3,63	10,512	+ ,17i2	-,2113	,0217	,9,301	20	+,012	-,05

No.	Star's name and Mag.			$\begin{gathered} \text { No. } \\ \text { Obs. } \end{gathered}$	Right Ascension Jan. 1, 1836.	Annual Precession.	Logarithms of				
				a			b	c	d		
586		Navis	7		3	$$	$\begin{gathered} s . \\ +1,884 \end{gathered}$	-8,7044	+8,9131	+0,2751	+8,5626
587		Cancri	8	3	7 7 7 , 41	3,266	-8,5532	-,7594	-,5140	-7,7886	
588			8	3	7 23,87	3,660	,5992	,8051	,5635	-8,2642	
589		Lyncis	8	3	7 36,56	4,610	,7754	,9799	,6637	-8,6816	
590		Cancri	8	1	846,54	3,260	,5573	,7573	,5132	-7,7824	
591		Cancri	8	3	9 29,98	3,259	-8,5595.	+8,7564	+0,5131	-7,7839	
592		Navis	8	4	9 52,24	2,750	,5710	,7645	,4393	+8,0056	
593		Cancri	8	3	13 25,12	3,288	,5729	,7538	,5169	-7,8600	
594			8.9	4	14 2,26	3,443	,5900	,7681	,5369	-8,0948	
595			9	5	1641,15	3,670	,6305	,7977	,5647	-8,3101	
596		Cancri	7.8	3	1654,11	3,584	-8,6176	+8,7840	+0,5544	-8,2446	
597			7.8	3	17 55,64	3,226	,5818	,7442	, 5087	-7,7343	
598		Navis	6	3	18 2,19	2,589	,6153	,7773	,4131	+8,2166	
599		Monocer.	8	3	20 12,50	3,031	,5840	,7369	,4816	+7,1232	
600			8	2	24 1,70	2,697	,6179	,7558	,4309	$+8,1298$	
601		Monocer.	8.9	3	2424,09	3,019	-8,5951	$+8,7315$	+0,4799	+7,2574	
602			8.9	4	25 16,31	3,023	,5973	,7302	,4804	+7,2253	
603		Hydræ	7.8	4	26 52,13	3,129	,6017	,7283	,4954	-7,3597	
604		Cancri	${ }^{8}$	3	29 40,79	3,459	,6357	,7513	,5389	-8,1746	
605	3	Leo. Min.	7.8	5	29 41,71	3,764	,6860	,8013	,5756	$-8,4254$	
606		Cancri	8	1	29 43,74	3,457	-8,6356	+8,7509	$+0,5387$	-8,1728	
607		Pixid. Naut.	'7,8	2	3084,50	2,555	,6547	,7689	, 4074	+ ,2945	
608	4	Leo. Min.	7	2	$30 \quad 7,39$	3,742	,6831	,7969	,5731	-, 4134	
609		Cancri	8	3	3015,99	3,466	,6383	,7515	,5398	- , ,1853	
610			8	2	30 53,26	3,445	,6384	,7490	,5372	-, ,1742	
611		Cancri	8	4	31 47,06	3,473	-8,6432	+8,7504	$+0,5407$	$-8,1986$	
612		Monocer.	9	2	3533,42	2,948	,6251	,7177	,4695	+7,6877	
613		Cancri	8	3	36 8,89	3,433	,6491	,7392	,5357	--8,1704	
614	10	Hydræ	7	3	36 19,90	3,182	,6266	,7162	,5027	-7,1647	
615		Lyncis	9.10	5	36 33,36	4,468	,8506	,9389	,6501	$-8,7559$	
616		Hydræ pre.	8	4	$\begin{array}{ll}37 & 3,46\end{array}$	3,032	-8,6260	+8,7127	+0,4817	+7,1724	
617		$\underline{\text { yeq. }}$	7.8	3	37 3,80	3,032	,6260	,7127	,4817	$+7,1724$	
618		Cancri	8.9	2	37 29,13	3,272	,6350	,7202	,5148	-7,9227	
619 620		Navis	9 8	3	$\begin{array}{ll}38 & 53,33 \\ 39 & 43\end{array}$	2,142	,7589	,8389	,3308	+8,5847	
620		Cancri	8	3	39 43,76	3,308	,6434	,7199	,5196	-8,0015	
621		Lyncis	8	4	40 39,64	4,207	-8,8100	+8,8826	+0,6240	-8,6822	
622		Cancri	9	3	41 39,57	3,410	,6595	,7285	- ,5327	-,1636	
623		Navis	7	3	4214,54	2,159	,7652	,8324	,3342	+ ,5914	
624		Pixid. Naut.	7	4	43 10,21	2,511	,6970	,7604	,3998	+ ,3808	
625			6.7	4	4311,98	2,432	,7118.	,7752	,3860	+ ,4383	
626	3 H	Navis	7.8	4	43 32,97	2,229	-8,7542	+8,8163	+0,3481	+8,5598	
627		Cancrí	8	3	44 31,91	3,445	,6710	,7291	, 5372	-8,2167	
628			7.8	8	44 35,04	3,397	,6647	,7225	,5311	-8,1582	
629			9	4	44 37,73	-3,337	,6578	,7153	,5234	-8,0713	
630		Hydræ pre.	8	4	$45 \quad 9,93$	3,227	,6491	,7049	,5088	$-7,8443$	

No.	No. Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\begin{aligned} & \text { 足 } \\ & \text { N } \\ & \text { N } \\ & \text { H } \end{aligned}$	Annual P. M.	
				a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}		A. R.	Decn.
		- ' "							s.	"
586	3	$\begin{array}{llll}-46 & 9 & 18,92\end{array}$	-10,542	+9,9605	$+9,5791$	-1,0229	-9,9297	29	+,016	$+0,03$
587	4	+ 95410,25	10,587	+9,4487	-8,9581	,0247	,9290	26	+,007	- ,20
588	4	+2732 56,11	10,592	-7,9031	-9,3881	,0249	,9289	24	+,010	-, 01
589	3	+53 42 4,49	10,617	-9,6294	-9,6302	,0260	,9285	23	+,,004	-,03
590	4	$+9400,61$	10,696	+9,4564	-8,9523	,0292	,9272	34	$+, 010$	-, 10
591	4	$+93914,55$	10,742	+9,4579	-8,9538	-1,0314	-9,9263	36	$+, 007$	-, 14
592	1	-15 46 56,30	10,774	+9,8109	+9,1650	,0324	,9259	39	+,024	-, 08
593	2	+111047,32	11,033	+9,4216	-9,0278	,0427	,9216	48	+,016	+,04
594	3	+1839 24,39	11,082	+9,1614	-9,2471	,0446	,9208	51	+,023	+ ,02
595	4	+283532,12	11,276	-8,1761	$-9,4300$,0521	,9174	61	+,003	+,01
596	3	$\begin{array}{lll}+25 & 4 & 0,19\end{array}$	11,290	+8,6335	-9,3778	-1,0527	-9,9171	66	-,003	- ,25
597	4	+ 81055,46	11,362	9,4955	-8,9059	,0555	, 9158	70	$+, 010$	- ,06
598	3	-2331 3,76	11,368	9,8615	+9,3550	,0556	,9157	74	+,005	-, 02
599	3	- 15842,74	11,530	9,6646	+8,2990	,0618	,9127	81	$-, 001$,+ 02 $+\quad 07$
600	4	-18 57 21,63	11,796	9,8280	+9,2816	,0717	,9077	94	$+, 001$	+ ,07
601	4	- 23738,78	11,823	+9,6721	+8,4330	-1,0727	-9,9071	97	$+, 018$	-, 06
602	4	- 22518,28	11,884	+9,6702	+8,4010	,0750	,9059	100	+,011	-,02
603	4	+ 318 9,78	11,997	+9,5877	$-8,5351$,0791	,9037	107	+,004	-, 04
604	2	+201447,66	12,192	+9,1238	$-9,3230$,0861	,8997	118	+,021	-, 10
605	4	+33 17 59,65	12,197	-8,8573	--9,5237	,0862	;8996	117	+,009	-,04
606		$+209$	12,197	+9,1271	-9,3214	-1,0862	-9,8996	119	+,015	
607	3	-25 50 52,38	12,216	+9,8669	+ 4247	,0869	,8992	125	+,006	-, 03
608	4	+3230 59,00	12,225	-8,7781	- ,5155	,0872	,8990	120	+,005	+ ,05
609	4	+203932,10	12,234	+9,1038	- , 3326	,0876	, 89888	121	,+ 015 $+\quad 019$	
610	2	+20 6 19,29	12,280	$+9,1367$	- , 3230	,0892	,8978	128	+,019	-, 14
611	4	+21 3 15,01	12,340	+9,0864	-9,3446	-1,0913	-9,8965	135		+ ,08
612	1	-638 0,48	12,597	9,7168	+9,8609	,1002	, 8909	151	+,004	-, 05
613	4	+1924 24,55	12,613	9,1790	-9,3212	,1018	,8899	156	-,009	
614	3	+ 61614,69	12,650	9,5366 $-9,5623$	$-8,8382$ $-9,7062$,1021	,88897	157 153		+ ,04
615	4	+533128,64	12,641	-9,5623	-9,7062	,1029	,8892	153	,000	-, 06
616	3	$-2034,83$	12,700	+9,6637	+8,3482	-1,1038	-9,8885	159	+,001	, 00 ,- 04
617	4	-2 2034,21	12,700	,6637	+8,3482	,1038	,8885	160	+,004	-, 04
618	4	$+111115,93$	12,727	,4407	-9,0904	, 1047	,8879	161	,+ 001 +024	-, 03
619	3	-42 144,45	12,817	,9227	$+9,6316$ $-9,1660$, 1078	,8858	169	,+ 021 ,+ 024	- 04 $+\quad, 02$
620	2	$+131146,41$	12,879	,3944	-9,1660	,1099	,8814	171	+,024	+ ,02
621	4	+4810 46,31	12,946	-9,4472	-9,6824	-1,1121	-9,8828	174	,+ 007 +021	-, 23 $+\quad 06$
622	2	+183824,29	13,008	+9,2253	-, 3164	- ,1142	8813	181	+,021	,+ 06 $+\quad 05$
623	2	-41 5137,70	13,039	9,9191	+ ,6377	, 1152	,8805	187	,+ 023 +023 +0	$+\quad, 05$ $+\quad, 12$
624	- 2	-28 5118,50	13,106	9,8722	$+\quad, 4992$ $+\quad 5419$	- ,1174	,8789	188		+ ,02
625	4	$-32 \quad 10 \quad 16,96$	13,106	9,8865	+ ,5419	, ,1174	,8789	190	+,003	-,02
626	- 2	-39 42 50,62	13,128	+9,9122	+9,6219	-1,1182	-9,8783	194	,+ 009 ,- 004	-, 07
627	- 4	+20 3456,12	13,198	,1523	- , 3642	11205 1206	- $\quad 8766$	195	-,004	-,01
628	5	+18 938,43	- 13,203	,2504	- , 3121	1	,8763	197	,+ 093 +	-, ,13
629 630	- 4	15 +15 +9	13,207 13,237	,3502	- , ,0150	- ,1218	- $\begin{array}{r}\text {,8763 } \\ \hline 8756\end{array}$	190	,+ 023 ,+ 021	-,+ 03
630	- 4	+ 9211,99	13,237	,4928	- , 0150	-1218	, ,850		+,021	$1+$ + ${ }^{+}$

No.	$\begin{aligned} & \text { No. } \\ & \text { Obs. } \end{aligned}$	Declination Jan. 1, 1836.	Aunual Precession.	Joymithms of					Annual P. M.	
				a^{\prime}	b	c	d^{\prime}		A. R.	Decn.
631	3	+ 924,75	-13,237	+9,4928	-9,0150	,1218	-9,8756	201	,007	
6332	4	+ 72049,85	-13,390	+9,4202	+8,93:8	-126×	--9,8716	215	,+ 019 ,+ 019	
633	3	+18 621,48	13,394	,2553	$-9,3173$,1269	\%8715	213		+ ,02
63	4	- 15449,83	13,601	,6609	+8,3.578	,1355	,8644	228	+,008	+ ,02
635	4	- 15515,68	13,746	,6609	+8,3605	,1382	,8620	235	-,005	+ ,01
636	4	+ 61731,68	13,759	+9,5453	-8,8758	-1,1386	-9,8616	236	+,021	+ ,04
637	4	- 05014,09	13,768	96484	+8,0082	,1388	,8614	237	+,018	-,14
638	4	- 74352,24	13,803	9,7226	+8,9679	,1400	,8603	238	+,012	-,06
639	4	+14 4933,88	13,82\%	$\stackrel{9,3692}{8,5441}$	-9,246.5	, 14140	,8597	240	+,045	二,17
640	4	+28 3232,57	13,834	8,5441	-9,5184	,1410	,8595	239	+,010	-,03
641	1	+39 5 27,58	13,902	-9,0682	-9,6408	-1,1431	-9,8575	243	-,020	+ ,11
642	3	-13 47 30,70	13,928	+9,7723	+9,2189	,1439	, 8568	246	+,010	+ ,16
64	4	+1522 1,20	14,128	9,3617	-9,2709	,1501	,8.509	257	+,039	-,13
64	4	- 149 4,83	14,169	9,6:90	+8,3504	,1513	,8496	260	+,010	+,03
645	4	-42 5035,69	14,223	9,9015	+9,6836	,1530	,8480	266	,000	+ ,11
64	3	-25 10 47,03	14,275	+9,8401	+9,4815	-1,1546	-9,8463	268	+,001	-,12
647	4	-25 8 29,02	14,341	,8388	+9,4830	,1,66	,8442	5	+,018	-,11
618	4	- 61540,45	14,450	,7050	+8,8960	,1.599	,8407	10	+,020	-, 07
649	4	-19 4 4 50,14	14,458	,8035	+9,3726	, 1601	,8405	13	+,011	+,016
650	3	+ 42941,06	14,479	,5786	-8,7518	,1607	,8398	15	+,019	-,09
651	3	+25 4113,17	14,487	+8,9638	-9,4956	-1,1610	-9,8395	12	+,015	-, 01
652	4	-14 4456,82	14,502	9,7752	+9,26:3	,1614	, 8390	16	+,009	-,01
653	4	$\begin{array}{llll}-14 & 1 & 9,97\end{array}$	14,567	9,7686	$+9,2456$,1634	,8369	21	+,007	+ ,05
654	4	- 35147,95	14,583	9,6803	+8,6889	,1638	,8363	22	+,014	-,02
655	4	--37 56 28,71	14,607	9,8825	+9,6514	,1646	,8355	26	+,014	+ ,02
65	4	+19 2920,79	14,627	+9,2577	-9,3863	-1,1651	-9,8349	25	+,001	-,02
657	4	- 83 47,16	14,643	9,7210	+9,0108	,1656	,8343	27	-,001	+ ,07
658	1	-36 -36 13	14,747	9,8774	$+9,6457$ $+9,479$,1687	,8308	44	+,015	+,00
6.59	4	$-135329,41$	14,750	9,7664	+9,2479	,1688	,8306	39	+,016	+ ,04
660	4	+27 $51 \begin{array}{ll}\text { 9,29 }\end{array}$	14,817	8,8388	- 9,5382	,1707	,8283	45	-,011	-,02
661	4	+ 55419,27	14,860	+9,5599	-8,8808	-1,1720	-9,8268	49	+,012	-, 01
${ }^{6} 62$	4	-15 8141,30	14,897	,7738	+9,2887	, 1730	,8255	52	+,017	+ , 17
663	4	+ 05223,41	14,918		8,0515 $+9,0623$,1737	,8247	54	+,015	,00
664	4	$\begin{array}{r}+85.5 \\ \hline+134837 \\ \hline\end{array}$	14,927 14,927	,7251	$+9,0623$ $-9,2494$,1739	,8244	56	+,013	+,03
665	4	+13 4824,11	14,927	,4183	-9,2494	,1739	,8244	55	+,018	-, 06
666	2	-14 51519,84	14,973	+9,7716	+9,2840	-1,1753	-9,8227	59	+,022	- ,26
667		+ 412	15,006	+,5855	$-8,7407$, 1780	,8193	64	+,010	
668	4	- 43946,03	15,123	+ ,6866	+8,7881	,1796	,8171	71	-,006	-, 04
669	4	+482835,68	15,142		-9,7523		,8164	70	-,002	-,02
670	4	+ 45913,07	.15,182	+,5740	-8,8168	,1814	,8147	76	+,004	-,08
671	4	- 5423 3,73	15,213	+9,6964	+8,8773	-1,1823	-9,8136	80	+,009	- ,09
672	4	+1724 17,03	15,226	+ , 3424	-9,3559	,1826	,8131	79	+,017	+ ,08
673	4	+63 4622,45	15,287	-,5888	-9,8352	,1843	,8108	82	+,055	-,01
674	2	- $22^{15,93}$	15,413	+,6599	+8,4395	,1879	,8056	95	+,021	-,05
675	3	- 45652,16	15,518	+,6875	+8,8248	,1908	,8014	102	+,012	-, 16

together with their annual precessions and proper motions, $\& c$.

Nu.	No. Ubs.		$\begin{gathered} \text { Acrim. } \\ \text { Powces. } \\ \text { sion. } \end{gathered}$	Logarithms of					Annual P. M.	
				a	6^{\prime}	c^{\prime}	d^{\prime}		A. R.	Decn.
			${ }^{\prime \prime}$							
676	5	+29 52300	-15.573	+8,8751	-9,5871	-1,1924	-9,7990	109	-,004	-, 01
677	3	+2 3512,75	15,599	9,6185	8,5422	,1931	,7979	114	+,014	,00
678	4	+ 85446,76	15,6:8	9,5224	9,0834	,1958	,7937	119	+,007	- ,02
679	4	+3153 34,92	15,751	8,6128	9,6181	,1973	,7913	124	+,002	-, 02
680	4	+3053 13,85	15,866	8,7634	9,6088	,2005	,7860	131	+,027	-,01
681	4	+ 22541,39	15,872	+9,6107	-8,5236	-1,2007	-9,7858	134	+,007	+ ,04
682	3	+ 23422,10	15,905	9,6096	8,5507	,2015	,7843	138	-,007	+ ,05
683	4	+32 111,30	16,0]7	8,6902	9,6268	,2046	,7790	145	+,005	+ , 11
684	4	+3051 19,04	16,078	8,8261	9,6140	,2062	,7761	155	-,001	+ ,05
685	4	+ 32226,35	16,171	9,6010	8,6734	,2087	,7715	161	+,004	+ ,08
686	4	+21 1430,95	16,280	+9,2856	-9,4686	-1,2117	-9,7659	165	+,018	+ ,06
687	3	-2200,8,89	16,280	, 7924	+9,4836	,2117	,7659	167	$-, 018$	-, 01
688	3	-26 5242,35	16,298	,8129	+9,5657	,2121	,7650	170	+,015	,00
689	4	+ 23327,34	16,324	,6117	-8,5534	,2128	,7636	171	+,004	-,03
690	4	$+22822,01$	16,335	,6117	-8,5420	,2131	,7631	172	$+, 015$	-,01
691	4	- 63334,95	16,449	+9,6964	+8,9735	-1,2161	-9,7570	180	+,021	+ ,02
692	4	+25 $19 \quad 12,21$	16,472	,1732	-9,5456	,2167	,7557	183	+,010	-,02
693	4	+1152 13,26	16,485	,4885	-9,2276	,2171	,7550	184	+,010	- ,09
694	4	$-1521,14$	16,578	,6474	+8,2008	,2195	,7498	192	+,003	- ,05
695	4	$-982,62$	16,688	,7126	9,1219	,2224	,7434	203	+,018	+ ,02
696		+ 543	16,698	+9,5763	-8,9177	-1,2227	-9,7428	204	+,008	
6.97	4	+ 75634,24	16,736	,5450	-9,0598	,2237	,7405	206	+,017	- ,14
69.8	4	$-101545,08$	16,781	,7202	+9,1745	,2248	,7378	210	+,025	-,07
699	4	+ 8278,53	16,784	, 5428	$-9,0892$,2249	,7377	208	,+ 013 ,+ 017	, 00 $-\quad 18$
700	4	$+301844,70$	16,870	,0128	-9,6280	,2271	,7324	214	+,017	-, 18
701	3	- 1950,84	16,885	+9,6474	+8,2405	-1,2275	-9,7314	219	+,008	+ ,03
702	4	- 110 4,47	16,889	,6474	+8,2406	,2276	,7312	220	$+, 010$	-,01
703	4	+ 53523,42	16,926	,5798	$-8,9134$,2286	,7288	222	+,011	- ,05
704	4	- 224 17,09	17,041	,6590	+8,5545	,2315	,7214	228	,+ 012 ,+ 004	-, 01 $+\quad, 07$
705	4	-12 3031,08	17,126	,7300	+9,2682	,2337	,7150	232	+,004	+ ,07
706	4	$+104120,69$	17,119	+9,5185	-9,1994	-1,2340	-9,7148	234	+, 010	
707	4	+ 44532,89	17,150	+ ,5899	8,850t	,2343	$, 7139$	235	+,012	-, 14
708	4	+5627 9,11	17,183	- , 2765	9,85:39	,2351	,7116	236	+,004	+,02
709	4	$\begin{array}{r}\text { a } \\ +\quad 41620,90 \\ \hline\end{array}$	-17,278	+ $+\quad, 5966$ $+\quad 4483$	8,8054 9,2868	,2375	,7048	243 4	,+ 001 ,+ 017	-, 18
710	4	$+125030,71$	17,488	+ , $498: 3$	9,2868					
711	2	+694444,48	17,770	--9,4533	-9,9199	-1,2497	-9,6051	30	+,007	-, 10
712	4	+6.942543 +13	17,770	+ , 4983	-,3133	, 2497	,6651	34	+,010	-, 10
713	4	+85 1344,30	17,824	- , 6228	- ,9475	,2510	,6602	14	-,016	-, 02
714	3	+2113 31,79	17,821	+ + ,+ 3802	- , 5072	- ,2509	,6605	37 43	,+ 007 ,+ 011	+ $+\quad 07$ $+\quad, 08$
715	3	-28 822,75	17,851	+ ,7767	+ ,6237			43		+ ,08
716	4	+1820 25,21	1 17,328	+9,4330	-9,4488	-1,2535	-9,6505	50	+,011	-, 10
717	3	+18 28 25, 36	17,977	, 7730	+9,6349	, ,5477	,6457	56	+,012	+ , 16
718	4	-174846,15	518,056	,7372	+9,4407	7 ,2566	, ,6377	68	+,038	- , 07
719	4	-15245,52	2 18,158	,6513	+8,4776	-2612	-,6169	92	+ + +,028	-
720	4	-32 3413,81	1 18,246	,7701	+9,6904	, 2612			+,028	$1+, 04$

No.	Star's name and Mag.			$\begin{gathered} \text { No. } \\ \text { Obs. } \end{gathered}$	Right Ascension Jan. I, 1836.			Annual Precession.	Logarithms of					
				a				b	c	d				
721		Ursæ Maj.	8		4		$m .$ 22		$\begin{gathered} s . \\ 28,51 \end{gathered}$	$\begin{gathered} s . \\ +3,837 \end{gathered}$	-9,0187	+8,6737	+0,5840	-8,9290
722		Usæ Maj.	8	4			42,44	3,715	8,9765	+,6254	-,5701	-8,8608		
723		Hydræ	8	3		24	3x,07	2,842	,8206	,4648	,4536	+8,4087		
724	52	Navis	6.7	4		24	58,27	2,545	,9304	,5731	,4057	+8,7740		
725		Antl. Pneum.	8	4		25	22,19	2,726	,8601	,5008	,4355	$+8,5909$		
726		Antl. Pneum.	8	4			11,54	2,727	-8,8635	+8,4945	+0,4357	+8,5989		
727			8.9	4			1,27	2,807	,8383	,4598	,4482	+8,4926		
728		Hydræ	8	4			9,65	2,916	,8093	,4194	,4648	+8,2686		
729		Leonis	9	4			53,66	3,197	,8066	,4071	,5047	-8,2143		
730		Sextantis	8	4			39,35	3,115	,7952	,3858	,4935	-7,7768		
731		Leo. Min.	8	4		36	45,98	3,358	-8,8638	+8,4427	+0,5261	$-8,5815$		
732		Antl. Pneum.	8	4			22,57	2,809	,8527	,4281	,4485	+8,5362		
733		Hydræ	8	4			55,05	2,945	,8112	,3776	,4691	$+8,2213$		
734		Sextantis	8	4			0,86	3,004	,8028	,3507	,4777	+7,9544		
735		Hyd. \& Crat.	7	4		42	44,02	3,006	,8032	,3467	,4780	+7,9485		
736		Sextantis	8	4			25,43	3,006	-8,8036	$+8,3430$	$+0,4780$	+7,9480		
737		Leonis	8.9	4			37,76	3,132	, 8040	,3422	,4958	-7,9643		
738		Ursa Maj.	7	4		46	51,47	3,456	,9365	,4542	,5386	$-8,7692$		
739		Leonis	8.9	4			24,28	3,130	,8067	,3210	,4955	-7,9781		
740			8	4		49	53,12	3,233	,8373	,3356	,5096	$-8,4177$		
741		Leonis	8	4			58,84	3,143	-8,8118	+8,3025	+0,4973	-8,0838		
742			8.9	4			45,63	3,178	,82:20	,3005	,5021	8,2592		
743			7.8	4			59,95	3,135	,8124	,2827	,4962	8,0535		
744			8	4			9,28	3,073	,8059	,2751	,4876	6,9323		
745		Ursæ Maj.	8	4			35,79	3,368	,9169	,3753	,5274	8,7169		
746		Leonis	8	3			37,52	3,073	-8,8067	+8,2656	+0,4876	-6,9694		
747			7.8	4			56,46	3,156	,8190	,2756	,4991	8,1883		
748			8	1			4,71	3,118	,81.20	,2560	,4939	7,9555		
749			7.8	84			39,39	3,137	,8164	,2530	,4965	8,1003		
750		Ursæ Maj.	7.8	3		59	22,59	3,565	9,0502	,4813	,5523	8,9637		
751		Leonis	7	4			54,63	3,062	-8,8090	+8,2360	+0,4860	+7,0651		
752			7	4	11	0	0,69	3,181	,8:309	,2575	,50:2	-8,3229		
753		Leo. Min.	7	4			14,05	3,323	,9126	,3137	,5215	-8,6997		
754		Leonis	8.9	95			55,92	3,077	,8120	,1912	,4481	-7,3010		
755			8	3		6	7,77	3,143	,8241	,2016	,4973	-8,1922		
756		Ursæ Maj.	7.8	83			4,70	3,300	-8,9052	+8,2911	+0,5185	-8,6777		
757		Leonis.	7	4			47,63	3,134	,8245	,1703	,4961	$-8,1716$		
758		Crateris	8	3			26,23	3,037	,8162	,1559	,4824	+7,8378		
759			8	4			26,02	3,038	,8166	,1472	,4826	+7,8382		
760		Leonis	8	4		13	2,57	3,091	,8163	,1325	, 4901	-7,7404		
761		Leonis	7.8	8.4			37,21	3,091	-8,8171	+8,1177	+0,4901	$1-7,7588$		
762		Hydræ	8	3			53,75	2,883	8,9041	,2021	,4598	+8,6666		
763		Ursæ Maj,	7	4			26,96	3,369	9,0030	,2951	,5275	-8,8840		
764		Hydræ	7	4			51,61	2,888	8,9036	,1923	,4606	+8,6646		
765		Leonis	8	2			14,70	3,096	8,8193	,0935	,4908	-7,8819		

No.	No. Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$$	Annual P. M.	
				a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}		A. R.	Decn.
		- , 11	"							
721	4	+54 25 35,81	-18,265	-8,9445	-9,8699 -	-1,2616	-9,6147	88	+,011	-,10
722	5	+50 1 14,71	18,309	-8,5185	-9,8449	,2626	,6096	96	+,027	-, 07
723	3	-22 4532,96	18,341	+9,7451	+9,5494	,2634	,6056	103	+,007	+ ,04
724	4	-4413 29,33	18,350	7723	+9,8053	,2636	,6045	107	-,004	-, 10
725	3	$-323133,32$	18,365	7642	+9,6928	,2640	,6027	108	+,022	+ ,06
726	4	-32 55 8,09	18,429	+9,7619	+9,6989	1,2655	-9,5945	115	+,020	+,08
727	4	-26 48 29,59	18,490	,7490	+9,6193	,2669	,5865	120	+,019	,00
728	4	-16 43 31,34	18,561	,7202	+9,4259	,2686	,5767	130	+,016	-,01
729	4	+14 4954,01	18,619	,5119	-9,3758	,2699	,5685	132	+,020	-,16
730	4	+ 53125,16	18,675	,5988	-8,9509	,2713	,5599	140	+,026	-, 18
731	2	+31 2919,37	18,741	+9,2672	-9,6885	-1,2728	-9,5497	146	+,020	-,01
732	4	-28 4924,41	18,760	,7404	+9,6548	,2732	,5467	151	+,017	+ ,08
733	4	$-145214,19$	18,807	,7059	+9,3825	,2743	,5389	156	+,020	- ,22
734	3	- 8725,46	18,900	,6785	$+9,1260$,2764	,5224	168	,+ 029 ,+ 011	- ,07
735	4	-81	18,921	,6776	+9,1203	,2769	,5185	174	+,011	
736	4	- 759 49,14	18,940	+9,6776	+9,1199	-1,2774	-9,5148	178	+,021	+,01
737	3	+ 81952,53	18,946	, 5821	-9,1358	,2775	,5137	179	+,013	-, 15
738	4	+4253 6,50	19,038	,0212	-9,8103	,2796	,4954	191	+,009	-, 08
739	3	+ 83310,80	19,051	, 5832	$-9,1493$,2799	,4923	195	,+ 017 ,+ 030	- ${ }^{11}$
740	4	+22 238,43	19,118	,4579	-9,5598	,2814	,4			
741	4	+10 4829,25	19,147	+9,5694	$-9,2522$	-1,2821	-9,4709	204	,+ 008 ,+ 008	$\begin{aligned} & -, 06 \\ & -.29 \end{aligned}$
742	5	+15 5414,61	19,192	,5289	9,4184	,2831	, 4597 , 4521	213	,+ 008 ,+ 008	$-, 29$
743	4	+10 38836	19,223	, 5773	9,2229 8,1084	,2838	, 4521	220	,+ 008 ,+ 017	- , ,09
744	4	+ 0479,28	19,226	,6335 , 2122	8,1084 9,7827	,2839	,4512	221	+,017	-, 01
745	3	+39 743,06	19,262	,2122	9,7827	,2847	,4412	228	-,001	-, 01
746	4	+ 0516,15	19,261	+9,6335	-8,1454	-1,2847	-9,4417	230	,+ 011 ,+ 002	- ,08
747	4	+13 3259,92	19,270	,5539	9,3521	$\xrightarrow{2 \times 49}$,4394	231	,+ 002 ,+ 008	
748	3	+ 8119,14	19,311	,5944	9,1274 9,2682	,2858	,4278	244	,+ 008 ,+ 016	+ ,03
749	4	+11 5 5 54,38	19,334 19,352	8,5740	9,2682 9,8982	,2863	, 4158	246	$\mid+, 009$	-, ,28
750	4	+55 212,87	19,352	8,5563	9,8982	,2867	,4158	246	+,000	-, 28
751	4	- 1059,40	19,363	$+9,6425$	+8,2411	-1,2870	-9,4120	250	+,031	-,06
752	4	+18 5 41,90	19,364	, 5224	-9,4770	,2870	, 4116	251	1 + +,011	- , 11
753	5	+374653,61	1 1:1,437	,2856	-9,7737	,2886	,3877 3671	5	$5{ }^{5}$	-, 17 ,+ 01
754	4	+ 14647,94	4 19,492	,6304	$-8,4768$ $-9,3562$,2899	-3,3655	17	$7{ }^{+}$	-, ,08
755	1	+13 3050,84	4 19,497	,5658	-9,3562	,2899	, 365		$\left.\right\|^{+}+016$, 08 $-\quad 05$
756	64	+36 2018,46	19,476	- $-9,0202$	--9,7600	-1,2895	$5-9,3734$	26	\| $\left\lvert\, \begin{aligned} & +, 016 \\ & +, 015\end{aligned}\right.$	-, 05
757	7	+1252 52,38	8 19,569	,5740	-9,3367	,2915	5 $\quad 33353$	31 35	$1 \begin{aligned} & +, 015 \\ & +, 004\end{aligned}$	-, ,12
758	8	-6049,89	9 19,581	,6571	$1 \begin{aligned} & +9,0115 \\ & +9,0119\end{aligned}$, 29.18	2 , 3208	39	,+ 003	-, ,08
759	96	- 600 9,30	0 19,599	,6571	$+9,0119$ 8,9150	,2922 , 2928	8 , ,3070	45	$5+$ +,006	-,,08
760	4	+ $450 \quad 1,70$	0 19,627	,6180	-8,9150		5 ,3070		$7+012$	- 18
761		+ 52 1,65	5 19,655	+9,6180	1-8,9332	-1,2935	$5-9,2921$		1 1	-, 18
762	$2{ }^{4}$	+ 552039,58	8 19,6(5)	,6693	; +9,7541	$1{ }^{2} 2937$	8 2 ,2896		2 -,001	1 -, 1
763	34	+493016,92	2 19,670	,13:35	$5{ }^{5} \mathbf{- 9 , 8 7 2 7}$, 2938	9 , 28806		7 + , ,015	- , 18
764	4 4	-35 1126,11	1 19,675	,6674	4 $+9,7529$ $-9,0551$	1 , 2934	$4{ }^{4}$, 2667		$66+$ +,014	$4-11$
765	53	+ $+63857,84$	19,698	,6128	8 -9,0551	- ,2944	, ,260			

No.	Star's name and Mag.			No. Obs.	Right Ascension Jan. 1, 1836.			Annual Precession.	Logarithms of					
				a				b	c	d				
766		Leonis	8		4	$1 \begin{gathered} h . \\ 11 \end{gathered}$	2.		$\begin{gathered} s . \\ 30,50 \end{gathered}$	$\begin{gathered} s . \\ +3,046 \end{gathered}$	-8,8240	+8,0345	+0,4837	+7,8275
767	17	Hydræ	6.7	4			9,19	2,956	,8742	8,069	,4707	8,5513		
768			8	4			22,98	2,948	,8815	8,0754	,4695	8,5816		
769		Crateris	8	4			17,51	3,048	,8211	8,0016	,4840	7,8143		
770			7.8	3			1,26	3,052	,8206	7,9925	,4846	7,7295		
771		Hydræ	9	4			43,54	2,943	-8,9006	+8,0493	+0,4688	+8,6470		
772			7	4			13,97	2,957	,8953	8,0088	,4708	+8,628 1		
773		Ursæ Maj.	7.8	3			2,69	3,206	,9508	8,0196	,5060	$-8,7774$		
774		Crateris	8	4			34,42	3,007	,8532	7,9132	,4781	+8,4224		
775		Hydræ	7.8	4			37,61	2,974	,8908	7,9508	,4733	+8,6101		
776		Leonis	9	2			22,07	3,103	-8,8389	+7,8104	+0,4918	-8,2762		
777		Ursæ Maj,	8	4			59,71	3,171	,9697	,8608	,5012	-8,8158		
778		Leonis	8	4			3,06	3,096	,8417	,6790	,4908	$-8,3014$		
779		Virginis	8	4			4,42	3,067	,8236	,6323	,4867	+7,5424.		
780		Leonis	8	4		45	25,57	3,090	,8379	,6367	,4900	-8,2486		
781		Virginis	7	4			39,99	3,076	$-8,8253$	$+7,6159$	+0,4880	-7,8273		
782			7	4			26,91	3,068	,8232	,5884	,4869	+6,8054		
783	65	Ursæ Maj.	7.8	4			32,47	3,151	,9924	,7533	,4984	-8,8591		
784		Leonis	9.10	4			56,64	3,089	,8404	,5901	,4898	-8,2807		
785		Virginis	8	4			0,72	3,070	,8235	,5710	,4871	-7,3627		
786		Leonis	7.8	3			46,35	3,089	$-8,8418$	+7,5636	$+0,4898$	-8,2981		
787		Virginis	7.8	4			29,00	3,081	,8321	,5266	,4887	8,1286		
788		Leonis	9.10	3			15,27	3,087	,8436	,5090	,4895	8,3173		
789		Virginis	7	3			21,10	3,076	,8276	,4875	,4880	7,9639		
790			8.9	3		50	6,27	3,073	,8253	,4507	,4876	7,7854		
791		Ursæ Ma	8.9	4			11,19	3,146	$-9,1280$	+7,6488	+0,4978	-9,0666		
792		Virginis	8	3			4,32	3,073	8,8274	7,2955	, 4876	-7,9372		
793		Corvi	8	4			53,4,	3,060	,8513	7,0859	,4857	+8,3884		
794		Leonis	8	4			2,46	3,073	,8461	6,9227	,4876	-8,3404		
795		Hydræ	7.8	3		59	53,89	3,068	,9042	-5,6690	,4869	+8,6493		
796		Ursæ Maj.	8.9	4	12		6,96	3,070	-9,0146	-6,1773	+0,4871	-8,8980		
797		Corvi	7.8	4			10,24	3,080	8,8529	7,2252	+,4885	+8,4023		
798		Virginis	7	3			51,62	3,071	,8253	,2482	,4873	+7,7509		
799			9.10	4			21,07	3,059	,8329	,3498	,4856	-8,1417		
800			8	4			17,04	3,053	,8393	,4555	,4847	-8,2616		
801		1 Virginis	7	5			44,74	3,071	$-8,8241$	-7,4613	+0,4873	+7,5525		
802		Comæ Ber.	8	4			45,08	3,048	, 8487	,4859	, 4840	-8,3686		
803			9	4			40,88	3,041	,8427	,6553	,4830	-8,3119		
804		Virginis	7.8	4			10,39	3,060	,8246	,6800	,4857	-7,7833		
805			8	3			18,02	3,058	,8251	,6840	,4854	-7,8395		
806		Virginis	7.8	3			33,04	3,059	-8,8243	-7,7138	+0,4856	-7,7718		
807		Centauri	8	3			44,63	3,157	,8935	, 81115	-,4965	+8,6162		
808		Virginis	9	4			17,83	3,057	,8242	,7544	,4853	-7,7897		
809			8	4			22,85	3,071	,8225	,7541	,4873	+7,2355		
810			8.9	4			53,94	3,033	,8405	,7853	,4819	-8,2938		

No.	$\begin{gathered} \text { No. } \\ \text { Obs. } \end{gathered}$	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
				a^{\prime}	${ }^{\prime}$	c^{\prime}	d^{\prime}		A. R.	Decn.
766	4	- 54855,68	-19,779	+9,651:3	$+9,0013$	-1,2962	-9,2092	91	$\stackrel{s}{\text { ¢ }}$	
767	4	-28 2151,31	19,801	+,6590	+9,6717	-1,2967	-0,2003	95	+,002	
768	4	-30 4 4 6,57	19,802	,6551	,6948	,2967	,1887	97	+,013	-,19
769	4	- 53756,65	19,817	,6503	8,9883	,2970	,1756	104	+,,008	-, ,17
770	3	- 43722.27	19,826	,6484	,9041	,2972	,1672	108	+,,011	-,11
771	4	-33 5247,08	19,847	+9,6415	+9,7422	-1,2977	-9,1444	112	+,023	,00
772	4	-32 41 51,28	19,877	,6385	+ ,7291	,2983	,1099	127	+,012	--,08
773	4	+42 853,89	19,907	,3874	-, 8237	,2990	,0659	137	+,051	-,07
774	4	-214437,22	19,913	,6484	+	,2991	,0572	142	,+ 005 + +015	-,06
775		-3134	19,913	,6335	+ ,7165	,2991	,0572	143	+,015	
776	4	+15 5445,01	19,957	+9,5933	-9,4353	-1,3001	-8,9696	155	-,003	,00
777	4	+44 3415,58	19,989	,4065	-9,8447	,3007	,8898	165	+,026	-, 10
778	4	+164550,49	19,496	,5977	$-9,4587$,3009	,83363	169	+,012	-, 07
779	4	-2 5815,36	20,002	,6365	+8,7179	,3011	,8078	173	+,009	-, 04
780	4	+14 5628,42	20,004	,6064	-9,4098	,3011	,7979	177	+,007	--,17
78	3	+ 54726,33	20,005	$+0,6345$	$-9,0012$	-1,3011	-8,7898	180	+,018	-,09
784	4	- $0313.3,81$	20,009	,6385	+7,9815	,3012	,7645	182	+,015	-, 47
783	1	+4723 22,41	20,010	,4014	-9,8660	,3012	,7601	183	+,016	,00
784	3	+16 16 12,63	20,011	,6042	-9,4:396	,3013	,7490	186	+,022	-.,07
785	3	+ 2039,83	20,012	,6375	-8,5385	,3013	,7468	187	+,018	-,04
786	3	+16 3938,71	20,015	+9,6031	-9,4557	-1,3014	$-8,7212$	194	+,021	-,06
787	4	+119630,09	20,019	,6191	,2960	,3014	,6940	197	+,006	-,02
788	4	+1720 39,71	20,02]	,6021	,4732	,3015	,6650)	198	+,025	-, ,01
789	4	+ 75323,50	20,022	,6274	,1358	,3016	,6595	201	+, 021	-,14
790	4	$+51517,53$	20,026	,6314	8,9597	,3017	,6250	205	+,002	-,23
791	4	+60 15 53,62	20,032	+9,2095	$-9,9384$	-1,3019	-8,5205	210	$+, 018$	- , 12
79.2	4	+ 725 9,72	20,036	,6294	-,1097	,3019	,4680	215	+,016	-, 01
793	4	-20 7 33,691	20,040	,6159	+,5371	,3019	,2344	225	$+0,005$	--, ,19
791	4	+1812 16,98	20,041	,6107	-, 4942	,3019	,0765	22.4	+,006	-, 11
795	4	-33 45 38,73	20,043	,5575	+,7451	,3020	$+6,7648$	240	-,006	+ , 13
796	4	+49 52 48,87	20,043	+0, 44.56	-9,8834	-1,3020	+7,1627	242		
797	4	-20 45 21,41	20, (1)38	, 59.99	+9,5402	,3018	8,372:	14	+,023	-,111
798	4	- 44836,73	20,037	,6345	+8,42:55	,3018	,4:227	17	-,004	-,01
799	4	+114649,73	20,035	,6355	- 0,30886	,3017	,5167	23	+,009	+ $0.0 \pm$
800	4	+15 $21 \quad 19,08$	20,027	,6325	$-3,4219$,3016	, 1159	30	-1,003	-. 10
801	4	- 3 2 233,22	20,025	+9,6355	+8,7279	-1,3016	+-8,6368	32	+ +,007	+ ,05
8002	3	+1920 49,26	20,0:25	, 0263	-9,5195	,3016	,6368	34	+,011	-, 08
803	4	+17919,59	20,001	,6375	9,4683	,3011	,8117	6.2	+,014	-, 07
804	4	+ 51426,64	19,994	,6425	8,9575	,3008	, 8513	72	+,014	-, 22
805	3	+ 55726,29	19,991	,6125	9,0133	,3008	,8078	73	-,013	-,31
806	4	+ 5627,82	19,983	+0,6425	-8,9461	$-1,3007$	$+8,8882$	77	+, 004	-, 20
807	2	-3152 4,46	19,975	,5366	+9,7213	,3005	,9165	82	-,005	,00
808		+ 519	19,971	,6434	-8,9639	,3004	,9285	86	+,015	
809	1	-128 9,48	19,971	,6365	+8,4115	,3004	,9301	89	+,002	--,25
810	4	+163136,39	19,966	,6444	-9,4517	,3003	,9432	94	+,010	+ ,04

No.	$\begin{gathered} \text { No. } \\ \text { Obs. } \end{gathered}$	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
				a^{\prime}	b	c^{\prime}	d^{\prime}		A. R.	Decn.
811	2	+26 4832,74	-19,961	$+9,6314$	-9,6520	-1,3002	+8,9559	96	+,014	+0,04
81.2	3	-22 47 16,84	19,952	,5599	+ ,5866	,3000	8,9803	105	+,015	-,03
813	2	+111047,04	19,942	,6484	- ,2841	,2997	9,0107	113	-,007	,00
814	3	+13 2 4,43	19,937	,6484	- , 3503	,2997	,0120	114	+,021	-, ,76
815	3	$-223613,20$	19,920	,5539	+ ,5826	,2993	,0437	117	+,024	- ,07
816		+34 1723,50	19,915	+9,6263	-9,7477	-1.,2992	+9,0527	124	-,003	-, 16
817	4	+19 1650,58	19,904	,6522	- ,51.54	,2989	,0712	132	+,012	- ,13
818	4	-15 28 52,02	19,892	,5866	+ ,4236	,2987	,0890	134	+,019	- ,12
819	4	+15 9 21,27	19,883	,6551	- ,4133	,2985	,1011	138	-,011	- ,10
820	4	-7739,86	19,859	,6170	+ ,0910	,2979	,1317	147	+,011	-, ,16
821		+1337 3,80	19,843	+9,6580	-9,3669	-1.2976	+9,1498	154		- ,09
822	4	+464642,58	19,810	,6096	-9,8573	,2970	,1781	164	+,006	+ ,08
823	4	$+291542,54$	19,814	,6561	-9,6837	,2969	,1797	165	+,011	- ,19
824	3	+ 33114,43	19,805	,6454	-8,7805	,2968	,1871	167	+,013	-, 03
8.5	4	- 15633,09	19,796	,6325	+8,5301	,2966	,1943	170	+,008	-,03
826	4	+ 04330,95	19,764	+9,6375	-6,9347	-1,2959	+9,2214	174	+,024	- ,15
827	4	+ 0143,20	19,762	,6375	7,5715	,2958	,2229	176	+,014	-,16
828	6	+20 3 35,53	19,675	,6748	9,5267	,2939	,2806	$20]$	$+, 036$	-, ,17
829	4	+21 352,04	19,674	,6758	9,5469	,2939	,2819	203	+,027	- ,17
830	4	$+47407,59$	19,658	,6464	9,8602	,2935	,2902	209	$+, 012$	- ,09
831	3	-643 3,66	10,37	+9,6107	+9,0602	-1,2931	+9,3015	216	+,016	-, 16
832	4	+1223 15,47	19,615	,6702	- ,3219	,2926	,3131	221	+,022	+ ,04
883	4	+13 3533,81	19,615	,6721	- , 3609	,2926	,3131	222	$+, 026$	-, ,11
8.34	4	-21 1653,56	19,594	,5159	$+, 5503$,2921	,3238	225	+,019	-, 03
835	4	-32 30 6,00	19,566	,3979	+ ,7201	,2915	,3365	233	$+, 011$	- ,07
886	4	+ 22420,68	19,504	+9,6464	-8,6071	-1,2901	+9,3629	246	+,023	- ,06
837	4	$-332 \pm 24,98$	19,486	, 3674	+9,7288	,2897	,3698	247	+,015	+,08
838	3	+24 517,63	19,464	,6937	-9,5974	,2892	,3781	252	+,011	- ,02
839	4	+6 616,78	19,447	,6609	-9,0097	,2889	,3837	256	+,004	-, 01
840	4	+12 653,33	19,447	,6758	$-9,3083$,2889	,3837	257	+,014	+ ,02
841	4	+ 11057,11	19,435	$+9,6429$	-8,2892	-1,2886	+9,3882	258	$+, 007$	-, 01
8	4	-716 2,87	19,425	,6021	+9,0894	,2884	,3917	259	+,027	- ,13
84:3	4	$+5450 \quad 2,47$	19,417	,6561	-9,8986	,2882	,3947	261.	$+, 005$	- ,23
844	5	-1 45824,36	19,412	,6571	$-8,9220$,2881	,3961	260	+,025	- , 02
845	4	+ 44935,18	19,402	,657]	-8,9100	,2878	,3996	265	$+, 024$	- ,26
846	3	-33 $14 \begin{array}{lll}14 & 14,89\end{array}$	19,402	+9,3522	+9,7249	-1,2878	+9,3996	263	$+, 002$	- ,03
847	4	- 51211,55	19,386	, 6117	$+8,9442$,2875	,4049	271	+,005	-,13
848	4	+5754 14,08	19,367	,6522	-9,9129	,2870	,4111	275	+,023	-, 09
849	3	-12 33 45,96	19,348	, 5647	+9,3228	,2866	,4167	277	+,002	+,,14
850	4	+182139,37	19,324	,6955	-9,4822	,2861	,4242	282	+,025	- ,07
851	4	+271541,00	19,272	+9,7093	-9,6437	-1,2849	+9,4390	10	+,016	- ,05
852	4.	-12 3545,06	19,244	,5599	+ ,3216	,2843	,4465	19	+,001.	- ,06
853	4	+524615,28	19,218	,6893	- ,8826	,2837	,4533	24	+,003	+ ,02
854	5	$\begin{array}{rrr}10 & 29 & 6,51 \\ -10 & 28 & 42,61\end{array}$	19,203	,5729	+ , 2520	,2834	,4572	25	-,002	-,, 36
855	3	-10 2842,61	19,203	,5729	+ ,2420	,2834	,4572	26	+,008	- ,17

No.	No. Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\begin{aligned} & \dot{8} \\ & \text { N. } \\ & \text { N } \end{aligned}$	Annual P. M.	
				a^{\prime}	b	c^{\prime}	d^{\prime}		A. R.	Decn.
855	3	- 711117,12	--19,188	+9,5955	+9,0791	-1,2830	+9,4609	28	+,016	-0,06
857	3	- 6358,53	19,154	, $60: 31$	+ ,0055	,2823	,4692	34	+,011	- , 10
858	3	-121724,79	19,154	,5587	+ , ,3093	,-823	,4692	33	+,018	- , 09
859	4	+60 943,19	19,154	,6730	- ,9185	,2823	,46,92	39	-,035	-, 11
860	4	+143744,15	19,123	,6946	-,3816	,2815	,4765	43	;000	-,14
861	4	- 524 2,01	19,109	+9,6064	+8,9542	-1,2812	+9,4797	46	+,012	-, 15
862	4	-1146 56,62	19,102	,5599	9,2×98	,2811	,4813	47	+,007	-, 04
863	4	-10 $17 \begin{aligned} & \text { 2,72 }\end{aligned}$	19,087	,5717	9,23.11	,2807	,4845	49	+,011	-, 10
864	4	-1137 8,05	19,084	,5599	9,2>3:3	,2807	,485.3	b)	+,006	-, 06
865	4	- 98817,32	19,039	,578.6	9,1799	,2796	,4950	58	-,006	+ ,06
866	4	-183733,81	19,038	+9,4928	+9,4825	-1,2796	9,4954	59	,000	+ , 04
867	4	-10 53 4,85	19,0:31	,5647	+9,2542	,2745	,4905	60	+,012	-, ,11
$\varepsilon 68$	2	$+183740,09$	19,008	,7093	-9,4811	,2789	,5015	63	+,026	+ ,04
869	4	-17 10 7,06	19,(0)2	,5065	+9,4473	,2788	,5026	64	-,004	-, 11
870	4	$-52010,88$	19,002	,6042	+8,9464	,2788	,5026	67	+,005	-,32
871	3	$+554649,21$	18,909	+9,7143	-9,8921	-1,2767	+9,5206	79	+, ,050	- ;04
872	4	$-5435,93$	18,876	,6053	+8,9228	,2759	,5267	81	+,005	- , 12
873	3	-21 32 41,40	18,849	,44.56	+9,5:387	,2753	,5316	86	+,012	-,01
874	4	-242135,38	1 $\times, 844$,4065	+9,5890	,2752	,5323	87	+,018	-, 02
875	3	+ 0147,22	18,8\%3	,6375	$-6,4367$,2749	,5344	89	+,018	-, 52
876	4	- 85328,87	18,83.3	+9,5752	+9,1633	-1,2749	+9,53.34	88	+,019	-,01
877	4	+1633 38,08	18,817	,7109	-9,4268	,2745	,5372	92	+,010	-,02
878	4	-19 2744,01	18,794	,4669	+9,4952	,2740	,5409	97	-,010	-, 05
879	4	+73 14 41,12	18,772	,6628	- 9,9526	,2735	,5447	109	+,004	-,02
880	5	- 85031,29	18,760	,5740	+9,1592	,2732	, 5467	103	+,007	+,06
881	3	- 12533,10	18,760	+9,6284	+8,3745	-1,2732	$+9,5467$	104		- , 11
882	4	-124 50,70	18,745	,6284	+8,3691	,2729	,5490	108	+,,013	-, 10
883	4	+60 4642,95	18,745	,7168	$-9,9117$,2729	,5490	113	-,008	+ ,03
884	4	$-2516 \quad 4,91$	18,743	,3830	$+9,6014$,27.28	,5494	107	+,009	- ,11
885	4	+94919,53	18,712	,6893	$-9,2001$,2721	,5543	116	+,009	-,09
886	4	+79 29 28,79	18,660	+9,6415	$-9,9615$	-1,2709	+9,5625	133	-,027	,00
887	3	- 4519,18	18,612	, 6045	+9,8239	,2698	,56i!5	129	+,024	+,06
888	5	- 85630,72	18,601	,5604	+9,1003	,2695	,5711	132	+,016	$+, 13$
889	4	--15 3624,80	-18,505	,5011	+ $0,3,973$,2688	,5758	139	+,004	-,16
890	4	- 54852,72	18,540	${ }_{5} 5944$	$+8,9732$,2681	,5795	144	+,018	-, 13
891	4	- 04411,48	18,526	+9,6325	+8,0923	-1,2678	+9,5816	147	+,012	- ,28
892	5	-2 $22 \begin{array}{ll}1,10\end{array}$	18,511	,6180	+8,6695	,2674	,5837	148	+, ,006	$+, 12$
8.93	3	+ 2533,35	18,5', 4	, 6513	--8,5223	,2673	,5847	149	+,006	+ ,02
894	4	+ 62420,60	18,486	,6758	-9,0109	,2668	,5871	153	+,020	+ , () 1
895	4	$+205046,14$	18,414	,7372	-9,5142	,2651	,5966	161	+, (0)	+,05
896	4	-10 28 19,01	18,365	+9,5490	+9,2219	-1,2640	+9,6027	166	+,001	- , 13
897	2	+29 159,20	18,341	, 7597	$-9,6473$, 26335	,6053	172	+, ,010	-, 12
898	4	- 32637,87	18,3:39	,6117	+8,7429	,2636	,6059	171	+,003	- , 52
899	4	+ 8745,59	18,337	,6875	$-9,1111$	- ,2633	,6062	17.3	+,026	, ,00
900	4	+65 397,64	18,292	,7419	-9,9198	- ,2622	,6116	184	4 ,000	-, 26

together with their annual precessions and proper motions, \&e.

No.	Nos.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
				a			d^{\prime}		A. R.	Decn.
946 947	4 4 4	+54 1611,78 $-26613,34$	-16,587	+9,8513	$-9,8272$ $+9,5604$	-1,2198	+9,7492	79	+,018	-0,10
94	4	- 020 35,75	16,498	,6345	$+9,564$ $+7,7014$,2174	,7542	781	,+ 009 ,+ 033	+,90
949	4	+ 62512,65	16,395	,6964	-8,9610	,2147	,7598	93	+,006	+ , 02
950	4	+ 9516,02	16,304	,7168	-9,1086	,2129	,7647	99	+,016	-, 04
95	4	-2 2227,68	16,297	+9,6117	$+8,5291$	-],2121	+9,7650	100	+,012	+,08
952	4	-45 4410,94	16,181	--,0792	+9,7621	,2090	,7709	106	+,006	+ ,02
953	4	-6 61232,27	16,171	+ ,5670	+8,9413	,2087	,7709	108	+,012	-,12
954	4	- 6839,31	16,153	,5659	+8,9362	,2083	,7723	111	+,010	-, 13
955	4	+ 41119,50	16,032	,6776	-8,7644	,2050	,7783	120	+,020	-, 13
956	4	- 85326,38	16,021	+9,5276	+9,0930	-1,2047	+9,7788	121	+,004	- ,04
$9: 5$,	- 3 3 35,46	16,017	,6031	$+8,6333$,2046	,7790	122	+,006	+,07
958	4	-22 26 50,27	15,962	,2279	$+9,4836$,2031	,7816	129	-,050	+ , 02
959	5	- 5425,72	15,869	,5775	+8,8460	,2006	,7859	139	+,014	-,16
960	4	-10 59 50,33	15,869	,4928	+9,1753	,2006	,7859	138	+,029	-, 08
961	4	-545 2,02	15,766	+9,5682	$+8,8978$	-1,1977	+9,7906	144	+,009	-, 08
962	4	-113143,93	15,722	,4786	+9,1954	,1965	,7925	146	+,029	-,03
96	4	-11 26 53,08	15,704	,4800	+9,1925	,1960	,7933	151	-,005	-,,04
96	3	-24 2418,40	15,690	,1399	+9,5100	,1956	,7940	153	+,003	-, 07
965	4	- 54121,51	15,580	,5670	+8,8889	,1926	,7987	162	+,020	-,02
966	4	+15 4929,94	15,437	+9,7716	$-9,3220$	$-1,1885$	+9,8047	178	+,018	-, 03
96	3	-12 25 47,93	15,350	9,4564	+9,2178	,1861	,8082	181	+,002	-, 02
968		-32 56 50,24	15,180	7,9031	+9,6150	,1813	,8149	192	,000	-,02
909	3	-15 4310,02	15,142	9,3801	+9,3114	,1802	,8164	195	+,005	- ,09
970	,	+ 01454,15	15,034	9,6395	-7,4850	,1771	,8204	205	+,001	-, 18
971	4	-24 5638,94	15,007	+9,0569	+9,4995	$-1,1763$	+9,8214	208	+,019	- , 17
9	4	-16 $42 \begin{aligned} & 1,05\end{aligned}$	14,828	,3483	+9,3276	,1711	,8279	223	-,004	-, ,07
97	4	- 419 24,08	14,746	,5809	+8,7450	,1687	,8308	229	-,003	-,16
974	5	+10 9 92,83	14,737	,7380	$-9,1124$,1683	,8312	230	+,003	-, 18
975	5	-16 5850,76	14,531	,3304	+9,3258	,1623	,8381	246	+,013	-, 09
976	4	-15 56 32,60	14,503	$+9,3747$	+9,2985	-1,1614	+9,8390	252	+,016	- ,03
977	4	- 65522,24	14,474	,5403	+8,9404	,1606	,8399	254	+,019	-,02
978	4	-14 $21 \begin{array}{ll}\text { 1 } & 4,80\end{array}$	14,426	,3944	+9,2522	,1591	,8415	256	+,007	-, ,07
979	4	- 01541,64	14,406	,6345	+7,5244	,1585	,8422	257	,000	-,27
980	4	+26 418 8,13	14,365	,8457	-9,5074	,1573	,8435	264	+,006	+ ,02
981	4	+ 33850,26	14,272	+9,6785	-8,6544	-1,1545	+9,8464	271	+,016	-, 10
982		- 81723,00	14,259	, 5172	+9,0115	,1541	,8468	272	+,004	+,01
983	3	-11 2446,25	14,210	,4563	+9,1471	,1526	,8483	276	-,001	-, 05
98	3	+71 1530,31	14,217	,9063	$-9,8271$,1528	,8481	285	,000	+,17
98	4	+ 03441,14	14,185	,6444	-7,8451	,1518	,8491	278	+,007	-,07
986	4	-21 26 52,09	14,057	+9,1553	+9,4093	-1,1479	+9,8530	289	,000	-, 05
98	3	-12 25 37,35	14,019	9,4314	+9,1784	,1467	+,8541	1	+,013	+,,01
988		+ 32714,30	14,021	9,6785	-8,6201	,1448	,8559		+,009	-,01
989 990	4	$-24419,25$ +5817	13,912	8,9685	+9,4625	,1435	,8572	5	-,019	-,19
990	4	+58 17 10,92	13,910	9,9248	-9,7710	,1433	,8573	12	+,009	-, 01

No.	$\begin{aligned} & \mathrm{N}_{\mathrm{o}} . \\ & \mathrm{Obs} \end{aligned}$	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
				a^{\prime}			d^{\prime}		A. R.	Decn.
991	4	-23 45 24,70	-13,890	+9,0253	+9,4463	-1,1427	+9,8579	8	+,007	+0,01
99	1	-17 49 10,56	113,834	+9,2810	+9,3251	,1410	,8595	5	+,005	-,10
993	4	- 24449,85	13,788	+9,6010	+8,5212	,1395	,8608	17	+,009	-, 04
994	4	- 02245,78	13,575	+9,6325	+7,6747	,1327	,8667	28	+,010	-,13
995	4	-44 20 14,88	13,493	-9,3139	+9,7727	,1301	,8689	30	-,012	-,06
996	4	$\begin{array}{llll}-10 & 26 & 3,79\end{array}$	13,424	+9,4654	+9,0845	-1,1279	+9,8707	38	+,016	-, 17
997	4	-14 4632,71	13,422	9,3617	+9,2328	,1275	,8711	40	+,001	-,17
998	5	- 6059,15	13,373	9,5478	+8,8459	,1262	,8721	43	+,009	-, 05
999	4	+30 9555,75	13,350	9,8751	$-9,5245$,1255	,8727	46	-,006	-, 15
1000	4	- 61346,43	13,347	9,5453	+8,8591	,1254	,8728	45	+,017	-,06
1001	4	+30 20 18,76	13,3	+9,8768	$-9,5251$	-1,1239	+9,8739	51	+,003	- ,13
1002	3	-10 3 36,68	13,290	9,4713	+9,0641	,1235	,8742	48	+,002	-,32
1003	3	+ 0226,75	13,141	9,6375	-6,5814	,1186	,8780	60	+,020	-, 20
1004	4	+ 92929,16	13,136	9,7419	$-9,0333$,1185	,8781	62	+,006	-, 11
1005	4	- 84726,90	13,123	9,4955	+9,0007	,1180	,8784	61	+,011	-,08
10	4	+ 94028,71	13,114	+9,7443	-9,0409	-1,1177	+9,8786	66	+,011	-, 16
10	3	+54 31 2,10	13,110	9,9385	$-9,7263$,1176	,8788	68	+,028	-, 11
10	3	-20 47 52,83	13,092	9,1367	+9,3657	, 1170	,8792	65	+,012	-,04
1009	2	+37 $5532 \cdot 2,23$	12,986	9,9085	-9,6000	,1135	,8818	74	-,008	+,01
1010	3	- 51422,18	12,973	9,5575	+8,7725	,1130	,8821	70	+,005	-,18
1011	4	-20 31759,37	12,950	+9,1367	+9,3577	-1,1123	+9,8826	71	-,027	-,01
1012	4	-10 5924,13	12,919	9,4487	+9,0853	,1112	,8834	77	+,009	-,08
1013	4	- 52544,66	12,922	9,5563	+8,7860	,1103	,8840	79	+,008	- , ,11
1014		+34 5434,75	12,885	9,8998	-9,5656	,1100	,8842	81	+,014	-,14
1015	4	+ 21939,54	12,785	9,6674	$-8,4113$,1067	,8866	85	$+, 033$	-,10
10	4	$\begin{array}{llll}-18 & 16 & 2,13\end{array}$	12,754	+9,2304	+9,3002	-1,1056	+9,8873	87	-,017	+ ,01
1017	4	-15 16 45,43	12,744	9,3324	+9,2247	,1053	,8875	88	+,007	-, 13
1018	4	-27 -186 1,52	12,717	8,4314	+9,4685	,1044	,8881	90	+,017	-,06
1019		-18 50 20,13	12,654	9,2041	$+9,3096$,1(02)	,8896	94	+-,017	-, ,01
1020	4	-933 1,32	12,587	9,4742	+9,0185	,0999	,8911	101	+,015	-,14
1021	4	+ 35256,77	12,527	+9,6866	-8,6248	-1,0979	+9,8924	107	+,013	-, 10
1022	,	-13 3317,40	12,253	+9,3729	+9,1565	,0882	,8984	127	+,010	+, 05
1023		-44 4	12,211	-9,3802	+9,6272	,0867	,8993	129		
1024	5	+17 4 33,86	12,188	+9,8116	$-9,2515$,0859	,8997	137	+,005	,00
1025	5	-13 3049,22	12,141	+9,3711	+9,1515	,0843	,9007	139	,000	+,02
1026	4	$\begin{array}{lll}-13 & 26 & 4,22\end{array}$	12,039	+9,3729	+9,1452	-1,0806	+9,9028	144	+,015	+,02
1027	3	-24 5310,55	11,950	8,7404	+9,3997	,0774	,9046	149	+,009	-, 11
10	4	+ 25754,27	11,800	9,6767	-8,4814	,0719	,9076	159	+,005	-, 12
1029	4	+6619 33,38	11,719	9,9624	-9,7287	,0689	,9091	168	+,022	+ ,03
1030	4	+16 2324,63	11,568	9,8082	$-9,2025$,0632	,9120	171	+,011	-,05
1031	3	+14 37 30,26	1,511	+9,7973	-9,1616	-1,0611	+9,9131	173	+,005	- , 11
1032	3	$-332834,12$	11,009	-8,9956	+9,4815	,0417	,9220	205		+ ,01
1033	4	+9 418,86	10,985	+9,7490	-8,9363	,0408	,9224	209	+,023	+ ,02
1034	4	+17 3943,95	10,769	+9,8254	-9,2107	,0322	,9260	223	+,001	
1035	4	-34 59 14,18	10,487	-9,1271	+9,4773	,0207	,9305	236	,000	-,22

No.	No.Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
					b^{\prime}		d^{\prime}		A. R.	Decn.
	5	-8								
10	2	-8 8120,00	-10,427	+9,4928	$+8,8663$ $+8,8616$	-1,0200	+9,99315	24.3	+ +011	00
10	4	-20 26 36,12	10,357	+9,(1334	+9,2566	,015:3	,9325	244	+,011	-, 21
1039	4	-18 4 4 53,22	10,337	+9,1673	+9,2048	,0144	,9328	249	+,001	+,01
1040	4	+545855,53	10,288	+9,9782	-9,6:36	,0123	,9356	262	+,002	-,12
1041	1	$\begin{array}{lll}-27 & 16 & 4,24\end{array}$	10,237	-7,9031	+9,3695	-1,0102	+9,9343	257	+,004	-, 02
1042	2	- 883923,51	10,182	-9,2988	+9,5016	,0779	,9352	260	+,011	+ ,09
1043	3	+ 5 51 37,02	10,137	+9,7152	-8,7122	,0059	,9,358	269	+,008	-, 07
1044	4	-18 33 6,01	10,036	+9,1503	+9,2026	,0016	,9373	273	+,009	+,02
1045	3	$\begin{array}{llll}-19 & 0 & 51,87\end{array}$	10,017	+9,1072	+92121	,0007	,9376	275	+,015	+ ,16
1046	4	+ 55046,53	9,966	+9,7160	$-8,7036$	-0,9985	+9,9383	281	+,017	-,06
1047	3	+17 29553,33	9,961	+9,8280	-9,1741	,99883	,9384	285	+,001	-,03
1048	4	-27 42 9,40	9,794	-8,3424	+9,3565	,9909	,940¢	5	+,005	+, 03
1049	3	-19 4 418,61	9,758	+9,0934	+9,2018	,9893	,9412		+,004	-, 01
1050	5	+182128,23	9,717	+9,8370	-9,1836	,9875	,9418	11	-,003	+ ,05
1051	4	-21 5727,85	9,610	+8,8692	+9,2537	-0,9827	+9,9433	17	+,001	-,12
1052	5	+627 46,91	9,605	+9,7243	-8,7310	,9825	,9433	20	+,013	+,01
1	4	+ 61929,10	9,538	+9,7235	-8,7190	,9795	,9442	24	+,018	+ ,03
1054	3	-30 29 47,94	9,301	-8,8808	+9,3623	,968.)	,9473	35	,000	-, 04
1055	4	-39 1-124,20	9,276	-9,3463	+9,4645	,9673	,9477	37	$+, 005$	-,07
56	4	+19 15 20,32	9,265	+9,8463	-9,1830	-0,9669	+9,9478	43	+,017	-, 07
1057	4	-19 39 10,32	9,198	+9,0414	+9,1888	,9637	,9486	45	,000	-,10
1058	4	-19 4255,50	9,167	+9,0334	+9,1883	,9622	,9490	48	,000	-, 08
10.99	3	-19 42 43,27	9,167	+9,0334	$+9,1883$,9622	,9490	49	-,003	-, 11
1060	5	$\begin{array}{llll}+17 & 1 & 16,14\end{array}$	9,141	+9,8299	-9,1254	,9610	,9494	53	-,007	+ ,06
1061	4	+ 55631,76	9,136	+9,7193	-8,6732	-0,9607	+9,9494	52	+,012	-, 0,5
1062	4	+1:2 2018,86	9,026	+9,7882	-8,9831	,9555	,9510	57	+,008	-,07
106	5	-38 483 3,00	9,006	-9,3483	+9,4497	,9545	,9510	55	+,017	-,06
1064	4	+ 3167,13	8,927	+9,6348	-8,4045	. 95117	,9520	62	+,,003	-, 05
1065	4	+ 32838,75	8,917	+9,6875	-8,4298	,9502	,9521	63	+,017	-,15
1066	4	+13 515 5,82	8,907	+9,8028	$-9,0263$	-0,9597	+9,9522	65	+,008	-,09
1067	4	-29 0052,38	8,813	-8,7482	+9,3289	,9451	,9533	67	+,001	+ ,04
10	2	-23 4	8,802	+ 8,6628	+9,2360	,9446	,95.35	68	+,004	-,02
1069	4	-26 $11 \begin{array}{ll}\text { 2,40 }\end{array}$	8,786	-7,9031	+9,2868	,9438	,95:37	70	+,013	-,04
1070		-941	8,718	+9,4409	+8,8658	,9404	,9544	76		
1071	4	+ 31442,67	8,508	+9,6848	-8,3791	-0,9298	+9,9569	85	+,008	-, 03
1072	4	-24 46 45,40	8,449	+8,1461	+9,2475	,9268	,9575	87	+,015	-,16
1073	4	-35 11115,49	8,206	-9,2355	+9,3730	,9141	,9602	99	-,007	+ , 01
1074	4	+ 22635,23	8,088	+9,6739	-8,2338	,,9079	,9614	109	+,010	-,13
1075	4	+22 510,37	7,831	+9,8739	-9,1667	,9938	,9640	4	+,005	+ ,23
1076	3	- 55714,05	7,810	+9,5263	+8,6075	-0,8926	+9,9642	122	-,002	- ,12
1077	4	+174843,32	7,747	+9,8426	-9,0725	,8891	,9648	130	+,004	-,08
1078	4	- 710 53, 89	7,595	+9,4983	+8,6766	,8805	,9663	138	+,010	-,01
1079	4	+2722 43,24	7,562	+9,90〕6	-9,2391	,8786		141	+,012	-, 03
1080	3	+1322 8,70	7,519	+9,8035	-8,9376	,8762	,9671	4	+,014	+ ,04

No.	Star's name and Mag.			No. Obs.	Right Ascension Jan. 1, 1836.			Annual Precession.	Logarithms of					
				a				b	c	d				
1081		Serpentis	8.9		3				34,98	+3,122	-8,3944	-8,7920	+0,4944	+7,0370
1082		Herculis	7.8	4			20,31	2,634	, 4107	,8179	,4:06	-7,9284		
1083		Ophiuchi	8.9	4		35	45,37	2,974	,3798	,7952	,473:3	-7,2581		
1084		Scorpii	8	4			55,62	3,892	,4510	,8733	,5902	$+8,1917$		
1085		Nebules	7	4			13,77	2,132	,4682	,8916	,3288	-8,2458		
1086		Scorpii				39		4,180	-8,4856	-8,9225	+0,6212	$+8,3073$		
1087			9	3		41	18,67	4,182	,4754	,9235	,6214	+8,2967		
1088		Herculis	7.8	2			22,66	2,811	,3493	,8033	,4595	-7,5164		
1089		Scorpii	8	4			28,25	4,193	,4705	,9257	,6225	$+8,2936$		
1090						42		4,187	,4675	,9249	,6219	+8,2892		
1091		Draconis	9	3			55,40	0,974	-8,6293	-9,0852	+9,9886	-8,5621		
1092		Scorpii	7.8	2			31,88	4,198	,465:3	8,9271	9,6230	$+8,2 \times 93$		
1093			7.8	3			45,45	3,895	,4139	8,8770	0,590.5	+8,1524		
11094		Draconis	7.8	3			4,42	1,214	,5792	9,049:	0,0842	$-8,4961$		
1095		Scorpii	7	3			12,22	4,153	,4479	8,9200	0,6184	+8,2612		
1096		Scorpii	7.8	2			15,90	3,898	-8,4057	-8,8782	+0,5908	$+8,1447$		
1097		Serpentis	7.8	3			48,60	3,154	,3264	8,8019	,4989	$+7,1590$		
1098		Ophiuchi	8	4			2,84	3,198	,3204	8,8039	,5049	+7,3287		
1099		Draconis	8	4			16,96	1,497	,5194	9,0033	,1752	-8,4102		
1100		Scorpii	8	1			47,58	4,039	,4136	8,9019	,6063	+8,1968		
1101		Ophiuchi	7.8	3			22,3.5	3,700	$-8,3187$	-8,8174	+0,5315	$+7,7207$		
1102			9	3			35,71	3,422	,3194	8,8194	0,5343	+7,7477		
1103			9	3			42,20	3,482	,3181	8,8256	0,5418	+7,8073		
1104		Draconis	8	2			44,56	0,273	,6793	9,1855	9,4362	-8,6382		
11105		Scorpii	9	3			51,30	3,867	,3607	8,8762	0,5874	+8,0851		
1106		Ophiuchi	7.8	3			4,95	2,816	-8,2.965	-8,8130	+0,4496	-7,5835		
1107		Herculis	9	3			57,73	1,623	,4533	,9821	,21:30	-8,3259		
1108		Scorpii	9	5			59,19	3,466	,28:94	,8263	,5398	+7,7616		
1109		Herculis	7	4			45,21	2,602	,2848	,8340	,4153	-7,8171		
11110		Ophiuchi	8	4			12,03	3,346	,2648	,8174	,5245	+7,5897		
1111		Ophiuchi	9	1			33,91	3,471	-8,2585	-8,8290	+0,5404	+7,7330		
1112		Herculis	8	4	17		13,12	2,399	,2784	,8610	,3800	$-7,9406$		
11113			9	4			26,47	3,713	,2731	,8579	,5697	+7,9226		
1114		Ophiuchi	8	6			59,44	3,723	,2700	,8595	,5709	+7,9246		
1115			9	1			24,30	3,722	,2670	,8596	,5708	+7,9213		
11116		Ophiuchi	8	4			51,22	2,883	-8,2119	-8,8152	+0,4598	-7,3608		
$\mid 1117$		Herculis	7	3			16,12	2,479	,2453	,8517	,3943	-7,8619		
11118			8	4			29,85	2,478	,2433	,8519	,3941	-7,8602		
1119 1120		Scorpii	8	3			4,54	3,929	,2765	,8906	,5943	+8,0188		
1120		Ophiuchi	9	3		5	5,29	3,752	,2505	,8646	,5743	+7,9190		
1121		Herculis	9	4			45,94	2,732	-8,1981	-8,8269	+0,4365	$-7,5963$		
11122			8	3			52,36	2,726	,1981	,8267	,4355	-7,6035		
1123	39	Ophiuchi	7	4			1,17	3,651	,2134	,8524	,5624	+7,8244		
$1 \begin{aligned} & 1124 \\ & 1125\end{aligned}$		Herculis Ophiuchi	7 8	6			52,21	2,490	,2067	,8521	,3962	-7,8146		
1125		Ophiuchi	8	6			17,87	3,128	,1551	,8142	,4953	+6,8173		

No.	$\left\lvert\, \begin{gathered} \text { No. } \\ \text { Obs. } \end{gathered}\right.$	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
					b^{\prime}		d^{\prime}		A. R.	Decn.
10	4	- 23041,61	7,449	+9,5944	+8,2127	-0,8721	+9,9677	148	${ }^{\text {s, }} 00$	
1082	4	+19 1426,44	- 7, 3018	$+9,5855$ $+9,855$	-9,0796	,8638	,9690	160	+,021	
1083	3	+ 41956,92	7,18ல	+9,7016	-8,4329	,8566	,9701	116	+,017	-,09
1084		-33 23 33,20	7,090	-9,1847	+9,2894	,8507	,9710	167	+,012	+,05
1085	4	+36 49 16,87	7,074	+9,9581	-9,3253	,8496	,9711	172	+,007	-,03
1086		-4132	6,883	-9,4742	+9,3575	-0,8377	+9,9727	179		
1087	4	-41 2955,99	6,729	-9,4757	+9,3472	,8279	,9740	192	-,002	-, 01
1088	4	+ 82734,70	6,647	+9,75:36	-8,6878	,8226	,9747	208	+,010	-,05
1089	4	-41 42 43,12	6,630	-9,4829	+9,3427	,8215	,9748	199	-,003	,00
1090		-4132	6,603	-9,4786	+9,3394	,8197	,9750	204		
1091	4	+58 $57 \quad 5,71$	6,608	+0,0137	$-9,4509$	-0,8201	+9,9750	217	+,015	-, 02
1092	3	-41 48 47,29	6,542	--9,4871	+9,3377	,8157	,9755	209	-, 012	-,09
1093	4	-33 11 43,42	6,5*5	-9,1903	+9,2511	,8146	,9757	211	$+, 020$	-,03
1094	3	+554038,45	6,432	+0,0116	--9,4233	,8083	,9764	22	+,027	-,19
1095	4	-40 3388,14	6,404	- y,4564	+9,3178	,8064	,9766	218	+,008	-,15
1096	4	-33 $14 \begin{array}{ll}\text {-3,18 }\end{array}$	6,399	-9,1931	+9,2431	-0,8061	+9,9767	222	+,002	+ ,11
1097	4	- 35322,43	6,360	+9,5670	+8,3341	,8034	,9769	226	+,011	+ ,04
1098	4	- $551 \quad 7,84$	6,255	+9,5250	+8,502.5	,7962	,9777	235	+,019	-,08
1099	4	+51 256,18	6,249	+0,0047	$-9,3847$,7958	,9778	241	+,004	+ ,05
1100	4	-37 2121,89	6,194	-9,3655	+9,2731	,7919	,9782	2.37	+,024	-,05
1101	4	-14 3633,92	6,060	+9,2528	$+8,8825$	-0,7825	+0,9792	244	+,001	- ,09
1102	4	-15 33 5,52	6;044	+9,2095	+8,9073	,7813	,9793	245	+,014	- ,23
1103	2	-17 57333,14	5,949	+9,0719	+8,9617	,7745	,9800	254	+,006	+ , 01
1104	4	+65 28 19,22	5,966	+0,0204	-9,4326	,7757	,9798	264	+,032	- ,23
1105	4	-32 0 3 33,00	5,849	-9,1430	+9,1895	,7671	,9807	259	+,001	-,05
1106	4	+11 104,50	5,838	+9,7860	-8,7513	-0,7662	+9,9807	262	+,014	+ ,02
1107	4	+481454,50	5,687	+0,0017	-9,3256	,7549	,9818	275	+,005	+ ,06
1108	4	-1714 57,56	5,592	+9,1106	+8,9177	,7476	,982	274	+,015	- ,09
1109	4	+195528,11	5,446	+9,8669	-8,9664	,7361	,9833	287	+,005	-,15
1110	4	-12 $10 \begin{array}{lll}58,38\end{array}$	5,407	+9,3444	+8,7559	,7329	,9836	288	+,005	-,09
1111	3	-17 20 55,50	5,204	+9,1004	+8,8889	-0,7164	+9,9848	300	+,012	00
1112	4	+272123,32	5,069	+9,9185	-9,0652	,7049	,9856	312	+,016	+ ,05
1113	4	-26 29222,80	5,047	-8,6434	+9,0506	,7030	,9858	308	+,010	- ,06
1114	8	-26 4944,02	4,996	-8,69:50	+9,0512	,6986	,9861	311	+,001	- ,09
1115	1	-26 48 41,14	4,962	-8,6990	+9,0480	,6957	,9863	1	-,007	- ,02
1116	4	+ 862,67	4,849	+9,7536	-8,5326	-0,6856	+9,9869	8	+,022	-,07
1117	4	+24 26 35,47	4,815	+9,9009	-8,9972	,6826	,9871	11	+,026	-,06
1118	3	+24 2723,15	4,792	+9,9015	-8,99.55	,6805	,9872	15	+,020	-, 11
1119	4	-33 32 23,80	4,736	-9,2430	+9,1159	,6754	,9875	10	+,011	+ , 07
1120	4	-27 4616,45	4,736	-8,8388	+9,0419	,6754	,9875	12	+,012	-,09
1121	4	+1429 44,79	4,594	+9,8215	-8,7583	-0,6622	+9,9883	25	-,001	-, 42
1122	4	+144448,46	4,588	+9,8248	-8,7651	,6616	,9883	26	+,020	-,16
1123	2	-24 549,65	4,590	-7,3010	+8,9609	,6519	,9888	31	+,005	-, 05
1124	5	+23 5552,28	4,424	+9,8987	--8,9517	,6458	,9892	37	,000	-,01
1125	4	-23737,48	4,293	+9,5888	+7,9930	,6327	,9898	45	-,001	-,08

together with their annual precessions and proper motions, \&-c.

No.	No. Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\begin{aligned} & \dot{8} \\ & \text { 新 } \\ & \text { 菏 } \end{aligned}$	Annual P. M.	
					b^{\prime}	c^{\prime}	d^{\prime}		A. R.	Decn.
1126	4	-26 2222,63	-4,287	-8,6532	+8,9779	-0,6321	+9,9898	41	s. ,+ 004 +	
1127	3	-2 23411,87	-4,253	-8,5911	+ $+7,9778$	-0,6321	+9,9900	46	+,002	+
1128	3	-26 19 37,42	4,207	-8,6532	+8,9690	,6240	,9902	48	+,005	- ,02
1129	4	-12 5435,42	4,167	+9,3117	+8,6672	,6198	,9904	55	+,001	-, 11
1130	2	$-232411,33$	4,144	+8,0000	+8,9144	,6175	,9906	57	+,002	-,06
1131	4	+49 52 6,08	4,104	+0,0124	-9,1947	-0,6133	+9,9907	69	+,026	- ,21
1132	2	+56 1538,42	4,0.99	+0,0232	-9,2305	,6126	,9907	72	+,014	- , ,04
1133	2	+ 93531,69	4,076	+9,7716	$-8,5296$,6102	,9908	66	+,026	-,20
1134	2	-24 55 57,66	4,053	$-8,2787$	+8,9307	,6078	,9909	62	+,033	-, 16
1135	4	+25 4233,81	4,025	+9,9117	-8,9399	,6047	,9911	71	+,017	-,07
1136	3	-19 $17 \begin{array}{ll}\text { 17,17 }\end{array}$	4,007	+8,9395	+8,8197	-0,6029	+9,9911	67	+,013	-, 06
1137	3	+9546,56	3,973	+9,7745	-8,5325	,5991	,9913	74	+,018	-, 18
1138	2	-23 40 49,47	3,967	+7,4771	+8,9004	,5985	,9913	70	+,008	-, 01
1139	4	-91147,54	3,893	+9,4330	+8,4921	,5903	,9916	79	+,006	-, 09
1140	4	-27 2632,16	3,819	-8,8261	+8,9436	,5819	,9920	82	+,026	+ ,02
1141	4	+13 3330,21	3,802	+9,8142	$-8,6477$	-0,5800	+9,9920	85	+,014	-,14
1142	3	+ 903 39,74	3,796	+9,7657	$-8,4717$,5793	,9921	84	+,009	-, 10
1143	2	+22 434,79	3,733	+9,8870	-8,8449	,5720	,9923	92	+,006	+,06
1144	3	-21 15 42,73	3,727	+8,6812	+8,8290	,5714	,9924	89	+,031	-, 05
1145	2	+56 $\quad 5 \quad 56,86$	3,727	+0,0241	$-9,1885$,5714	,9924	101	+,008	+ ,04
1146	3	+15 42 3,62	3,635	+9,8351	-8,6909	-0,5605	+9,9927	102	+,013	-,09
1147	3	+1632 1,72	3,607	+9,8426	-8,7093	,5571	,9929	104		+ ,04
1148	4	- 92126,00	3,509	+9,4281	$+8,4548$,5452	,9932	107	+,006	-,07
1149	3	+ 83513,65	3,475	+9,7604	-8,4129	,5409	,9934	108	+,021	-,23
1150	2	$+53301,26$	3,469	+0,0212	-9,1434	,5402	,9934	116	+,014	-,18
1151	4	+953 36,97	3,452	+9,7752	-8,4707	-0,5380	+9,9935	111	+,017	- ,08
1152	4	-15 29 57,26	3,372	+9,1903	+8,6527	,5278	,9938	114	+,010	-, 18
1153		+ 3834,61	3,348	+9,6875	$-7,9605$,5248	,9938	119	- +,004	- , 27
1154	2	- 95738,98	3,337	+9,4082	+8,4596	,5233	,9939	118	+,011	- ,28
1155	3	+53 1626,95	3,337	+0,0212	-9,1252	,5233	,9939	124	+,015	+ ,03
1156	3	+22 1628,74	3,268	+9,8899	-8,7911	-0,5143	+9,9941	123	+,013	-, 10
1157	3	- 24136,72	3,251	+9,5877	+7,8431	,5120	,9942	122	+,006	
1158	3	- 22412,76	3,210	+9,5944	+7,8265		,9944	126	-,010	-,17
1159	2	+173845,84	3,176	+9,8531	-8,6816	,5018	,9945	$1: 33$	+,006	-, 09
1160	3	-14 3955,04	3,164	+9,2304	+8,6017	,5003	,9945	129	+,024	-,17
1161	2	+ 01010,02	3,153	+9,6345	-6,6604	-0,4987	+9,9946	132	+,013	-, 17
1162	2	-22 5417,03	3,107	+8,2041	+8,7804	,4923	,9947	134	+,006	-,07
1163		$+3117 \quad 9,22$	3,061	+9,9464	-8,8992	,4858	,9949	143	+,017	+,02
1164	3	+2815 54,70	3,061	+9,9299	-8,8592	,4858	,9949	141	+,017	-,02
1165	4	-24 3028,07	2,980	-8,2304	+8,7902	;4742	,9951	142	-,008	-,05
1166	3	+ 94126,49	2,876	+9,7738	-8,3827	-0,4588	+9,9955	149	+,010	- , 22
1167	4	-18 5241,28	2, $\times 18$	+8,9590	+8,6581	,4500	,9957	1.2	$+, 116$	-, 05
1168		+12 931,07	2,755	$+9,80 \cup 7$	-8,4613	,4401	,9958	158	+, 016	+ ,05
1169	4	+21 623,03	2,691	+9,8814	-8,6843	,4300	,9460	16%	+,018	-,01
1170	4	+114546,71	2,651	+9,7973	-8,4303	,4234	,9962	165	+,005	+ ,03

No.	Star's name and Mag.			No. Obs.	$\begin{gathered} \text { Right } \\ \text { Ascension } \\ \text { Jan. } 1,1836 . \end{gathered}$	Annual Precession.	Logarithms of				
				a			b	c	d		
1171		Ophiuchi			3	$\begin{array}{ccc} \hline h_{i} & m_{i} & s_{0} \\ 17 & 30 & 10,9 \end{array}$	$\left\lvert\, \begin{gathered} s . \\ +2,792 \end{gathered}\right.$	-7,9431	-8,8295	+0,4459	-7,2531
1172		Ophinchi	8.9	2	170 21,27	3,329	-,9392	,8286	-,5223	+7,2262	
1173		Herculis	8	2	30 27, 80	2,568	,9598	,8492	,4096	-7,5069	
1174		Ophiuchi	9	2	3050,25	3,651	,9624	,8589	,5624	+7,5674	
1175			7.8	1	30 52,00	3,019	,9243	,8207	,4799	-6,4917	
1176		Ophiuchi	7	4	3126,25	2,752	-7,9279	$-8,8326$	+0,4396	-7,2935	
1177		Ophiadi	8	3	32 7,96	2,753	,9165	,8327	,4398	-7,2805	
1178			7.8	3	32 36,85	3,097	,8974	,8209	,4909	+6,2587	
1179		Herculis	7.8	2	3256,46	2,463	,9340	,8619	,3915	-7,5520	
1180		Ophiuchi	8	3	34 35,20	2,845	,8714	,8273	,4541	-7,0905	
1181		Ophiuchi	8	3	3449,89	3,603	-7,8923	-8,8540	+0,5567	+7,4646	
1182			7.8	2	34 56,44	3,231	,8617	,8246	,5093	+6,9476	
1183			7	2	3459,31	2,654	,8786	,8415	,4239	-7,3523	
1184		Herculis	7	2	35 32,29	2,370	,9021	,8744	,3747	-7,5699	
1185			6	2	3545,14	2,458	,8858	,8630	,3906	-7,5060	
1186		Draconis	8	3	36	-0,376	-8,2844	-9,2652	$-9,5752$	-8,2543	
1187		Ophiuchi	8		3614,24	+2,933	7,8381	8,8238	+0,4673	-6,8427	
1188	61	-	seq. 7.8	4	3621,34	3,007	7,8339	8,8221	,4781	-6,4988	
1189			7.8	4	3648,22	2,740	7,8376	8,8346	,4377	-7,2172	
1190		Draconis	8	2	36 53,67	1,277	-8,0495	9,0465	,1062	-7,9542	
1191		Ophiuchi	8.9	3	37 31,91	2,933	-7,8129	-8,8241	+0,4673	-6,8162	
1192			7.8	1	38 8,84	2,935	,8010	,8241	,4676	-6,7993	
1193			8.9	2	3844,51	2,936	,7888	,8242	,4678	-6,7820	
1194			8	2	390046	2,934	,7834	,8243	,4675	-6,7842	
1195		Telescopii	7	3	40 0,91	4,214	,8787	,9426	,6247	+7,6932	
1196		Sagittarii	7	3	41 26,17	3,979	-7,8081	-8,9057	+0,5998	+7,5596	
1197		Sagitar	8	5	42 1,99	3,545	,7383	, 8488	, 5496	+7,2664	
1198		Tauri Pon.	8	3	42 38,43	2,897	,7024	,8262	,4619	-6,8064	
1199		Herculis	7	4	$4.238,54$	1,949	,8165	,9386	,2898	-7,6248	
1200			8			3,992	,7757	,9080	,6012	+7,5315	
1201		Ophiuchi	9	2	43 43,35	3,522	-7,6932	$-8,8467$	$+0,5468$	+7,2021	
1202			8	3	44 3,96	3,549	7,6868	8,8495	+ ,5501	+7,2177	
1203	ψ^{1}	Draconis	seq. 7	3	44 53,95	-1,093	8,1588	9,3385	-,0386	-8,1376	
1204		Ophiuchi	8	3	$45 \quad 3,53$	+3,632	7,6675	8,8588	+ ,5601	+7,2585	
1205			7	3	4533,73	3,104	7,6159	8,8232	+ , 4919	+6,0527	
1206		Serpentis	7.8	4	45 46,82	3,342	-7,6185	-8,8320	+0,5240	+6,9219	
1207		Telescopii	7	3	46 9,03	4,256	,7238	8,9499	,6290	+ 7,5466	
1204		Herculis	7.8		46	1,564	,7687	9,0013	,1942	-7,6427	
1209		Serpentis	8	3	47 22,99	3,440	,5733	8,8397	,5366	+7,0043	
1210		Ophiuchi	8	2	47 47,23	3,525	,5668	8,8474	,5472	+7,0772	
1211		Tauri Pon.	7		47 57,07	2,947	-7,5396	$-8,8251$		-6,4955	
1212			7	2	48 46,98	2,951	,5092	,8251	, ,4700	-6,4510	
1213		Ophiuchi	7.8	1	49 11,74	3,472	,5079	,8425	,5406	+6,9697	
1214		Herculis	7	2	49 13,11	2,625	,5115	,8461	,4191	-7,0096	
1215			8	4	49 59,09	1,705	,6157	,9785	,2317	-7,4695	

No.	No. Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
				a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}		A. R.	Decn.
		○ ' "'							s.	
1171	4	+11 4733,18	$-2,581$	+9,7973	$-8,4200$	-0,4119	+9,9964	171	+,004	-, 02
1172	3	-11 10 1,20	2,564	+9,3692	+8,3940	,4089	,9964	170	+,014	-, 11
1173	2	+20 42 3,71	2,564	+9,8785	-8,6550	,4089	,9964	175	+,013	-,01
1174	3	-23 44 20,86	2,524	-7,4771	+8,7051	,4020	,9965	173	+-,012	- ,01
1175	3	+ 2744,61	2,524	+9,6730	-7,6675	,4020	,9965	177	+,048	+ ,02
1176	3	+132534,89	2,477	+9,8142	-8,4576	-0,3940	+9,9966	183	+,013	+ ,01
1177	2	+1322 52,34	2,414	+9,8136	-8,4450	,3827	,9968	185	+,010	,00
1178	4	- 11816,59	2,373	+9,6075	+7,4347	,3753	,9969	187	+,016	-, ,06
1179	3	+24 3033,58	2,350	+9,9069	-8,6871	,3711	,9970	191	+,014	- ,06
1180	3	+ 9322,27	2,205	+9,7730	-8,2606	,3434	,9973	199	+,011	- ,14
1181	4	-21 5630,42	2,176	+8,5051	+8,6081	-0,3377	+9,9974	197	-,006	- ,07
1182	4	-659 48,99	2,170	+9,4914	+8,1205	,3365	,9974	202	+,014	- ,06
1183	2	+171853,66	2,170	+9,8513	-8,5083	,3365	,9974	205	+,011	+ ,02
1184	2	+274339,23	2,124	+9,9279	-8,6930	,3272	,9975	212	+,019	- ,06
1185	3	+2439 4,61	2,101	+9,9079	-8,6406	,3224	,9976	213	$+, 002$	-,19
1186	1	+6854 10,36	2,083	+0,0350	-8,9867	-0,3188	+9,9976	232		+ ,11
1187		+ 54736,33	2,060	+9,7269	-8,0165	,3139	,9977	214	+,021	-, 08
1188	3	+ 23921,59	2,049	+9,6803	-7,6745	,3115	,9977	216	-,001	-, 11
1189	3	+13 51 38,13	2,008	+9,8189	-8,3804	,3028	,9978	219	+,007	+ ,02
1190	3	+53 2511,67	2,008	+0,0245	-8,9055	,3028	,9978	224	-,035	-, 14
1191	2	$+54722,99$	1,944	+9,7259	-7,9901	-0,2887	+9,9979	222	+,016	-, 05
1192	3	+ 54345,24	1,892	+9,7251	-7,9733	,2769	,9980	230	$+, 005$	-,19
1193	3	+ 53800,80	1,840	+9,7243	-7,9560	,2648	,998	234	+,017	- ,12
1194	3	+ 54534,93	1,816	+9,7259	$-7,9581$,2592	,9982	235	$+, 012$	- ,10
1195	3	-40 4249,14	1,724	-9,5065	+8,7489	,2364	,9984	236	+,009	-,17
1196	4	-34 2149,06],596	-9,3096	+8,6525	-0,2030	+9,9986	248	-,016	-,03
1197	5	-19 4318,59	1,549	+8,8573	+8,4163	,1901	,4987	251	+,015	-, 16
11.98	4	+ 7177,20	1,503	+9,7459	-7,9789	,1769	,9988	260	-,003	--,05
1199	2	+40 1 55,72	1,509	+9,9881	-8,6850	,1786	,9988	262	+,008	-,02
1200		-34 44	1,474	-9,3243	+-8,6223	,1684	,9988	256		
1201	3	-18 49 45,28	1,404	+8,9494	+8,3543	-0,1473	+9,9989	263	+,026	+ ,09
1202	4	-19 5034,56	1,375	+8,8388	+8,3672	,1383	,9990	264	+,002	-,07
1203	2	+72 14 9,93	1,323	+0,0342	-8,7982	,1214	,9990	287	- -, 013	-, 27
1204	4	-22 5623,95	1,287	+8,0414	+8,3988	,1098	,9991	268	+,004	+ ,04
1205	3	- 13437,23	1,241	+9,6096	+7,2286	,0938	,9992	274	,000	-,02
1206	3	-11 3541,88	1,224	+9,3502	$+8,0890$	-0,0876	+9,9992	276	+,013	- ,04
1207	4	-41 40 57,42	1,189	-9,5315	$+8,5959$,0751	,9992	272	+,006	-,03
1208	1	+48 26 31,26	1,171	+0,0149	-8,6407	,0686	,9492	288		- ,04
1209	2	-15 39 6,88],084	+9,173\%	+8,1640	,0350	,9994	284	+,002	-, 04
1210	2	-18 $54.23,82$	1,049	+8,9445	+8,2292	,0208	,9994	290	+,018	- ,06
1211	3	+ 51134,62	1,037	+9,7177	-7,6698	-0,0159	+9,9994	292	+,005	- , 10
1212	3	+ 5042,00	0,967	+9,7152	-7,6254	9,9856	,9995	296	+,010	- ,06
121.3	4	-16 49 55,31	0,927	+9,1004	+8,1268	9,9669	,9995	297	+,006	-,03
1214	3	+1821 22,72	0,927	+9,8609	-8,1630	9,9669	,9995	300	+,015	- ,04
1215	3	+4534 59,96	0,868	+0,0077	-8,4906	9,9387	,9996	306	+,024	+ ,03

No.	No.Obs.	Declination$\text { Jan. 1, } 1836 .$	Annual Precession.	Logarithms of				$\begin{aligned} & \dot{8} \\ & \text { Z } \\ & \text { 感 } \end{aligned}$	Annual P. M.	
				a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}		A. R.	Decn.
1216	4	$\begin{array}{llll}-5 & 1 & 37,57\end{array}$	0,823	+9,5366	+7,5560	-9,9148	+9,9996	305	s. ,+ 012	
1217	2	+60 25 39,26	0,827	+0,0346	-8,5553	-9,9179	+9,9996	315	+,004	,09
1218	2	-18 3 28,05	0,728	+9,0128	+8,0521	,8625	,9997	308	-,007	,00
1219	3	-24 14 43,66	0,624	-8,1461	+8,1066	,7950	,9998	319	-,017	-,01
1220	3	-34 2 51,10	0,566	-9,3010	+8,1986	,7524	,9998	325	+,019	,00
12.21	2	+14 7 77,19	0,543	+9,8228	-7,8199	-9,7341	+9,9998	336	+,014	-, 12
1222	3	-23 7 7 53,96	0,530	+7,7781	+8,0170	,7247	,9998	330		,00
1223	2	+ 42251,34	0,496	+9,7067	$-7,2765$,6951	,9999	340	+,012	-, 29
1224	3	-19 27 21,19	0,476	+8,8808	+7,9003	,6795	,9999	338	+,002	-,16
1225	4	+22 4653,72	0,462	+9,8960	-7,9493	,6633	,9999	345	+,016	-, 02
1226	3	+15 0 0 13,35	0,367	+9,8312	-7,6765	-9,5650	+9,9999	350	+,019	- ,22
1227	3	-43 23 49,66	0,343	-9,5705	+8,0716	,5365	,9999	346	+,003	+ , ,07
1228	3	-28 $22 \begin{array}{ll}5,17\end{array}$	0,291	-8,9685	+7,8397	,4646	,9999	351	+,016	+ ,04
1229	3	-31 0046,67	0,199	-9,1553	+7,7072	,2972	0,0000	355	+,019	-,09
1230	4	-21 $52 \begin{array}{ll}18,10\end{array}$	0,169	+8,4914	+7,4972	,2281	,0000	360	+,021	-,03
1231	3	+13 2834,18	0,140	+9,8162	-7,2116	-9,1459	+0,0000	363	-,020	-, 06
1232	3	-21 2750,07	0,082	+8,5798	+7,1733	8,9118	,0000	364	+,006	-, 01
1233	3	$\begin{array}{llll}-26 & 7 & 3,63\end{array}$	0,058	-8,6990	+7,1074	8,7657	,0000	365	,000	-,27
1234	3	+ 64131,00	0,046	+9,7388	-6,4338	8,6688	,0000	371	-,001	-, 07
1235	2	+ 92845,97	0,006	+9,7730	$-5,6806$	7,7657	,0000	376	+,012	- ,22
1236	,	-23 4730,02	+0,029	-7,7781	-6,7686	+8,4647	+0,0000	375	+,016	+ , 10
1237	3	-25 4713 13,77	0,099	-8,6434	-7,3326	8,9961	,0000	383	+,014	- ,09
1238.	3	+26 443,26	0,122	+9,9191	+7,4291	9,0879	,0000	389	+,017	+ ,07
1239	2	+25 920,63	0,140	+9,9127	+7,4723	9,1459	,0000	391	+,014	- ,17
1240	4	+115648,48	0,192	+9,8007	+7,2983	9,2842	,0000	3	+,001	-, 20
1241	,	+30 2617,31	0,268	+9,9445	+7,8311	+9,4284	$+0,0000$,	+,016	-, 05
1242	3	+34 3136,86	0,408	+9,9652	+8,0621	,6108	9,9999	13	+,010	- ,09
1243		- $33 \quad 7 \begin{aligned} & \text { 13,72 }\end{aligned}$	0,449	-9,2624	-8,0878	,6521	0,0000		+,012	-, 06
1244	4	-24 214,72	0,466	-8,0414	-7,9766	,6687	,0000	12	-,001	-,01
1245		+ 9241,78	0,558	+9,7716	+7,6590	,7479	9,9998	19	+,004	-,19
1246	5	$-371634,15$	0,677	$-9,4150$	-8,3104	+9,8301	+9,9997	22	-,002	-, $\mathbf{1 1}$
1247	4	$\begin{array}{lll}+12 & 1 & 0,99\end{array}$	0,833	+9,8007	+7,9374	,9209	,9996	30	+,009	+ , 10
1248	3	-16 4249,25	0,857	+9,1106	$-8,0898$,9329	,9996	29	+,007	- ,08
1249	4	-39 4 455,46	0,886	-9,4669	$-8,4451$,9474	,9996	28	+,005	-,08
1250	4	+11 4922,11	0,909	+9,7993	+7,9686	,9587	,9995	35	+,023	-, 08
1251	3	-16 2630,25	1,049	+9,1271	-8,1704	+0,0208	+9,9994	38	+,011	-, 18
1252	4	-16 26 23,89	1,055	+9,1271	-8,1728	,0232	,9994	40	+,001	-,07
1253	4	-26 29 5,63	1,084	-8,7559	-8,3823	,0350	,9994	41	+,012	-,08
1254	4	-34 2428,51	1,177	-9,3139	-8,5208	,0708	,9992	44	+,004	-, 11
1255	3	+6835 1,40	1,305	+0,0362	+9,7688	,1019	,9991	61	-,054	+ ,08
1256	4	- 11326,48	1,358	+9,6159	-7,1578	$+0,1327$	+9,9990	59	+,012	-, 09
1257		+ 45957,85	1,508	+9,7152	+7,8169	,1786	,9988	65	+,013	-,15
1258	4	-25 815,68	1,666	$-8,4771$	-8,5477	,2216	,9:185	68	-,002	-, 20
1259	3	-33 3841,69	1,695	-9,2810	-8,6707	,2291	,9984	69	+,028	-,13
1260	4	-33 3532,02	1,700	-9,2787	-8,6716	,2305	,9984	71	+,015	-,01

lviii Mean Right Ascension and Declination of 2050 Stars

No.	$\left\lvert\, \begin{gathered} \text { No. } \\ \text { Obs. } \end{gathered}\right.$	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\begin{aligned} & \dot{\sim} \\ & \text { 烒 } \\ & \text { 总 } \end{aligned}$	Annual P. M.	
				a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}		A. R.	Decn.
1261								7	,008	
1262	3	+26 $22 \begin{array}{ll}12,50\end{array}$	+ 1,753	$+9,6395$ $+9,9196$	$+6,2418$ $+8,5892$	+0,2350	+9,9984	83	+ +,010	
1263	5	+26 2126,11	1,770	+9,9196	+8,5935	,2480	,'9983	84	+,012	+,08
1264	4	-24 9 47,71	1,799	-8,0414	-8,5:507	,2551	,9983	81	+,008	+ ,07
1265	5	$\begin{array}{lll}-33 & 2 & 42,87\end{array}$	1,909	--9,2528	-8,7154	,2809	,9980	87	+,007	-, 01
1266	2	-38 49 42,20	1,950	,45	-8,7852	+0,2900	9,9979	90	+,002	, 04
1267	2	-33 4 48,88	2,060	-9,2528	-8,7488	,3139	,9977	97	+,002	-, 09
1268	4	-20 5741,65	2,251	+8,6902	$-8,6042$, 3525	,9972	110	+,029	-,12
1269	4	-176 623,00	2,310	+9,0899	$-8,5200$,3536	,9972	111	+,013	-,16
1270	4	-29 2] 50,11	2,356	-9,0374	-8,7607	,3721	,9970	117	+,009	-,09
71	,	-29 361 1,76	2,362	-8,1139	--8,7649	+0,3732	+9,9970	118	-,006	-, 05
1272	3	+38 44 43,21	2,385	+9,9818	+8,8720	,3774	,9969	126	+,028	-, 10
1273	4	-33 36 33,93	2,443	-9,2742	-8,8291	,3879	,9967	122	+,008	-, 02
1274	4	-72753,69	2,530	+9,4786	$-8,2148$,4030	,9965	130	-,018	-,03
1275		+1117	2,587	+9,7924	+8,4024	,4128	,9963	133	+,007	
1276	4	+11 1324,10	2,599	+9,7917	+8,4018	+0,4148	+9,9963	134	+,017	+ ,01
1277	3	-30 40 10,67	2,680	-9,1206	-8,8337	,4218	,9961	136	+,001	-, 22
1278		-2 5 20,71	2,697	+9,5999	-7,6929	,4309	,9960	138	+,020	-, 08
1279	3	-14 39 0,39	2,772	+9,2304	-8,5438	,4428	,9958	140	+,012	-,15
1280	4	- 72912,86	2,934	+9,4786	-8,2802	,4674	,9953	152	+,017	-,02
12	4	-39 53 56,18	2,951	-9,4786	-8,9749	+0,4700	9,9952	148	-,023	-, 42
12	3	+12 514,69	2,968	+9,8000	+8,4920	,4725	,9952	154	+,009	+ ,05
1283	3	$\begin{aligned} & +12\end{aligned} 619,59$	2,997	+9,8007	+8,4968	,4767	,9951	156	+,013	, 03
1284	4	+65 2028,96	3,112	+0,03:6	+9,1496	,4931	,9947	173	+,009	-,08
1285	4	+ 8284,57	3,149	+9,7589	+8	,4982	,9946	163	+,,011	
1286	2	+62 2243,68	3,135	+0,0318	+9,1418	+0,4963	+9,9946	174	+,054	+ ,04
128	4	- 323 36,30	3,227	+9,5740	-7,9779	,5089	,9943	168	+,002	-, 06
12	3	-625 0,97	3,256	+9,5065	-8,2590	,5127	,9942	171	+,019	-, 14
1289	4	+63 3822,03	3,325	+0,0318	+9,1721	,5218	,9939	190	-,012	-, 04
1290	4	+3822 6,93	3,371	+9,9786	+9,0187	,5278	,9938	182	-,009	-, 05
1	4	-20 19 41,13	3,417	+8,8129	$-8,7726$	+0,5337	+9,9936	180	+,018	-, 14
1292	3	+34 5024,69	3,423	+9,9633	+8,9892	,5344	,9936	188	-,006	-,06
1293		+55 53	3,480	+0,0245	+9,1576	,5416	,9933	198	+,047	
1294	3	-26 5658,53	3,538	-8,7708	-8,9031	,5487	,9931	191	+,010	
1295	3	-22 26 48,43	3,567	+8,3979	-8,8322	,5522	,9930	194	,000	-,01
1296	2	- $6 \quad 529,16$	3,578	+9,5132	$-8,2781$	+0,5536	+9,9930	197	+,012	
1297	2	+2828 4,28	3,601	+9,9294	+8,9326	,5564	,9929	200	+,003	- ,06
1298	3	- 95732,51	3,658	+9,4099	$-8,4995$,5633	,9926	201	+,005	-, 15
1299	3	-6 6749,03	3,698	+9,5065	$-8,3166$,5680	,9925	204	+,010	-, 02
1300	2	+72 4749,95	3,675	+0,0282	+9,2435	,5653	,9926	221	+,001	-, 01
1301	2	+32 3555,53	3,707	+9,9518	+8,9974	+0,5690	+9,9925	207	+,005	-, 08
1302	2	+6146 1,66	3,710	+0,0298	+9,2124	,56994	,9924	212	-,009	+ , 10
1303	2	+23 4251,03	3,727	+9,8987	+8,8739	,5714	,9924	209	+,017	- ,08
1304	3	-19 1833,29	3,779	+8,9294	-8,7946	,5773	,9921	208	+,019	- ,05
1305	2	+33 956,67	3,842	+9,9542	+9,0206	,5845	,9919	216	+,015	-, 05

1x Mean Right .1sremsion and Declination of 2050 Stars

No.	No. Obs	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
				a^{\prime}		c^{\prime}	d^{\prime}		A. R.	Deen.
1306	5	-29 24 41,86	+3,933	9,0128	-8,9838	+0,5947	+9,9915			
1307	3	+ 433047,62	4,116	+9,9952	+9,1504	145				
1.308	4	+20 926 26, 11	4,127	+9,8716	+8,8512	157	06	4		
1309	6	+43 30 55,04	4,173	+9,9948	+9,1564	,6204	,9904	244	14	-,11
1310	4	+ 21555,68	4,196	+9,674,9	+7,9180	,6228	,9903	241	+,020	二,,10
1311	3	+59 1150,16	4,236	+0,0261	+9,2589	+0,6269	+9,9901	248	-,002	- ,09
1312	4	-28 15 56,44	4,332	-8,9031	-9,0102	,6367	-,9896	246	+,018	+,06
1313	4	-3 309,37	4,446	+9,5821	-8,0720	,6480	,9890	251	+,010	-,01
1314	2	$-23270,43$	4,486	+8,0000	$-8,9497$,6519	,9888	253	+,017	+,,02
1315	4	+145435,95	4,503	+9,8261	+8,7622	,6535	,9887	259	+,021	- ,22
1316	4	+144122,49	4,565	+9,8241	$+8,7615$	+0,6595	+9,9884	263	+,013	- ,20
13	5	- 05611,29	4,719	+9,6212	-7,5837	,6738	,9876	274	+,007	- ,20
1318 1319	3	[rrrer0 56 31,08 -25 3 7,61	4,724	+9,6212	-7,5919	, 67483	,9876	275	+,006	-,10
1320	4		4,764	-8,2553	-9,0025	,6780	,9874	277	+,003	-, 17
1322	4	$\begin{array}{r}1 \\ +988 \\ \hline\end{array}$		+9,	-7,6307	+0,6836	+9,987	284	+,010	- , 12
1323	3	-27 31 37,53	4,877	+8	+	,68	,986	28	+,010	10
1324	3	+37 3439,83	4,900	-8,9708	- 8,0508 $+9,1735$,6882	,9867	286	+,010	- , 09
$13 \div 5$	4	+ 9241,60	4,979	+9,7679	+8,6082	,6971	,9862	297	,+ 007 ,+ 018	- ,09
26	3	+ 93137,60	5,030	+9,7694	+8,6187	+0,7015	+9,9859	304	-,001	-, 16
1327	3	+302926,68	5,086	+9,9370	+9,1099	,7064	,9855	309	+,008	-, ,11
1328	3	+375148,97	5,192	+9,9717	+9,1929	,7069	,9855	311	+,040	-,12
1329	2	+38 2951,92	5,137	+9,9740	+9,2029	,7107	,9852	317	+,005	-, 11
1330	2	+ 55447,96		+9,7259	+8,4233	,7121	,98.51	314	+,012	, 00
1331	2	-535 2,78	5,161	+9,5289	-8,3992	+0,7131	+0,9851	313		
13:32	2	$-27 \quad 220,78$	5,171	-8,7708	-9,0740	,7135	,9850	310	+,011	+,02
13	3	+483719,14	5,171	+0,0052	+9,2869	,71135	,9850	319	+,004	- ,01
11334	4	+20 1053,02	5,227	+9,8692	+8,9541	,7182	,9847	320	+,024	-,25
1	2	+62 2745,16	5,266	+0,0241	$+9,3673$,7215	0845	6	+,008	+,06
1336	2	+ 9642,21	5,283	+9,7642	+8,6208	+0,7229	+9,9844	322	-,001	-,06
1337	4	-20 3630,10	5,345	+8,8261	-8,9723	,7280	-,9840	324	+,012	-, ,11
15	4	+38 5349,52	5,424	+9,9740	+9,2303	,7343	,9835	11	-,008	- ,05
1339 1340	3		5,440 5,458	$+9,9694$ $+9,9345$	$+9,2196$ $+9,1373$,7356	,9834	13	-,019	-, 18
1340	3	+30 18 18,4,	5,458	+9,9345	+9,1373	,7370	,9833	14	+,006	-, 13
1341	4	+ 74750,14	5,457	+9,7497	+8,5676	+0,7370	+9,9833	9	+,015	
1342	4	-20 4124,23	5,497	+8,8195	-8,9861	,7401.	,9830	10	-,004	- , 11
1343	4	-22 5004.56	5,525	+ 8,4150	-9,0292	,7423	,9828	12	+,007	+ ,02
134	4	-18 1022,11	5,609	+9,0531	-8,9407	,7489	,9823	18	+,006	+ ,02
1345	4	+ 262813,44	5,609	+9,9117	+9,0959	,7489	,9823	23	+,009	- ,02
1346	4	+293717,05	5,631	+9,9299	+9,1427	+0,7506	-9,9821	26		-,12
1347	4	-20 3 50,20	5,693	+8,8976	-8,9888	,7553	,9817	25	+,013	-, 24
1348 1349	3	$\begin{array}{r}\text { r } \\ +729 \\ -15988 \\ \hline\end{array}$	5,731 5,743	$+9,7443$ +92279	$+8,5720$ $+8,8730$,7583	,9815	29	+,008	
1350	3	+ 9227,59	5,788	+9,7634	-8,8,6572	,7625	,9811	31	,+ 001 ,+ 027	- , 09

lxii

No.	Star's name and Mag.		No. Obs	$\begin{gathered} \text { Right } \\ \text { Ascension } \\ \text { Jan. 1, } 1836 . \end{gathered}$	Annual Precession.	Logarithms of				
			-			\checkmark	c	d		
1351	Sagittarii	8.9		3	$\begin{array}{\|ccc\|} \hline h \cdot & m_{0} & s . \\ 19 & 7 & 30,31 \end{array} .$	$\left\|\begin{array}{c} s . \\ +s, 568 \end{array}\right\|$	$+8,3191$	-8,8355	+0,5524	-7,8802
$\left\lvert\, \begin{aligned} & 1301 \\ & 1352 \end{aligned}\right.$	Antinoi	9	2	742,02	3,134	, 2896	-8,8051	-,4961	$-6,9986$	
1353		7	3	7 45,86	3,322	,2982	,8129	,5214	-7,5885	
1354	Aquilæ	9.10	2	816,54	2,864	,2982	,8097	,4570	+7,4949	
1355	Aquil	7.8	3	8 34,36	2,927	,2970	,8067	,4664	+7,3385	
1356	Antinoi	8	2	8 48,74	3,064	+8,2960	-8,8039	+0,4863	+5,8737	
1357	Sagittarii	7.8		8 54,89	3,506	,3210	,8280	,5448	-7,8325	
1358	Antinoi	8	2	9 9,07	3,333	,3072	,8129	,5228	-7,6154	
1359	Aquilæ	10	1	9 13,43	2,864	,3039	,8091	,4570	+7,5014	
1360	Sagittarii	7.8	,	935,87	4,101	,4109	,9131	,6129	-8,2101	
1361	Antinoi	8	3	9 54,64	3,321	$+8,3112$	-8,8116	+0,5213	-7,6009	
1362	Aquilæ	7	3	10 17,07	2,960	,3064	,8046	,4713	+7,2335	
1363	Sagittarii	7.8	3	1043,41	3,648	,3490	,8437	,5620	-7,9667	
1364	Lyre	7.8	3	12 2,20	2,344	,3761	,8630	,3700	$+8,0706$	
1365	Aquilæ	7.8	3	12 12,85	2,969	,3175	,8032	,4726	+7,2106	
1366	Aquilæ	8	3	12 25,03	3,009	+8,3178	-8,8022	+0,4784	+6,9828	
1367		8.9	3	1236,28	2,927	, 3212	,8043	,4664	+7,3650	
1368	Antinoi	7.8	2	1238,13	3,101	,3190	,8017	,4915	-6,7272	
1369	Sagittarii	8	2	13 0,34	3,51.3	,3464	,8265	,5457	-7,8659	
1370	Antinoi	1.10	2	13 25,30	3,209	,3258	,8038	,5064	-7,3684	
1371	Draconis	7.8	2	13 47,56	0,352	+8,6980	-9,1748	+9,5465	+8,6553	
1372	Anseris	8	3	13 134,27	2,559	,3583	8,8333	0,4081	+7,9302	
1373	Antivoi	8	2	13 57,78	3,066	,3261	8,8008	0,4866	+5,4888	
1374		7	3	14 6,61	3,314	,3353	8,8087	0,5203	-7,6159	
1375	Draconis	9	1	14 32,10	0,573	,6732	9,1449	9,7581	+8,6235	
1376	Sagittarii	8	2	14 14 54,67	3,509	+8,3567	-3,8251	$\begin{array}{r}+0,5452 \\ \hline 4598\end{array}$	$-7,8744$ -74961	
1377	Aquilæ	8	2	$\begin{array}{ll}14 & 59,66 \\ 15 & 25,15\end{array}$	2,883	$\begin{array}{r}\text {,3367 } \\ \\ \hline 3405\end{array}$, 8047 8060	,4598 5163	$+7,4961$ $-7,5641$	
1378	$\stackrel{\text { Antinui }}{\text { Sagitarii }}$	8 7 8	3	$\begin{array}{cc}15 & 25,15 \\ 16 & 5,62 \\ 16\end{array}$	3,283 3,402 3,03	, 3405	,8060 .8141 , 818	, 5163	-7,5641	
1380	Aquile	8	2	16 35,76	3,034	,3411	,7992	,4820	+6,7638	
1381	Antinoi	8.9	3	16 49,29	3,157	+8,3431	$-8,8000$	+0,4:993	-7,1921	
1382		8	3	17 6,15	3,121	,3442	,7991	,4943	-6,9631	
1383	Anseris		3	17 33,99	2,618	,3720	,8244	,4180	+ 7,8983	
1384	Cygni	7	2	18 12,65	2,148	,4420	,8909	,3320	+8,2128	
1385	Aquilæ	8.9	,	18 51,30	3,119	,3534	,7979	,4940	-6,9632	
1386	Cygni	7.8	2	19 9,43	2,489	+8,3963	$-8,8392$	+0,3960	+8,0182	
1387	Anseris	7	2	19 18,18	2,621	,3810	,8231	,4185	+7,9063	
1388	Sagittarii	8	2	1959,08	3,566	,3911	,8285	,5522	-7,9581	
1389	Cygni	7.8	3	20 3,56	2,161	,4503	,8881	,3346	+8,2181	
1390	Aquilæ	6.7	3	$20 \quad 6,83$	3,010	,3601	,7971	,4786	+7,0196	
1391	Cygni	7.8	3	20 14,44	1,576	$+8,5510$	-8,9880	+0,1976	+8,4348	
1392		8		2147,00	2,152	,4610	8,8887	, 3328	+8,2323	
1393		8	3	22 29,48	2,414	,4241	8,8475	,3827	+8,0899	
1394	Draconis	7	,	22 48,47	1,091	,6448	9,0670	,0378	+8,5718	
1395	Cygni	8		23	1,587	,5612	8,9854	,2006	+8,4473	

together with their annual precessions and proper motions, \&c.

No.	No. Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\begin{aligned} & \text { O } \\ & \text { N } \\ & \text { N } \\ & \text { N } \end{aligned}$	Annual P. M.	
				a^{\prime}	0	${ }^{\prime}$	d^{\prime}		A. R.	Decn.
		- ' ${ }^{\prime \prime}$	+						s.	
1351	3	-21 2119,05	+5,838	+8,7482	$-9,0255$	+0,7662	$+9,9807$	32	+,012	-, 04
1.352	3	-2 26 49,60	5,849	+9,5843	-8,1742	,7671	,9807	34	+,017	+,01
1353	3	-11 15 20,23	5,860	+9,3802	-8,7598	,7679	,9806	33	+,027	-,05
1354	3	+ 9240,16	5,899	+9,7627	+8,6655	,7708	,9803	40	-1,008	- ,07
1355	2	+ 61848,07	5,921	+9,7292	+8,5119	,7724	,9802	44	+,014	-,03
1356	2	+ 01240,90	5,944	+9,6415	+7,0498	+0,7741	+9,9800	46	+,003	- ,17
1357	3	-18 59 7,35	5,955	+9,0000	-8,9844	,7749	,9799	43	+,022	- ,01
1358	2	-1144 5,51	5,972	+9,3636	-8,7824	,7761	,9798	47	+,001	- ,05
1350		+ 931	5,977	+9,7627	+8,6720	,7765	,9798	49	$+, 018$	
1360	2	-39 2 22,0	6,016	-9,4216	-9,2765	,7793	,9795	48	+,001	- ,11
1361	3	$-111315,50$	6,038	+9,3820	-8,7679	+0,7809	+9,9793	53	+,015	-, 01
1362	3	+ 45017,52	6,066	+9,7101	+8,4080	,7829	,9791	58	+,019	--,17
1363	3	-24 30 4,94	6,111	+5,8451	-9,1018	,7861	,9788	59	+,030	- ,26
1364	2	+29 3941,07	6,211	+9,9289	+9,1857	,7931	,9781	78	-,002	-,16
1365	3	+ 429 0,23	6,227	+9,7050	$+8,3853$,7943	,9780	75	+,013	- ,28
1366	3	+ 23817,51	6,244	+9,680	+8,1584	+0,7954	+9,9778	76	+,007	-,07
1367	3	+ 62050,84	6,260	+9,7292	+8,5384	,7966	, 0777	80	-,003	- ,08
1368	3	- 12836,12	6,266	+9,6128	-7,9032	,7970	,9777	79	+,017	- ,09
1369	3	-19 1936,08	6,299	+8,9777	-9,0168	,7993	,9774	82	+,020	+ ,04
1370	2	-621 4,95	6,326	+9,5132	-8,5418	,8012	,9772	83	$+, 006$	-,26
1371	2	+645848	6,343	+0,0183	+9,4575	+0,8023	+9,9771	98	+,015	- ,07
1372		+2153	6,365	+9,8791	+-9,0735	,8038	,9769	88	+,014	
1373	2	+ 0428,05	6,373	+9,6385	+6,6649	,8043	,9769	87	+,012	- ,09
1374	3	-11 0 38,73	6,388	+9,3892	-8,7840	,8053	,9767	86	+,013	-,10
1375	3	+63 5 52,99	6,409	+0,0174	$+9,4551$,8068	,9766	101	$+, 019$	-,01
1376	3	-19 1418,20	6,454	+8,9912	-9,0256	+0,8098	+9,9762	92	+,002	-, 01
1377	2	+ 81756,74	6,459	+9,7528	+8,6676	,8102	,9762	95	+,004	$-, 10$
1378	1	-93858,28	6,492	+9,4314	-8,7340	,8124	,9759	97	+,018	-, 24
1379	3	-14 5029,21	6,553	+9,2480	-8,9227	,8164	,9754	100	+,013	$-, 13$
1380	2	+ 13114,14	6,591	+9,6618	$+7,9397$,8190	,9751	106	+,,014	+ ,06
1381		- 4253,95	, 008	+9,5647	-8,3671	+0,8201	+9,9750	109	-,011	-, 16
1382	5	-2 22 44,66	6,636	+9,5966	$-8,1388$,8219	,9748	111	+,014	-,11
1383	3	+193718,66	6,669	+9,8609	+9,0484	,8240	,9745	116	+,014	- ,03
1384	4	+36 756,60	6,718	+0,9571	+9,2960	,8272	,9741	121	-,001	+ ,08
1385	3	- 22039,06	6,778	+9,5977	-8,1389	,8311	,9736	122	+,013	-,09
1386	3	+24 4349,73	6,800	+9,8965	+9,1524	+0,8325	+9,9734	127	+,007	
1387	1	+1934 11,94	6,811	+9,8603	+9,0565	, 8332	,9733	128	+,002	-, 24
1388	2	-21 40 4,21	6,877	+8,7559	-9,1024	,8374	,9728	130	+,005	-, 0.1
1389	3	+35 51 45,21	6,872	+9,9552	+9,3029	,8371	,9728	134	+,019	-, 10
1390	2	+ 236 9,55	6,882	$+9,6785$	+8,1952	,8377	,9727	133	+,003	-, 09
1391	3	+49 55 10,35	6,882	+9,9992	+9,4196	+0,8377	$+9,9727$	140	+,012	--- ,26
1392	4	+361158,72	7,014	+9,9557	+9,3153	, 8460	, ,9716	149	,000	,00
1393	3	+273540,94	7,074	+9,9133	+9,2135	,8497	,9711	153	+,007	- ,08
1394	4	+574155,92	7,090	+0,0099	+9,4757	,8507	,9710	156	+,004	- ,03
1395	2	+494840,10	7,063	+9,9978	+9,4301	,8490	,9712	154		-, 10

together with their annual precessions and proper motions，\＆c．
lxv

No．	$\begin{aligned} & \text { No. } \\ & \text { Obs. } \end{aligned}$	Declination Jan．1， 1836.	Annual Preces－ sion．	Logarithms of					Annual P．M．	
				a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}		A．R．	Decn．
1396	4	－18 5733,53	＋7，205	＋9，0334	－9，0672	＋0，8576	＋9，9700	155	c．${ }_{\text {s．}}^{\text {＋}}$	
1397	4	＋273732，23	7，205	＋9，9127	＋9，2220	，8576	，9700	162	＋，012	
1398	4	＋53 380,16	7，243	＋0，0030	＋9，4638	，8599	，9696	167	＋，022	－，02
1399	3	＋35 5316,07	7，264	＋9，9533	＋9，3274	，8612	，9694	164	＋，010	＋，02
1400	3	＋275518，17	7，319	＋9，9133	＋9，2331	，8644	，9689	169	＋，009	－，02
1401	3	＋20 3923,98	7，351	＋9，8645	＋9，1121	＋0，8664	＋9，9686	172	＋，005	－，08
1402	3	－10 4310,79	7，427	＋9，4048	－8，8383	，8708	，9679	177	＋，012	－，01
1403	3	＋ 35732,84	7，433	＋9，6964	＋8，4091	，8711	，9679	178	＋，011	－，15
1404	2	＋554725，36	7，449	＋0，0052	＋9，4877	，8721	，9677	189	＋，013	－， 01
1405	1	＋551427，35	7，460	＋0，0043	＋9，4854	，8727．	，9676	190		－，24
1406	2	－ 01454,50	7，492	＋9，6345	－7，1825	＋0，8746	＋9，9673	182	＋，019	－－39
1407	2	－ 0 6 66,83	7，492	＋9，6345	－6，8145	，8746	，9673	183	＋，011	－，18
1408	3	－3－	7，498	＋9，5832	－8，3129	，8749	，9673	181	＋，016	－ 12
1409	2	－104720，89	7,508 7,590	$+9,4031$ $+9,7380$	－8，8456 $+8,6763$	，8755	，9672	185	－， 010	＋
1410	2	＋ 71131,52	7，590	$+9,7380$	＋8，6763	，8802	，9664	195	＋，006	＋，03
1411	4	－ 051 9，96	7，595	＋9，6243	$-7,7498$	＋0，8805	＋9，9663	194	＋，005	－，04
1412	3	－ 02932,64	7，616	＋9，6304	－7，5059	，8817	，9661	198	＋，003	－，08
1413	3	－ 05111,69	7，665	＋9，6232	－7，7538	，8845	，9657	200	＋，015	二， 04
1414	3	－ 0 1 17，05	7,681 7,686	$+9,6375$ $+9,9464$	$-6,0472$ $+9,3407$	，8854	，9655	202	,+ 015 ,+ 008	二，16
1415	1	＋34516，91	7，686	＋9，9464	$+9,3407$	，8857	，9655	207	＋，008	－，12
1416	2	＋50 5316,12	7，681	＋9，9961	＋9，4732	＋0，8854	＋9，9655	211	＋，017	－，14
1417	2	－20 550,42	7，730	＋8，8808	－9，1389	，8881	，9650	205	＋，007	－， 15
1418	2	－23 4157,00	7，730	＋8，4150	－9，1903	， 88881	，9650	204	＋，003	＋，02
1419		63 +61451	7,735 7,740	$+9,7234$ $+9,7372$	$+8,6105$ $+8,6878$	，8884	，9650	209		
1420	1	＋ 71456,41	7，740	＋9，7372	＋8，6878	，8887	，9649	209	＋，008	－，01
1421	2	＋1159 31，18	7，751	＋9，7896	＋8，9053	＋0，8894	＋9，9648	212	＋，020	－，05
1422	1	－ 1509 9，34	7，756	＋ 9 9，6074	－8，0927	，8897	，9648	210	＋，014	－， 10
1423	2	－ 82025,29	7，789	＋9，4698	8,7506 $+9,5609$	，8915	，9644	227	$\underline{+, 012}$	
1424	2	a $+691017,53$ $+\quad 72821,95$	7,800 7,821	$+0,0065$ $+9,7404$	$+9,5609$ $+8,7050$	， 899321	，9643	2276	－，013	二，01
1425	2	$+72821,95$ +711472	7,821 7848	$+9,7404$ $+9,7372$	$+8,7050$ $+8,6908$, 8932 $+0,8947$	，9641 $+9,9639$	217	,+ 015 ,+ 008	,- 01 ,- 05
1426	3	＋ 71144872	7,848 7,912	$+9,7372$ $-9,1875$	$\begin{array}{r}+8,6908 \\ \hline-9,341\end{array}$	$\begin{array}{r}+0,8947 \\ , 8983 \\ \hline, 89\end{array}$	$\begin{array}{r}+9,9639 \\ \hline, 9632\end{array}$	218	＋，008	二，06
1427	3 2 2		7,912 7,912	$+9,1875$ $+9,8395$	$\begin{array}{r}+8,3441 \\ +9,0752 \\ \hline\end{array}$	，8983	－，9632	225	＋，010	－，17
1429	3	＋17374，56	7，976	＋9，8395	＋9，0808	，9018	，9626	228	＋，004	二， 07
1430	3	$+174856,65$	8，013	＋9，8414	＋9，0875	，9038	，9622	3		－，20
1431	4	－11 $31 \begin{array}{lll}14,51\end{array}$	8，019	＋9，3979	－8，8847	＋0，9041	＋9，9621	231	＋，025	－ 19 $+\quad 03$
1432	－	＋31 148,76	8,024	＋9，9268	$+9,3147$ $+8,5043$	，9044	，9621	235	,+ 013 +016	＋ 03
1433	2	＋ 43421,08	${ }_{8}^{8,037}$	$+9,7041$ +97458 +9,	$+8,5043$ $+8,7486$	，9070	，，9616	241	＋，009	
1434	3	$+\quad 75955,34$ $+\quad 113444,47$	8,072 8,141	$+9,7458$ $+9,2838$	$+8,748$ $-8,9109$	，9107	，＇9608	245		－，03
				＋9，8426	＋9，0974	＋0，9090	＋9，9612	246	＋，017	
14337	2	$\begin{array}{lll}+18 & 0 & 16,91 \\ +17 & 35 & 10,47\end{array}$	8，126	$+9,848$ $+9,8395$	＋9，0884	，9099	，9610	244	＋，004	$4-0$
1438	－ 2	＋ 7123 3，26	8，190	＋9，7372	＋8，7103	－，9133	－，9603	［ 248	,+ 007 $+\quad, 004$	
1439	3	＋1159 14，10	8,200	$+9,7882$ $+9,7490$	$+8,9297$ $+8,7753$	3		－	＋，019	1 －
1440		$+82020,71$	8，227	＋9，7490	$+8,7753$	，, 152				

No.	No. Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
				a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}		A. R.	Decn.
1441	3	+1031 22,87	+ 8,237	+9,7738	+8,8758	+0,9158	+9,9598	253	-,005	+,13
1442		+50 8	8,280	+9,9899	+9,5013	,9180	,9594	262	+,003	
1443	4	+3755 57,69	8,317	+9,9547	$+9,4067$,9200	,9590	263	+,005	-, 04
1444	3	+10 349,03	8,386	+9,7671	+8,8641	,9236	,9582	268	+,004	- ,22
1445	2	$+173748,45$	8,386	+9,8376	+9,1029	,9236	,9582	270	+,017	-, 08
1446	3	$-421544,75$	8,434	-9,4609	-9,4517	+0,9260	+9,9577	266	-,003	+ ,01
1447	2	+35 41 33,04	8,449	+9,9455	+9,3909	,9268	,9575	277	+,008	- , ,13
1448	3	+ 52255,40	8,460	+9,7143	+8,5977	,9274	,9594	272	,000	- ,14
1449	3	+1847 0,37	8,460	+9,8482	+9,1332	,9274	,9594	274	+,039	-, ,04
1450	3	+56 3855,38	8,497	+9,9978	+9,5492	,9293	,9570	284	+,024	-, 03
1451	3	+194836,97	8,592	+9,8537	$+9,1623$	+0,9341	$+9,9559$	287	+,023	- ,17
1452	3	+ 23253,05	8,602	+9,6758	+8,2809	,9346	,9558	285	+,007	,00
1453	2	+55 2656,96	8,587	+9,9956	+9,5477	,9338	,9560	292	+,025	-,15
1454	4	-19 3721,44	8,650	+9,0253	$-9,1610$,9370	,9552	288	+,006	- ,13
1455	3	+32 52 1,52	8,750	+9,9304	+9,3748	,9420	,9541	300	+,036	-, 16
1456	3	+193734,43	8,771	+9,8519	$+9,1674$	+0,9430	+9,9538	301	+,020	- ,11
1457	4	+ 9565,37	8,839	+9,7649	$+8,8819$,9464	,9530	307	-,004	-,19
1458	1	+172532,54	8,850	+9,8344	$+9,1215$,9469	,9529	308	+,018	-, ,10
1459	3	$+181923,30$	8,907	+9,8414	+9,1454	,9497	,9522	312	+,015	+ ,02
1460	7	+1723 50,95	8,922	+9,8338	+9,1242	,9505	,9520	315	+,019	+ ,02
1461	2	- 83925,63	8,943	+9,4683	-8,8268	+0,9515	$+9,9520$	314	-,013	-,04
1462	3	+111] 19,15	8,954	+9,7781	+8,9384	,9520	,9517	317	$+, 017$	-,03
1463	2	+1954 16,05	8,975	+9,8531	+9,1833	,9530	,9514	321	-,001	-, 17
1464	4	+113158,47	9,073	+9,7810	+8,9573	,9578	,9502	326	$\underline{+, 005}$	- , ,10
1465	4	+2353 40,00	9,082	+9,8797	+9,2637	,9580	,9501	327	+,012	-,03
1466	4	+172726,66	9,162	+9,8331	+9,1373	+0,9620	+9,9491	335	+,015	-, 06
1467	3	+192147,35	9,276	+9,8470	+9,1860	,9673	,9477	338	+,004	-, 08
1468	4	+1058 45,28	9,286	+9,7745	+8,9458	,9678	,9475	336	+,002	+,02
1469	5	+11 922,42	9,286	+9,7767	+8,9529	,9678	,9475	337	+,005	+ , ,13
1470	3	$+164240,76$	9,296	+9,8267	+9,1252	,9693	,9474	341	$+, 010$	-, 04
1471	3	+ 72856,96	9,317	+9,7364	+8,7820	+0,9693	+9,9471	345	$+, 012$	$+, 01$
1472	3	-21 1750,78	9,333	+8,9191	-9,2279	,9700	,9469	339	+,006	+ ,04
1473	3	+ 6910,88	9,338	+9,7210	+8,6994	,9702	,9469	348	+,006	-, 05
1474	3	-23 4 41,18	9,358	+8,7243	$-9,2623$,9712	,9466	346	+,006	-, 03
1475	2	+11 734,62	9,358	+9,7760	+8,9550	,9712	,9471	350	+,005	+,07
1476	3	+65041,90	9,441	+9,7292	+8,7496	+0,9750	+9,9455	357	+,010	+ , 01
1477	4	+ 7329,75	9,492	+9,7372	+8,7940	,9774	,9448	363	+,005	-,04
1478	3	+ 65758,95	9,497	+9,7308	+8,7594	,9776	,9448	364	+,011	+ ,02
1479	2	-38 18 36,97	9,518	-9,3096	$-9,4688$,9785	,9445	359	-,009	- ,38
1480	4	+215944,22	9,518	+9,8645	+9,2501	,9785	,9445	368	+,002	+ ,07
1481	4	-18 4133,91	9,564	+9,1139	$-9,1843$	+0,9806	+9,9439	367	+,005	+ ,07
1482	4	$\begin{array}{r}184151,99 \\ -0215 \\ -1649 \\ \hline\end{array}$	9,656	$+9,6314$	-7,4890	, 98888	,9427	376	+,018	-,13
1483	4	-16 49 53,26	9,743	+9,2095	-9,1481	,9887	,9415	381	+,010	-, 07
1484	5	$\begin{array}{r}15 \\ -153 \\ \hline\end{array}$	9,768	+9,2504	-9,1246	,9898	,9411	387	+,006	-,04
1485	2	+163948,37	9,773	+9,8241	+9,1461	,9900	,9410	392	$+, 011$	-, 20

Ixviii Mean Right Ascension and Declination of 2050 Stars

No.	$\begin{aligned} & \text { No. } \\ & \text { Obs. } \end{aligned}$	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\begin{aligned} & \dot{\sim} \\ & \text { 云 } \\ & \text { 閏 } \end{aligned}$	Annual P. M.	
				a^{\prime}	6^{\prime}	c^{\prime}	d^{\prime}		A. R.	Decn.
		${ }^{\circ}{ }^{\prime \prime}{ }^{\prime \prime}$	"							
$\begin{aligned} & 1486 \\ & 1487 \end{aligned}$	3	- 7240,21	+9,773	+9,5105	$-8,7760$	+0,9900	+9,9410	389	+,019	-, 07
1488	4	-19 5788	9,783	-9,9414	-9,2212	,9905	,9409	388	+,001	-, 15
1489		,			+9,1619	, 9012	,9408	394	+,012	01
1490	$\stackrel{3}{3}$		9,799 9,860	$+8,8692$ $+9,3424$	$-9,2650$ $-9,0564$,9912 , 9939	,9407	390 396	,+ 001 ,+ 007	
1491	3	-12 54 11,62	9,865	+9,3598	-9,0409	+0,9941	+9,9398	398	+,011	+,03
1492	3	- 92244,50	9,890	+9,4579	-8,9048	,9,752	,9394	399	+,017	-,06
1493	3	+23 1219,64	9,890	+9,8704	+9,2887	,9952	,9394	401	+,005	+ ,04
1494	3	- 12014,72	9,936	+9,6170	-8,0620	,9972	,9388	403	+,031	-,15
1495	4	+1624 9,01	9,986	+9,8202	+9,1486	,9994	,9380	409	+,019	-,06
1496	3	+ 15829,30	9,991	+9,6665	+8,2332	+0,9996	+9,9380	407	+,018	+,05
1497	1	+2038 4,46	10,037	+9,8519	+9,2466	1,0016	,9573	415	+,013	-,06
1498	3	+16338,61	10,032	+9,8214	+9,1540	1,0014	,9374	413	+,009	+ ,05
1499	3	+19 44 46,00	10,117	+9,8451	+9,2319	1,0051	,9361	422	+,011	-, 17
1500	2	+21 855,77	10,142	+9,8555	+9,2615	1,0061	,9358	424	+,018	+ ,07
1501	3	+16 266,73	10,158	+9,8195	+9,1564	+1,0068	+9,9355	2	-,005	-,03
1502	4	- 63825,26	10,167	+9,5211	-8,7679	,0072	,9354	423	+,017	-,05
1503	2	+25 48 2,91	10,172	+9,8842	+9,3444	,0074	,9353	5	+,007	+,01
1504	3	-91919,19	10,208	+9,4609	-8,9154	,0089	,9348	4	+,009	-,08
1505	2	-634 2,75	10,218	+9,5224	-8,7646	,0094	,9346	6	+,006	-,10
1506	2	+20 31 28,55	10,238	+9,8500	+9,2533	+1,0102	+9,9343	15		-,09
1507	1	- 63749,28	10,253	+9,521]	-8,7704	,0108	,9341	8	+,017	-, 03
1508	2	- 03625,61	10,253	+9,6284	-7,7167	,0108	,9341	12	+,017	-, 19
1509	3	+ 5523,10	10,268	+9,7160	+8,7203	,0115	,9339	17	+,016	-,03
1510		+63 13	10,278	+9,9827	+9,6607	,0119	,9337	30		
1511	2	$+53526,16$	10,288	+9,7126	+8,6997	+1,0123	+9,9,936	19	+,014	-, 15
1512	1	- 01814,75	10,293	+9,6335	-7,4047	,0125	,9335	18	+,016	- , 14
1513	1	+154116,21	10,308	+9,8129	+9,1437	,()132	,9333	23	+,016	+, 16
1514		-11 19 28,90	10,318	+9,4116	-9,0038	,0136	,9331	20	+,011	-, 08
1515	1	+20 5210,14	10,338	+9,8513	+9,2645	,0144	,9328	27	+,015	+,01
1516	3	+15 4354,14	10,393	+9,8129	+9,1480	+1,0167	+9,9820	32	+,020	-, 04
1517	2	+26 1533,25	10,413	+9,8848	+9,3616	,0176	,9317	36		+,03
1518	3	+ 44913,70	10,428	+9,7024	+8,6418	,0182	,9315	35	+,015	-, 18
1519 1520		+1536	10,434	+9,8116	+9,1465	,0184	,9314	38	+,022	
1520	3	-12 74	10,472	+9,0892	-9,0401	,0200	,9308	3.9	+,014	-
1521	3	- 020 52,45	10,482	+9,6325	-7,4832	+1,0205	+9,9306	41	+,017	-,10
1522	2	+ 6521,58	10,498	+9,7177	+8,7455	,0211	,9304	43	-,010	-,03
1523	3	+ 6 63,66	10,498	+9,7177	+8,7467	,0211	,9304	44	-,013	-, 08
1524	3	+ 25446,56	10,537	+9,6776	+8,4273	,0227	,9297	46	+,005	-,12
15:25	2	-16 47 18,82	10,543	+9,2279	$-9,1815$,0229	,9297	45	+,016	-,12
1526	3	- 3 3 333,77	10,572	+9,5888	$-8,4481$	$+1,0241$	+9,9292	50	-,006	+ ,03
1527	3	+2216,39	10,682	+9,6712	+8,3354	,0246	,9290	51	+,012	,00
1528	1	$+36640,82$	10,621	+9,9299	+9,4946	,0262	,9284	55	+,016	-,02
1529	4	+4613 4,67	10,666	+9,9595	$+9,5846$ $+9,4980$,0280	,9277	63	+,014	+,00
1530	4	+36 15 24,12	10,671	+9,9299	+9,4980	,0282	,9276	61	+-,005	+ ,06

No.	No.Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\begin{aligned} & \dot{8} \\ & \text { 菏 } \\ & \text { N } \end{aligned}$	Annual P. M.	
				a^{\prime}	b^{\prime}	${ }^{\circ}$	${ }^{\prime}$		A. R.	Decn.
		+15 22 14,68								
1531	3	+15 2214,68 -1447	+10,754	$+9,8075$ $+9,3117$	$+9,1533$ $-9,1372$	$\begin{array}{r}+1,0316 \\ 0324 \\ \hline 0326\end{array}$	+9,9263	68		12
1533	3	+21 3155,83			+9,2866	,0326	,9259	72		
1534	3	+60 822,08	10,808	+9,9759	+9,6700	,0338	,9254	82	+,030	
1535	3	-14 47 0,13	10,838	+9,3139	-9,1393	,0349	,9249	73	+,002	-,13
1536	2	$\begin{array}{lll}-18 & 50 & 3,30\end{array}$	10,907	+9,1461	-9,2443	+1,0377	+9,9237	80	+,011	- ,04
1537	2	+22 25 56,79	10,907	+9,8579	+9,3176	,0377	,9237	86	-,007	+ ,06
1538	3	-652 5,93	10,912	+9,5198	-8,8124	,0379	,9237	84	+,003	-,15
1539	3	+22 2914,82	10,965	+9,8579	+9,3209	,0400	,9228	91	+,007	+ ,04
1540	3	- 65151,27	10,960	+9,5198	$-8,8144$,0398	,9928	90	+,010	-,14
1541	3	-22 28 15,35	10,965	+8,9085	-9,3200	+1,0400	+9,9228	88	+,020	05
1542	2	-16 20 36,61	11,014	+9,2577	-9,1890	,0419	,0219	94	+,013	+ , 23
1543	2	-7 4 52,56	11,014	+9,5159	-8,8300	,0419	,9219	95	+,003	-, 06
1544	3	+56 23 58,48	11,013	+9,9713	+9,6605	,0417	,9220	104	+,010	-, 32
1545	3	-12 53 54,47	11,043	+9,3747	-9,0899	,0431	,9214	96	,000	+ , 07
1546	1	-9 20333,83	11,052	+9,4669	-8,9515	+1,0435	+9,9213	8	+,021	-,04
1547	3	-18 5131,47	11,058	+9,1523	-9,2510	,0437	,9212	97	+,017	,00
1548	2	+21014,47	11,058	+9,8476	+9,2964	,0437	,9212	101	+,018	+ ,02
1549	2	-16 1830,26	11,073	+9,2601	-9,1900	,0442	,9209	100	+,010	- ,09
1550	1	- 61141,60	11,098	+9,5327	-8,7743	,0452	,9205	103	+,015	-,02
1551	2	+2053 4,46	11,116	+9,8463	+9,2963	+1,0459	+9,9202	106	+,012	-, 07
1552	2	-23 594848,90	11,121	+8,7634	-9,3532	,0461	,9201	105	+,027	-,04
1553	3	$+95021,98$ +950	11,189	+9,7559	$+8,9800$,0488	,9189	110	+,007	-,16
15.54	2	+23 3328,95	11,189	+9,8633	$+9,3487$ $+9,3496$,0488	,9189	113	$+, 002$	-,04
1555	2	+23 3054,03	11,227	$\bigcirc 9,8627$	+9,	,0503	,9182	118	+,001	-,04
1556	2	$\begin{array}{lll}-2 & 4 & 1,57\end{array}$	11,233	+9,6064	-8,3020	+1,0505	+9,9181	115	+,015	-, 08
1557	2	+ 03232,57	11,237	+9,6454	+7,7309	,0506	,918]	116	+,014	-, 16
1558	1	+ 23848,33	11,242	$+9,8597$	+9,3434	,0508	,9180	122	+,010	-,08
1559	2	+ 05038,75	11,247	+9,6493	+7,9203	,0510	,9179	117	+,005	-,06
1560	2	+10 4154,31	11,252	+9,7634	+9,0186	,0512	,9178	120	$+, 013$	-,23
1.561	2	-3 5657,96	11,266	+9,5752	$-8,5861$	+1,0518	+9,9175	121	+,005	-, 14
1562	2	-19 4054,15	11,291	+9,1173	-9,2778	,0527	,9171	123	-,001	-,07
150	1	-14 23 33,61	11,304	+9,3324	-9,1459	,0532	,9169	125	+,008	- ,09
1564	2	+23 45 3,22	11,314	+9,8633	+9,3570	,0536	,9167	130	+,014	+,01
1565	1	- 42339,02	11,323	+9,5682	$-8,6353$,0540	,9165	128	-,022	-,06
1566	2	- 35824,96	11,328	+9,5752	$-8,5903$	+0,0542	+9,9164	129	+,015	- , 11
1567	2	-20 4 41,66	11,338	+9,0969	$-9,2880$,0545	,9162	127	+,012	-,17
1568	2	+22537,32	11,368	+9,6702	+8,3816	,0556	,9157	134	+,006	-,03
1569	2	+22 5456,65	11,372	+9,8579	+9,3445	,0558	,9156	137	+,011	-,07
1570	3	+ 123 7,57	11,397	+9,6571	+8,1427	,0567	,9152	6	+,011	-,01
1571		+62 54	11,420	+9,9685	+9,7052	+1,0577	+9,9148	150	,000	
1572	2	+23 413,79	11,424	+9,8579	+9,3492	,0578	,9147	141	+,004	-, 05
1573	3	- 35544,97	11,434	+9,5753	-8,5907	,0582	,9145	138	+,019	-, 06
1574 1575	2 3	$\begin{array}{r}\text { - } 239 \\ -238 \\ \hline\end{array}$	11,434 11,438	$+9,5966$ $+9,5977$	$-8,4185$ $-8,4159$,0582	,9145	140	-,010	
							,9144		+,012	

No.	$\left\|\begin{array}{c} \text { No. } \\ \text { Oss. } \end{array}\right\|$	Declination$\text { Jan. 1, } 1836$	Annaal Precession.	Logarithms of					Annual P. M.	
					6	c	d^{\prime}		A. R.	Decn
1576	3	+10 49 14,66	+11,458	+9,7634	+9,0312	+1,0591	+9,9141	143	$\stackrel{\text { s. }}{+, 020}$	
1577	4	- 458 5,16	+11,511	+9,5575	-8,6965	+,0611	+,9131	148	+,005	-, 21
1578	2	+ 224 1,18	11,511	+9,6702	+8,3811	,0611	,9131	149	+,011	+ ,02
1579	3	+ 75355,70	11,520	+9,7340	+8,8976	,0615	,9129	151	+,007	- ,13
1580	3	+ 02042,57	11,530	+9,6425	+7,5458	,0618	,9127	152	+,001	-, 45
15		+23 15	11,525	+9	+9,3563	+1,0616	+9,9128	155	+,019	
1582	2	+ 74312	11,549	+9,7324	+8,8895	,0625	,9124	156	+,010	-, 16
158		-458	11,611	+9,5587	-8,7003	,0649	,9112	158	+,001	
1584	3	- 5 55 59,39	11,649	+9,5416	-8,7787	,0663	,9105	159	+,012	-, 10
1585	2	-622 9,41	11,649	+9,5327	-8,8081	,0663	,9105	160	+,005	-,02
15	2	-10 34 42,0		+	-9,0278	+1,0664	+9,9104	161	+,010	-, 14
15	2	-22 42 9,05	11,696	+8,9395	-9,3522	,0680	,9096	166	+,011	
1588		-2.242 44,59	11,701	+8,9395	$-9,3527$,0682	,9095	167	+,021	-, 04
1589		$\begin{array}{r}+19 \\ + \\ \hline\end{array} 24,38$	11,701	+9,8299	+9,2818	,0682	,9095	171	+,005	-, 11
1590	4	- 35920,19	11,748	+9,5763	-8,6077	,0700	,9086	175	+,012	-,05
15	3	+10 4248,81	11	+9,7612	+9,0374	+1,0700	+9,9086	178	+,005	-, 18
15	1	+48 2234,24	11,748	+9,9513	+9,6417	,0700	,9086	184	+,008	
1593	3	$+481923,05$ $+323257,57$	11,772 11,862 11	$+9,9508$ $+9,9031$	$+9,6422$ $+9,5030$,0708	,9081	184		-,23
1594	3	$+323257,57$ $+48948,38$	11,862 11,917	$\begin{aligned} & +9,9031 \\ & +9,9494 \end{aligned}$	$+9,5030$ $+9,6499$,0741	,9063	190	,- 003 ,+ 005	-,07 ,+ 03
1595		$+483948,38$ $-938 \quad 25$			-8,9976	+1,0767	9,9050	93		
1596	3 2 2	- 93882,54 $+14926,99$	11,932	$+9,4680$ $+9,7903$	+9,1645	+1,0777	,9044	198		
15	1	+	11,964	+9,4698	-8,9958	,0779	,9043	195	-,006	- , 20
1599	2	+68 1321,28	11,950	+9,8621	+9,7433	,0774	,9046	208	+,022	
1600	2	+157 +1096	11,969	+9,6637	+8,3116	,0781		197	+,021	+,02
1601	2	+10 4512,04	11,978	+9,75	+9,	+1,0784	+9,9040	201	+,004	
1 ¢0	2	+33 28 3,15	11,988	+9,9052	+9,5185	,0787	,9038	202	+,010	- ,02
160	2	r $-23639,90$ $+\quad 244344$	12,002 12,038	$+9,5977$ $+9,6730$	$\begin{array}{r} 8,4340 \\ +8,4623 \end{array}$,0792	,9036	205	,+ 004 ,+ 004	
1604 1605	3		12,038 12,048	$+9,6730$ $+9,7308$	$+8,4623$ $+9,0510$,0809	,9026	206	+,023	+ ,23
1606	2	+56	12,05	$+9$	+9,	+1,0811	+9,9025	217	+,009	
1607	4	+ 15555,95	12,104	+9,6637	+8,3128	,0829	,9015	214	+,013	- ,03
160	3	- 15237,81	12,127	+9,6180	-8,2947	,0×38	,9010	216	,+ 010 +007	22
1609		+59 5233,01	12,118	+9,9576	+9,7185	,0834	,9012	226	,+ 007 ,+ 002	
1610	2	+491238,91	12,156	+9,9469	+9,6620	,08				
1611	2	-1737 56,02	12,174	+9,2380	-9,2644	+1,0854	+9,9000	218		
1612	3	-4570,35	12,178	+9,561]	-8,7181	,08556	8999	221	+,016	
16	3	+483654,78	12,178	+9,9460	$+9,6590$ $+9,6771$,0856	,8999	236	+,011	+,07
1614	$\xrightarrow{2}$	$+511728,49$ $+123125,58$	12,211	$+9,9494$ $+9,7752$,8989	231	-,001	-,02
1615	2	+12 3125,58	12,229	+9,7752	$+9,1219$ $-9,2134$,0874 $+1,0876$	+ ${ }^{\text {,8988 }}$	229	+,009	
1616	2	-15 3247,39	12,234	$\begin{array}{r} +9,3139 \\ +9,7767 \end{array}$	$\begin{array}{r} 9,2134 \\ +9,1306 \end{array}$	$\begin{array}{r} +1,0876 \\ , 0882 \end{array}$	$\begin{array}{r} +9,8987 \\ , 8984 \end{array}$	235	+,024	-, 03
1617	2	+124525,18	$\begin{aligned} & 12,253 \\ & 12,263 \end{aligned}$	$\begin{aligned} & +9,7767 \\ & +9,9552 \end{aligned}$	$\begin{aligned} & +9,1306 \\ & +9,7292 \end{aligned}$,0882,	,8982	252	+,020	+ , 04
1620	2	+30 + +	12,312	+9,8870	+9,4876	,0903	,8971	249	+,004	,17

1xxiv Mean Right Ascension and Declination of 2050 Stars.

No.	No. Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\begin{aligned} & \text { O } \\ & \text { B } \\ & \text { N } \\ & \text { Ni } \end{aligned}$	Annual P. M.	
				a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}		A. R.	Decn.
1621	3	\bigcirc	"							
1622		+15 15 57,88	+12,013	+9,7973	+9,2093	+1,0903	+9,8971	247		09
1622	2	- 313130,85	12,326	+9,5899	$-8,5357$,0908	,8968	246	+,006	- 08
1623	3	+12.4525,38	12,336	+9,7760	+9,1341	,0911	,8966	251	+,012	-1,18
1624	2	+ 75224,31	12,354	+9,7308	+8,9270	,0918	,8962	253	+,005	-, 11
1625	1	+6958 5,08	12,344	+9,9489	+9,7624	,0915	,8964	265		- ,191
1626	2	+1250 44,84	12,363	+9,7767	+9,1373	+1,0921	+9,8960	255	+,,008	-, 01
1627	1	+12 4351,01	12,363	+9,7760	+9,1339	,0921	,8960	256	+,010	-, 06
1628	3	-11 3123,59	12,409	+9,4314	-9,0920	,0937	,8950	259	+,012	- ,07
1629	2	-2 2556,19	12,445	+9,6010	-8,4469	,0950	,8942	260	+,016	- ,04
1630	3	+165935,22	12,445	+9,8089	+9,2590	,0950	,8942	261	+,017	+ ,06
1631	2	+25 30 3,67	12,467	+9,8621	+9,4281	+1,0958	+9,8937	268	+,014	-, 10
1632	1	-11 33 1,73	12,473	+9,4314	$-9,0949$,0960	,8936	262	+,008	-, 05:
1633	2	+1059 13,50	12,487	+9,7597	+9,0751	,0964	,8933	269	+,016	- , 11
1634	2	-26 2435,19	12,500	+8,6232	-9,4429	,0969	,8930	266	+,006	-,10
1635	1	$+131233,56$	12,500	+9,7789	+9,1541	,0969	,8930	271	+,012	-, 05
1636	2	+1532 43,07	12,559	+9,7973	+9,2252	+1,0990	+9,8917	275		- , 09
1637	2	+34 5735,89	12,573	+9,9036	+9,5557	,0994	,8914	278.	+,036	- , 177
1638	3	+ 32935,06	12,591	+9,6812	+8,5838	,1001	,8910	277	+,010	-, 07
1639	3	+34 52 13,94	12,618	+9,9031	+9,5564	,1010	,8904	283	+,005	-, 20
1640		+2514	12,641	+9,8591	+9,4298	,1018	,8899	287	+,001	
1641	2	+1659 6,16	12,654	+9,8075	+9,2662	+1,1022	+9,8896	288	$+, 015$	+ ,02
1642		+ 032	12,663	+9,6444	+7,7828	,1025	,8894	286		
1643	3	+64 3342,20	12,686	+9,9474	+9,7571	,1033	,8889	295	,000	-02
1644	1	-9 242,54	12,70:3	+9,4885	-8,9979	,1039	,8884	290)	+,011	+ , 15
1645	3	+11 3 6,10	12,745	+9,7589	+9,0865	,1053	,8875	292	+,026	-,09
1646	3	+2530 44,69	12,785	+9,8591	+9,4395	+1,1067	+9,8866	300	+,010	- ,11
1647	2	+30 3 46,82	12,830	+9,8808	+9,5063	,1082	,8855	308	+,007	-, 15
1648	2	+62 45 37,85	12,848	+9,9450	+9,7559	,1088	,8851	315	+,046	-, 07
1649	1	+62 3731,58	12,866	+9,9445	+9,7559	,1094	,8847	317	+,005	+ ,27
1650	4	-13 12 37,16	12,902	+9,39⿺7	$-9,1673$,1106	,8838	311	+,002	+ ,04
1651	3	+62 370,18	12,915	+9,9440	+9,7576	+1,1111	+9,8835	326	$+, 006$	+ ,05
1652	3	+25 34 41:00	12,947	+9,8579	+9,4457	,1121	,8829	319	-,001	-,09
1653	3	+ 52854,25	12,963	+9,7033	+8,7923	,1127	,8823	318	+,013	- ,12
1654	2	$+254737,91$	12,978.	+9,8591	+9,4502	,1132	,8820	324	,000	-,06
1655	2	+ 14946,15	13,014,	+9,6618	+8,3214	,1144	,8811	327	+,007	-,10
1656		+54 57	13,102	+9,9390	+9,7285	+1,1172	+9,8791	349		
1657	3	- 52422,17	13,110	+9,5575	-8,7879	,1176	,8788	. 340	+,017	-,21
1658	2	-16 46 29,83	13,141	+9,2945	-9,2768	,1186	,8780	343	+,012	H , 22
1659	3	- 51852,13	13,141	+9,5,587	-8,7822	,1186	,8780	344	+,019	- ,16
1660	2	- 34945,75	13,148	+9,5821	$--8,6402$,1189	,8778	346	+,016	-, ,06
1661	2	- 043 50,53	13,149	+9,9284	-7,9141	+1,1189	+9,8778	347	$+, 013$	-,11
1662	2	+ 65822,33	13,163	+9,7185	+8,9022	,1193	,8774	362	+,010	-,01
1663	2	-26 55 47,12	13,176	+8,6624	-9,4736	,1198	,8771	348	+,013	-, 15
1664		+1078,29	13,189	+9,7474	+9,0636	,1202	, 8768	354	+,01 ${ }^{-1}$	-, 16
1665	1	+27 38 23,36	13,193	+9,8651	$+9,4850$,1204	, ,8767	358	+,0]	-, ,04

1xxvi Mean Right Ascension and Declination of 2050 Stars

No.	No.Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\begin{aligned} & \text { o } \\ & \text { R } \\ & \text { 感 } \end{aligned}$	Annual P. M.	
				a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}		A. R.	Deạn.
1666	2	$+643630$	+13,203	+9,7152	+8,8878	+1,1206	+9,8765	355	s. ,+ 019	
1667	2	+ 64231,27	13,207	+9,7152	+8,8869	-1208	+0,8763	356	+,060	
1668	2	-26 11 24,36	13,211	+8,7559	- 9,4636	,1209	,8762	353	+,033	-,12
1669	1	- 73013,48	13,242	+9,521]	-8,9347	,1219	,8755	360		- ,09
1670	2	- 5 9 35,68	13,255	+9,5623	$-8,7735$,1224	,8751	364	+,001	-, 16
1671	2	-26 43 48,23	13,273	+8,7076	$-9,4738$	+1,1229	+9,8747	361	+,032	-,08
1672		+69 19	13,255	+9,9320	+9,7916	,1224	,8751	374	+,057	
1673	2	-32 1016,42	13,281	-8,4914	$-9,5473$,1232	,8745	363	+,007	- , 04
1674	1	-15 $54.2,98$	13,281	+9,3243	$-9,2589$,1232	,8745	367	+,007	- ,14
1675	2	+ 32017,42	13,286	+9,6785	+8,5881	,1234	,8743	368	+,011	-, 17
1676		-747	13,317	+9,5172	-8,9541	+1,1244	+9,8736	369	+,014	
1677		+1049	13,337	+9,7528	+9,0972	,1251	,8730	371		
1678		+112	13,347	+9,6532	+8,1444	,1254	,8728	372	+,008	
1679	2	+ 65438,17	13,363	+9,7168	+8,9047	,1259	,8723	373	+,012	- ,02
1680	2	-16 2828,75	13,406	+9,3117	-9,2778	,1273	,8713	375	+,009	,00
1681	1	+ 7250,39	13,407	+9,7185	+8,9154	+1,1273	+9,8712	378	+,002	-,09
1682	2	-16 47 49,95	13,428	+9,3032	-9,2866	,1280	,8706	377	+,018	-,05
1683	2	-7 $\begin{array}{r} \\ \hline\end{array} 42,19$	13,446	+9,5302	-8,9176	,1286	,8702	385	+,013	,00
1684	2	-32 1950,86	13,455	-8,4624	-9,5549	,1289	,8699	384	+,020	-, 10
1685	2	+160,14	13,455	+9,6513	+8,1167	,1289	,8699	388	+,009	-, ,16
1686	2	-35142,72	13,485	+9,5832	$-8,6549$	+1,1298	+9,8691	390	+,013	+ ,01
1687	4	+58 4111,27	13,532	+9,9325	+9,7610	,1312	,8680	400	+,015	+ ,06
1688	3	- 42820,48	13,563	+9,5752	$-8,7202$,1323	,8670	396	+,007	-,06
1689	2	-1730 34,75	13,567	+9,2878	$-9,3086$,1325	,8669	394	+,027	+,06
1690	3	- 35647,59	13,572	+9,582]	$-8,6669$,1326	,8668	397	+,014	-,10
1691	3	-27 5820,14	13,588	+8,5798	$-9,5025$	+1,1333	+9,8662	398	+,015	-, 11
1692	3	+32 40 18,40	13,610	+9,8814	+9,5643	,1338	,8658	407	+,016	+,03
169		-138	13,640	+9,6170	$-8,2877$, 1348	,8649	408		
1694	4	- 55935,66	13,682	+9,5514	$-8,8522$,1362	,8638	416	+,008	- , 11
1695	3	+40 4330,40	13,699	+9,9058	+9,6493	,1367	,8633	420	+,020	+,03
1696	3	+40 353,26	13,699	+9,9042	+9,6434	+1,1367	+9,8633	421	+,011	- , 12
1697	2	+ 92126,93	13,677	+9,7380	+9,0456	,1360	,8639	419	+,018	-,09
1698		+ 92133,13	13,729	+9,7380	+9,0472	,1376	,8625	422	+,015	-,05
1699	1	+63140,30	13,772	+9,7110	+8,8942	,1390	,8613	427	+,010	-, 06
1700	3	-11 49 14,38	13,784	+9,4425	-9,1481	,1394	,8609	426	+,019	-,08
1701	β	-25 42 57,50	13,788	+8,8808	$-9,4747$	+1,1395	+9,8608	425	+,019	-, 13
1702	2	+20 27 48,98	13,835	+9,8189	+9,3830	,1410	,8595	434	+,019	-, 03
1703	3	-13357,23	13,843	+9,6180	-8,2714	,1412	,8592	432	+,005	+ ,06
1704	2	-18 4513,89	13,860	+9,2528	-9,3465	,1418	,8588	433	+,003	,00
1705	2	-65256,19	13,873	+9,5378	-8,9178	,1422	,8584	438	+,014	+,05
1706	1	-42 $1 \quad 58,26$	13,936	-9,2014	$-9,6678$	+1,1441	+9,8566	442	-,037	-,15
1707	1	+2820 28,68	13,932	+9,8591	+9,5188	,1440	,8567	447	+,009	- ,06
1708	2	+38 5155,43	13,935	+9,8971	+9,6399	,1441	,8566	452	-,002	- ,02
1709	1	+ 21742,30	13,961	+9,6656	$+8,4496$,1449	,8558	448	+,014	,00
1710	2	+28 2646,02	13,965	+9,8591	+9,5213	,1450	,8557	453	-,001	-,25

lxxviii
Mean Right Ascension and Declnation of 2050 Stars

No.	Star's name and Mag.		No. Obs.	$\begin{gathered} \text { Right } \\ \text { Ascension } \\ \text { Jan. 1, 1836. } \end{gathered}$	Annual Precession.	Logarithms of				
			a			b	c	d		
1711	Cygni	6.7		2	$\left\|\begin{array}{ccc} h_{0} & m . & s . \\ 20 & 56 & 43,35 \end{array}\right\|$	$\left\lvert\, \begin{gathered} s . \\ +2,319 \end{gathered}\right.$	+8,7710	-8,7829	+0,3653	$+8,5607$
1712	Vulpeculæ			57	2,659	,7047	,7151	, 4247	$+8,2998$	
1713	Microscopii	7.8	2	57 44,84	3,657	,7397	,7473	,5631	-8,4603	
1714	Vulpeculæ	8	3	57 56,95	2,664	,7056	,7129	, 4255	+8,2968	
1715	Capricorni	8	2	$58 \quad 0,52$	3,352	,6885	,6953	52,53	$-8,1448$	
1716	Capricorni	7.8	2	58 5,15	3,348	$+8,6882$	-8,6945	+0,5248	-8,1386	
1717		7	2	58 11,98	3,409	,6996	,7027	,5327	-8,2251	
1718	Vulpeculæ	7	2	58 30,28	2,553	,7268.	,7319	,4070	$+8,4050$	
1719	Capricorni	8	3	5850,57	3,345	,6894	,6929	,5240	$-8,1367$	
1720	Aquarii	7	2	59 2,10	3,171	,6744	,6775	,5012	-7,7090	
1721	Equulei	8	3	59 5,41	3,010	$+8,6728$	-8,6756	+0,4786	$+7,4585$	
1722	Vulpeculæ	8	1	59 15,43	2,600	,7196	,7219	,4150	+8,3659	
1723	Cygni	8	2	59 32,25	2,310	,7803	,7816	,3636	+8,5762	
1724	Vulpeculæ.	8.9	1	210	2,672	,7092	,7082	,4268	+8,2972	
1725	Microscopii	7.8	2	0 14,18	3,6:20	,7383	,7365	,5587	-8,4418	
1726	Capricorni	7.8	2	0 14,71	3,361	+8,6943	-8,6925	+0,5265	-8,1663	
1727	Equulei	7	2	0 22,08	2,963	,6771	,6751	,4717	+7,7220	
1728	Cygni	8	1	0 33,47	1,863	,8851	,8826	,2702	+8,7816	
1729	Microscopii	7.8	2	0 42,01	3,592	,7339	,7304	,5553	-8,4213	
1730	Cygni	9	1	049,48	2,310	,7839	,7801	,3636	+8,5813	
1731	Capricorni	8]	1 1,26	3,344	+8,6936	$-8,6890$	+0,5243	-8,1431	
1732	Equulei	9	1	1 10,65	3,010	,6769	,6717	,4786	+7,4647	
1733	Cygni	8		1	2,060	,8435	,8:370	,3139	+8,7083	
1734	Equulei	8	3	141,03	3,030	,6772	,6702.	,4814	+7,2807	
1735	Aquarii	7.8	2	156,21	3,233	,6840	,6760	,5096	-7,9237	
1736	Cygni	8	2	212,88	2,534	+8,7391	-8,7302	+0,4038	+8,4345	
1737	Equulei	8	1	216,77	2,902	, 6847	,6756	,4627	+7,9279	
1738	Piscis Aust.			2	3,562	,7324	,7217	,5517	-8,4028	
1739	Capricorni	8	1	2 42,60	3,426	,7087	,6976	,5348	-8,2627	
1740	Aquarii	7.8	1	3 1,96	3,321	,6950	,6826	,5213	-8,1136	
3741	Cygni	7.8	2	3 8,87	2,601	+8,7285	-8,7158	+0,4151	+8,3802	
1742	Aquarii	9.10	2	4 4,02	3,195	,6854	,6692	, 5045	-7,8180	
1743	Picis Aust.	7.8	2	44 18,29	3,610	,7453	,7289	,5575	-8,4484	
1744	Equalei	7.8	2	418,57	2,886	,6899	,6730	,4603	+7,9757	
1745	Cygni	7.8	2	419,39	2,598	,7314	,7145	,4146	+8,3870	
1746	Vulpeculæ	8	2	4 23;94	-2,676	$+8,7177$	-8,7003	+0,4275	+8,3084	
1747	Capr	8	2	4 33,93	2,686	,7164	,6984	-,4291	+8,2980	
1748	Capricorni	8.9	3	438,20	3,418	,7115	,6930	,5338	-8,2605	
1749	Aquarii	7.8	1	4 49,80	3,174	,6856	,6664	,5016	-7,7439	
1750	Cygni	6	2	511,60	1,847	,9030	,8827	,2665	+8,8048	
1751	Equulei	8	3	5 25,39	2,896	$+8,6911$	-8,6699	+0,4618	+7,9538	
1752	Capricorni	8.9	2	537,72	3,429	,7153	,6931	-,5352	-8,2781	
1753	-	7	1	538,68	3,449	;7185	,6963	,5377	$-8,3007$	
1754	Equulei	9	2	6 17,44	2,897	,6921	,6688	,4619	+7,9534	
1755°	Aquarii	8	2	$7 \quad 0 ; 99$	3,226	,6931	,6655	,5087	-7,9233	

No.	$\left\|\begin{array}{c} \text { No. } \\ \text { Obs. } \end{array}\right\|$	Declination Jan. 1, 1836.	Annual Preces sion.	Logarithms of				$\begin{aligned} & \dot{\circ} \\ & \text { 芷 } \\ & \text { 喊 } \end{aligned}$	Annual P. M.	
				a^{\prime}		${ }^{\prime}$	d^{\prime}		A. R.	Decn.
		+38 0 43,46								
17	1	$\begin{array}{rrr}+38 & 0 & 43,46 \\ +23 & 10 & 32,99\end{array}$	+13,976	$+9,8938$ $+9,8331$	$+9,6331$ $+9,4394$	+1,1454	+9,8553	455	+,017	15
171	2	+23 $+314250,84$ +25	14,0	${ }_{-7,7781}^{+9,8081}$	${ }_{-9,5662}$,1476	,8532	459	+,025	,+ 15 $+\quad 09$
171	2	+22 57 2,58	14,053	+9,8312	+9,4371	,1478	,8531	464	+,011	, , 02
1715	2	-16 37 27,31	14,061	+9,3263	$-9,3024$,1480	,8529	460	+,027	+ ,03
1716	3	-16 23 37,58	14,069	+9,3324	-9,2966	+1,1483	+9,8526	461	-,008	-, 09
1717	3	-19 44 23,89	14,074	+9,2253	-9,3749	,1484	,8525	462	-,005	-, 11
1718	1	+28 2644,01	14,090	+9,8573	+9,5251	,1489	,8520	467	+,003	- , 04
1719	3	-16 1642,57	14,114	+9,3385	$-9,2950$,1497	,8512	466	+,005	-, ,11
1720	3	-613 52,45	14,123	+9,5490	$-8,8825$,1499	,8510	470	+,025	+ ,12
1721	4	+ 32915,68	14,127	+9,6776	+8,6338	+1,1501	+9,8509	471	+,009	-,06
1722	1	+26 61621,32	14,136	+9,8470	+9,4946	,1503	,8506	473	+,008	+,05
1723	1	+38 40 22,47	14,152	+9,8932	+9,6447	,1508.	,8501	480	-,003	-,01
1724		+22 45	14,189	+9,8280	+9,4380	,1520	,8490	482	+,015	
1725	3	-30 22 54,92	14,202	+8,2553	-9,5539	,1523	,8486	477	-,009	-, 15
1726	1	-17 1632,16	14,205	+9,3117	$-9,3225$	+1,1523	+9,8486	481	+,010	-97
1727	2	+ 61954,93	14,206	+9,7067	+8,8954	,1525	,8485	484	+,010	+ ,03
17	1	+515756,48	14,214	+9,9149	+9,7472	,1527	,8482	490	-,011	
17	2	-29	14,231	+8,5563	$-9,5386$,1532	,8477	483	+,014	-,06
1730	1	+38 5025,45	14,234	+9,8921	+9,6488	,1533	,8476	489	-,002	+ ,07
173		-162140,79	14,247	+9,3385	$-9,3012$	+1,1537	+9,8472	487	+,010	-, 10
17	2	+ 3305 5, 9	14,262	+9,6776	+8,6399	,1542	,8469	488	+,016	
1733	1	+ 47434,33	14,279	+9,9079	+9,7175	,1547	,8462	,		+ ;05
1734	3	+ 21651,98	14,288	+9,6646	+8,4565	,1550	,8459	492	+,015	-;03
1735	3	-11 0 56,43	14,304	$-9,4843$	-9,0932	,1556	,8454	49	017	-, 23
1736	2	+29 4248,76	14,317	+9,8597	+9,5493	+1,1558	+9,8450	9.	$+, 027$	-, ,11
17	1	+10 426,64	14,321	+9,7396	+9,0972	,1560	,8449	5	+,037	-,16
17		-2756	14,345	+8,7482	$-9,5251$,1567	,8441			
1739	2	-20 5950,06	14,353	+9,1903	-9,4090	,1569	,8438	8	+,028	- , 08
1740	2	-15 13 34,65	14,373	+9,3729	-9,2742	,1576	,8432	11	+,015	-,16
1741	2	+26 38	14,378	+9,8451	+9,5075	+ 1,1577	+9,8431	13	+,006	,00
1742		-749	14,433	+9,5263	-8,9900	,1594	,8412	16	+,003	
1743	3	-30 19 59,96	14,437	+8,3979	-9,5606	,1595	,8411	14	+,045	-, 15
1744	2	+11 650,64	14,447	+9,7482	+9,1436	,1598	,8408	19	+,014	-,02
17	2	+26 531313,97		+9,8457	+9,5183	,1598	,8408	22	$+, 008$	+ ,03
1746	2	+22 551,35	14,450	+9,8261	$+9,4487$	+1,1600	+9,8406	23	$+, 003$	-,05
1747	2	+22 2452,64	14,463	+9,8228	+9,43.79	,1602	,8403	25	+,019	-,02
1748	2	-20 4540,16	14,471	+9,2068	-9,4075	,1605	,8401	20	+,004	-,16
1749 1750	2	+ 63456,54 $+525344,18$	14,483 14,498	$+9,5465$ $+9,9101$	-8,9171 $+9,7612$,1608	,8398	24 32	,+ 002 ,+ 013	- ,01
1750	2	+52 5344,18	14,498	+9,9101	+9,7612	,1613	,8391	32	+,013	-,07
1751	2	+1032 25,18	14,515	+9,7435	+9,1225	+1,1618	+9,8386	29	+,031	- ,11
1752	3	-21 $27.28,06$	14,531	+9,1818	-9,4231	,1623	,8381	28	-,001	-, 11
175	2	-22 29 18,34	14,531	+9,1399	-9,4425	,1623	,8381	27	+,,010	- ,07
1754	2	+1030 44,52	14,547	+9,7427	+9,1221	,1628	,8375	36	-,007	\square
17	2	- 94755,74	14,615	+9,4941	-9,0931	,1648	,8853	39	-,002	- 20

No.	No. Obs.	Declination Jan. 1, 18:36.	Annual Precession.	Logarithms of				$\begin{aligned} & \text { O } \\ & \text { B } \\ & \text { A } \\ & \text { Ex } \end{aligned}$	Annual P. M.	
				a^{\prime}	b^{\prime}		d^{\prime}		A. R.	Decn.
1756		-10 4110,64								"
1757	2	$\begin{array}{ccc}-10 & 4 & 10,64 \\ -20 & 51 & 3,23\end{array}$	+14,619	+9,4ヶ85	-9,1048	+1,1649	+9,83.51	40	,001	- , 11
1758	2	$\begin{array}{r}\text {-20 } \\ -31 \\ \hline\end{array} 25$3,23 1,39	14,647	+8,1461	-9,58116	1654	,8346	41	-,012	- ,18
1759		+5918	14, $6+3$	+9,9074	+9,7\%82	,1656	,8343	51	$+, 007$	
1760	3	+10 022,14	14,674	+9,7364	+9,1050	,1666	,8332	48	+,014	-,18
1761	3	+10 $15 \begin{array}{ll}15,50\end{array}$	14,982	+9,7388	+9,1158	+1,1668	+9,8330	49	+,002	- , 11
1762	4	+ 43416,80	14,707	+9,68866	+8,76×1	,1675	, 8321	53	-,002	- , ,17
1763	1	+59 2519,91	14,702	+9,9063	+9,8005	,1674	,8323	61	+,018	-,09
1764	2	-2926 49,72	14,746	+8,6532	$-9,55 \times 1$,1687	,8308	55	+,009	-, 05
1765	2	+412030,88	14,738	+9,8887	+9,6866	,1684	,8311	63	+,016	+ ; 25
1766	$]$	+18 1651,78	14,757	+9,7952	+9,3640	+ I,1690	+9,8304	62	+,002	+ ,07
1767	2	-12 5650,44	14,762	+9,4346	-9,2165	,1691	,8302	59	+,016	+,07
1768	2	-27 53 38,99	14,801	+8,8388	-9,5380	,1703	,8288	65	+,014	+ ,05
1769	3	+165639,91	14,806	+9,7867	+9,3:335	,1704	,8287	67	+,020	-,01
1770	2	$+81634,31$	14,822	+9,7210	+9,0283	,1709	,8282	68	+,034	-, 11
1771	2	+17 210,54	14,832	+9,7867	+9,3364	+1,1712	+9,8277	69	-,006	+ ,04
1772	2	+171814,82	11,840	+9,7882	+9,3432	,1714	,8275	73	$+, 012$	-, 02
1773	2	-61026,72	14,85:3	+9,5551	$-8,8997$,1718	,8270	70	+,007	-, 14
1774	2	$\begin{array}{lll}+17 & 8 & 19,68\end{array}$	14,880	+8,7875	+9,3403	,1726	,8261	77	+,005	+,01
1775	2	+29 320,74	14,908	+9,8476	+9,5579	,1734	,8:251	80	+,010	-,02
1776	3	$-295126,75$	14,914	+8,6434	-9,5684	+1,1736	+9,8248	78	+,021	- ,14
1777	2	-2 2845,14	14,918	+9,6117	-8,4392	,1737	,8247	79	+,018	-, 14
1778	2	+55 635,78	14,923	+9,9009	+9,7859	,1738	,8245	86	$+, 010$	-,16
1779	3	-12 851,70	14,942	+9,4533	-9,1944	,1744	,8238	82	+,015	- ,09
1780	1	$+3396,51$	15,008	+9,6767	+8,6802	,1763	,8214	90	+,009	-,01
1781	3	+22 1148,44	15,019	$+9,8142$	+9,4523	+ 1,1766	$+9,8210$	94	+,016	+ ,09
1782	4	+ 34737,35	15,019	+9,6785	+8,6979	,1766	, 8210	91	+,022	-, 12
1783	3	-4 14 26,67	15,038	+9,5843	-8,7417	,1772	,8203	95	+,026	-, 07
1784 1785	1	$+23 \quad 749,13$ +2615 29,92	15,053 15,065	$+9,8189$ +89868	+9,47()2	,1776	,8197	103	-,010	- , ,04
1785	2	-2615 29,92	15,065	$+8,9868$	$-9,5215$,1780	,8193	96	+,004	-,05
1786	3	$\begin{array}{llll}-25 & 7 & 15,04\end{array}$	15,073	+9,0531	$-9,5038$	+1, $\mathbf{1 2}^{-172}$	+9,8190	98	+,030	- ,15
1787	3	-23 5918,71	15,085	+9,1106	-9,4853	,1785	+,8185	101	+,010	-, ,02
1788	3	-12 28 41,79	15,127	+9,4518	-9,2114	,1797	,8169	106	+,015	+ ,06
1789 1790	2 2	$\begin{array}{r}\text {-25 } \\ +40 \\ +40 \\ \hline 14 \\ \hline\end{array}$	15,157	$+9,() 170$ $+9,8774$	-9,5192	,1806	,8158	108	+,020	- ,02
1790	2	+40 14-2,34	15,158	+9,8774	+9,6890	,1806	,8158	116	+,043	-,10
1791	3	$-24122,47$	15,177	+9,6052	-8,5469	+1,1812	$+9,8150$	112	+,009	-, 05
1792	2	-25 11114,40	15,177	+9,0607	-9,5078	,181\%	+,8150	111	,+ 009 ,+ 013	-, ,15
1793	2	+56 38 9,60	15,211	+9,893x	+9,8020	,1821	,8137	124	+,018	+ ,06
1794 1795	2 3	$\begin{array}{r}+761917,97 \\ -2825 \\ \hline\end{array}$	15,199	$+9,8663$	+9,8674	,1818	,8142	137	-,064	+ ,08
1795	3	-28 25 52,00	15,248	+8,8633	$-9,5585$,18.32	,8122	121	+,025	-,02
1796	2	-20 5457,07	15,268	+9,2405	-9,4341	+1,1838	+9,8115	123	+,008	- ,11
1797	3	-14 17 40,15	15,275	+9,4166	-9,2737	,1840	,,+ 8115 , 8112	125	+,015 ,+ 017	- ,09
1798	3 3	-22 -14 -14 14	15,302 15,309	$+9,1903$ $+9,4150$	$\begin{array}{r} -9,4638 \\ -09781 \end{array}$,1847	,8102	127	+,017	- ,34
1799	3 3	$\begin{aligned} & -1424 \\ & -12\end{aligned} 288,54$	15,309 15,320	$+9,4150$ $+9,4502$	$-9,2781$ $-9,2226$,1849	,8099	128	+,026	-,12
		-12 38 10,13	15,320	+9,4502	-9,2226	,1853	,8094	130	-,005	-, 07

Ixxxii Mean Right Ascension and Declination of 2050 Stars

No.	No. Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\begin{aligned} & \dot{0} \\ & \text { N } \\ & \text { N } \\ & \text { H. } \end{aligned}$	Annual P. M.	
				a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}		A. R.	Decn.
1801	1	-12 4744,74								
1802	3	$\begin{array}{rrr}-12 & 47 & 44,74 \\ +46 & 0 & 5,67\end{array}$	$+15,323$ 15,323	$+9,4472$ $+9,8837$	$-9,2277$ $+9,7405$	+1,1854	+9,8093	131	+,013	+,10
1803	2	+46 8 8,07	15,323	$+9,8837$ $+9,5999$	$+9,7405$ $-9,6190$,1854	,8093	140		- ,55
1804	1	+ 59316,86	15,348	$+9,5999$ $+9,8893$	$+9,6190$ $+9,8174$,1856	,8090	135	,+ 031 +031	,00
1805	3	- 33536,76	15,358	+9,5944	$+9,8174$ $-8,6782$,1863	,8084	146	,+ 031 ,+ 006	,- 07 $+\quad 06$
1806	3	-3 19 6,29	15,353	+9,5977	-8,6444	+1,1862				
1807	3	-12 4724,75	15,399	+9,4502	-8,6444	$+1,1862$, 1875	$+9,8081$, 8062	138	,+ 034 ,+ 013	- 0,03
1808	2	-14 4414,09	15,402	$+9,4099$	-9,2905	,1875	,8062	143	,+ 013 ,+ 021	,+ 17 ,+ 16
1809	2	+2652 13,23	15,418	+9,8299	+9,5414	,1880	,8055	151	,+ 021 ,+ 009	+,16
1810	3	-25 8 31,37	15,418	+9,0864	-9,5139	,1880	,8055	147	,+ 008 ,+ 028	+,23
1811	2	+3130 40,74	15,425	+9,8476	+9,6045	+1,1882	+9,8052	153	+,018	
1812	3	+52 1119,23	15,436	+9,8865	$+9,7843$ $+9,8$	$+1,1882$, 1885	$+-9,8052$, 8047	156	,+ 018 ,+ 042	,+ 09 $+\quad, 01$
1813 1814	3	$\begin{array}{r}\text { + } \\ + \\ +545139,43 \\ \hline\end{array}$	15,529	+9,6857	+8,8178	,1911	,8009	163	+,008	-, 19
1814	1 3	$\begin{array}{rrr}+54 & 42 & 7,65 \\ +7 & 140,43\end{array}$	15,565	+9,8837	+9,8020	,1922	,7993	170	+,024	- ,02
1815	3	$-7140,43$	15,580	+9,5490	-8,9765	,1926	,7987	167	+,017	- ,03
1816	2	-28 3627,49	15,580	+8,9031	-9,5704	+1,1926	+9,7987	164		-, 04
1817	3	$-212349,61$	15,583	$+9,2430$	-9,4525	+1,1927	$\begin{array}{r}+9,7986 \\ \hline, 7985\end{array}$	165	,+ 032 ,+ 044	- ,04
1818	2	+23 + +65 	15,610	+9,8096	+9,4857	,1934	,7975	174	,+ 044 ,+ 007	+ , ,01
1819	2	$+655638,97$ +2837	15,607	+9,8751	+9,8519	,1933	,7976	183	+,041	+
1820	4	$-283710,70$	15,62]	$+8,9085$	-9,5718	,1937	,7970	169	+,013	+ ,02
1821	3	-14 10 19,08	15,621	+9,4281	-9,2799	+1,1937	+9,7970	172	$+, 020$	
1822	2	+22 4023,88	15,642	+9,8069	+9,4785	+1,1943	+9,7960	178	+,020	- , ,04
1823	1	-7 5433,80	15,642	+9,5490	-8,9833	,1943	,7960	175	$+, 027$	- ,08
1824	2	$\begin{array}{rrr}-6 & 8 & 21,10 \\ -0 & 30 & 1,57\end{array}$	15,650 15,672	$+9,5611$ $+9,6325$	$-8,9201$,1945	,7957	176	+,012	- ,45
1825	2	- 030	15,672	+9,6325	-7,8193	,1951	,7948	182	-,001	,00
1×26	3	-21 $10 \begin{array}{ll}9,08\end{array}$	15,678	+9,2553	$-9,4506$	+1,1953	+9,7945	179	+,017	
1827	2	-9 9844,22	15,693	+9,5079	$-9,1240$	-1957	+,7938	186	+,012	- , ,21
1828	2	-19 58 16,30	15,708	+9,2945	-9,4268	,1961	,7932	187	+,006	- ,15
1829 1830	1	$+413433,16$ -19	15,708	+9,8669	+9,7163	,1961	,7932	191	+,,007	+,01
1830	2	$-19714,38$	15,762	+9,3181	$-9,4101$,1976	,7908	193	+,011	+,04
1831	1	+58 5051,64	15,783	+9,8756	+9,8287	+1,1982	+9,7898	205		
1832	2	+23 4326,73	15,805	+9,8096	+9,5019	+1988	$+9,7898$, 7889	200	+,009	-, 01
1833 1834	3 3 3	1910 +301686 +3601	15,816	$+9,3201$ $+9,831$	-9,4127	,1991	,7884	199	-,001	-, ,08
1834	3 3	$+301643,01$ -26103944	15,837	+9,8351	+9,6006	,2000	,7874	210	+,023	- ,14
1835	3	-26 1039,44	15,843	+9,0755	-9,5421	,1999	,7871	204	+,026	+ ,02
1836	2	-16 59 5, 61	15,848	+9,3729	-9,3627	+1,2000	+9,7869	206	+,014	,05
1837	2	-28 3733,53	15,859	+8,9445	-9,5784	, 2003	,7864	207	+,017	+ ,03
1838	3	+ 55343,78	15,888	+9,6946	+8,9123	,2010	,7851	216	+,019	+ , ,10
1839		+61 4	15,883	+9,8716	+9,8411	,2009	,'7853	221	+,	-,
1840	3	-14 4740,66	15,930	+9,4216	--9,3066	,2022	,7831	218	+,015	-,16
1841	3	+65 030,52	15,933	+9,8663	+9,8597	$+1,2023$	+9,7830	229	+,017	
1842	3	+3834 54,09	15,972	+9,8603	+9,6964	+1,2033	,7813	228	,+ 017 ,+ 017	-,12
1843	3	$\begin{array}{r}+ \\ + \\ +6451 \\ +13,68 \\ \hline\end{array}$	15,990	$+9,6522$ $+9,8663$	$+8,2950$,2038	,7803	227	+,011	- , 03
1844 1845	1 3	$\begin{array}{r}+6451 ~ 13,34 \\ \hline\end{array}$	15,987	+9,8663	+9,8586	,2037	,7805	236	+,144	-, 13
1845	3	-22 40 5,17	16,032	+9,2279	-9,4886	,2050	${ }^{\text {, }} 7788$	230	-, 010	+ ,02

together with their annual precessions and proper motions, \&c.

No.	No.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
				a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}		A. R.	Decn.
184	3	$\begin{array}{ll} -22 & 24 \\ 9,74 \end{array}$		+9,2380	$-9,4837$	+1,2050	88.3	231		
1847	4	$\begin{array}{lll}-22 & 24 & 9,74 \\ -15 & 3,16\end{array}$	$+16,002$ 16,042	+9,21199	-9,48:2:3	+1,2053	$+9,7778$ $\substack{778 \\ \hline}$	232	,+ 036 ,+ 008	
18	3	+ 03354,08	16,157	+9,1434	+7,9115	,20.6	,7771	237	+,010	
1849	4	- 02350,82	16,097	+9,6335	-7,7] $\cup 9$,20,	,7751	234	+,014	-,20
1850	2	- 91228,89	16,112	+9,5224	-9,1082	,2071	,7744	240	-,002	-,02
1851	4	+34 4550,74	16,177	$+9,8407$	+9,6632	+1,2089	+9,7711	253	+,017	-, 14
1852	2	+5650)22,33	16,184	+9,8639	+9,8300	,2091	,7708	256	+,002	+ ,01
1853	3	- 52845,14	16,216	+9,5752	-8,8456	,2099	,7692	254	+,007	+ ,03
185*	3	+4018 2,24	16,219	+9,8519	+9,7190	,2100	,7690	261	+,008	-,05
18.5	3	+2: 411,31	16,246	+9,7938	+9,4834	,2107	,7676	26.2	+,006	+ ,02
1850	3	+28 23 3,77	16,277	$+9,8176$	+9,5819	+1,2116	+9,7661	267	+ +,010	-, 12
18.57	4	+56 6919,88	11,287	+9,8603	$+9,83: 35$,2118	,7655	277	+,043	+,01
1858	1	+23101,70	16,308	+9,7924	$+9,4874$,2124	,7644:	274		-, 20
1×59	4	- 45248,75	16,318	+9,5832	-8,8393	,2127	,76:39	272	$+, 023$	-, 17
1800	5	+24 49 47,46	16,354	+9,8041	$+9,5352$,2136	,7620	279	+,013	-,10
18	4	-16 49 57,22	16,375	+9,3944	$-9,3736$	+1,2142	+9,7609	280	-,013	-, 16
1862	1	-1 2144822,42	16,375	+9,8035	+9,535:2	$\cdots 142$,7609	284	+-,018	-, 10
1863	3	+68 1811,33	15,408	+9,8414	$+9,8812$,2151	,7541	293	+,007	-,10
1864	3	-23 3434,51	16,422	+y,2279	$-9,5153$	2154	,7584	286	+,013	+ ,03
1865	3	- 03319,15	16,428	+9,6325	-7,8825	,2156	,7580	287	+,013	-,12
1816	3	+1025 4,87	16,438	+9,7251	+9,1718	$+1,2159$	$\mid+9,7575$	289	+,020	-,16
1867	2	+32 217,33	110,499	+9, $922(6)$	+9,6401	,2173	,7546	299	+,012	+,09
$18:$	4	-1657	16,502	+9,3979	- 9,3798	,2175	,7540	296	+,007	-,22
1869	4	-2 2145.40	16,533	+9,220]	-9,5259	,2183	,7594	301	+,019	-,06
$18: 0$	3	+57 5368046	16,544	-99,8500	$+9,8114$,2197	,7491	309	+,004	+,03
1871	4	+67 $11 \begin{array}{ll}17 & 50,62\end{array}$	16,584	+9,8494	+9,8-124	$+1,2197$	+9,7494	310	+,002	+ , 03
1872	4	-17 49 54,06	16,610)	+9,38:38	$-9,4041$,220.4	,7479	307	$+, 0: 1$	+ ,02
1873	4	+43 7336,16	11,607	+9,8451	+9,7533	,20313	,7481	313	+,022	-,04
1874		+19 3 3 38.84	16,620	+9,7730	+9,4331	,2206	,7474	312	+,012	-,01
1875	4	$+135014,59$	16,6:33	+9,7443	+9,2986	,2210	,7466	316	+,012	-,05
1876	3	+60 3034,89	16,647	+9,8432	+9,8592	+1,2913	+9,7459	318	+,028	-,08
1877	4	- $\because 04655,83$	16,6,59	+9,3201	$-9,46 i 94$,2211	,7451	317	+, 012	+,03
1878	3	+60 50 57,10	16,727	+9,8401	+9,8627	,2234	,7+11	328	+,017	+ ,04
1879	4	$+352124,93$	16i,7i9	+9,8:74	+9,6845	,2237	,7404	325	+,015	-,15
1880	3	+ 13518,29	16,788	+9,65:2	+-8,3735	,2250	,7375	330	- + ,008	-,03
1881	3	-38 3156,97	16,791	-7,0000	-9,7174	+1,2251	+0,7373	329	+,029	- , 11
1882	3	+5933 77,01	16,78\%	+9,8395	+9,8587	,2250	,7375	334	+,023	-,02
1883	4	-19 58 0,06	16,819	+9,3463	-9,4568		,73555	$3: 33$	+,007	-,13
1884	4 2		16,836 16,798	$+9,8248$ $+9,8432$	$+9,6871$ $+9,8270$,2262	,7345	337 335	+,004	
1886	3	+20 2748,83	16,854	+9,7745	+9,4687	+1,2267	+9,73:34	339	+,009	-,06
1887	3	+202258,62	16,864	+9,7745	+9,4673	,2269	,7328	342	+,004	-, 10
1888	3	+62 5745,90	16,479	+9,8306	+9,8752	,2273	,7318	349	+,0,037	-,03
1889	2 3	$\begin{array}{r}\text { r } \\ +550 \\ -7311,38 \\ \hline\end{array}$	16,882	$+9,8388$ $+4,5635$	$+9,8433$ $-9,0154$,2274	,7316	347 350	,+ 010 +014	-
1890	3	- $7 \quad 3 \quad 18,41$	16,960	+9,5635	-9,0154	,2294	,7266	350	+,014	-.,04

No.	No.Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P. M.	
				a^{\prime}			a^{\prime}		A. R.	Decn.
1891	3	-18 $10 \begin{array}{ll}3,88\end{array}$	+16,977	+9,3909	-9,4213	+1,2298	+9,7256	352	$\stackrel{s .029}{-, 029}$	
1892	3	+ 0826,99	16,988	+-9,6395	+7,3919	+2301	-,7248	353	+,016	
1893	3	-25 4733,26	17,004	+9,2068	-9,5668	,2305	,7238	354	+,014	-, 12
1894	2	-18 17 56,69	17,02:3	+9,3409	-9,4256	,2310	,7226	356	+,019	+,04
1895	4	$\begin{aligned} & +26\end{aligned} 001,91$	17,035	+9,7931	+9,5715	,2313	,7218	359	+,017	+,02
1896	4	- 154 48,53	17,065	+9,6191	$-8,4507$	$+1,2321$	+9,7197	364	+,030	+,06
1897	3	+48 2022,68	17,072	+9,8319	+9,80:37	,2323	,7193	368	+,010	-, 04
1898	2	+26 242,56	17,083	+9,7924	+9,5735	,2:326	,7185	369	+,006	-, 05
1899	3	-27 5016,89	17,088	+9,1461	-9,5997	,2327	,7183	367	+,009	-, ,06
1900	3	+5652 31,96	17,090	+9,8293	+9,8539	,2327	,7181	373	$+, 026$	+ ,07
1901	3	$\begin{array}{llll}+10 & 11 & 8,85\end{array}$	17,094	+9,7160	+9,1791	+1,2329	+9,7177	370	+,005	- ,16
1902	3	- 14221,08	17,102	+9,6222	-8,3990	,2:330	,7173	371	+,012	+ ,03
1903	3	-22 3112,21	17,14.	+9,30:33	--9,5159	,2341	,7143	377	+,016	+,02
1904	3	-13 4829,44	17,156	+9,4742	-9,3095	,2344	,7135	379	+,003	
1905	4	-29 5155,35	17,231	+9,0864	-9,6311	,2363	,7082	384	+,003	-, ,10
1906	4	+ 51015,74	17,2	+9,6794	+ $+8,8,908$	$+1,2369$	+9,7065	390	+,012	- ,13
1907	4	+ 51852,62	17,261	+9,6803	+8,90333	, 2371	,7061	391	+,013	-, 19
1908		-23 2111,24	17,284	+9,3032	-9,5279	,2377	,7044	343	-,001	+, ,12
1909	3	+ 42353,64	17,291	+9,6739	+8,8224	,2378	,7040	395	+,006	-, 12
1910	.	-33 55 29,76	17,329	+8,9031	$-9,6832$,2388	,7011	398	+,031	+,04
1911	3	+4418 58,77	17,329	+9,8202	$+9,7812$	+1,2:38	+9,7011	404	+,018	-, 03
1.712	3	-2634 0,41	17,343	+9,2148	-9,5874	,2391	,7001	400	-,018	+,07
1913	3	- 71054,25	17,349	+9,5670	$-9,1) 324$,2393	,6996	403	+,015	-, 05
1914	3	+3:3 431515,23	17,355	+9, 21055	+9,68:2	,2394	,6092	409		+,06
1915	3	+24 2136,47	17,367	+9,7789	+9,5510	,2397	,6988	411	+,008	+,03
1916	4	- 02742,54	17,378	+9,6335	-7,8167	$+1,2400$	+9,0974	412	-,001	- ,19
1917		+ 1565,73	17,404	+9,6532	+ +,4705	,2407	,6954	417	+,010	-,
1918	2	+58 2131,35	17,434	+9,8122	+9,8681	,2414	, 64932	4	+,015	-, 06
1919		+42 23 4, 619	17,494	+9,8122	+9,7697	,2429	,6885	8	+,004	+,07
1920	2	+58 2917,02	17,496	+9,808:2	+9,8717	,2429	,6883	12	+,021	+,11
1921	4	$\begin{array}{llll}-15 & 1 & 57,76\end{array}$	17,510	+9,4669	$-9,3548$	$+1,2433$	+9,6872	7	$+, 016$	-, 16
1922	3	-42 91818,03	17,564	-7,1000	-9,7693	,2446	,6828	18	+074	-,61
1923	3	+63 19 2,44	17,57(+9,7459	+9,8940	,2448	,6824	24	+,018	-, 02
1924	3	+33 4753,38	17,602	+9,7966	+9,0891	,2455	, 67:0	29	+,018	-,10
19:5	3	+ 8408093	17,617	+9,6498	+9,1237	,2459	,6781	30	$+, 011$	-,05
1926	4	-26 4641,63	17,623	+9,2380	$-9,5974$	$+1,2461$	+9,6780	25	+-,008	+ ,01
19	4	-623 47,28	17,648	+9,5786	-8,9896	,2467	,6759	35	+,016	-,06
1928	3	+23:30 10,52	17,670	+9,7679	+9,5465	,2472	,6740	39	+,010	+ ,05
1929	2	+6: 23 i 57,17	17,672	+9,9910	+9,4933	,2473	,6737	42	-,005	+ ,03
1930	3	$\begin{array}{llll}-18 & 1 & 3,85\end{array}$	17,678	+9,4265	-9,4354	,2474	,6733	38	+,017	+,0¢
1931	3	+62 212,46	17,731	+9,7882	+9,8941	+1,2487	+9,6687	53	+,017	+ , 07
1932	3	+28 2126,18	17,75:	+9,8803	+9,6-43	,2492	,666,	52	+,114	+ ,01
1933	4	+ 441626,93	17,754	+9,1028	+9,7914	,2493	,6666	65	+, (0)	- ,04
1934	2	$\begin{array}{r}\text { + } \\ +1381,90 \\ \hline 989\end{array}$	17,789	+9,7226	+9,3052	,2502	,6634	0	+,013	-,07
1935		- 91925,97	17,819	+9,5490	-9,1574	,2509	,6607	59	+,005	-,,09

No.	$\begin{aligned} & \text { No. } \\ & \text { Obs. } \end{aligned}$	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of					Annual P.M.	
					b^{\prime}		d^{\prime}		A. R.	Decn.
1930	3	+19 84505								
193	2	$\begin{array}{ccc}+13 & 15 & 0,34 \\ +\end{array}$	+17,843	+9,7218	$+9,450$ $+9,3102$	$\begin{array}{r}+1,2510 \\ \hline 2515\end{array}$	+9,6602	$\begin{gathered} 60 \\ 62 \end{gathered}$, 11
1938	3	+365652,96	17,853	+9,7994	+9,7289	,2517	,6575	65	+,004	+,,06
1939	4	+13 12 42,36	17,893	+9,7202	+9,3104	,25:7	,6538	69	+,008	-,01
1940	4	$\begin{array}{llll}-7 & 3 & 55,81\end{array}$	17,898	+9,5752	-9,0388	,2528	,6533	68	+,005	-,01
1941	4	+ 74758,66	17,913	+9,6911	+9,0848	+1,2532	+9,6518	73	+,010	-,15
1942	4	+ 54253,06	17,995	+9,6776	+8,9527	,2551	,6439	82	+,015	-, 01
1943	4	$\begin{array}{lll}-11 & 1 & 25,15\end{array}$	18,002	+9,5340	-9,2339	,2553	,6431	83	+,004	-,10
1944	4	$+354948,51$	18,005	+9,7846	+9,7211	,2554	,6429	87	+,018	00
1945	4	+62 4420,63	18,146	+9,7612	+9,9057	,2588	,6281	109	+,015	+,03
19	4	+ 34122,47	18,150	+9,6628	+8,7667	+1,2589	+9,6276	106	+,011	- ,02
1947	2	+31 016,66	18,18:3	+9,7701	+9,6697	,2597	,6240	113	+,014	-,04
1948	3	+62 29 44,43	18,182	+9,7581	+9,9055	,2597	,6240	115	+,002	+, 05
1949	2	-10 3420,81	18,190	+9,5428	-9,2205	,2598	,6232	110	+,014	-, 15
1950	3	-10 29 56,06	18,197	+9,5453	-9,2180	,2600	,6224	11	+,015	-,08
1951	3	-25 0022,75	18,239	+9,3:385	--9,5847	+1,2610	+9,6177	119	+,010	-,07
1952	2	-33 11130,57	18,25:3	+9,1367	-9,6974	,261.3	,6161	124	+,039	+,02
1953	4	$\begin{array}{llllllllllllll}-11 & 27 & 48,14\end{array}$	14,2533	+9,5353	-9,2572	,2613	,6161	125	+,012	-,01
1954	4	+ 32942,77	18,260	+9,6009	+8,7473	,2615	,6153	127	$+, 007$	-,08
1955	3	-11 263785	18,262	+9,5353	$-0,2567$,2616	,6149	126	+,003	-,03
19	5	$\begin{array}{lll}-14 & 26 & 5,83\end{array}$	18,297	+9,5024	-9,35	+1,2624	+9,6110	133	+,007	-, 01
19	3	-1820)2(0,43	18,3:25	+9,4548	-9,4584	,2630	,6076	138	+,003	+ ,03
1958	3	-24 50112,50	18,409	+9,3579	-9,5860	,2650	,5972	146	+,007	-,11
1959	4	-21 46 47,23	18,423	+9,4099	-3,532.5	,2653	,5954	148	+,015	-, 04
1960	2	-32 2916,05	18,436	+9,1931	-9,6935	,2657	,59:37	154	-,002	+ ,01
1961	4	-21 5614,58	18,452	+9,4082	$-9,5361$	+1,2660	+9,5916	155	+,014	+ , 03
190	2	+38 4419,23	18,461	+9,7649	+9,7608	,2663	,5904	159	+,041	-, 12
19	1	+38 4651,87	18,475	+9,7642	+9,7616	,26160	,5886	163		-, 26
1964	4	-28 17 33,19	18,4×8	+9,2988	-9,64(1)	,2669	,5864	162	+,056	-, 01
1965	3	- 42727,57	18,551	+9,0004	-8,8562	,2684	,5782	171	+,014	-, 09
1	5	- 42420,84	18,601	+-9,6064	-8,8508	+1,2695	$+9,5711$	183	+,008	-, 12
1917	4	-28 6833,99	18,603	+9,3181	-9,6404	,2696	,5707	182	+,002	+ ,03
1968	1	+13 4121,39	18,614	+9,7067	+9,3428	,2698	,5692	186	+,0.32	-,02
1969	2	-10 58 50,30	18,634	+9,5514	$-9,2470$,2703	,5663	188	+,012	-,07
1970	3	+56 329 9,01	18,634	+9,7372	+9,8900	,2703	,5663	194	+,043	+ , 14
1971	3	- 41940,33	18,644	+9,6085	-8,8435	+1,2705	+9,5647	191	+,017	
1972	4	- 91626,40	18,683	+9,5682	-9,1756	,2714	,5589	204	+,,008	+ ,01
1973	4	-. 82830,16	18,718	+9,5763	$-9,1375$,2723	,55:33	206	+,008	-,03
1974	4	- 82528,09	18,735	+9,5763	-9,13:53	,2726	,5507	208	+,018	+ ,04
1975	3	-10 33 22,24	18,772	+9,5587	$-9,2328$,2735	,5447	213	+,010	-,23
1976	4	+29 3549,40	18,777	+9,7405	$+9,6658$	+1,2736	+9,5436	214	-,011	-, ,45
1977	3	+45 2112,67	18,814	+9,7404	+9,8250	,2745	,5375	222	+,021	-, 11
1978	2	-5 5 5 35,50	18,8.21	+9,6042	-8,9187	,2747	,5,361	220	+,018	-, 24
1979	4	-20 33333,30	18,826	+9,4564	$-9,5178$,2748	,5354	221	+,002	
1980	3	-33 $40 \quad 8,50$	18,867	+9,2405	-9,7171	2,757	,5285	224	$+, 019$	+ , ,07

No.	No. Obs.	Declination Jan. 1, 1836.	Annual Precession.	Logarithms of				$\begin{aligned} & \dot{8} \\ & \text { 药 } \\ & \text { 药 } \end{aligned}$	Annual P. M.	
				a^{\prime}	b^{\prime}		d^{\prime}		A. R.	Decn.
1981	4	- 819 28,87	,890						012	3
1982	4	+ 2410003	18,962	+9,6513	+8,6490	,2779	,5104	237	+,018	- , 13
1983	4	- 53140,98	18,993	+9,6042	$-8,9582$,2786	,5045	242	+,029	-, ,04
1984	3	- 52243,20	19,122	+9,6064	$-8,9492$,2815	,4765	259	+,014	- ,09
1985	4	$+383048,24$	19,121	+9,7210	+9,7740	,2815	,4769	260	-,006	+ ,02
1986	2	+ 6283,51	19,132	+9,6665	+9,0325	+1,2817	+9,4745	26.3	+,008	-, ,08
1.987	3	+8354 21,26	19,138	+9,5331	+9,9775	,2819	,4729	280	,000	+,03
1988	3	-319 1,64	19,155	+9,6191	-8,7405	,2823	,4688	269	+,010	-, ,01
1989	1	-27 037,68	19,160	+9,4048	-9,6372	,2824	,4676	270	+,023	- ,17
1990	5	+ 62851,47	19,160	+9,6674	+9,0343	,2824	,4676	271	+,012	-, ,08
1991	3	+ 63022,88	19,168	+9,6674	+9,0367	+1,2826	+9,4659	273	+,009	-, 01
1992	3	+51 2535,35	19,174	+9,6972	+9,8740	,2827	,4643	276	+,006	+ ,09
1993	3	-23 40 3,80	19,188	+9,4487	-9,5844	,2830	,4609	277	+,029	+ ,03
1994	4	+15213,11	19,233	+9,6928	+9,4053	,2840	,4495	283	+,013	-, 16
1995	4	+173751,53	19,322	+9,6937	+9,4658	,2860	,4246	300	+,024	+,05
1996	4	+19 1 134,83	19,328	+9,6955	+9,4980	+1,2862	$+9,4228$	301	+,029	-,02
1997	4	-953 43,97	19,363	+9,5832	-9,2196	,2870	,4120	307	+,018	- ,20
1998	3	$+284824,85$	19,363	+9,7024	+9,6681	,2870	,4120	309	+,008	+ ,17
1999	3	+ 85334,80	19,418	+9,6693	+9,1765	,2882	,3942	3	+,019	+ ,01
2000	4	+ 4653,92	19,430	+9,6532	+8,8443	,2885	,3902	5	+,005	-,06
2001	3	+ 1729,26	19,45]	+9,6425	+8,2895	+1,2889	+9,3827	10	$+, 021$	-, 04
2002	4	-10 27 39,54	19,461	+ 9,5843	-9,2451	,2892	,3791	12	+,012	-, 02
2003	4	+ 61726,00	19,477	+9,6599	+9,0279	,2895	,3734	13	+,020	+ ,03
2004	4	+ 11841,17	19,480	+9,6425	+8,3598	,2896	,3718	15	+,005	+ ,03
2005	4	$-292058,14$	19,488	+9,4216	-9,6779	,2898	,3687	16	+,019	+ ,03
2006	4	+184435,39	19,491	+9,6866	+9,4953	+1,2898	+9,3677	20	+-,008	- , 01
2007	4	+ 02459,18	19,519	+9,6385	+ 7,8672	,2905	,3564	21	+,014	- ,22
2008	4	-29 3439,58	19,531	+9,4249	-9,6818	,2907	,3515	25	+,033	-,19
2009	4	+1722 0,53	19,533	+9,6821	+9,4641	,2907	,3510	27	+,019	- ,04
2010	4	+26 4226,09	19,575	+9,6857	+9,6426	,2917	,3319	38	+,014	-,03
2011	5	+26 4242,69	19,581	+9,6848	+9,6429	+1,2918	+9,3296	44	,000	-, 01
2012	2	-14 20 47,42	19,581	+9,5647	-9,3830	,2918	,3296	41	+,045	- ,06
2013	2	+ 43050,01	19,581	+9,6532	+ 8,8893	,2918	,3296	43	+,063	- ,26
2014	2	+2255 51,44	19,601	+9,6830	+9,5813	,2923	,3197	48	+,015	- ,09
2015	3	+40 5131,24	19,612	+9,6656	+9,8065	,2925	,3143	54	+,016	+ ,03
2016	4	$+254252,96$	19,643	+9,6794	+9,6289	+1,2,932	+9,2984	60	+,006	-, 06
2017	4	-114026,48	19,653	+9,5866	-9,2967	,2934	,2934	64	+,031	+ ,21
2018	4	+ 5178,41	19,679	+9,6532	+8,9589	,2940)	,2780	72	$+, 013$	-,02
2019	3	+223450,14	19,688	+9,6739	+9,5769	,2942	,2727	74	+,013	+ ,07
20:0	4	$\begin{array}{llll}-13 & 51 & 1,80\end{array}$	19,707	+9,5775	$--9,3712$,2946	,2606	79	$+, 015$	+ ,07
2021		-22 5 28,88	19,710	$+9,5237$	-9,5675	+1,2947	+9,2593	80	$+, 007$	- ,09
2022	3	-13 49 45,35	19,725	+9,5786	-9,3706	,2950	,2489	85	+,008	+ ,03
2023	5	+ 51020,83	19,741	+4,6513	+8,9507	,29,34	,2382	93	+,016	- , 19
2024	3	+ 511158,52	19,760	+9,6513	+8,9539	,29.58	,2243	98	+,025	- , 43
2025	4	-42 5314,13	19,767	+9,3117	-9,8267	,2959	,2191	94	+,020	-, 02

In addition to the foregoing catalogue-in the years 1836-1837, the places of several Stars--whose names only occur in Vols. II and III-have been delermined; --and several more-where the result of one observation ouly had been given, or where discordance among several observations had, occurred or where a large proper motion was observed ;-in all these cases, a re-exammation of former results has been inslituted, and further observations (when necessary) made, as follows.
sUpplimentary catalogue of the a. R. of the fixed stars.

Reference.	Names.		$\begin{gathered} \text { Mean A. R. Jath. I, } \\ \text { 1836.- irom } \end{gathered}$		Concludel Mean A. R Jan. 1, 1836	Annual		Remaris.
No. Vol.			former ubs	present ols.		Precesn.	P. M.	
			$\begin{gathered} \text { s. } \\ 6=28 y^{\prime \prime} \end{gathered}$	$\overbrace{3-90}^{s-50}$	h. m. s.	$\begin{gathered} s . \\ +3.069 \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{s} \\ +0,081 \end{gathered}\right.$	Piazzi's P. M. is too small.*
2 . III	61 Andromed.	β	$3=28$ $3=1,22$	$3=2,59$ $3=1,17$	 5 1,20 	+3,090	+,007	
$5 . \mathrm{lII}$	96 Piscium		$3=58.10$	$\mathrm{I}=57,90$	858,05	3.075	-,010	The Paramata obsservations reduced to 1836
21. II	Tucanæ	3	$6=27,49$	$3=29,38$	11	2,920		give the place of this star $23^{\prime} 465^{\text {: }}$: Can the pro-
41 . II	15 Cassiopera	κ	$5=44,19$	$3=44,50$	23 44,31	3,324	+,027	(per motion amount to, 5368 s?
44. II	Tucane	β^{1}	$6=59,50$	$2=59,83$	23 59,58	2,796	-	
45.11		β^{2}	$3=0,36$	$2=0,54$	$24 \quad 0,43$	2,786	-	
46 . II		β^{3}	$5=13.73$	$2=13,53$	$25 \quad 13,67$	2,771		
$51 . \mathrm{II}$	Piscium		$4=7,83$	$1=8,02$	27 7,87	3.064	+,008	
27.111	117 Andromed.		$2=29,82$	$3=30,10$	28 29,99	3,139	+ ,014	m
$55 . \mathrm{II}$	Ceti		$4=55.00$	$3=55,01$	2855.00	2,988	+,110	$\left\{\begin{array}{l} 4 \text { obs. } 1832=28 \\ 3-1837=28 \\ 38,62 \\ 3-10 \end{array}\right\} \quad \therefore \text { P. M. }=+, 108 s$
56.11	Piscum		$5=4,16$	$2=4,16$	29 4,16	3,074	+	$\{3-1837=2858,10\}$
$31 . \mathrm{III}$	128 Andromed.		$\mathrm{l}=55,28$	$3=55,12$	32 55,09	3150	$+.027$	
66 . II	Ceti		$5=31,66$	$1=30,73$	34 30,67	2,991	+,007	These results appear discorlant; but from the
91.11	Cephei		$4=37,24$	$3=38,14$	47 37,63	6,468	+,197	$\left\{\begin{array}{l} \text { proximity of this star to the pole, the disagree- } \\ \text { ment }=\text { only } 1^{\prime \prime} \text { of are } \end{array}\right.$
96 . II	38 Andromed.		$7=27,92$	$1=27,71$	4827,89	3,183	+,015	
$108 \cdot$ II	74 Piscium	ψ^{1}	$3=54,33$	$1=54,08$	5654,27	3,191	- 0003 $+\quad 403$	
67 69	μ Cassiopler		- $=20.63$	$2=24,87$	5724,87	3,526	+,403	Piazzi says the P. M. $=+5, \% 0$
69. 111	${ }_{27}^{100 ~ P e t i s c i u m ~} \dagger$		$2=20,63$ $4=24,38$	$1=20,32$ $1=24,35$	57 57 57 24,57	3,092 3,005	$+0,006$,+ 011	
110 . II	28 -		$8=51,59$	$2=51,73$	5751.62	3,005	+, 004	
$112 \cdot 11$	Phonicis	β	$6=45,45$	$3=4516$	5845.35	2,698		
81. III	181 Andromed.		$1=1,95$	$2=1,73$	$1 \begin{array}{lll}1 & 1 & 1,80\end{array}$	3.377	-,006	
123 . 11	Phomeicis	\%	$2=28,35$	$2=28,55$	128,45	2.542	-	
$132 \cdot 11$	Piscrum	ζ_{1}	$5=10,27$	$1=10,32$	510,28	3,112	+,013	
91. III	b Ceti		$3=8,59$	$3=8,53$	$6 \quad 8,56$	3,009	+ ,017	
185 . 11	88 Piscium		$6=11,00$	$1=10,99$	611,011	3,108	+ ,009	
97.111	${ }_{10}^{\text {C Cassiopex }}$		$3=48,94$ $2=1298$	$1=49,25$ $2=109$	949,122	${ }_{3} 3606$	$\underline{+, 008}$	S The star ohserved in 1835 was Piazzi No. $39-$
$\begin{array}{r}198 \\ 147 \\ \hline\end{array}$	$119-$	δ	$2=12,98$ $9=9,02$	$2=14,97$ $4=9,16$	$\begin{array}{cc}10 & 14,97 \\ 15 & 9,06\end{array}$	3.890 3,790	$\begin{array}{r}\text { + } \\ +.087 \\ \hline-.016\end{array}$	$\left\{\begin{array}{l}\text { Differs }-1,42 s \text {, from A. S. C. }\end{array}\right.$
103 . III	242 Piscium		$3=14.41$	$\mathrm{l}=1471$	1514,18	3,096	+, 005	
$158 \cdot 11$			$5=47,59$	$2=47.55$	1941.58	3,124	+ +006	
161 . 11	Pheemcis	γ	$6=14.34$	$2=14.27$	2114,32	2,619	+,017	
$164 \cdot 11$	Cetı		$5=58,05$	3-5773	21 57,93	2,836	-	
167 . Il	Pheenicis	δ	$5=24,99$	$3=24,95$	24 24,97	2,497	-	

Reference.	Names.		Mean A. R. Jan 1, 1830.-Ffrom		Concluded Mean A. R. Jan. 1, 1836.	Anuual		Remarks.
No. Vol.			former obs.	\|rresent obs.		Precesn.	P. M.	
170 of II	1001 Piscrium		$\begin{gathered} \mathrm{s} . \\ 5=9,60 \end{gathered}$	$\begin{aligned} & \text { s. } \\ & 3=9,60 \end{aligned}$	$\begin{array}{rll} \hline \text { h. m. } & \text { s. } \\ 1 & 20 & 9,60 \end{array}$	$\begin{gathered} s \\ +3,169 \end{gathered}$	$\begin{gathered} \text { s. } \\ +, 010 \end{gathered}$	
176 . Il	51 Audromed.	R^{2}	$6=57.82$	$1=57,92$	27577,84	3.617	+,017	
178. II	102 Pisisum	π	$10=2486$	$2=24.93$	2'34,87	3,168	+,004	
133. 111	g Cassioper		$3=21,09$	$3=20,59$	30 20, 84	4,468	+,044	N. P. D. 20,13
135 . 111	49 Mach. Elect.		$2=8,16$	$2=8,35$	318,25	2,817	+,021	
138 . III	137 Cassirnpere		$1=17.86$	$3=17.83$	3217,84	3,960	+ ,032	
146 . Iil	CRayder.		$3=39,92$	$4=40,53$	3840,27	5.572	+,105	
194. 11	53 Cui	x^{2}	$6=32.12$	$6=31,97$	41 32,04	2,952	+,005	
167.111	147 Cassioper		$2=57,26$	$2=57.53$	48 57,39	5,624	+,088	
170 . Ill	$150-$		$1=4,46$	$3=5,43$	$50 \quad 5,19$	5,435	+ 0,020	N. P. D. $14,42 \therefore$ diff $=3,6$ of are
220 . II	57 Aultomed.	γ	$9=51.64$	$2=51.92$	53 51,70	3,630	+ 012	
181. 111	$3{ }^{3}$ Aictin		$3=21,75$	$3=21,89$	64 21,42	3,369	+ +0.015	
201.111	6 Andremed.		$1=5823$: $=58,14$	$2 \quad 258,16$	3,717	+,009	
205.111	292		$2=16,29$	$2=16,49$	4 4 16,39	3,835	-,024	
209 . 111	Macil. Elect.	β	$1=40,97$	$1=41,20$	541,11	2,641	$+, 005$	
211 . 111	(i) Arictis		$1=23,59$	$1=23,67$	623.58	3.395	+,020	
217 . 111	41 Prusui		-	$1=16,09$	746,09	4,141	+,009	
225. 111	2955 Andionned.		$1=8,99$	$1=9.50$	$10 \quad 9,25$	3408	+ ,018	
243 . 11	68 Crli	0	$6=4,18$	6:= 4,26	11 4,22	3,1221	+ +012	
240 , II	24 Arictis	\because	$5=2,17$	$1=2,27$	$16 \quad 2,19$	3,197	+, 008	
253 . II	12 Trianguli	c	$5=3438$	$3=3130$	18344,35	3,487	+,005	
238 . 111	46 Masmms		$4=13,35$	$4=11.24$	19 13,84	5,2:6	+,027	N. P. D. 19,27
256 . II	Trusani	κ	$8=58,36$	$3=58,43$	20.58 .38	2.199	\cdots	
248. III	Crati		-	$4=1653$	23 16,53	2,846	-,001	
251 . III	46 Triunguli		$4=50,77$	$3=51,94$	25) 51,94	3,604	+,034	A wrong star observed in 1835.
268 . 11	Ceti		$5=5,87$	$5=5.97$	$27 \quad 5,92$	3.153	+, ,130	
253.1111	d^{1} -		$2=7,08$	$1=6,86$	$27 \quad 7,111$	3,009	-,005	
256 . 1111	418 -		-	$4=18.7 .4$	$2.718,74$	3,167	+, 0,21	
279.11	34 Arutis		$4=37.66$ $=8=8.14$	$5=37.07$ $3=8,07$	$\begin{array}{ll}31 & 37,40 \\ 33 & 8,12\end{array}$		$1 \begin{aligned} & \text { - } 01010 \\ & +\quad, 022\end{aligned}$	\{ we menil is crroncously stated to be 37,83 s. in
2833 - II	34. Aretis	u	$i=8,14$	$3=8,07$	338	3,357	+, 023	
$295 \cdot 11$	Mudrue		-	$4=6,06$	37 0,06	0,868	-	differs 12s, from A. S. C.
306, 11	Kirmactis	β	$5=1: 372$	$1=13,17$	$42.13,73$	2,502	+ ,00!	
286 , 111	98 Pinsei		$8=13,10$	$3=13,27$	4) 13,43	4.208	+,005	
324 , I1	Inown ii	β	-	-	$51-\cdots$	1,202	--	Not now visible!
325 . 11	Wridium	0	$5=2,76$	$2=2,47$	$52 \quad 2,68$	2,277	-,008	
337 . II	Pumacis		-	-	55.	2,663	-	Not now visibla !
340 . II	1'mersi		$6=16,15$	$3=16,40$	$5716,4,3$	4,138	+ +146	
$346 \cdot 11$	Arietis		$5=43,73$	$4=43,40$	$\begin{array}{llll}3 & 0 & 48.76 \%\end{array}$	3.535	-	differs 4,28s. from A. S. C.
356 . II	14. Frudani		$5=39.45$	3--39,20	839,36	2,899	+ 01019	
317 . III	140 Persei		$1=28,96$	$4=29,20$	1029,15	3,981	+,002	
318 . III	(fi) Cuss, Mess.		$3=30102$	$3=31,33$	103112	5,005	+	
321.111	142 Peisei		$3=20,05$	$3=88,38$	1138.38	4,195	+,018	A wrong star observed in 1835.
329 - III	15 Tuw		$3=1,115$ $3=27,14$	$2=1,36$ $3=9795$	$\begin{array}{ll}21 & 1.17 \\ 20 & 27.71\end{array}$	4,179	+,010	\{ Forruer observations discordant: $27,8 \mathrm{~s}$. is pro-
341 332	15\% Thuri		$3=27,46$ $6=30,90$	$3=27,95$ $2=31,09$	20 20 20 10,97	3,3,366	+006 ,+ 005	$\{$ bubly nearer the truth than the mean.
333 . III	Premi		$3=35,11$	$4=35,12$	2035.11	4,187	+,004	
337 . I11	14.9 Crideni		$3=4,93$	$3=5,27$	$22.5,10$	2,056	-,001	
341 . III	Persei		$4=21,19$	$3=20.97$	27 21,10	3,690	-,003	
399 . 11	41	ν	$0=4.68$	$3=4,777$	34.4 .70	4,935	+,014	
358 . 111	Formacis		$3=43,89$	$3=43,80$	3543,84	2,381	-,0122	

Reference.	Names.		Mean A. R. 1836.-f	$\begin{aligned} & \text { R. Jan. I, } \\ & \text { from } \end{aligned}$	Concluded Mean A. R	Annua		Remaris.
No. Vol.			former obs. pr	present obs.	Ja	Precesn.	P. M.	
363 of III	27 Psalt. Georg.		$\stackrel{ }{\text { s. }}$	$\begin{gathered} \mathrm{s} . \\ 4=33,75 \end{gathered}$	$\begin{aligned} & \text { h. m. s. } \\ & 33633,75 \end{aligned}$	$\longdiv { s . }$	$\begin{array}{r} \mathrm{s} . \\ +\quad, 007 \end{array}$	
365 . III	12 Pleiadum		-	$4=37,00$	37 37,00	3,543	+,017	
369 . III	118 Tauri		$4=$	$2=28,75$	39 28,75	3,541	+,016	A wrong star observed in 1835.
373 . III	132		$1=14,19$	$2=14,47$	40 14,38	3,504	+,011	
424 . II	28 Eridani		$5=36,75$	$8=36,82$	4036,80	2,571	-,003	
374 . III	Fornacis		-	$2=42,07$	4042,07	2,436	+,006	
378 . III	206 Eridani		-	$2=39,60$	4139,60	2,251	+,002	
380 . III	H Camelop.			$3=1,35$	431,35	5,200	+,015	
445 . II	35 Eridani		$6=13.76$	$1=13,49$	5313,72	3,028	+,001	
403 . III	171 Tauri		$* 3=4,41$	$3=4,38$	$55 \quad 4,40$	3,224	+,022	$\left\{\begin{array}{c}\text { neous to the amount of a years precession. }\end{array}\right.$
455 . II	Reticuli	γ	$8=32,79$	$3=32,82$	$58 \quad 2,80$	0,841	-	
454 . 11	Tauri		$6=36.42$	$1=36,45$	58 36,43	3,418	+,007	
421. III	$205-$		$2=45,54$	$1=45,15$	4645,41	3,188	-,005	
432 . III	${ }^{1}{ }^{1}$ Eridani		-	$3=51,35$	(2 51,35	2,501	+,008	
433 . III	Z		$1=4,47$	$3=4,44$	13 4,45	3,058	-,002	\{ Piazzi properly places this star in the constella- $\{$ tion Taurus.
436 . III	220 Persei		*3 $3=0,43$	$4=0,44$	$14 \quad 0,44$	3,858	+,019	
500 . II	Reticuli	θ	$4=51,29$	$3=51,65$	1551.45	0,643	-	
503 . II	71 Tauri		$4=0,62$	$3=0,54$	$\begin{array}{ll}17 & 0,59\end{array}$	3,395	+,025	
508 . II	75 -		$5=4,29$	$1=4,41$	19 4,31	3,414	+,001	
445 . III	265 -		$1=-$	$4=11,00$	2111,00	3,388	+,013	
447 . III	269		-	$4=24,32$	2124,32	3,412	+, 020	
529 . II	88 -	d	$4=38,88$	$1=39,08$	26 38.92	3,280	+,007	
463 . III	335 Eridani		-	$3=29,77$	27 29,77	2,393	-,001	
465 . III	Scep. Brand.		$3=58,03$	$1=57,56$	28 57,92	2,877	-,005	
467 . III	40 Camelop.		-	$3=39,67$	30 39,67	6,502	+, 036	
555 . II	96 Tauri	K	$5=21,53$	$2=21,66$	4021,56	3,419	+ ,014	
499 . III	52 Camelop,		$3=4,30$	$4=4,75$	$44 \quad 4,56$	7,429	-, 018	
577 . II	10 -	d^{1}	$6=51,51$	$2=52,29$	4851,71	5,286	+,005	
515 . III	Eridani			$3=40,41$	5140,41	2.828	+,003	
518 . III	61 Camelop.		$1=57,58$	$3=57,83$	51 57,77	5,176	+,010	
523 . III	e Auriga		,	$3=31,61$	5431,61	5,504	+,014	
530 . III	$b-$		$4=30,87$	$2=31,08$	58 30,94	4,439	+,014	
610 . II	Doradus	ζ	$7=42,53$	$4=42,68$	$5 \quad 242,58$	1,021	-	
${ }^{622}$ • II	Columbe		$5=49,99$	$2=49,70$	8 49,91	2,400	+,006	
554 . III	2 -		$1=54,00$	$3=53,87$	953,90	2,151	+,003	
626 . II	Leporis		$5=8,50$	$3=8,46$	$10 \quad 8,49$	2,750	-	
635 . II	22 Orionis	-		$6=23,68$	13 23,68	3,055	+,016	
641 . II	Eridani		$6=2,78$	$3=2,62$	15 2,73	2,459	+ ,011	
577 . III	367 Tauri		$4=49,63$	$1=49,34$	20 49,57	3,609	+,006	S The place now obscrved agrees with Piazzi, bu
661 . 11	25. Aurigæ	χ^{1}	$12=3,61$	$3=3,67$	22 3,62	2,941	+,011	l differs 8,21s. from A. S.C.
594 . III	27 Columb		-	$3=56,73$	2656.73	1,697	+,006	
${ }_{597}^{679}$. III	41 Orionis 84 Camelop.		$4=\overline{3,72}$	$6=13,28$ $1=4,16$	 27 13.28 29 3,81	2,941 5,495	$\begin{array}{r}\text {,000 } \\ -.014 \\ \hline\end{array}$	
691 . II	47 Orionis		$6=31,88$	$3=31,75$	30 31,84	3,161	$\begin{array}{r}\text { + } \\ +, 010 \\ \hline\end{array}$	\{ The place now observed agrees with Piazzi, differs nearly 5 s. from the A. S. C.
609 . III	393 Tauri		$\mathbf{l}=15,34$	$3=15,11$	- 3315,17	3,524	+,014	
626 . III	Columbæ		$\mathrm{l}=5,63$	$3=5,51$	$1 \begin{array}{ll}38 & 5,54\end{array}$	1,972	+, 007	
743 . II	Aurigæ		$5=42,21$	$2=42,11$	50 42,18	3,765	+, 006	
658 . III	n Camelop.		-	$3=29,06$	5129,06	4,752	+,005	
677 . III	Columbx		$1=45,72$	$4=45,39$	59 45,45	1,730	-,001	
447 . IV	Geminor.	q.	-	$\mathrm{l}=7,54$	6 4 7,54	3,663	-,001	This observation was omitted.

* See errata.

Reference.	Names.	$\begin{gathered} \text { Mean A. R. Jan. } 1, \\ \text { 1836. }- \text { from } \end{gathered}$			Concluded Mean A. R. Jan. 1, 1836.	Annual		Remaris.
No. Vol.			former ols.	present obs.		Precesn.	P. M.	
				$4=4,15$		$\begin{gathered} \mathrm{s} . \\ +3,303 \end{gathered}$	s. +.010	\{ The results in each year agree very well interse :-this star must be re-examined.
785 of II	Orionis	l	$* 5=4,65$	$\begin{aligned} & 4=4,15 \\ & 3=18,65 \end{aligned}$	6 6 ¢ 8 4,43	$\left.\begin{array}{r} +3,303 \\ 2,767 \end{array} \right\rvert\,$	+	($\begin{gathered}\text { se }: \text { :-this star must be re-examined. } \\ \text { These observations were omitted }\end{gathered}$
452. IV	25 Monocer.		$2=\overline{60,70}$	$3=18,65$ $3=52,04$	818,65 95204	2,767 2,817	+008 -017	These observations were omitted.
703 . III	25 Monocer.		$2=60,70$	$3=52,04$	952,04 11	2,817	- ,017	In 1835 a wrong star appears to have been ob-
710 . III	31 Geminor.		$1=33,40$	$3=33.44$	1133,44	3,586	+,007	served; - on the present occasion the small
716 . III	9 Lyncis		$4=29,06$	$2=29,52$	12 29,21	5,243	-,001	star mention by P. was observed ; preceding $25 \mathrm{~min} .15,05 \mathrm{~s}$.
718 . III	Cauis Maj.		${ }^{*} 1=55,90$	$2=56,17$	14 56,08	2,300	+,014	The result in Vol. III belongs to Piazzi, No. 81.
793 . II	Monocer.		$6=39,90$	$1=39,73$	$14.39,88$	3,158	+,005	
	Geminor.		$3=59,24$	$6=59,20$	17 59,21	3,576	+ ,012	Omitted in Vol. III.
799 . II	15 -		$5=0,07$	$6=0,12$	18 0,10	3,576	+,009	
728 . 111	11 Navis		$4=19,94$	$2=19,95$	18 19,94	2,078	+,002	
805 . II	17 Geninor.		* -	$2=25,28$	10 25,28	3,588		This Star is now of the $9,10 \mathrm{mag}$.
739.111	120 Camelop.		$3=26,42$	$3=23,56$	21 25,04	30,934	+,066	N. P. D. $=2^{\circ}, 44^{\prime} \therefore$ diff, $=2^{\prime \prime}, 04$ of arc.
758 . III	50 Geminor.			$4=32,33$	2632,33	3,474	+,007	
760 . III	26 Navis		-	$3=44,05$	26444,05	2,047	+,002	
770 . 111	$6 v^{\text {C }}$ Canis prac.		$3=12,14$	$3=12,26$	2912,20	2,624	+,005	
772 . III	Lyncis		$1=20,05$	$5=20,63$	3020,54	5,326	+,007	
774 . 111	$22=$			$3=27,78$	3027,78	5,114	+,019	
783.111	Camelop.			$3=52,60$	3259,60	6,201	+,012	
835. II	43 -	q	$0=58.92$	$6=59,29$	3559,10 345143	6.522 3.254	-	((nearly $2^{\prime \prime}$) from the A. S. C.
794 . III	Monocer.		$1=51,29$	$3=51,47$	3751,43		+ ,013	
795 . III	49 Navis		$1=54,82$	$2=55,08$	3754.99	1,099	+,039	
840 . II	18 Monocer.	$\%$	$6=18,56$	$1=18,28$	3918,50	3.128	+ ,005	
807 . III	29 Iyncis-		$4=10,95$	$3=11,24$	4311,07	5148	+,014	
848 . 11	13 Can Maj.	r^{2}	$19=43,04$	$l=13,04$	43 43,04'	2,238	+,004	
855 . II	Geminor.		$6=44,21$	$3=44,17$	4644,20	3,492	+,010	
814. . III	Tyncis		$3=6,31$	$1=6,69$	$47 \quad 6,43$	5,143	+ ,009	
897.111	131 Camelop.		\% $3=54,117$: $=565,23$	5355.15	11,802	-,033	N. P. D. $=8^{0}, 27^{\prime}$
83.3 . III	Monocer.		-	$4=18,50$	0418.50	2,977	+,013	
888 . II	51 Geminor.		$12=56,99$	$1=57,25$	$7 \quad 3$ 767,02 106644	3,447 $-0,475$	+,107	
901 . II	Piscis. Vol,	γ	$6=6,92$	$4=0,48$	10 (0,74	-0,475	-	
881 . III	Iyncis		$1=48,03$	$2=48,31$	$11.48,22$	+-5,013	+ , 003	
891.111	144 Geminor.		-	$: 3=20,90$	14 20,90	3,740	+,011	
910 . III	Navis		$1=0,63$	$3=0,49$	229.52	2,380	+ ,014	
925 . 111	1.53 Camelop.		$5=47,51$	$3=49,02$	28 48,08	10,586	+, , 198	
93.36 . III			-	$3=33,56$	32 33,56	10,237	+,019	
054 . III	Off. Typ.		-	$3=48,67$	40 48,67	2,815	+ ,015	
0666 . III			$1=51,54$	$3=51,53$	44 51,53	2,781	+,011	
974 . II	11 Argus.		$6=48,72$	$3=48,74$	4948,73	2,578	+, 003	
980 . III	Camelop.		$4=43,11$	$3=43,38$	5143,23	4,972	$+, 005$	
982 . II	A rgus.	χ	$8=36,26$	$2=36,20$	5236,26	1,530	-	
988 . II	55 Camelop.		$6=23,61$	$3=23,77$	56 23,67	6,107	-	
993 . III	Navis		$\mathrm{l}=11,31$	$2=11,51$	5711,41	2,659	+ , 015	
997 . II	Cancri			$6=19,62$	$8 \quad 219,62$	3,278	+,004	
1024 . II		ψ^{2}		$6=51,22$	1651,22	3,643	+,001	
1029 . Il	Argus		$6=59,24$	$2=59,25$	17 59,24	2,589	+, 026	
1038 . II	34 Cancri		$6=44,34$	$4=43,86$	23 44,15	3,271	+,014	
1041 . II	Monocer.		$5=8,94$	$2=9,07$	24 8,98	2,696	+ ,022	
1049 . II	Cancri		$5=25,79$	$2=25,83$	30 25,80	3,457	+,016	
1057 . III	102 Cancri		$4=56,91$	$1=56,76$	30 56,88	3,457	+ ,020	
1055 . II			$9=2,12$	$1=1,95$	31 2,10	3,456	+,003	

* See errata.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Reference, \& \multirow[t]{2}{*}{Names.} \& \multicolumn{3}{|r|}{Mean A. R. Jan. 1, 1836.-from} \& \multirow[t]{2}{*}{Concluded Mean A. R. Jan, 1, 1836.} \& \multicolumn{2}{|l|}{Annual} \& \multirow[t]{2}{*}{Remaris.}

\hline No. Vol. \& \& \& former obs. Pp \& present obs. \& \& Precesn. \& P. M. \&

\hline 1067 of III \& Navis d \& d \& $$
\begin{gathered}
\mathrm{s} . \\
1=32,08
\end{gathered}
$$ \& $$
\begin{gathered}
\mathrm{s} . \\
2=32,78
\end{gathered}
$$ \& $$
\begin{array}{lll}
\hline \text { h. } & \text { m. } & \text { s. } \\
8 & 38 &
\end{array}
$$ \& $$
\begin{gathered}
\mathrm{s} . \\
+2,139
\end{gathered}
$$ \& s. \& The Paramatta obs. differ 3 s. from this result.

\hline 1068 . III \& 133 Cancri \& \& $3=38,48$ \& $2=38,98$ \& 39 38,68 \& 3,307 \& +,020 \& (The Parmatta obscrvations wilh the Trausit, dif--

\hline 1105. II \& Argus. c \& 20 \& $20=30,25$ \& $4=29,69$ \& - 5830,16 \& 2,068 \& \& $\{$ fer 1,32 s from this result.

\hline 1109. III \& 209 Cancri \& \& $3=51,10$ \& $3=51,39$ \& $9 \quad 051,24$ \& 3,272 \& +,004 \&

\hline 1112 . II \& Pixid Naut. \& \& $6=50,94$ \& $2=51,38$ \& 051,05 \& 1,498 \& +,012 \&

\hline 1118 . III \& Hydre \& \& $5=51,03$ \& $1=51,02$ \& 651,03 \& 2,935 \& +,008 \&

\hline $1121 . \mathrm{III}$ \& Navis k^{1} \& k^{1} \& $8=25,11$ \& $2=25,20$ \& 825,13 \& 2,384 \& -,008 \&

\hline 1127 . II \& 24 Hydre \& \& $5=38,94$ \& $1=39,51$ \& 839,03 \& 2,940 \& -,009 \&

\hline 1132. II \& Leonis \& \& $5=37,50$ \& $4=37,62$ \& 1137,55 \& 3.523 \& \&

\hline 1148 . II \& Urse Maj. d \& d 1 \& $10=50,55$ \& $3=50,88$ \& 1950,63 \& 5,500 \& -,021 \& N. P. D. 190,20.

\hline 1155. II \& Ieonis \& h \& $6=9,79$ \& $3=9,87$ \& 23 9,82 \& 3,224 \& +,022 \&

\hline 1162 . III \& 88 Ursee Maj. \& \& $4=40,50$ \& $3=41,07$ \& 2740,74 \& 5,761 \& -,016 \&

\hline 1185 . III \& 66 Leonis. \& \& \& $3=30,97$ \& 3830,97 \& 3,370 \& +,022 \&

\hline 1191. II \& 9 Sextantis \& \& $6=32,30$ \& $2=32,57$ \& 4532,37 \& 3,143 \& +, 011 \&

\hline 1226. II \& Aut. Pneum. \& \& $6=37,14$ \& $3=37,33$ \& 101037,20 \& 2,739 \& +, 013 \&

\hline 1233 . II \& Leonis \& z \& - \& $1=25,38$ \& 1425,38 \& 3,145 \& +,002 \&

\hline 1256. III \& Leonis \& \& - \& $3=56,91$ \& 1656,91 \& 3,166 \& +,011 \&

\hline 1260 . III \& Sextantis \& \& \& $3=12,77$ \& 1912,77 \& 3,067 \& +,012 \&

\hline 1246. II \& $28-$ \& k \& $5=8,25$ \& $5=8,94$ \& 218860 \& 3,050 \& -,004 \&

\hline 1268 . III \& Urse Maj. \& \& $3=24,11$ \& $1=23,81$ \& 2324,04 \& 3,828 \& + ,009 \&

\hline 1270 . II \& 34 Sextantis \& \& $7=9,45$ \& $3=9,39$ \& 34 9,43 \& 3,106 \& +,033 \&

\hline 1275. II \& 36 - \& \& $4=42,77$ \& $3=42,54$ \& 3642,67 \& 3,096 \& +,015 \&

\hline 1276 . II \& Argus. \& \& $18=7,49$ \& $2=7,56$ \& 37

40
40 \& 2,117 \& $\overline{+, 032}$ \&

\hline ${ }^{734}$. IV \& Sextantis \& \& $5=4,67$ \& $2=4,97$
$3=28,71$ \& 42
46
46
48,761 \& 3,006
2,920 \& ,+ 032
,- 007 \& These observations were omitted in the Catalogue.

\hline 1311 . III \& Hydræ \& \& - \& $3=28,71$ \& 46 28,71 \& 2,920 \& -,007 \&

\hline 1294 . II \& Argus. \& u \& $11=51,61$ \& $4=51,48$ \& 46 51,58 \& 2,396 \& -- \&

\hline 1328 . III \& Leonis P \& p^{1} \& $3=13,16$ \& $2=13,20$ \& 5513,18 \& 3,073 \& +,009 \&

\hline 1329 . III \& 216 Urse Maj. \& \& $3=22,96$ \& $1=22,98$ \& 55 22,96 \& 3,369 \& +,014 \&

\hline 748 . IV \& Leonis \& \& $1=4,71$ \& $4=4,70$ \& 58 4,70 \& 3,118 \& +, ,008 \& These observations were omitted in the Catalogue

\hline 1341. III \& Ursee Maj. \& \& $3=10,40$ \& $2=10,55$ \& 11010,46 \& 3,558 \& +,006 \&

\hline 1344 . III \& 223 Uisæ Maj. \& \& $3=57,36$ \& $1-57,64$ \& 157,43 \& 3,447 \& + 010 \&

\hline 1350 . III \& \& \& $1=4,84$ \& $3=4,90$ \& ${ }_{5}^{5} \quad 4,89$ \& 3,500 \& + ,010 \&

\hline 1353 . III \& 322 Leonis \& \& $2=22,26$ \& $1=22,20$ \& 722,24 \& 3,141 \& + \&

\hline 1368 . III \& Нуdæ X \& X ${ }^{1}$ \& $1=17,51$ \& $2=17,27$ \& 1517,35 \& 2,886 \& +,011 \&

\hline 1370. III \& 370 Leonis \& \& $3=43,89$ \& $4=43,67$ \& 16 43,76 \& 3,097 \& +,006 \&

\hline 1376 . III \& Hyd. \& Crat. \& \& $1=15,20$ \& | $2=14,88$ \& $19.14,99$ \& 3,020 \& +,016 \&

\hline 1353. II \& \& \& $7=36,20$ \& 2=36,14 \& 23 36,18 \& 3,047 \& +,003 \&

\hline 1354 . II \& 17 Crateris \& \& $6=9,45$ \& 2 $=9,25$ \& $24 \quad 9,40$ \& 2,955 \& -, 014 \&

\hline 1355. II \& \& \& $5=27,97$ \& 3=27,76 \& 24 27,89 \& 3,043 \& +,016 \&

\hline 1411 . III \& Hydræ \& 0 \& $1=4,55$ \& 3 $3=4,86$ \& 32 4,78 \& 2,960 \& -,006 \&

\hline 1416. III \& I \& V \& $3=33,75$ \& $51=33,75$ \& 3333,75 \& 2,974 \& +,013 \&

\hline 1427 . III \& Leonis \& \& $1=31,72$ \& 3 $=32,14$ \& 4032,03 \& 3,099 \& -, 004 \&

\hline 1388 . III \& Virginis \& \& $6=38,31$ \& $14=38,25$ \& - 5238,29 \& 3,067 \& +,007 \&

\hline 1454 . III \& Coryi \& \& $1=36,91$ \& $13=36,61$ \& 1115436,69 \& 3,056 \& +,007 \&

\hline 1400 . II \& I 3- \& \& $5=38,34$ \& $4 \quad 4=38,12$ \& $12 \quad 238,25$ \& 3,074 \& +,014 \&

\hline 1406 . II \& Crucis \& \& \% $13=29,50$ \& $0 \quad 4=28,90$ \& - 629,37 \& 3,125 \& - \& Difters $2 \mathrm{~s} .+$ from $\mathrm{A}, \mathrm{S} .1 \mathrm{C}$.

\hline 1493 . III \& Virginis \& g \& $3=45,06$ \& $6 \quad 2=45,60$ \& - 95 4,28 \& 3,071 \& +,006 \&

\hline 1496 . III \& 18 Canum Ven. \& \& $\underline{14}=\overline{16,05}$ \& 5 | $1=14,56$ |
| :--- |
| $4=16,19$ | \& \& 3,028

3,068 \& $1 \begin{aligned} & +, 006 \\ & +011\end{aligned}$ \&

\hline 1412. II \& 45 Comæ Ber. \& \& $1=16,52$ \& 2 ${ }^{\text {a }}$ 3=16,26 \& (11 16,33 \& 3,031 \& + +000 \&

\hline
\end{tabular}

Reference.	Names.	Mean A. R. Jan. 1, 1836.-from		Concluded Mean A. R. Jan. 1, 1836	Annual		Remarks.
No. Vol.		former obs.	present obs.		Precesn.	P. M.	
1501 of III	19 Draconis.	s.	S. ${ }_{\text {S }}$	h. m. s.	s		
1503 . III	26 Corvi.	42,0	$3=25,96$	12 1125,00	5		
1516. III	Comæ Ber.	-	$3=42,16$	$15.42,00$	3,021	-,007	
1445. II	20 Virginis.	$5=44,86$	$4=44,87$	24 44,86	3,040	+,006	
1540 . III	Corvi.	$2=29,34$	$3=29,27$	2529,30	3,130	+ ,028	
1544 . III	Comæ Ber.	$1=35,20$	$3=35,78$	26 35,64	2,995	+ ,007	
1460. II	26 Virginis. $\quad \chi$	$6=47,53$	$4=47,35$	3047,46	3,090	+,,011	
1562 - III	311 Virginis. χ	$1=10,19$	$3=10,23$	3810,22	3,028	,+ 013 ,+ 013	
1577 - III	Comæ Ber.	$3=5,97$	$1=6,27$	43 6,04	2,977	+,011	
828 . IV	- pre,	$2=47,65$	$3=47,82$	43 47,71	2,975	+,038	These were omitted in the Catalogue.
1578 . III	-	$3=47,69$	$1=48,12$	$4.34 .7,79$	2,975	+ ,017	
1598 . III	Centauri.	$3=4,52$	$3=4,24$	$52 \quad 4,38$	3,262	-,004	
1604 - III		$1=45,19$	$4=44,90$	$54.44,96$	3,277	+ , 010	
1503. . II	14 Canum Ven. f	,	$3=3,98$	$58 \quad 3,98$	2,820	+,011	
1615 . III	456 Virginis.	$l=16,08$	$3=16,14$	$13 \quad 216,12$	3,126	-,003	
1619 . III	Centauri. m	$]=56,37$	$3=56,03$	250,12	3,341	-. 018	
1639 . III	205 Comæ Ber.	$3=15,86$	$1=15,77$	1215,84	2,928	+	
1649 . III	Ursæ Maj.	$3=18,96$	$2=18,83$	1818,93	2,410	+,013	
1659 . III	Vinin y	$3=25,40$	$\mathrm{l}=25,28$	22 25,37	2,227	+,002	
1660 . III	Virginis.	*3 $=22,83$	$2=22,90$	23 22,80	3,080	-,043	
1608. III	7 Bootis.	-	$3=57,60$	$20.67,60$	2,951	+,009	
1694.1515	86 Virginis.	$1=11,23$	$3=11,17$	37 11,19	3,169	$\underline{-, 004}$	
1565 - II	86 - 0	$0=12,68$	$1=12,04$	3712,72	3,180	+,010	
1568 - II	3 Bootis.	-	$3=6,29$	$\begin{array}{lr}39 & 0,29\end{array}$	2,789	+ ,005	
1570 . II	Ceutauri. \quad y	-	$2=42,19$	39 42,19	3,553	+,005	
1728 - III	Bootis.	$3=45,13$	$2=45,05$	50 45,10	2,807	+ ,004	
1594. II	Virgiuis.	$5=26,72$	$1=26,48$	5126,18	3,14.8	+,012	
1608 . II 17	96 - $\quad y$	$7=16,99$	$2=16,86$	14016,95	3,180	+,010	
17559 . III		$2=37,15$	$3=37,30$	137,24	2,930	+ +010	
1759 , III	642-	$3=17,73$	$3=17,39$	317751	3,131	$+, 013$	
936 - IV	Bootis.	$3=40,28$ $3=36,19$	$3=40,33$ $1=30,32$	$4.40,30$ \square	2,901	+007	Thesc observations were omitted in the Catalogue.
1627 . III	18-~ $\quad \begin{gathered}k \\ t\end{gathered}$	$3=36,1.9$	$1=36,32$	736,22	2,140	+,028	
1630 . II	dre.		$4=20,16$	1120,16	2,891	+,019	
1633 . II	Sulitarii.	-.	$1=28,47$	13 15 28,47	3,442 3,300	,- 002 ,+ 009	
1795 . III	Bootis.	-	$2=34,29$	1834.29	2,792	+ ,009	
1801 . III	Hydrec. Virginis.	$4=210$	$2=0,18$	210,18	3,489	-,018	
	Virginis.	$4=2,10$ $3=36,06$	$1=1,84$ $2=35,80$	$\begin{array}{ll}25 & 2,05 \\ 28 & 3,06\end{array}$	3,153	+,009	This observation was omitted in the Catalogue.
1822. III	Libro.	$3=36,06$ $2=28,51$	$2=35,80$	$28 \quad 35,96$	3,113	-,001	
960 - IV	Librw.	$2=28,51$	$2=28,46$	33 28,48	3,236	-,004	These observations were omitted in the Catalogue.
1671 - II	11 Hydræ.	-	$4=51,50$	3751,50	3,462	+,014	
1673 . II	Libs. 13 Hydre.	--	$4=55.37$	3755,37	3,387	+,011	
1854 . III	13 Hydrec.	$2=25$	$4=23,19$	38 23,19	3,481	+,008	
1690 . II	Libre.	$2=25,49$ $5=54,30$	$1=25,61$	45 25,53	3,064	+ ,007	
			$5=54,55$	47 54,42	3,404	+,079	Differs 3s. from A. S. C. See Piazzi's Note, -
	1 Serpentis.	-	$4=9,15$	49 9,15	3,060	$+, 011$	
1698 . II	Bootis. Libre.	$6=25,37$	$3=32,96$ $2=25$	4932,96	2,792	+,006	
1707. II	41 Librer. ${ }^{\text {Bootis. }} \quad \omega$	$6=25,37$	$2=25,37$ $4=55,54$	53 54 545,37	3,179	+	
1709 . II	Libre.	-	$4=50,57$ $3=42,12$	5455,57	2,642	+,016	
	Jibu.	-	$3=42,12$	56 42,12	3,456	+,017	

[^11]| Reference.
 No. Vol. | Names. | | Mean A. R. Jan. 1, 1836.-from | | Concluded Mean A. R. Jan. 1, 1836. | Annual | | Remaris. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | former obs. | present obs. | | Precesn. | P. M. | |
| | | | | | | $\begin{gathered} \mathrm{s} . \\ -0,537 \end{gathered}$ | | |
| $\begin{aligned} & 1879 \text { of III } \\ & 1885 . \mathrm{III} \end{aligned}$ | 33 Ursæ Min. | | $2=4,36$ | $\begin{aligned} & 2=12,87 \\ & 3=5,13 \end{aligned}$ | $\left.\begin{array}{rrr} 14 & 56 & 12,87 \\ 58 & 4,82 \end{array} \right\rvert\,$ | $\left\lvert\, \begin{aligned} & -0,537 \\ & -0,567 \end{aligned}\right.$ | $\begin{array}{r} +0,019 \\ +, 012 \end{array}$ | |
| $1718 \text {. II }$ | $\overline{\text { Lupi }}$ | κ^{1} | $2=4,36$ | $3=5,13$ $5=34,63$ | $\begin{array}{crr} & 58 & 4,82 \\ 15 & 0 & 34,63\end{array}$ | -0,561 | $\underline{+, 012}$ | ${ }_{\pi^{2}}^{\mathrm{N}}$ follows at $0 \mathrm{~m} .36,16 \mathrm{~s}$. |
| 1719 . II | 46 Buotis | b | - | $3=19,10$ | 119,10 | 2,585 | +,009 | |
| 1720 . II | | | - | $3=26,84$ | 126,84 | 2,610 | + ,004 | |
| 1898 . III | 97 Libre | | $3=12,84$ | $3=12,81$ | 512,82 | 3,378 | -, 001 | |
| 1727 . II | 3 Serpentis | | | $4=2,57$ | 7 2,57 | 2,973 | +,004 | |
| 1736 . 11 | $5-$ | | - | $4=56,95$ | 1056,95 | 3,026 | +,032 | |
| 1737 . II | Bootis | | - | $4=3,45$ | 11 3,45 | 2,685 | +,003 | |
| 1743 . II | 6 Serpentis | | - | $4=41,54$ | 12 41,54 | 3,045 | +,024 | |
| 1906. . III | Cor. Bor. | 0 | $3=21,68$ | $1=21,65$ | 13 21,67 | 2,487 | +,003 | |
| 1744 . II | 30 Libre | $0{ }^{2}$ | | $2=53,90$ | 1353,90 | 3,327 | +,008 | |
| 1001 . IV | Cor. Bor. | | $2=32,82$ | $1=32,58$ | 13 32,74 | 2,484 | + ,001 | This observation was omitted in the Catalogue, |
| 1752 . II | Libre | | - | $3=55,67$ | 20 55,67 | 3,375 | - | |
| 1757 . II | Triang. Aust. | ε | - | $4=49,09$ | 2149,09 | 5,349 | - | |
| 1763 . II | 37 Libree | f^{1} | $7=13,30$ | $\mathrm{I}=13,48$ | 2513,32 | 3,242 | +,023 | |
| 1768. H | $39 \longrightarrow$ | | - | $3=5,22$ | 275 5,22 | 3,615 | +,006 | |
| 1769 . II | Scorpii | | - | $2=39,18$ | 27 39,18 | 3,574 | +,010 | |
| 1771. II | 15 Serpentis | | - | $2=6,90$ | 28 6,90 | 2,721 | +,003 | |
| 1772 . II | 14 - | A^{1} | - | $2=9.37$ | 28 9,37 | 3,068 | +,006 | |
| 1773 . 11 | Lihre | | - | $2=18,69$ | 2818,69 | 3,619 | +,008 | |
| 1776 . II | 18 Serpentis | t^{2} | - - | $2=56,04$ | 2856,04 | 2,752 | +,009 | |
| 1778 . II | 41 Libre | 中 | - | $3=29,14$ | 29 29,14 | 3,427 | +,021 | |
| 1779 . II | Lupi | g | - | $l=54,55$ | 2954.55 | 4,093 | +,071 | |
| 1790 . Il | 8 Cor. Bor. | γ | - | $4=51,45$ | 3551,45 | 2,522 | +,010 | |
| 1792 . II | 15 Ursæ Min. | θ | - | $4=26,03$ | 3626,03 | -1,977 | -,034 | |
| 1804. II | 36 Serpentis | b | - | $4=43,57$ | 4243,51 | +3,118 | +,003 | |
| 1805 . II | 10 Cor. Bur. | - | - | $4=43,11$ | 42 43,11 | 2,516 | +,002 | |
| 1808 . Il | Scorpii | $f 1$ | | $4=8,10$ | 4488 | 3.561 | + ,033 | |
| 1965 . III | Lupi | , | $3=25,60$ | $2=25,51$ | 46 25,56 | 3,806 | +,006 | |
| 1032 . JV | | ξ^{2} | - | $2=26,17$ | 46 26,17 | 3,807 | + ,020 | These were omitted in the Catalogue. |
| 1966 . III | 100 Serpentis | | $3=45,22$ | $4=45,14$ | 4645,17 | 2,890 | +,012 | |
| 1817 . II | Serpentis | | - | $4=21,13$ | 47 21,13 | 2,643 | -,002 | |
| 1821. II | Lupi | η | - | $4=16,60$ | 49 16,60 | 3,943 | +,001 | \{ On the 11 th June 1837 a star was observed at the
 \{ Transit, following at $0,42 \mathrm{~s}$ |
| 1824 . II | 16 Ursm Min. | | - | $4=4,50$ | $50 \quad 4,50$ | $-2,371$ | +,023 | (Transit, ,ollowing at 0,4:2s |
| 1835 . Il | Lupi | θ | - | $4=5077$ | 55 50,77 | +3,909 | +,011 | |
| 1987. III | | | $3=30,36$ | $4=30,52$ | 5630,45 | 3,911 | +,012 | |
| 1988 . III | | | - | $2=4.9,15$ | 56 49,15 | 3,911 | + ,008 | |
| 1839 . II | 6 Herculis | v | - | $4=41,55$ | 57 41,55 | 1,856 | +,019 | |
| 1838 . II | 10 Scorpii | ω^{2} | - | $3=48,01$ | 57 48,01 | 3,4¢6 | +,013 | |
| 1992 . III | Serpentis | | - | $1=2,75$ | 58 2,75 | 2,857 | +,003 | |
| 1847 . II | 7 Herculis | κ^{1} | - | $2=40,51$ | $16 \quad 040,51$ | 2,703 | +,002 | |
| 1848 . II | Scorpii | | - | $2=51,89$ | 0 51,89 | 3,709 | -,001 | |
| 1850 . II | 13 - | c^{2} | - | $2=13,01$ | 213,01 | 3,673 | +,000 | |
| 1853 . II | 16 - | | - | $3=14,68$ | 3 14,68 | 3,234 | +,012 | |
| 1855 . II | 48 Serpentis | | - | $3=3,38$ | 4 3,38 | 2,708 | +, 005 | |
| 1856 . II | 10 Herculis | T | | $4=39,14$ | 4 39,14 | 2,549 | +,004 | |
| 2014.7 III | $37-$ | | $3=12,79$ | $1=13,17$ | 8 12,88 | 2,656 | +,010 | |
| 1866 . II | Scorpii | h | - | $4=11,43$ | 911,43 | 3,764 | +,016 | |
| 2018 . III | 101 | | $1=29,02$ | $3=29,47$ | 1029,36 | 3,492 | + ,020 | |

of the A. R. of the Fixed Stars.

Reference.	Names.		Mean A. R. Jan. 1, 1836.-from		Concluded Mean A. R. Jan. 1, 1836.	Annual		Remaris.
No. Vol.			former obs.	present obs.		Precesn.	P. M.	
1058 of IV	Scorpii	prec.	$\begin{aligned} & \mathrm{s} . \\ & \mathrm{l}=55,11 \end{aligned}$	$\frac{\mathrm{s} .}{\mathrm{l}=55,16}$	$\begin{array}{ll} \text { h. m. s. } \\ 1610 & 55,14 \end{array}$	$\begin{gathered} \mathrm{s} . \\ +3,494 \end{gathered}$	s. $+\quad, 001$	Omitted in the Catalogue,
1059. IV	Stir	seq.	$\mathrm{l}=55,69$	$1=55,49$	1055,59	3,494	-,006	
1877. II	5 Ophiuchi	g	$3=45,65$	$2=46,00$	1545,79	3,578	+,004	
1881. II	21. Cor. Bor.	ν^{2}	-	$4=18,75$	16 18,75	2,255	+ ,017	
1072 . IV	Scorpii		$4=2,53$	$3=2,34$	$20 \quad 2,45$	3,627	+ ,012	
1888 . II	22 Scorpii	i	-	$4=15,41$	2015,41	3,626	+,010	
2076 . III	Urse Min.		-	$4=1,41$	351,41	$-3,528$	-,021	
2078 . III	Draconis		-	$4=1,18$	36 1,18	+0,771	+,007	
2080 . III	-		-	$4=22,05$	37 22,05	1,179	+,027	
1086 . IV	Scorpii		-	$1=25,35$	3925,35	4,183	-,010	This observation was omitted in the Catalogue.
1921. II	Scorpii	μ^{2}	-	$3=14,78$	4114,78	4,040	+,005	
2094 . III	151		$3=32,42$	$2=32,68$	4232,52	4,185	-,001	
2097. III	150 Scorpii	var.	-	$2=42,10$	42 42,10	4,187	+,026	
2101. III	Draconis		-	$4=30,11$	43 30,11	1,217	+,035	
1930 . II	51 ITerculis	X^{2}	-	$2=57,48$	$44.57,48$	2,480	+,005	
1029. II	Aræ	ζ		$2=5,16$	$45 \quad 5,16$	4,922	\square	
1933. II		ε	-	$2=32,73$	46 32,73	4,743	--	
1938. II	54 Herculis		-	$2=9,84$	$48 \quad 9,84$	2,638	-, 003	
1939. II	Ophiuchi		-	$4=55,99$	4955,99	3,657	+,013	
2113 . 11 I	$90-$		-	$3=59,30$	$4.959,30$	3,429	+ ,012	
1942. II	Ophiuchi		$5=12,08$	$1=12,07$	5012,08	3,481	+,016	
2119. III	Trerculis			$6=32,23$	52 32,23	2,818	+,010	
2123 . III	103 Ophiuchi		- 8	$4=38,89$	5438,80	3,677	+ ,002	
1950 . 11	19. Draconis	h	$3=8,07$	$2=8,37$	$55 \quad 8,27$	0,266	+,048	N, P, D. $=24^{\circ}, 36^{\prime}$.
2125 . III	$122-$		$1=36,84$	$2=37,39$	55 37,21	0,279	+,004	N. P. D. $=24^{\circ}, 43^{\prime}$
1953. II	32 Ophiuchi		-	$4=37,36$	55 37,30	2,740	+ ,013	
19956. II	-		-	$4=5,62$	$57 \quad 5,62$	3,083	+ ,011	
1958 . II	\square		$4=43,90$	$2=44,12$	58 4.4,03	3,471	+,007	
2135. 111	Inerrulis		-	$3=28,93$	17 () 28,93	1,581	+, 020	
1965 . II	20 Scorpii		-	$3=2,39$	42,39	3,722	+,010	
2150. III	Dracouis		-	$3=38.77$	438,77	1,146	-, 002	
2154. 115	129 -		-	$2=13,31$	613,31	0,688	+,012	
2155. III	Iterculis		$3=20,03$	$2=20,35$	(6) 20,16	2,725	+ ,007	
	39 Ophinchi	0	-	$2=1,15$	$8 \quad 1,15$	3,650	+ ,001	
1974. II			-	$2=6,76$	$8 \quad 6,76$	3,644	+, 020	
1977. II	22 Draconis	ζ	-	$2=10.52$	819,52	0,153	+,004	
1979. 11	Ophiuchi		-	$2=21019$	1021.09	3,481	+,009	
1983 1984. II 1	Are:	${ }^{\gamma}$	--	$2=3136.94$ $2=4129$	1136,94 11	5,019 4,058	-	Differs ${ }^{\prime \prime}$,60 from A, S, C.
1984 • II	Oplituchi	β	$3=53,77$	$2=41,29$ $2=53,70$	$\begin{array}{ll}11 & 41,29 \\ 1653,75\end{array}$	4,958 3,480	$+\overline{, 005}$	
2004. II	Ophiurhi		$2=28,06$	$3=27,96$	2028,00	3,057	+ ,003	
2014. 11	541		-	$2=49,30$	26 40, 30	2,756	+ ,022	
2195. III	Herculis		\square	$3=52,21$	28 62,21	1,521	+,009	
2022. II	24. Draronis	$\nu^{\prime \prime}$	-	$2=57,27$	28 57,27	1,150	+-,029	
2023 . II	$25-$	γ^{2}	-	$2=2,42$	$29 \quad 2,12$	1,157	+,028	
2030 . II	27 Duaconis	f	$1=317,86$	$2=38,00$	32 37,95	-0,290	+,003	
2213 . 1111	323 TIerculs		-	$3=59,30$	$34.59,30$	+2,458	+,008	
1185. IV	83 -		$2=45,14$	$2=45,09$	3545,11	+2,458	+,001	
2217. 111	144 Draconis		-	$1=13,76$	3718,76	-1,668	-,022	
2220 . III	Opliuchi		$2=54,13$	$3=54,57$	3754,40	+2,929	+,003	

Reference. No. Vol.	Names.	Mean A. R. Jan. 1, 1836.-from			Concluded Mean A. R. Jan. 1, 1836.	Annual		Remaris.
			former obs. pre	resent obs. Ja		Precesn. P	P. M.	
2041 of II 28	28 Draconis	${ }_{*}$	$\begin{gathered} \mathrm{s} . \\ 3=54,65 \end{gathered}$	$\begin{gathered} \mathrm{s} . \\ 2=55,19 \end{gathered}$	$\begin{gathered} \text { h. m. } \mathrm{ss}_{1} \\ 173754,87 \end{gathered}$	$\begin{gathered} \text { s. } \\ -0,367 \end{gathered}$	$\begin{gathered} s . \\ +, 005 \end{gathered}$	
2221 . III	Ophiuchi		* $4=55,07$	$4=55,23$	3755,15	+2,934 +	+,006	
2222 . III			仡	$2=39,44$	3839,44	2,932 +	$\pm, 015$	
1194. IV	-		$2=0,46$	$\mathrm{I}=0,18$	39 0,37	2,934	+,009	This observation was omitted in the Catalogue.
2047 . II	Sagitarii		-	$1=39,86$	40 39,86	3,852 +	+,014	
2232 . III	Telescopii		-	$2=57,63$	4157,63	3,969	+,018	
2233 . III	Ophiuchi		-	$l=7,13$	$42 \quad 7,13$	3,539	+,010	
2234 . III	Telescopii		.	$1=27,08$	42 27,08	3,996	+,004	
2236 . III		1)	$1=58,90$	$1=59,14$	4259,02	3,992	+,002	
2246 . III 3	356 Herculis		-	$3=46,06$	4546,06	1,563	+,020	
2251 . III	Herculis		-	$2=44,75$	46 44,75	1,948	+,010	
2062. II	6 Sagittanii		--	$2=51,71$	5151,71	3,480	-,005	
2063 . II			$1=58,34$	$5=58,45$	$51.58,43$	3,628	+,004	
2064 . II	66 Ophiuchi	n	-	$1=8,54$	52 8,54	2,970	+,001	
2065 . II	94 Herculis	ν	-	$2=13,92$	52 13,92	2,291	+,018	
2261. III	19 Sagittarii		-	$1=35,27$	$52.35,27$	3,632	, 000	
2067. II	7 -	a	$4=48,53$	$1=48,13$	52 48,45	3,670	+, 007	Differs 1,5s. from A. S. C.
2069 . II	Sagittarii		-	$1=50,52$	52 50,52	3,573	+ ,002	
2070 . II	Tauri Pon		-	$1=53,21$	52 53,21	2,921	+,019	
2073 . II	Are	θ	-	$1=52,35$	53 52,35	4,665	-	
2264. III	Sagittarii			$1=59,71$	53 59,71	3,630	+,002	
2266 . III	Telescopii	B	$3=58,67$	$1=58,55$	$54.58,64$	4,333	-,011	
2268. III	Draconis		-	$2=54,77$	55 54,77	-2,743	+,017	
2084. II	Saritarii		-	$5=47,15$	5647,15	$-2,710$ $+3,593$	-,018	
2083 . II	Sagittarii		-	$3=21,71$	57 21,71	+3,593	+ ,012	
2281 . III	Sagittarii		-	$1=22,24$	$18 \quad 022,24$	3,721	- , 006	
1246. IV	--		$3=29,20$	$2=29,15$	729,18	4,085	-, 003	These observations were omitted in the Catalogue.
2298 . III	Clyp. Sob.		$\mathrm{I}=20,80$	$2=20,96$	12 20,91	3,460	+ , 008	
2109. II	58 Serpentis	η	-	$3=49,70$	1249,70	3,092	-, 008	
2110 . II	20 Sagittarii	ε	$\varepsilon \quad 7=17,15$	$1=17,21$	1317,16	3,983	-,001	
2119. II	Pavonis	ν	ν -	$2=3,37$	$\begin{array}{lll}16 & 3,37\end{array}$	-5,615	-	
2306 . III	167 Draconis		$3=13,70$	$2=14,10$	1613,86	-0,350	+,005	
2311. III	Sagittarii		$2-$	$4=15,87$	$19 \quad 15,87$	+3,938	+ ,009	
2125.11	Clyp. Sob.		, $6=50,94$	$3=51,17$	1951,02	3,416	-	
2126 . II	Sagittarii	v^{1}	$v^{1} \quad 2=19,50$	$1=19,57$	2019,52	3,935	+,001	
2127. II	Clyp. Sob.		-	$3=25,89$	20 25,89	- 3,417	-	
2135. II	Sagittarii	v^{2}	$v^{2} \quad-$	$\mathrm{l}=12,05$	$5 \quad 2312,05$	- 3,936	-, 001	
2136. II	II -		-	$5=13,04$	$4 \quad 2313,04$	4 3,666	+ , 209	
1267. IV	-		$2=19,86$	6 $1=20,00$	- 2319,91	3,933	+ , 004	This observation was omitted in the Catalogue.
2137 . II	Clyp. Sob.		$s^{1}+$	$3=21,57$	- 2321,57	7 3,424	+ , 004	
2140 . II	1 Sagittarii		-	$2=33,79$	- 23 33,79	9 3,512	+,007	\{ Differs - 2,65s. from A. S. C.
2138 . II	1 Pavonis		$4 \quad-\frac{1}{}$	2 $2=4,9,46$	(1) 23 49,46	6 7,054	monermum	$\left\{\begin{array}{l} \mathrm{O}+2,19 \mathrm{~s} . \\ \hline \end{array}\right.$
2141. II	$24 \begin{aligned} & \text { Sagittarii } \\ & \text { Clyp Sob }\end{aligned}$		$s^{2} \quad 1=52,54$	4 $\begin{aligned} & 1=52,47 \\ & 3=16,96\end{aligned}$	23 52,50 241696	0 3,666	$\underline{+} 000$	(- 2,10s. Paramata Obs.
$2142 . ~ I I ~$ 2324. III	II $\begin{aligned} & \text { Clyp. Sob. } \\ & \text { Sagitarii }\end{aligned}$		$s^{2} \quad \overline{1=41,61}$	$1 \begin{aligned} & 3=16,96 \\ & 1=41,35\end{aligned}$	56	6 3,423 8 3,931	$\underline{+}$	
			1-1, 1					(The observation in 1835 is incomplete, and mark-
2328 . III	I lyræ		$\mathrm{I}=21,66$	6 1 $1=22,40$	0 2722,15	5 2,005	+,009	\{ ed "faint."-I have given it half the credit of
2151. II	I Clyp. Sob.		-	2 $2=20,28$	8 - 2820,28	8 3,483	+,006	(the other.
2152 . II	I Sagittarii		-	2=32,62	28832,62	2 3,649	+,015	
2153, II	I Herculis		-	$2=40,20$	$0 \quad 2840,20$	0 2,492	-, 008	
2154 . II	I Sagittarii		-	$3=6,74$	$4 \quad 29 \quad 6,74$	4 3,582	1+,002	

* See errata,

Reference.	Names.		$\begin{gathered} \text { Mean A. R. Jan. } 1, \\ \text { 1836. from } \end{gathered}$		Concluded Mean A. R. Jan. I, 1836.	Annual		Remaris.
No. Vol.			former obs.	present obs.		Precesn.	P. M.	
2332 of III	37 Lyree		$\left\lvert\, \begin{gathered} s \\ * 2=51,63 \end{gathered}\right.$	$\begin{gathered} \mathrm{s} . \\ 2=52,52 \end{gathered}$	h. m. s. 182952,07	$\left\lvert\, \begin{gathered} \mathrm{s} \\ +2,004 \end{gathered}\right.$	s. $+\quad 002$	
2340 . III	14 Cor. Aust.		$3=33,46$	$1=33,38$	1832 33,44	4,172	-,021	
1281. IV	-		$\mathrm{l}=35,51$	$1=35,82$	32 35,66	4,172	-, 019	This observation was omitted in the Catalogue.
2347 . III	Lyre			$3=35,81$	3635,81	2,095	+,005	
2183 . II	Sagittarii		$2=5,08$	$2=5,07$	$46 \quad 5,04$	3,634	+,013	
2366 . III	Sagittarii		-	$1=38,75$	46 38,75	3,632	+,015	
2193. II	64 Serpentis		$1=2.12$	$2=1.83$	49 1,92	3,015	+,011	
2389 . III	114Lyr ๕		$3=48,19$	$3=47.85$	5648,02	1,693	+,014	
1350. IV	Aquilæ		$3=58,76$	$2=58,71$	$19 \quad 658,74$	2,864	$\left\lvert\, \begin{array}{r} 0,026 \\ +, 00 \end{array}\right.$	These were omitted in the Catalogue.
1354. IV			$2=16,54$	$1=16,66$	816,58	2,864	$\|+, 009\|$	Do. Do. Do.
2236 . II	Sagittarii		-	$\mathrm{l}=3892$	938,92	3,430	-, 004	
2244 . II		β^{2}	-.	$1=21,36$	11 21,36	4,346	-,012	
2246 . II			-	$1=0,08$	12 0,08	3,519	-, ,003	
2247 . II	28 Aquilæ	A	-	$1=0,23$	$12 \quad 0,22$	2,796	-,001	
2249 . II	$27-$	d	-	$l=8,08$	1288,01	3,095	+,009	
2264 . II	Sagittarii		$\mathrm{l}=6,07$	$2=6,03$	17 6,04	3,403	+,008	
2269 . II	4 Vulpecule		I-6,0	$2=17,05$	18 17,05	2,623	+,014	
2271.11	3 Cygni		-	$2=38,66$	18 38,66	2,491	-,009	
2272 . II	60 Draconis		-	$2=39,4 \mathrm{l}$	18 39,41	$-1,057$	+,036	N. P. D. $16^{\circ}, 54^{\prime}$.
1387. IV	Anseris		$2=18,18$	$\mathrm{l}=18,47$	1918,28	+2,621	+, 005	This obserrvation was omitted in the Catalogue.
2427 . III	19 Cygni		$3=5,81$	$3=5,82$	$\begin{array}{ll}20 & 5,81\end{array}$	1,571	+	
2276 • II	Sagittarii		$5=9,76$	$2=9,72$	$21.9,75$	3,566	+,005	
2446 - III	39 Cygni		$3=45,26$	$2=45,29$	2745,27	1,272	+,007	
2447 • III	Sagittarii			$2=50,20$	2750,20	3,298	+, 007	
1430 . IV	Sagitto		$3=5,55$	$1=5,35$	34 5,50	2,674	+,009	
1436 . IV	Sagittro		$2=18,86$	$1=18,75$	3518,83	2,670	+,016	$\}$ These observations were omitted in the Catalogue.
1437. IV			$4=28,18$	$2=28,23$	35 28,20	2.680	+,004	
2464 . 111	73 Cygni		$2=27,59$	$2=27,27$	37 27,43	1,610	-,001	
2465 - IIII	Aquilæ	v	$2=41,29$	$1=41,43$	37 41,33	2,914	+,017	
2468 . III	Cygni		$3=38,64$	$2=38,60$	39 38,63	2,197	$+, 005$	
2478. III	Aquilæ		$3=23,05$	$1=22,76$	44 22,98	2,830	-, 014	
2481. 111	25 Sagitte		$3=3,02$	$1=2,95$	$45 \quad 3,00$	2,673	+,002	
2482 . III	187 Aquilæ		$3=44,52$	$2=44,85$	4544,65	3,250	-,017	
1475. IV			$3=5,91$	$2=5,80$	$54.5,87$	2,835	+,004	These observations were omitted in the Catalogue.
2505 . III	18 Cephei			$2=38,96$	55 38,96	1,242	+,022	
2363 . II	63 Aquile		5-4434	$3=7,66$ $2=44$	$\begin{array}{rr}56 & 7,66 \\ 56 & 44,28\end{array}$	2.929	$\left\|\begin{array}{\|c} +, 009 \\ -.002 \end{array}\right\|$	
2365. II	15 Sayitle	${ }^{z}$	$5=44,34$	$2=44,13$ $2=43,32$		2,686 0,657	+,002	
2370. II	17 Vulpeculæ	,	$5=50,36$	$1=50,56$	5950,39	2,573	-,008	
2524. III	Antinous		$2=$	$1=52,27$	$20 \quad 2 \quad 52,27$	3,080	+,015	The result in Vol. II. belongs to Piazzi No. 12.

[^12]| Reference. | Names. | | $\begin{gathered} \text { Mean A. R. Jan. 1, } \\ \text { 1836.-from } \end{gathered}$ | | Concluded Mean A, R. Jan. 1, 1836. | Annual | | Remaris. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. Vol. | | | former obs. | present obs. | | Precesn. | P. M. | |
| 2379 of II | 19 Vulpeculx | | 3 ¢ ${ }_{5}^{\text {8 }}$ | s. $2=56,87$ | $\left\lvert\, \begin{array}{lcc} h_{.} & m_{.} & \mathrm{s} . \\ 20 & 4 & 57,12 \end{array}\right.$ | $\begin{gathered} \mathrm{s} . \\ +2,503 \end{gathered}$ | s. ,+ 027 | These bave been omitted in the Cataloguc |
| 2534, III | Cygni | b^{3} | $1=23,68$ | $\mathrm{l}=23,68$ | - 823,68 | 2,236 | +,015 | |
| 1530. IV | | | $1=31,77$ | $3=31,69$ | 831,71 | 2,239 | +,003 | These were omitted in the Catalogue. |
| 2390. II | 18 Sagittæ | | $5=7,56$ | $2=7,49$ | $3 \quad 7,54$ | 2,632 | +,013 | |
| 1540. IV | Antinoi | | $3=23,88$ | $2=23,97$ | 12 23,91 | 3,202 | +,011 | |
| 1542. IV | Capricorni | | $2=5,80$ | $1=6,02$ | 13 5,87 | 3,395 | + ,015 | |
| 2546 . III | Cephei | | -5,80 | $2=31,76$ | 13 31,76 | -1,905 | +,097 | N. P. D. $122^{\circ}, 40^{\prime} \therefore$ P. M. $=0^{\prime \prime}, 30$ of arc. |
| 2567. III | Cygni | | - | $5=50,70$ | 23 50,70 | +1,836 | +,007 | |
| 2575. III | Ursa Min. | λ | | $1=54,00$ | 2454,00 | --49,116 | + .094 | N. P. D. $1^{0}, 11^{\prime} \therefore$ P. M. $=00103$ of arc. |
| 2420. II | 46 Cygni | ω^{3} | $\mathrm{I}=15,52$ | $2=15,26$ | 26 15,35 | +1,848 | + | |
| 1598. IV | Aquarii | | $2=21,34$ | $1=21,47$ | 26 21,38 | 3,248 | -,004 | This obscrvation was onitted in the Catalogue. |
| 2576. III | 53 Capricorni | | $3=31,30$ | $1=31,20$ | 28 31,28 | 3,407 | + ,019 | |
| 2431. II | 27 Vulpeculæ | p | | $2=5,11$ | $30 \quad 5,11$ | 2,554 | +,011 | |
| 2434 . II | 8 Delphini | 0 | $6=59,65$ | $\mathrm{l}=59,55$ | 3059,63 | 2,829 | +,011 | |
| 2433 . II | 1 Aquarii | | - | $2=0,41$ | 310,41 | 3,070 | +,009 | |
| 2592 . III | Delphini | | $1=26,69$ | $2=26,44$ | 3426,52 | 2,750 | + ,016 | |
| 1642. IV | Aquarii | | | - | 36 | | - | Not now visible ! |
| 2603 . III | 61 Cephei | | - | $\mathrm{l}=37,71$ | 38 37,71 | -3,109 | + ,023 | This observation was omitted in the Catalogue. |
| 1652. IV | Vulpeculæ | | $2=43,78$ | $1=43,91$ | 40 43,82 | +2,579 | ,000 | \int The A. R. observed in 1833 pertains to another |
| 2460 . II | Capricorni | | $3=$ | | 41 - | 3,595 | | $\left\{\begin{array}{l} \text { star-the place in the A. S. C. must be wrong, } \\ \text { or the star bas disappeared. } \end{array}\right.$ |
| 2478. II | 32 Vulpeculæ | q | $6=34,44$ | $2=34,40$ | 4634,43 | 2,552 | + 012 | |
| 2622 . III | | | -50, | $1=1,87$ | $48 \quad 1,87$ | 2,552 | $1+, 009$ | |
| 2488 . II | 33 - | x | $2=56,60$ | $4=56,86$ | 50 56,77 | 2,678 | + ,016 | |
| 2629 . III | | | - | $1=43,60$ | 5043,60 | 2,678 | +,009 | |
| 2638 . III | Microscopii | | - | $\mathrm{l}=8,37$ | 55 8,37 | 3,693 | + ,028 | |
| 2641. III | Microscopii | η | $2=43,87$ | $2=43,89$ | 5543,88 | 3,934 | - | |
| 2643 . III | Vulpeculæ | | $2=13,91$ | $2=13,87$ | 5613,89 | 2,653 | +,002 | |
| 2646 . III | Microscopii | | $3=10,77$ | $1=10,44$ | 5910.69 | 3,596 | +,029 | |
| 2649 . III | Vulpeculæ | | $3=43,65$ | $\mathrm{l}=43,96$ | $21 \quad 043,72$ | 2,668 | +,005 | S The blank which precedes this in Vol. IIL. must |
| 2664 . III | Aquarii | | , | $1=11,50$ | 611,59 | 3,193 | + ,013 | $\{$ be cancelled. |
| 2517. II | 8 Equulei | a | $6=37,44$ | $1=37,00$ | 7 37,38 | 2,995 | +,006 | |
| 2688 . III | Cephei | | | $1=7,89$ | 19 7,89 | 1,728 | +,006 | |
| 1807. IV | Aquarii | | $3=34,66$ | $\mathrm{l}=34,86$ | 2034,71 | 3,262 | +,015 | This observation was omitted in the Catalogue. |
| 2701 . III | 111 Cephei | | $2=35.22$ | $1=35,74$ | 2435,39 | 1,175 | + ,020 | |
| 2554 . II | Capricorni | | $5=19,66$ | $2=19,61$ | 2519,65 | 3,280 | +,016 | |
| 2706 . III | . Aquarii | | - | $1=1,96$ | $27 \quad 1,96$ | 3,065 | +,008 | |
| 2726 . III | 377 Cygni | | - | $4=47,53$ | 35 47,53 | 2,401 | +,014 | |
| 1854. IV | | | $2=57,61$ | $5=57,76$ | 3557,72 | 2,402 | +,011 | These olservations were omitted in the Catalogue. |
| 2727 . III | Aquarii | | \square | $2=10,26$ | 3610,26 | 3,203 | +,015 | |
| 2583 . II | 10 Pegasi | \ldots | $4=13,34$ | $1=13,15$ | 3713,30 | 2,706 | +,004 | |
| 2733 . III | Pegasi | | $2=48,93$ | $2=48,65$ | 3848,79 | 2,753 | +,005 | |
| 2735 . III | $64 \sim$ | | - | $2=14,15$ | 4114,15 | 2,519 | +,008 | |
| 2746 • III | Gruis | v^{2} | $3=7,40$ | $4=7,27$ | 47 7,33 | 3,649 | + ,028 | |
| 1902 . IV | ${ }_{174}^{\text {Aquarii }}$ | | $3=6,59$ | $l=6,68$ | 54 6,61
 20 | 3,088 | +,013 | This observation was omilted in the Catalogue. |
| 2771 . III | 174 Cephei | | $1=5,41$ | $2=5,89$ | 2205,73 | 1,840 | +,015 | SSee Piazzi's Note to these Stars. |
| 2772 . III | 175 Cephei | | | $1=1,78$ | 0 1,78 | 1,812 | +,014 | |
| 2774 . III | | | $1=3,70$ | $2=3,65$ | 3 3,66 | 2,004 | +,010 | |
| 2775 . III | | | $2=25.71$ | $1=25,20$ | 3 25,54 | 2,025 | + ,024 | |
| 2640 . II | 39 Aquarii | | $5=34,80$ | $3=34,83$ | 3 34,81 | 3,243 | +,005 | |
| 2641 . II | Pegasi | | - | $1=56,37$ | 3 56,37 | 2,891 | +,013 | |

of tife A, R. of the Fixid Stars.

Refere, ce.	Names.		$\begin{aligned} & \text { Mean A. R. Jan. 1, } \\ & \text { 1836. from } \end{aligned}$		Concluded Mean A R Jab. 1, 1836.	Annual		Remarrs.
No. Vol,			former obs.	presentobs.		Precesn.	P.M.	
2648 of II	Gruis	$\mu^{\text {l }}$	8 $4=42,66$	s. $1=42,42$	$\left\lvert\, \begin{array}{ccc} \mathrm{h}_{\mathrm{y}} & \mathrm{~s} . & \mathrm{s} . \\ 22 & 3 & 42.61 \end{array}\right.$	$\left\|\begin{array}{c}\text { s. } \\ +3.649\end{array}\right\|$	\| $\begin{gathered}8 \\ +\quad .023\end{gathered}$	
2658 . II	1 Lacerta	μ^{\prime}	$4=4,68$ $5=9,86$	$1=42,42$ $1=4,75$	-	+3,599	+	
2796 . III	162 Aquarii		$2=11,60$	$2=11,62$	1311,61	3,141	+,003	
2687 . It	37 Pegasi	$\mathrm{H}^{\text {a }}$	$5=40,66$	$1=40,85$	2140,69	3,033	+,.006	
2688 . II	57 Aquarii	σ	$8=57,83$	$1=57,99$	2157,85	3,182	+,003	
2689 . II	17 Pis, Aust.	β	$6=9,95$	$1=10,29$	2210,00	3,431	+ , 011	
2818 . III	42 Licerta			$3=20,57$	23 20,57	2,379	+ , ,088	
2821. III	221 Cephei		--	$2=20,54$	25 20,54	$-3,465$	+,176	N. P. D. $40,44^{\prime} \therefore$ P. M. $=0^{\prime \prime}, 21$ of arc.
2823 . III			-	$2=52,99$	25 52,99	-3,596\|	+,106	N. P. D. $40,37^{\prime} \therefore$ P. M. $=0^{\prime \prime}, 13$ of arc.
2825 . III	Piscis Aust.	。	$2=20,72$	$2=20,82$	27 20,77	$+3,402$,000	
2833 . III	7 Androm.		$1=34,91$	$2=35,07$	2834,97	2,651	+, 004	
2844 . III	Pegasi	po	$2=51,39$	$1=51,78$	3351,52	2,949	+, 001	
2711 . II	43-	。		$2=3,92$	$34.3,92$	2,802	+,, 10	
${ }^{2213}$. II	Aquaxii		$6=27,99$	$1=27,92$	3427,81	3,147	+, 022	
2852. . Ill			$3=22,85$	$2=22,89$	39 22,87	3,108	+, 003	
2856 . III	237 Agparii		$1=13,24$	$1=13,32$	4213,28	3,131	+ , 001	
2885, III			-	$4=28,20$	59 28,20	3,266	+ ,018	
2895 . Ill	303 Pegasi		$1=46,32$	$4=46,22$	23146,24	3,015	+0,010	
2007 . III		N	$2=28,49$	$1=28,14$	9 28,38	2,977	+ , ,006	
2908 . III	Pis. Aust.		$3=41,20$	$1=41,51$	941,28	3,231	+ + , 045	
2909 . Ill	-		$1=15,61$	$1=15,50$	1015.60	3,229	+, 008	
2784 . II	7 Piscium	b	$5=50,31$	$1=54.77$	11 59,39	3,0:16	+ , 014	
2787 . II	62 Pegasi	r	$5=31,80$	$2=31,56$	12 31,73	2,952	+ ,012	
2814. Il	Aquarii		$5=4,54$	$1=4,32$	27.450	3,097	+	The star observed here is of the 9 th mag, grreeing
2828 . II	$104-$	A^{2}	-	$4=10,12$	3316,12	3,122	+, 048	$\left\{\begin{array}{l} \text { with the small star mentioned by Piazzi ; has } \\ \text { then A disappeared? } \end{array}\right.$
2959 . III	Androm.		3 $3=27,44$	$1=27,13$	3627,30	2,930	-, 001	
${ }^{2966}$, III	300 Cephai		3 $=533,51$	$1=53,55$	40 5, 3 , ${ }^{2}$	2,860	+,026	
2056 . IV	Pegasi		$4=31,02$	$1=34,07$	4534.103	3,052	+,014	
2868 . Il	Cassiopre		-	$4=17,67$	533 17,67	2,996	-	

In bringing up the results of Vol. II. and III. to 1836, as well as in reducing those of $1836-37$, to the same epoch, the Annual Precession only has generally been employed; but in a fow cases (where the P. M. was large) this too has roughly been applied ; thus, to the results brought up with Precession from Vol. II, forr times the amount of proper motion has been added: and to those from Vol. III. and from observation in 1830-37 one years proper motion only has been applied.

SUPPLIMENTARY CATALOGUE OF THE DECLINATION OF THE FIXED STARS.

Reference.	A.	Names.		Mean Decn. Jan. 1, 1836,--from		ConcludedMean Decn.Jan. 1, 1836.	Annual Precession.	P. M.	Remarks.
No. Vol.				former obs. p	present obs.				
	H. M.			"	"	$0{ }^{\circ} 1$	"	"	
1 of 1 II	01	24 Ceti		-	$4=37,01$	-6 937,01	+20,038	-0,06	
2 . III	4	61 Andromedæ		$\cdot 5=43,30$	$2=41,07$	$+40 \quad 742,66$	20,038	-,08	
16 . II	6	35 Piscium	B	$5=34,70$	$1=35,80$	+ 75434,88	20,035	-,10	
21. II	11	Tucanæ	$\stackrel{4}{4}$	$10=23,19 *$	$2=19,76$	-65 50 22,62	20,019	-	Differs 2^{\prime} from A.S.C.
19. III	22	117 Piscium		$3=47,35$	$1=51,00$	+15 7748,26	19,947	- ,13	
40. II	23	Phœnicis	λ^{1}	$10=42,26$	$1=41,67$	-49 42 42,21	19,940	-	Differs nearly 1^{\prime} from A. S. C.
44.11	23	Tucanæ	β^{1}		$1=42,32$	-63 5142,32	19,935	-	
45. 11	23	--	β^{2}	-	$1=7,97$	$\begin{array}{llll}-63 & 52 & 7,97\end{array}$	19,935	\square	
22. III	26	App. Sculp.	ξ	$4=3,75$	$l=6,90$	$\begin{array}{lll}-35 & 53 & 4,38\end{array}$	19,916	-, 51	
27. III	28	117 Andromedæ		$4=45,11$	$1=45,67$	+23 645,22	19,887	-,01	
59. II	30	31 Andromedx	δ	$11=41,41$	$4=40,29$	+29 5741,12	19,968	-, 30	$\{$ This large P. M. is in accordance
79. II	39	Piscium		$5=5,88$	$6=7,53$	+ 426 6,77	19,747	-1,25	$\{$ with the diff. from A. S. C.
58. III	50	322 Cephei		$4=4,18$	$3=4,31$	+86 $16 \begin{array}{ll}6 & 4,24\end{array}$	19,554	+0,12	In Vol. III. the result was accident-
108. II	56	74 Piscium	ψ	$5=36,51$	$2=36,79$	+20 3536,59	19,435	-0,03	ally omitted.
67.1 III	57	Cassioper	μ	$4=44,89$	$2=44,80$	+54 644,86	19,418	-1,55	Piazzi states P, M. $=-0^{\prime \prime}, 65$.
113. II	58	79 Piscium	ψ^{2}	$4=52,92$	$2=52,30$	+19 51 52,71	19,386	-0,19	(A wrong star observed in 1832 Pi .
124. II	11	32 Ceti		$5=-$	$3=51,76$	-9 9651,76	19,321	- , 29	gives P. M. $-{ }^{\prime \prime}, 02$
132. II	4	86 Piscium	ζ^{1}	$6=23,35$	$1=23,65$	+64223,39	19,245	-, 05	
135. II	5	88 -		$5=34,73$	$1=37,11$	+6735,13	10,221	-, 04	
140. IV	9	Cassioper		$2=37,10$	$1=36,81$	+57 2037,03	19,119	+ , 02	
97. III	10	Cassiopeæ	ϕ	$4=2,92$	$2=3,60$	+54 $22 \begin{array}{ll}3,15\end{array}$	19,114	+ 06	
158 . II	19	Piscium		$5=34,71$	$\mathrm{J}=34,68$	+ 7 ¢ 6334,70	18,850	+	
162. II	21	98 -	μ	$10=43,11$	$5=40,83$	+ 51742,35	18,795	- , 17	
167 . II	24	Phœnicis	δ	$8=41,62$	$4=39,77$	-49 5541,00	18,706	-	
178.11	28	102 Piscium	π	$5=4,99$	$4=3,15$	+11 18 4,17	18,580	+ , 09	
138. III	32	137 Cassioper		$4=11,46$	$3=10,98$	$\begin{aligned} & +59 \\ & + \\ & +18\end{aligned} 111,25$	18,434	+ , ,17	
183. IV	44	5 Arietis	γ^{1}	$9=22,10$	$4=20, \mathrm{c} 2$	+18 2921,74	18,001	-, 14	$\left\{\begin{array}{l}\text { looked. }\end{array}\right.$
172. III	50	153 Cassioper		$5=30,15$	$2=35,08$	+633535,84	17,730	+,04	
217 . II	52	59 Ceti	v^{2}	$7=30,10$	$3=30,07$	-21 52 30,09	17,697	-, 04	Differs 11" from C. 0.
220 . II	53	57 Andromedæ	γ	$5=22,31$	$2=21,82$	+41 3222,17	17,635	,00	
181. III	54.	37 Arietis		$4=26,66$	$1=23,05$	+25 825,76	17,587	-, 17	
196 . III	22	52 -		$4=$ - ${ }^{*}$	* $4=32,93$	+25 9332,93	17,267	-, 05	N. P. D. 5° wrong in Vol. II.
214 . III	6	Persei	χ	$4=6,55$	$3=5,23$	+56	17,050	-, 05	
219 . III	9	262 Eridani		-	$1=27,09$	+48 1127,09	16,954	+ ,12	
243 . II	11	68 Ceti	0	-	$4=47,26$	- 343 47, 26	16,868	- , 69	
218. IV	13	Ceti		$4=47,68$	$2=45,70$	- 34247,02	16,732	-, 03	
227 . IV	19	Trianguli		$2=54,30$	$7=52,93$	+28 5654,00	16,452	-,12	
247 . III	23	43 -		$4=49,06$	$4=49,20$	+33 48 49,13	16,270	-, 05	
251 , III	25	46-		$4=2,00$	$3=59,23$	+33 58 0,81	16,108	+,15	
230 . IV	25	-		$4=13,33$	$3=9,93$	$+34011,87$	16,140	$-, 12$	
268. II	27	Ceti		$5=1,42$	$3=1,39$	+6 6 6 1,40	16,075	+1,45	This P. M. accounts for the diff.
270. 11	27	30 Arietis		$10=45,22$	$3=47,72$	+235547,72	16,051	-0,05	I have retained the result of 30 Arietis
271 . II	27			-	$3=46,37$	+23 5546,37	16,048	-, 05	for 1836 , in order to shew the dif-
253 . III	27	Ceti	d^{1}	$4=43,01$	$1=43,00$	- 41543,01	16,043	-, 56	ference of Declination.
234 . IV	29	Persei		$2=51,86$	$2=54,02$	+48 5052,94	15,926	+ ,06	

* See errata.

Reference.	A. R.	Names.		$\begin{aligned} & \text { Mean Dec } \\ & 1836 .- \end{aligned}$	$\begin{aligned} & \text { cn. Jan. I, } \\ & \text {-from } \end{aligned}$	Concluded Mean Decn.	Annual Preces-		Remaris.
No. Vol,				former obs.	present obs.	Jan. 1, 1836.	sion.		
	H. M.					\bigcirc	"	"	
280 . II	232	83 Ceti	ε	$9=16,22$	$4=18,55$	-12 3416,99	15,829	-, 20	
295. III	36	Hydri	ε			-68 $58-$	15,528		Not now visible:
242 . IV	37	Persei		$2=35,28$	$1=33,41$	+48 2934,66	15,470	-, 10	
252. IV	49			$2=40,02$	$3=36,87$	+51 2238,23	14,805	+,05	
324 . II	51	Horologii	β			-63 $31 \sim$	14,701		Not now visible!
330 of II	52	8 Eridani	ρ^{1}	$10=47,28$	$4=46,64$	- 818 47,10	+14,610	-,09	\int The observations in 1833 refer to ano-
337 - II	55	Fornacis		$2=23,65$		-23 $37-$	14,483		$\{$ ther star ;-from a recent examina-
261. IV	33	Camelop.		$2=26,76$	$2=26,34$	+65 226,55	13,948	- ,08	\ tion this star is not now visible !
303 . III	5	Messoris	A^{2}	$4=34,10$	$3=33,84$	+65 233,99	13,801	-, 11	
321 . III	12	142 Persei		4 -	$2=9,26$	+4837 9726	13,418	-,05	A wrong star observed in 1835.
368 . II	13	Eridani	e	$9=0,98$	$3=59,96$	$\begin{array}{lll}-43 & 42 & 0,72\end{array}$	13,346	+ ,87	Piazzi states the P. M. to be $+0^{\prime \prime}, 83$
341 . III	27	Persei		$4=13,87$	$4=15,40$	+30 3414,63	12,368	-,05	
389 - II	28	20 Eridani	F		$6=49,28$	$\begin{array}{llll}-18 & 0 & 49,28\end{array}$	12,302	-, 06	
426 - II	42			$5=33,10$	$4=35,75$	$\begin{array}{llll}-38 & 7 & 34,28\end{array}$	11,329	-,18	
429 . II	43	Tauri		$7=59,94$	$2=1,51$	+16 500,29	11,248	,00	
384.111	44	210 Eridani		$4=6,41$	$1=6,21$	-533 6,37	11,169	-,06	
439. II	49	Hydri		$1=56,93$	$3=35,44$	-74 447 5,44	10,772		The observation in 1833 refers to
450. I1	56	Reticuli	f	$10=53,80$	$4=52,04$	-61 5153,30	10,318	-	another star.
483. Il	411	Doradus		$10=13,10$	$3=10,25$	- 515412,44	9,133		
482. II	11	41 Eridani	X	$10=10,41$	$3=0,57$	-34 1210,28	9,011	+ , 05	
436 . III	14	220 Persei		$4=26,59$	$4=26,61$	+33 2726,60	8,922	--	A wrong star.
506. If	17	43 Eridani		$10=8,03$	$3=8,14$	-34, 24 8,05	8,656	-, 02	
515 . II	21	80 Tauri			$4=20,30$	+15 1620,30	8,434	-, 17	
448 . III	22		m	4	$3=43,31$	+42 40 43,31	8,307	+ ,14	
46%. III	27	Eridani	v^{1}	$4=12,59$	$3=11,96$	$-30 \quad 6 \quad 12,32$	7,896	-,29	
465. III	28	Scep. Brand.		$4=54,01$	$2=32,06$	- 84753,36	7,740	+ ,04	
332 . IV	28	Eridani		$4=6,83$	$2=0,43$	-838 6 6,70	7,858	-,07	
543 - II	32	Tauri	τ	$14=0,58$	$2=9,30$	+22 $38 \quad 9,55$	7,504	-,01	
578. II	50			$1=0,00$	$3=6,90$	$\begin{aligned} & +14 \\ & 17 \\ & 7\end{aligned} 7,42$	6,081	-. 07	
515 . Ill	51	Eridani		-	$3=27,21$	-10 3627,21	5,877	-,08	
523. III	54	Aurige	e	-	$3=14,11$	+62 15 14, J	5,659	+,07	
610.11	53	Doradus	ζ	$7=54,95$	$3=51,41$	$-5741 \begin{array}{ll}53,89\end{array}$	4,965	+ 18	
612. II	4	1.4 Auriga	a		$3=21,01$	+32 2921,01	4,819	+,18	
554 . III	10	2 Columbe		$4=57$, 52	$3=55,70$	-35 6 66,74	4,338	-, 10	(This P. M. is in accordance with the
630 . II	11		0	$10=40,32$	$3=39,40$	$-35 \quad 340,11$	4,223	-, 58	$\left\{\right.$ diff. $\left(20^{\prime \prime}+\right)$ from A.S.C.
667 . II	24	120 Tauri		-	$3=59,60$	+18 24 59,60	3,173	,00	
672 . II	25	Columbe	ε	$5=43,89$	$4=45,76$	-35 35 44,72	3,034	-,17	
590. III	26	Orionis			$4=23,99$	-4 4523,99	2,922	-, 14	
593. III	27		c^{2}		$3=12,40$	- 45812,46	2,813	-, 08	
685. II	28	$40-$	ϕ^{2}	$8=42,06$	$3=44,39$	+ 91142,69	2,827	-,30	
693.11	31	490 Orionis	d	$0=36,44$	$4=39,04$	-7 1837,24	2,558	- ,11	
609. III	33	393 Tauri		$3=37,51$	$2=39,05$	+18 53 38,13	2,315	-,03	
699. II	34	Columbe	${ }^{*}$	$43=55,88$	$4=56,99$	-34 9 56,43	2,313	-,01	
721. II	42	Tauri			$4=35,04$	+135935,04	1,647	+ 02	A wrong star observed in 1832.
732 . II	4.5	Columbe	β	$9=6,24$	$4=5,05$	-35 -50	1,314	+ ,25	
735 . II	47	34 Aurigx	β	$11=13,75$	$3=14,26$	+44 5513,86	1,131	- , 15	
658.111	51	Camelop.	n		$3=4,58$	+51 344,58	0,723	+ ,03	
746 . II	52	Columbe	γ	$10=22,96$	$4=21,80$	$-3518 \quad 22,63$	0,742	-,11	
757 . II	57	67 Orionis	ν	$27=48,00$	$3=48,33$	+14 4648,03	0,187	- ,23	
674 . III	59	191. Aurigæ		$3=5,66$	$2=4,78$	+4844 5,31	0,058	,03	

Reference. No. Vol.	A. R.	Names.		$\begin{gathered} \text { Mean Decn. Jaw. 1, } \\ \text { 1836. -from } \end{gathered}$		Concluded Medı Decu. Jau. 1, 1836.	Annual Piecession.	P. M.	Rrmaris.
				former obs. pre	resent obs.				
	H. M.			- -	$3=52,68$	${ }^{\circ} 1,1111$	-0.152	"	
684.11161	51	Columbx 24 Munocer.		-	$\begin{aligned} & 3=52,68 \\ & 3=37,55 \end{aligned}$	arr $-371052,68$ +58837	- $\begin{array}{r}0,152 \\ 0,770 \\ \hline\end{array}$	+ 03 $+\quad 04$	
700. III 8	8 10	24 Munocer.		-	$3=37,55$ $3=12,12$		0,770	+,04	
${ }^{7703}$. 11 II II 10	10	$25 \overline{\text { Columlex }}$		$10=29,52$	$3=12,12$ $4=29,49$	-13 $\begin{array}{llll}-10 & 50 & 12,12 \\ -35 & & 29,51\end{array}$	0,014	-	
787 7807.111 711	11	Columlze Lyncis		$3=11,69$	$4=29,49$ $1=11,41$	+58 3011,62	1,018	-,10	
791 of II 14	14	1 Canis Maj	$\zeta 1$	$10=48.09$	$3=46,00$	-29 59 48,57	- 1,205	- , 09	
793. Il 15	15	Monocer.		$5=26,30$	$2=26,27$	+ 35026,29	1,254	-,08	
794. II 15	15	8 -	b	$5=7,32$	$4=8,50$	+ 442784	1,290	-,69	
799. II 18	18	15 Geminor.		$5=58,85$	$4=59,27$	+2052 59,03	1,541	-,03	
726 . III 18	18	122 Camelop.		$4=12,63$	$3=9,76$	+79 43011,26	1,582	-,32	
728 . III 19	19	11 Nayis		$4=32,53$	$2=34,22$	-36 37 33,10	1,620	, 00	
747, III 23	23	17 Lyncis		-	$3=51,44$	+61 3651,44	2,083	+125	
770 . IIII 30	30	Canis Maj.	ν^{1}	$4=46,61$	$2=44,58$	-18 31456,93	2,558	+0 19	
780.111	32	23 Lyncis	seq	$4=43,36$	$2=40,28$	+59 3542,33	2,795	$-.15$	
790. III 3	35	Cauis $\mathrm{Maj}_{\mathrm{j}}$.			$3=49,88$	-27 28 49,88	3,078	+ . 10	
490 . IV	39	Canis Maj.		$3=25,96$	$2=29,40$	-20 $36 \quad 27,33$	3,400	+, 02	
807. III	43	29 Lyncis		$4=38,73$	$3=38,25$	+ 574538,52	3,778	, 00	
809. III	45	Canis Maj.	h	$4=9,51$	$1=9,25$	-31 31 9,46	3,853	+,09	
854. II	46	14 - -	θ	-	$3=18,17$	-1150 18,17	4,0121	,00	
814. III	47	Lyncis		$1=30,43$	$1=32,97$	+574831,70	4,116	+,05	
820. III	50	112 Canis Maj.		$3=$	$3=14,44$	-16 5314.44	4,363	-, 05	A wrong star olserved in 1835 ;-
871. II	52	Geminor.		$5=14,88$	$\mathrm{l}=13,50$	+29 3614,65	4,567	-, 81	Differs $20^{\prime \prime}, 50$ from A. S. C.
831. III	55	Lyncis		-	$4=31,58$	+60 5931,58	4,798	+ .06	
511. IV 7	70	Navis		$1=$	$3=6.65$	-43 $23 \quad 6,65$	5,109	+ , 46	The result in the Catalogue is erro
847 . III	2	123 Geminor:		$4=42,78$	$3=44,50$	+1535 43,52	5,367	-,10	neous.
528 . IV	9	19 Inncis		$1=58,80$	$2=1,33$	+55 $34 \begin{array}{ll}0,48\end{array}$	6,010	-, 06	
891 . III	14	144 Geninor.		-	$3=51,4.3$	$1+275651,43$	6,410	+,05	
894 . III	16	Navis		$4=8,65$	$4=8,14$	-31 44 8, 80	6,569	+,05	
917. III	26	Canis Min.			$3=37,95$	+34137,95	7.384	-,02	
943 . III	35	186 Navis		$8=13,52$	$3=12,94$	$\begin{array}{lllll}-38 & 9 & 13,36\end{array}$	8,120	-,04	
944 . III	36	Navis		-	$3=44,94$	-38 8 44,94	8,179	-,02	
947. III	38		T	T $3=38,28$	$3=39,90$	-4.4 4539,09	8,312	-, 50	
95\% . III	42	217 N.wis		-	$3=26,93$	-24 3326.93	8,6,39	- 38	
989. II	56	9 Cancri	μ^{1}	1 $5=51,98$	$3=5^{9}, 32$	$1+23 \quad 5 \quad 52,11$	1 9,734	-, 06	
993 . III	57	Navis		-	$3=55,21$	-19 18 55,21	9,824	+,12	
999. II 8	82	15 Cancri	ψ^{3}		$3=27,74$	$\begin{aligned} & +30\end{aligned} 827,74$	$4 \quad 10,216$	+,11	
1004. II!	! 5	5 .-		$4=51,76$	$1=51,46$	+18 9 51,70	10,356	-, 04	
1009. II	1	Piscis Vol.		ε -	$3=3.87$	$\begin{array}{llll}-68 & 8 & 3,87\end{array}$	7 10,572	-	
1013. III	,	7 Navis		-	$3=54,98$	-31 3954,98	10,537	+, 09	
1024. 11	16	23 Cancri	ϕ^{2}	ϕ^{2}	$3=53,14$	$+272753,14$	411,243	+,02	
1032. II	10	1 Argus		-	$3=57.65$	-58 58 57,65	11,426		
1049. II	I 31	1 Cuncri		$5=-\sim$	$2=45,33$	+20 645.33	12,206	--, 16	has created much confusion:-
1055. 11	1131	1 -		$5=7,75$	$3=6,91$	+20 $7 \quad 7.51$	12.249	-,11	these must be re-examined.
1061 - 11	133	3 Pixid Naut.		$\beta \quad 11=51,15$	$3=51,47$	-34 433 51,23	12,439	-, 10	Differs above $23^{\prime \prime}$ from G. C.
1066 . III	37	7 Monocer.		$4=51,08$	$3=48,86$	-638 50,13	3 12,600	+,02	
1080. II	141	1 Cancri		$5=30,19$	$2=29,80$	+18 3630,09	9 12,952		
646 . IV	90	0 Pisid. Naut.		$3=47,03$	$3=47$,68	-25 1047,36	14,208	-, 13	
1124. II	I 7	7 Arsus		$8=41,23$	$4=43,02$	-61 38 41,68	14,623	$3-$	
1121. III		9 Navis		$k^{1} \quad 4=26,28$	$3=25,32$	-36 5525.87	14,692	- ,02	
1136 . III	I 15	5 Hydra		$4=49,10$	4 $=49,44$	$4+41149,27$	15,062	-,11	

*The difference of Declination here found $=1^{0} 10^{\prime} 50^{\prime \prime}, 1$ from obs, on the same evening.
Do. from the Greenwich Catalogue $=1^{0} 16^{\prime} 55^{\prime \prime}, 3$

- Piazzi's Catalogue $=1^{0} 16^{\prime} 52^{\prime \prime}, 7$

Reference. No. Vol.	A. R.	Names.		Mean Decn. Jan. 1, 1836.-from		Concluded Mean Decn, Jau. 1, 1836.	Annual Precession.	P. M.	Remaris.
				former obs.	present obs.				
	H, M.			"	"	$\bigcirc{ }^{\circ}$	"		
1965 of III	1546	Lupi		$3=40,01$	$2=39,40$	-33 28839,77	-11,014	+ ,05	
1990 . III	57			$4=39,58$	$2=43,00$	-38 $38 \quad 40,72$	10,187	-, 25	
1046. IV	161	Serpentis		$4=46,53$	$l=46,92$	+ 55046,61	9,966	-, 07	
1058. IV	11	Scorpii		$4=55,50$	$1=57,74$ $5=39,59$	-19 4255,95 -2248	9,167	-, 04	
2072 . III	34				$5=39,59$	-22 48 39,59	7,333	,00	(This star belongs to Vol. III, but was
1090 . IV	42	Scorpii			$3=37,89$	-41 327,89	6,603	-, 11	introduced through mistake into
2097 . III	42	150		$3=58,38$	$2=61,00$	-41 33 59,43	6,614	+. 10	Vol. IV.
1942. II	50	Ophiuchi		$4=6,33$	$2=4.98$	$\begin{array}{llll}-17 & 59 & 5,88\end{array}$	6,040	-,06	
2127 . III	56	117		$3=37,00$	$5=37,72$	+135037,45	5,502	-, 19	
2142 . III	171	Herculis		-	$5=11,26$	+27 1911,26	5,052	+,03	
1973 . II	7	39 Ophiuchi	0	-	$6=0,57$	$\begin{array}{lll}-24 & 6 & 0,57\end{array}$	4,538	-,06	
1974. II	7			-	$4=59,97$	-23 5259,97	4,531	-,08	
1980. II	11	66 Herculis	${ }^{\omega}$		$4=55,38$	+11 255,38	4,285	-,12	
1985. II	11	53 Serpentis	ν	-	$3=22,59$	-12 4022,59	4,229	-,02	
1991 . II	15	33 Scorpii		-	$2=7,21$	$\begin{array}{llll}-24 & 5 & 7,21\end{array}$	3,934	+ ,02	
1996 . II	17	73 Herculis		-	$2=6,07$	+23 76 6,07	3,739	-, 01	
1997 . II	18	47 Ophiuchi		-	$2=38,93$	-12 2138.93	3,695	-,17	
1998 . II	18	$\underline{\square}$		-	$2=9,66$	-456 9,66	3,686	- ,21	
2014 . II	25	54			$3=45,74$	+13 16 45,74	2,917	-, 07	
2193. III	27	245 -		$1=4,81 *$	$2=5,17$	+1314 5,05	2,824	-1,78	$\left\{\left.\begin{array}{c} \text { Piazzi's Decchation is probably } 1^{\prime} \text { too } \\ \text { large, in which case } \mathrm{P}^{\prime} \mathrm{M} .=-0^{\prime \prime}, 11 \end{array} \right\rvert\,\right.$
2015. II	27	53 Ophiuchi	f	-	$3=8,77$	+ 9428,77	2,915	-, 19	
2018. II	28	Serpentis			$2=50,14$	-15 $27 \begin{array}{ll}\text { 50,14 }\end{array}$	2,802	-, 12	
2024. II	29	Sagittarii		-	$2=1,02$	$\begin{array}{llll}-32 & 7 & 1,02\end{array}$	2,708	+ ,07	
1170. IV	30	Ophiuchi		$4=46,71$	$1=46,76$	+114546,72	2,651	+ ,03	
2026 . II	31	79 Herculis		-	$2=44,41$	+24.2444,41	2,572	-, 12	
2209 . III	34.	142 Draconis		-	$2=48,06$	+62 3348,06	2,286	-, 01	
2033. II	34	Ophiuchi		-	$1=46,94$	-22 646,94	2,256	-, 06	
2034. II	34			-	$1=5,22$	+16 25 , 22	2,239	+, ,17	
2214. III	35	Draconis			$1=14,11$	+68 1314,11	2,170	-,06	
1185. IV	35	83 Herculis		$3=4,61$	$3=5,50$	+24 $39 \quad 5,06$	2,101	-, 18	
2221 . III	38	Ophiuchi			$1=10,71$	+ 54610,71	1,915	+ , 17	
1191. IV	38			$2=22,99$	$1=23,14$	$1+254723,04$	1,944	-,04	
2222 . III	38				$2=37,29$	+ 55037,29	1,851	-, 07	
2042. II	38	Sugittarii		-	$\mathrm{I}=17,29$	$-313817,29$	1,909	-,03	
2226 . III	41	Ophiuchi		-	$1=44,07$	+ 54544,07	1,671	-,11	
2229 . III	41	Telescopii		$3=47,19$	$3=44.78$	-34 44 45,98	1,613	-,03	
2231 . III	42	339 Herculis.		,	$2=47,14$	+19 1847,14	1,590	,00	
2235 : III	43	290 Ophiuchi		-	$2=1446$	-19 41414,46	1,497	-, 11	
2237 . III	43	Tauri Pon.		-	$1=44,30$	+ 51644,30	1,468	-, 14	
2239 . III	44	297 Ophiuchi		-	$\mathrm{l}=8,85$	+ 1218,85	1,357	,00	
2248 . III	46	302 Ophiuchi		-	$1=54,01$	-18 4654,01	1.183	-, 01	
2252 . III	47	357 Herculis		-	$2=52,97$	+24 4852,97	1,136	-,09	
2254 . III	48	7 Tauris Pon.			$1=5,91$	$1+0425,91$	1,037	-, 03	
2257. III	51	172 Serpentis		-	$1=56,00$	- 44756,00	0,781	- ,23	
2062 . II	51	6 Sagittarii		-	$1=36,15$	$5-17836,15$	0,741	-,08	
2063 , II	52	Sagittarii		-	$1=3,50$			-,02	
2261.111	52	19		-	$1=41,60$	-22 5341,60	0,630	+,02	
2067 - II	53	7 -	a	-	$2=21,94$ $2=21,34$		0,663	-, 05	
$\begin{cases}2074 . \\ 2078 . & \text { II }\end{cases}$	53 55	9 -			$2=21,34$ $2=55,34$	4 4 -24 21 21,34 -24 23 55,34	0,573 0,460	- 0,02	
	55					- ${ }^{\text {a }}$		-,	

* See errata.

Reference. No. Vol.	A. R.	Names.		Mean Decn. Jan. 1, 1836.-from		Concluded Mean Decn. Jan. 1, 1836.	Annual Precession.	P. M.	Remaris.
				former obs,	present obs.				
	H. M.			"	"	$\bigcirc{ }^{\circ}$	"	"	
2269 of III 17	1756	Ursee Min.		-	$2=33.66$	+74 3533,66	- 0,338	-, 19	Piazzi gives P. M. $=-0^{\prime \prime}, 30$
2276 . III	59	Sxgittarii		-	$3=17,25$	-24 0 17,25	0,041	+ ,02	
2278 . III 18	180	406 Herculis		\cdots	$2=51,34$	+425651,34	- 0,006	-,07	
2283 . III	1		i	-	$2=42,32$	+26 4. 42,32	+ 0,117	+ , 30	
2305 - III	15	444		$4=$	$3=7,67$	$+2947 \quad 7,67$	1,287	+ ,08	
2118. II	15	21 Sagittarii		-	$3=20,18$	-20 37720,18	1,330	-, ,11	
2123. II	18	Sagittarii			$1=28,75$	-17 4728,75	1,574		for the star intended-**
2126 . II	20		v^{1}	$5=18,49$	$1=16,11$	-33 5 18,10	1,741	-,09	
2127. II	20	Clypei Sob.			$4=59,30$	-14 4059,30	1,759	-	
2132 . II	22	Sagittarii		-	$3=25,31$	-18 3025,31	1,875	-, 07	
2318. III	22	Cor. Aust.	χ	$3=59,59$	$3=0,19$	-38 4959,89	1,950	+,05	
2135. II	23	Sagittarii	v^{2}	-	$3=44,45$	-33 7144,45	1,991	-,02	
2139 . II	23	61 Serpentis	e	-	$3=46,70$	- 1646,70	2,024	-,06	
$12140, \text { II }$	23	Sagittarii		-	$2=48.73$	-18 28 48,73	2,026	-, 02	
$2150 \text {. II }$	28	-		-	$2=31,87$	-21 31 31,87	2,419	-, 16	
2151 . II	28	Clypei Sob.		-	$4=4.5,74$	-17 2145,74	2,441	, 00	
2152. II	28	Sagittarii		--	$3=9,31$	-2338 38,31	2,457	+ ,02	
2153. II	28	Herculis		-	$2=22,89$	+23 28 22,89	2,480	-, 51	
2157. II	32	26 Sagittarii		- -	$4=39,82$	-23 58839,82	2,745	-, 02	
2202. II	54		S	-	$3=45,03$	-31 $164.5,03$	4,636	- , 07	
2212 . II	58	Sagittarii		-	$3=51,14$	-28 $52 \quad 51,14$	4,917	+ ,07	
2215 . II	58	,		--	$3=24,09$	-24 54: 24,09	5,006	-, 11	
2217 . II	58			\square	$3=24,14$	-19 32 24,41	5,042	- 12	
2248. II	1912	44 -	ρ^{1}	-	$1=51,52$	-18 8831,52	6,178	$+, 12$	S This star has been looked for fre-
2249 . II	12	27 Aquiles	d	-m		$-113-$	6,178		$\{$ quently but not observed yet.
2250 . II	12	45 Sagiltanii	ρ^{2}	-	$1=16,82$	-18 3616,82	6,189	-, 08	
2251. II	12	$46 \longrightarrow$			1=21,59	$-161521,59$	6,192	-, 09	
2261 . II	16		0	-	$1=38,77$	$\begin{array}{llll}-30 & 3 & 38,77\end{array}$	6,540	-, 17	
2262 , II	17	-		-	$]=20,49$	-15 2220,49	6,567	-17	
2263 . II	17	2 Sagitto		\square	$2=31,32$	$+163731,32$	6,585	$+, 11$	
2264 . II	17	Sagittarii		-	$2=13,87$	$\begin{array}{llll}-14 & 52 & 13,87\end{array}$	6,588	- ,14	
2267 . II	18	2 Cygni	a		$1=17,51$	+29 181817,51	6,642	-,08	
24.27 . III	20	$19-$		$3=7,05$	$3=10,82$	+49 57 8 8,93	6,784	-, 09	
2457 . III	35	Draconis		$9=$	$2=1,67$	+69 26 1,67	-8,056	+ , 38	
2465 . III	38	Aquilæ	v	$2=18,52$	$2=17,18$	+ 71317,85	8,300	-,06	
2264. III	38	73 Cygni		$3=46,04$	$3=46,52$	$+50846,28$	-8,274	- , 28	
2326 . II	42	51 Aquilæ	D	-	$3=23,97$	-11 11023,97	-8,582	-, 08	
2478 . III	45			$3=44,13$	$2=46,30$	+11 1345,00	-8,828	-, 27	
2482 . III	46	$187-$		$3=50,00$	$1=51,01$ $2=40,91$	$+183850,25$ +19545268	8,938 8,969	,+ 01 ,- 16	
2483 . III	47	Sagitto		$3=54,53$	$2=49,91$.	, $+195452,68$	-8,969	-,16	
2494 . III	52	Sagittarii	H	$3=9,06$	$2=9,39$	-38	-9,476	- ,08	
2510. III	59	Draconis	e^{1}	-	$4=47,85$	+64 2147,85	5 10,001	$+, 02$	
2528. III	206	Acuix		$3=50,69$	$2=51,68$ $2=28,54$	$\left\lvert\, \begin{array}{llll}+63 & 13 & 51,09 \\ +15 & 36 & 28,54\end{array}\right.$	10,373	+ $+\quad 00$ $+\quad 15$	
1519. IV	6	Aquilæ Sayittarii		-	$2=28,54$ $3=30,89$	+15 16 -42 3830,54	10,434 10,882	,+ 15 ,- 18	$\{$ the Catalogue.
2539 . III	11	Sagittarii	I^{\prime}	-	$3=30,89$	-42 3330,89	10,882	-, ,18	
2567 . III	25	Cygni		$4=18,14$	$3=16,44$	+48843 17,41	111,776	-, 02	
2420. II	27	46 Urse Min	ω^{3}	$2=13,46$	$1=11,70$	+48 +40 +88	$7{ }^{7} 11,926$	2 l	
2575 . III	28	Ursw Min.	λ	$3=$	$1=57,35$	+ $+884857,35$	5 11,852	+ ,06	
24,38 . II	31	28 Vulpecule		-	$2=43,59$	$1+233243,59$	12,279	$1+, 07$	
2589 . 11I	34	Dolphini		$3=44,32$	$\mathrm{l}=45,07$	$\underline{+131344,51}$	1 12,482	-, 03	

* A star of the 6 th Magnitude near this has been observed, Declination $-17^{\circ} 53^{\prime} 30^{\prime \prime}, 09$.

$\left.\begin{array}{\|cc} \hline \text { Reference. } \\ \text { No. } & \\ \text { Vol. } \end{array} \right\rvert\, \text { A. }$	Names.		Mean Decn, Jan. 1, 1836,-from		Concluded Mean Decn. Jan, 1, 1836.	Annual Preces- sion.	P. M.	Remarks.
			former obs.	present obs.				
н. M.			"	"	01	"	"	
1656 of IV 2044	Cephei			$2=43,74$	+445843,74	+13,102	+1,23	
2495 . Il 54	2 Equalei	λ	$5=25,08$	$3=24,46$	+ 63224,85	13,785	-,02	
2649. III 59	Vulpecula			$1=36,31$	+22 5536,31	14,164	-	
2664. III 216	1quarii		-	$1=40,14$	- 74540,14	14,563	-,03	
2683. III 19			$4=21,82$	$2=22,84$	-12 4722,16	15,226	-, 16	
2688. III 19	Cephei		-	$2=18,87$	+57 1418,87	15,313	+, 08	
2691, III 21	Vulpecule	z	$4=53,44$	$1=52,82$	+26 5358,31	15,387	-, 01	
2706. III 27	Aquarii		-	$1=3,26$	+ 0153.26	15,751	-, 19	
2565. II 29	4 Pegasi	T	$6=2,89$	$2=3,07$	+ 522.298	15,902	-, 14	Differs 9" from A. S. C.
2568 . II 32	42 Capricorni	d^{1}	-	$3=32,16$	-14 4632,16	16,022	-, 41	
2757. III 54	Piscis Aust.		-	$3=31,94$	-30 4131,94	17,090	-, 16	
2775. . III 224	Cephei		$2=59,22$	$1=56,61$	+58 258,35	17,510	+, 05	
2774. III 4			$2=29,65$	$2=28,69$	+58 29 29,17	17,496	,00	
2648. Il	Gruis	μ^{1}	$5=35,02$	$3=31,12$	-42 933,56	17,586	-,08	
2678 . Il 17	53 Aquarii	E°	-	$4=22,19$	-1734 22, 19	18,066	+, 06	
2689 . II 22	17 Piscis Aust.	β	$5=1,98$	$1=0,27$	$\begin{array}{lllll}-33 & 11 & 1,90\end{array}$	18,232	-, 02	
2699 . 11127	61 Aquarii	L	$5=13,93$	$1=12,21$	-18 18 13,64	18,402	-,09	
2825. JII 27	Piscis Aust.	-	$4=28,83$	$2=29,80$	-32 3029,15	18,434	+,03	
2833. III 29	7 Aidromedæ		$4=15,00$	$4=14,06$	+384714,53	18,475	-, 07	
2850. III 37	222 Aquarii		$4=14,99$	$1=15,66$	-10 3015,12	18,741	-, 13	
2852 . Ill 40	Aquarii		$4=45,87$	$2=45,06$	- 544850	18,82, 3	-, 51	
2872 . III 51			$4=28,16$	$2=25,15$	-27127,16	19,157	-, 11	
2885. 11515				$4=12,52$	-29 4212,52	19,353		
2784 . II 2312	7 Piscium	b	$5=13,24$	$2=12,84$	+ 42013,08	19,599	-, 08	

One remark is here necessary with regard to the foregoing Catalogue,--namely, that the precessions in Declination are those copied from the Vols. already printed; and consequently pertain to the epochs for which those tables were constructed, and not to the year 1836, to which the places of the stars are reduced: with a view to remedy this defect, as well as to supply an every day want of the practical Astronower, I have connputed the following tables.

cxiii

A Table of the annual variation of the Precession in Right Ascension in time.

arg at top the Declination and at the side the A. R. of the Star.

Declin. North.	10^{0}	30°	50°	60°	65°	700	750	780	800	82°	Declin. South.
$\mathrm{H}_{\mathrm{n}}^{\mathrm{M} .}$	0000	+ 0001	s.								
30	$\begin{aligned} & , 0000 \\ & , \quad 00 \end{aligned}$,+ 0001 , 02	$+, 0003$	+,0004	+,0006	+,0008	+,0011	+,0014	+,0017	+,0021	XII 0
	${ }^{\prime}, 00$			06 07		, 11	, 16 , 20	, 22 $\quad 29$, 38 ,$\quad 54$	
30	, 00	02	05	, 07	, 11	, 15	, 22	, 34	, 45	66	30
	, 00	, 02	, 05	, 07	, 12	, 18	, 25	, 37	, 52	, 76	XIV 0
30	00	, 03	, 05	, 08	, 12	, 17	, 27	, 39	, 54	80	30
111	,0000	+,0003	+,0005	+,0008	+,0012	+,0017	+,0027	+,0040	+,0055	+,0081	XV 0
30	, 00	, 02	, 05	, 08	, 11	, 16	, 26	, 38	, 52	, 78	
	, 00	, 02	, 04	, 07	, 10	, 15	, 21	, 33	, 45	, 68	XVI 0
30	, 00	, 01	, 03	, 05	, 08	, 12	, 17	, 26	, 37	, 54	30
V 0	, 00	, 01	, 02	, 03	, 05	, 07	, 12	, 18	, 26	, 38	XVII 0
30	, 00	, 00	, 01	, 01	, 03	, 04	, 07	, 09	, 13	, 20	30
VI 0	,0000	-,0000	-,0000	-,0000	0	-,0000	-,0000	-,0000	0000	-,0000	XVIII 0
30	, 00	00	, 01	, 02	, 03	, 04	, 07	, 09	, 13	, 20	
VII 0	, 00	, 01	, 02	, 04	, 05	, 08	, 12	, 18	, 26	38	X 0
30	, 00	, 02	, 03	, 05	, 07	, 11	, 17	, 26	, 37	54	30
VIII 0	, 00	- 02	, 04	, 07	, 09	, 14	, 21	, 33	, 45	- 68	XX 0
30	, 00	03	05	08	11		26	38	, 52	, 78	30
IX 0	,0000	-,0003	-,0005	-,0008	-,0012	-,0017	-,0027	-,0040	-,0055	-,0081	XXI 0
30		03	, 05	, 01	, 12		, 27	, 39	, 54	, 80	
X 0	,	, 02	, 04	, 07	, 11	, 17	25	, 37	52	, 76	XXII 0
Xr 30	, 00	- 02	, 04	, 07	, 10	, 15	22	\|, 34	, 45	, 66	30
XI 0	, 00	, 02	, 04	, 06	, 09	13	20	, 29	, 37	, 54	XXIII 0
30	00	02	03	05	07		16	22	28	, 38	30
XII 0	,0000	-,0001	-,0002	-,0003	-,0005	-,0007	-,0011	-,0014	-,0017	-,0021	
XIL 30	, 00	-, 01	-, 01	-, 02	-, 03		-, 06		-, 06	-, 05	30
XIII 0	, 00	$-\quad 00$, 00	, 00	00		00	+, 01	+, 04	$\pm+11$	10
30	, 00	t, 00	+, 00	+, 01	+, 02	+, 02	+, 03	+, 07	+, 14	$4+26$	30
XIV 0	, 00	+, 00	$t, 01$	$+, 02$	+, 03	t, 03	+, 06	$6+, 13$	+, 21	+-, 38	II 0
30	00	+. 00	t, 01	+, 02	+, 03	+, 04	+, 07	$7 t, 16$	+, 24	$4+, 47$	30
$\begin{array}{rr}\text { XV } & 0 \\ 30\end{array}$, 0000 , 00	,+ 0001 , 01	,+ 0002 , 02	,+ 0003 , 03	,+ 0004 , 05	$4 \begin{array}{r}+, 0005 \\ , 06\end{array}$	+ $+\begin{array}{r}+, 0009 \\ , \quad 10\end{array}$,+ 0017 ,$\quad 17$	$7 \begin{array}{r}+, 0026 \\ , \quad 27\end{array}$	$7 \begin{array}{r}+, 0050 \\ , 49\end{array}$	
XVI 0	, 00	, 01	, 02	, 03	, 05	, 07	, 11	1 , 18	, 28		0
30	, 00	01	, 02	, 03	, 04	, 06	, 10	, 16	, 24	1.39	30
XVII 0	, 00	, 00	, 01	, 02	, 03	, 04	, 07	7 , 12	, 17		$\checkmark 0$
30	00	, 00	, 01		02		,	, 06	, 09	9 , 14	30
XVIII 0	,0000	-,0000	-,0000	-,0000	-,0000	-,0000	-,0000	-,0000	-, 0000	-, 0000	VI 0
30	, 00	, 00	, 01	, 01	, 02		, 04	4 , 06	S , 09		30
XIX 0	, 00	, 00	, 01	, 02	, 03	, 04	, 07	7 , 12	, 17	7 , 28	VII 0
30	, 00	01	, 02	, 03	- 05	, 06	, 10	, , 16	, 24	, 39	30
XX 0	, 00	01	, 02	03	, 05	", 06	, 10	, 18	, 28	, 47	VIII 0
30	00	01	02	03	, 05		10	17	, 27	, 49	30
XXI 0	,0000	-,0001	-,0002	-,0003	-,0004	-,0005	-,0009	-,0017	$7-, 0026$	-,0050	IX 0
30	, 00	, 01	, 02	, 03	, 04	, 05	, 08	8 , 16	6, 24	4,47	30
XXII 0	, 00	00	, 01	, 02	03	04	06	6,13	, 21	1 , 38	X 0
30	00	00	01	01	02		04	4,07	[, 14	4 , 26	30
XXIII 0	, 00	00	00	, 00	00		, 00	0 , 01	1.04	4,11	XI 0
30	,	+, 00	+, 01	+, 02	+, 03	1+, 04	1+, 06	6 +, 06	$1+, 06$	$6{ }^{+}+, 05$	30

A Table of the annual variation of the Precession in Declination.
arg at top the Declination, at the side the A, R. of the Star.

Declin. North. $\quad 0^{\circ}$	30°	50°	60°	65°	70°	750	780	80°	82^{0}	Declin. South.
H. M.	s.	8.	s.	s.	s.	s.	s.	s	s	
XII $0+0000-$	+,0000-	+,0000-	+,0000	$+, 0000-$	+,0000-	+,0000-	$+, 0000-$	+,0000-	$+, 0000-$	00
30 , 06	, 05	, 05	, 05	, 05	, 05	, 05	+, 04	+, 04	+, 03-	30
XIII 00,11	, 10	, 10	, 09	, 08	, 08	, 07	+, 05-	+, 04	, 02	10
30,17	, 15	, 14	, 12	, 10	, 09	, 06	+, 03-	, 00	- $03+$	30
XIV 0,22	, 20	, 17	14	, 11	, 09	, 04	$-\quad 01+$, 06+	-, $12+$	II 0
30,27	, 23	19	, 15	, 11	, 08	, 00	$-07+$	14+	- $24+$	30
XV 0 O,+ 0032	$+, 0026$	+,0020	+,0015-	+	$+, 0005$	$-, 0005+$	-, 0014 +	-, 0023+	$-, 0037+$	III 0
30,36	, 28	, , 21	, 14	, 10	+, 02-	, 11	, 22	, 34	, 51	30
XVI 00,39	, 30	, 21	13	, 09	$-, 01+$, 16	, 30	, 45	, 65	$1 V 0$
- 30,41	, 32	, 21	13	, 07	$.04$, 20	, 36	, 54	, 78	30
XVII 0	- 33	, 22	, 12	, 04	, 07	, 24	, 4l	, 60	86	V 0
30 , 44	, 33	, 22	, 12	, 04	, 08	, 26	, 44	, 63	, 92	30
XVIII $0+0045-$	+,0033-	+,0022	+,0012	+, 0003-	$-, 0009+$	-,0028+	$-, 0047+$	$-, 0066+$	$-, 0093+$	VI 0
30,44	, 33	, 22	, 11	, 03	, 08	, 26	, 44	, 63	, 92	30
XIX 0	, 33	, 22	, 12	, 04	, 07	, 24	, 41	, 60	, 86	VII 0
[30	, 32	21	, 12	06	, 04	, 20	, 36	, 54	, 78	30
XX 0 , 39	, 30	, 21	13	09	, 01	, 16	30	45	65	10
30 , 36	, 28	21	14	10	, 02	11	, 22	, 34	, 51	30
XXI $0+0032-$	+,0026-	+,0020	$+, 0019$	+,0011-	+,0005-	$-, 0005+$	$-, 0014+$	-,0023+	-,0037+	IX 0
30 , 27	, 23	, 19	, 14	, 11	, 08	, 00	-, $07+$	$-14+$	-, 24+	30
XXII 0	, 20	, 17	, 14	, 11	, 09	+, 04-	$-01+$	$-06+$	$-12+$	X 0
XXII 30,17	, 15	, 14	, 12	, 10	, 08	, 06	+, 03-	, 00	$\cdots, 03+$	30
XXIII 01,11	, 10	10	09	, 08	08	, 07	+, 05-	$+, 04-$	+ +, 02-	XI 0
30 , 06	, 05	05	05	, 05	, 05	, 05	+, 04-	+, 04-	+, 03-	30
$00-0$	$-, 0000+$	-,0	$-, 0000+$	-,0000+	$-, 0000+$	$-, 0000+$	$-2,0000+$	$-, 0000+$	$-, 0000+$	XII 0
30 , 06	, 06		, 06	, 06	, 07	, 07	, 08	, 08	, 09	30
I 10	, 12	, 13	, 14	, 14	, 15	, 16	, 17	, 19	, 21	III 0
$\begin{array}{lll} 30 \\ \hline \end{array}$	18	, 20	$, 22$, 23	, 25	, 27	, 30	, 34	, 38	30
II 00,22	, 25	28	, 31	, 33	, 36	, 40	, 45	, 50	, 57	XIV 0
30 , 27	, 31	, 35	, 40	, 43	, 47	, 54	, 60	, 68	, 79	30
III 0 -,	-, 0	$-, 0043+$	$-, 0049+$	-,	-, 00,58+	$-, 0068+$	-,0076+	-, $0086+$	$-, 0101+$	XV 0
30, 36		, 50	, 57	, 61	, 68	, 081	, 091	, 104	, 121	30
IV 0,39	, 48	, 56	, 64	, 70	, 79	, 093	, 106	, 121	, 140	XVI 0
T 30,4$]$, 52	61	, 70	77	, 88	, 103	, 119	, 134	150	30
V 0, 43	, 55	, 65	, 75	, 82	, 93	, 111	, 130	, 146	, 170	XVII 0
$30 \mid$, 44	, 56	67	77	, 85	, 97	, 116	, 135	, 152	, 180	30
VI $0-, 0045$	-,005	-,00	-,0078	$-, 0086+$	$-, 0098+$	-, 0117+	$-, 0136+$	$-, 0155+$	$-, 0183+$	XVIII 0
30,44	, 56	, 67	, 77	, 85	, 97	, 116	, 135	, 152	, 180	30
VII 0	, 55	, 65	75	,, 82	, 93	, 111	, 130	, 146	, 170	XIX 0
30 , 41	, 52	, 6I	70	, 77	, 88	, 103	, 119	, 134	, 156	30
VIII 0	, 48	, 56	, 64	, 70	, 79.	, 093	, 106	, 121	, 140	XX 0
30,36	, 43	50	57	, 61	, 68	, 081	, 091	, 104	, 121	30
IX $00-0032+$	-,0038	-,0043	$-, 0049+$	$-, 0052+$			$-, 0076+$	-,0086+		XXI 0
30 $\times \quad 0$	-32	, 35	, 40	, 43	$\text { , } 47$, 54	, 60	, 68	, 079.	XXI 30
X 00,22	25	28	31	, 33	, 36	, 40	, 45	, 50	,057	XXII 0
(30 , 17		20	22	, 23	, 25	, 27	, 30	, 34	,038	30
XIr 0	12	13	14	14	, 15	, 16	, 17	, 19	,021	XXIII 0
301 , 06							08		,009	30

PROPER MOTION OF THE FIXED STARS.

In Vol. III. is given the Mean of the Proper Motions of all the Stars in the Catalogue, (3005 in number) both in Right Ascension and Declination : and from what there appeared to be-a tendency to exhibit a general proper motion in the whole system of Stars, or more simply, a movement of the Solar System in space, I have been induced to follow up the enquiry with the 2066 Stars which occur in the present volume, and have in a similar manner brought about 2600 Stars from the Catalogue of Volume II., to bear upon the same subject: how far these have succeeded in establishing this point will appear presently;-in the mean time, it may be proper to remark, that in an investigation of this nature, we may imagine that every star is affected with true* Proper Motion, more or less: some Proper Motions from their magnitude, are at once recognized, whilst others from their minuteness, are lost sight of in the errors incident to obser-vations:-we may expect however among the latter class, that-occurring indifferently + or - as the larger proper motions do,-the mean among a great many Stars would approximate to zero, and thereby leave disengaged any apparent Proper motion which might exist; accordingly in the table which now follows, I have given the mean of all the Proper Mutions in Right Ascension for each hour of A. R., omitting only those alluded to in the column "P. M. Stars;"-those Stars in fact whose proper motion exceeds all possible limits of error of observation ; thus ;-the largest error of A. R. found in the Madras Results was in the case of 169 Ceti, which differed $0,52 \mathrm{~s}$. in 1835, from the place determined in 1832 : should the whole of this amount in the way of error, apply to one of the determinations; and should an error to the same amount but contrary direction occur in Piazzi's Catalogue, it would give rise to an error $\pm, \frac{52+, 52}{t}$ in the observed P. M. (t being the date of the Catalogue since 1800): in addition to this, we must take account of the fact, that the Equinoctial Puint assumed by Piazzi in the construction of his Catalogue, was the same as that employed by Dr. Maskelyne; whereas we have employed a zero point $0,20 \mathrm{~s}$, behind this; hence the Comparison of our Catalogue with Piazzi's, ought to exhibit a P. M. in Right Ascension to the amount $\frac{+, 20 s}{t}$; combining this with the above, we may safely assume,-that in either Catalogue-any value found in the Column "P. M. in A. R," which exceeds the limits $\frac{+1,24 \mathrm{~s}}{t}$ and $\frac{-0,84 s}{t}$, is more or less the effect of Proper Motion, notwithstanding the errors of observation : thus we bave

[^13]A Table of the Proper Motions of the fixed Stars in A. R.

On inspecting the several columns in the above table, we perceive (as indeed might have been expected), that the errors incident to observation, combined with the chance excess of + or - true Proper Motion-exert a very power. ful sway over our results; examining the column "Mean," there is however a determination to plus maximum in the neighbourhood of O hours, which is certainly not the effect of chance :-- on referring to the formulæ for the Precession in Right Ascension (c).

$$
c=+46,021+20,043 \text { sin. a tan. } \delta
$$

it is at once evident, that although a slight modification of the assumed General Precession of the Equinoxes, may be necessary; still, the cause of variation throughout this column remains unexplained: with regard to the effect of error in the Precession upon this table; it is necessary to know approximately, the situation of the stars observed: on referring to the Catalogues, it will be found that they are pretty evenly distributed, and that about one half of the whole number in each hour, is situated within $\pm 20^{\circ}$ of Declination; thus,

If we now compute for each hour of \mathbf{A}. R. -the change of annual precession due to each of these 703 Stars from a change of $1^{\prime \prime}$ in the value of the General Precession in Longitude-and then take the means,-they will exhibit to a sufficient degree of accuracy, the nature of the corrections which apply to the column "Proper Motion in A. R." in case the Precession has been wrongly assumed ; thus

Error of the Column "Mean P. M. in A. R." cornsypunting to an error of 1 " in the General Precession in Longitude.

Right Ascension. error in time.

h.	m.		s.
0	30		$=, 063$
I 30		$=, 065$	
II 30		$=, 068$	
III 30		$=, 070$	
IV 30		$=, 071$	
V 30		$=, 072$	
VI 30		$=, 072$	
VII 30		$=, 071$	
VIII 30		$=, 070$	
IX 30		$=, 068$	
X 30		$=, 065$	
XI 30		$=, 063$	
XII 30		$=, 058$	
XIII 30		$=, 055$	
XIV 30		$=, 053$	
XV 30		$=, 051$	
XVI 30		$=, 052$	
XVII 30		$=, 051$	
XVIII 30		$=, 051$	
XIX 30		$=, 052$	
XX 30		$=, 053$	
XXI 30		$=$	

Since then the disposition of the above numbers is not such as to explain the various values found in the column " Proper Motion in A. R.;" we will now consider what effect a motion of the Solar System in space would have upon the question : in the first place we notice with regard to its general effect-that there would be two opposite neutral points, situated in the axis of motion, and that at right angles to this-there would be a plane of maximum motion:with regard to its effect upon our results for the A. R.-it is necessary to consider again the position of the Stars constituting the results : on consulting the table at page CXVII, it appears that the whole of the Stars may roughly be supposed-to be congregated about a circle of 15° of North Declination, or surrounding the pole at a distance of 75° from it: with this view of the subject, we perceive that our results should exhibit two zero points, and one of + , and another of - maximum; and moreover, that the mean of the 24 results
should $=0$; on taking the mean however, it comes cut $+s, 0025$: exhibiting with reference to the above table,-that the General Precession in Innmilurle should be increased $0^{\prime \prime}, 0416$;* If we now apply to our results the corrections due to this, and convert them into space, we have as follows-

Observed General Proper Motion of the Fixed Stars in A. R.

A.		P. M. Space		P. M. in arc of a great circle.
h.	m.	,		"
0	30	+,0420	or	+,0368
I	30	+,0315		+,0266
II	30	-,0015		-,0000
III	30	-,0060		-,0026
IV	30	+,0090		+,0101
V	30	-,0195		-,0139
VI	30	-,0165		-,0114
VII	30	-,0225		-,0173
VIII	39	-,0135		-,0101
IX	30	-,0240		-,0190
X	30	-,0165		-,0127
XI	30	-,0105		-,0076
XII	30	-,0030		-,0024
XIII	30	-,0315		-,0254
XIV	30	-, 0255		-,0203
XV	30	-,0090		-,0077
XVI	30	-,0495		-,0393
XVII	30	-,0165		-, 0140
XVIII	30	-,0090		-,0076
XIX	30	+.0090		+ ,0089
XX	30	+ ,0240		+,0203
XXI	30	+,0345		+,0444
XXII	30	+,0345		+,0304
XXIII	30	+,0420		+,0368

The reduction into arc, has been effected with reference to the table at page CXVII on the supposition that the Declination of each group of Stars is constant, or the P. M. in arc $=$ P. M. in space $\times\left(\underline{26 . \cos 42^{\circ} 30^{\prime}+\frac{42 . \operatorname{cos.35}}{703}+31 . \cos .+8 c .}\right)$

We will now leave the above table for the present, and proceed to take notice of the Annual Proper Motion in Declination. Taking the Means in each hour of A. R. we obtain as follows.

[^14]A Table of the dyserved Proper Motion of the Fixed Stars in Declination.

Vol. 11. for 1832;-2881 Stars.				Vol. III. for 1834 ;-3003 Stars.			Vol. IV. for 183\% ;-2066 Stars.		
A. R.		No. and $+\&-\mathrm{P} . \mathrm{M}$	Mean.		No. and sum of $+\&-$ P. M.	Mean.		$\begin{aligned} & \text { No. and sum of } \\ & +\&-\mathrm{P} . \mathrm{M} . \end{aligned}$	Mean.
H.									
0	6	$\begin{aligned} & 32=+2,10 \\ & 67=-6,30 \end{aligned}$, ,0424	5	$\begin{aligned} & 29=+0,99 \\ & 43=-3,73 \end{aligned}$	-,0381	1	$\begin{aligned} & 43=+2,03 \\ & 80=-6,19 \end{aligned}$	-,0338
I	7	$41=+2,11$ $52=-5,41$,0355	2	$48=+2,28$ $60=-5,37$	-,0286	2	$30=+1,69$	-,0187
II		$20=+0,95$,0688	7	$37=+2,51$		2	$29=+1,76$, 0149
11	9	$74=-7,42$		7	$61=-5,97$		2	$30=-2,64$	49
III	3	$27=+1,47$ $72=-6,39$	-,0497	7	$\begin{aligned} & 41=+1,90 \\ & 62=-5.03 \end{aligned}$	-,0304	3	$\begin{aligned} & 20=+1,19 \\ & 30=-2,55 \end{aligned}$	-,0272
IV	9	$\begin{aligned} & 32=+1.76 \\ & 97=-10,23 \end{aligned}$	-,0657	5	$\begin{aligned} & 51=+3,19 \\ & 70=-6,36 \end{aligned}$	-,0262	2	$\begin{aligned} & 28=+1,70 \\ & 27=-2,18 \end{aligned}$	-,0087
V	9	$38=+1,95$,056	3	$53=+3,96$ $74=-699$	-,0239	4	$38=+1,96$ $30=200$	-,0007
		$\begin{aligned} & 88=-9,04 \\ & 29=+2,37 \end{aligned}$			$74=-6,99$ $72=+4,56$			$30=-2,00$ $28=+2,31$	
VI	8	$29=+2,37$ $76=-6,14$,0359	10	$79=-7,61$	2	1	$38=-3,22$	-,0138
VII	2	$\begin{aligned} & 32=+2,25 \\ & 69=-6.41 \end{aligned}$	-,0412	5	$\begin{aligned} & 59=+2,96 \\ & 89=-7,49 \end{aligned}$	-,0306	1	$\begin{aligned} & 29=+2,08 \\ & 33=-3,25 \end{aligned}$	-,0189
VIII	3	$22=+1,31$	-,0511	2	$30=+1,70$		2	$25=+1,12$ $40=2$	84
	-	$67=-5,86$ $16=+1,32$		2	$76=-6,31$ $31=+1,36$				
IX	6	$10=+1,32$ $58=-5,29$,053	3	$31=+1,36$ $75=-5,55$	-,0395	1	$23= \pm 2,20$ $37=-2,65$	-,0170
X	5	$20=+1,13$,0667	2	$39= \pm 1,55$ $79=-8,19$	-,0563	2	$11=+0,65$	-,0449
XI	5	$23=+0,74$	- ,0568	6	$28=+1,45$,0599	1	6-+ 0,31	
		$55=-5,25$						$36=-3,76$ $10=+39$	
XII	5	$\begin{aligned} & 22=+0,96 \\ & 60=-5,59 \end{aligned}$,0565	3	$\begin{aligned} & 51=+3,47 \\ & 87=-8,14 \end{aligned}$	-,0338	2	$10=+0,39$	-,0814
XIII	7	$\begin{aligned} & 18=+0,95 \\ & 68=-6,81 \end{aligned}$	-,0681	2	$\begin{aligned} & 46=+2,57 \\ & 90=-7,45 \end{aligned}$	-,0359	6	$\begin{aligned} & 24=+1,31 \\ & 52=-4,27 \end{aligned}$	-,0389
XIV	13	$21=+1,48$	-,057	5	$\begin{aligned} & 41=+1,91 \\ & 90=-8,13 \end{aligned}$	-,0475	2	$\begin{aligned} & 10=+0,42 \\ & 43=-3,82 \end{aligned}$	-,0642
		$5=-1,96$ $23=+1,28$			$31=$ 31			$16=-3,47$	
XV	18	$70=-6,48$		3	$72=-6,27$		1	$41=-4,12$	-,0640
XVI	9	$\begin{aligned} & 24=+1,81 \\ & 73=-8,07 \end{aligned}$	-,0645	6	$\begin{aligned} & 38=+1,94 \\ & 95=-10,41 \end{aligned}$	-,0637	1	$\begin{aligned} & 18=+0,84 \\ & 44=-3,61 \end{aligned}$	$\}-, 0446$
XVII	15	$21=+1,32$	-,0435	10	$32=+1,25$	$\}-, 0650$	6	$27=+0,92$	-,0616
		$\begin{aligned} & 60=-4,84 \\ & 22=+1,30 \end{aligned}$,0503		$\begin{aligned} & 76=-8,27 \\ & 31=+1,73 \end{aligned}$			$\begin{aligned} & 90=-8,13 \\ & 15=+0,86 \end{aligned}$	-,0016
XVIII	19	$64=-6,40$	-,0593	4	$31= \pm 1,72$ $76=-8,42$	-,0625	1	$80=-7,61$	-,0710
XIX	19	$29=+1,30$	-,0593	4	$\begin{aligned} & 33=+1,90 \\ & 80=-8,20 \end{aligned}$	$-, 0558$	8	$32=+1,28$	-,0662
XX	6	$40=+2,55$	-,0535	5	$43=+3,03$	-,0476	4	$52=+2,85$ $158=-14,87$	-,0572
XXI	12	$\begin{aligned} & 78=-8,86 \\ & 26=+1,73 \end{aligned}$,- 0535 -.0586	5	$\begin{aligned} & 85=-9,12 \\ & 33=+1,50 \end{aligned}$	-,0476	4	$158=-14,87$ $53=+2,76$	-,0572
XXI	12	$\begin{aligned} & 26=+1,73 \\ & 75=-7,65 \end{aligned}$	-. 0586	2	$\begin{aligned} & 33=+1,50 \\ & 78=-7,76 \end{aligned}$	-,0564	3	$\begin{aligned} 53 & =+2,76 \\ 130 & =-11,97 \end{aligned}$	$\}-, 0503$
XXII	9	$\begin{aligned} & 27=+1,65 \\ & 84=-8,36 \end{aligned}$	-,0605	4	$\begin{aligned} & 45=+2,43 \\ & 67=-5,85 \end{aligned}$	-,0354	4	$\begin{aligned} & 29=+1,50 \\ & 51=-4,21 \end{aligned}$	$\}-, 0339$
XXIII	9	$\begin{aligned} & 84=-8,36 \\ & 27=+1,77 \\ & 72=-6,26 \end{aligned}$	-, 0454	3	$\begin{aligned} & 43=+2,59 \\ & 70=-5,58 \end{aligned}$	$\}-, 0265$	4	$\begin{aligned} & 24=+1,41 \\ & 40=-3,64 \end{aligned}$	\} -,0348

Here we find all the results affected with the sign minus, which leads us to enquire what circumstances may affect the Palermo or Madras Observations to account for such a disposition ;-in the first place, the Latitudes l, l^{\prime} of Palermo or Madras, may be wrong; and in the next place the error of the tables of refraction will enter; added to which any error in the General Precession in Longitude, will effect each result by a quantity x. cos. A. R.; or each of the above results may possibly be erroneous to the amount $\frac{d l+d l^{\prime}+d}{t} r+d r^{\prime}$ $+x$. cos. A. R.; which put $=\mathrm{S}+x \cos$. A R.
With regard to the first of these terms, it will be observed-that its effect is constant throughout, for each catalogue; but would be larger upon that for 1832 than that for 1835 or 1836 -in proportion to the value of t (the date since 1800); whereas the term depending upon the A. R., (which is common to each catalogue), being variable throughout the column, to the same extent + , as it is--, will be lost sight of on taking the mean of the 24 hours; thus-taking the mean for the 24 hours of the three catalogues we get

$$
\begin{aligned}
\text { General Annual P. M. in Declination. } & =-, 0544+\frac{\mathrm{S}}{32,5} \\
& =-, 0417+\frac{\mathrm{S}}{35} \\
& =-, 0406+\frac{\mathrm{S}}{37}
\end{aligned}
$$

$$
\therefore \mathrm{s}=+3^{\prime \prime}, 61
$$

With regard to the value of $d l^{\prime}$, we have no evidence to shew the extent of accuracy obtained, we only could have expected and wished, that the results of so great and good a catalogue as Piazzi's had in this respect been free from any serious error: the value $d l^{\prime}$ has already been found at page 73 to be- $1^{\prime \prime}$; which is probably within a tenth or two of a second of the truth; to form an estimate of the value $d r$; it may be safely assumed, that the uncertainty of refraction, for altitudes above 10°-varies as the amount of refraction itself, or nearly as the tangent of the zenith distance of the Star: if then with reference to the table at page cxvii, we compute the value

$$
\underline{26 \tan .41^{\circ} 30^{\prime}}+\frac{42 \tan \cdot 35^{\circ}+31 \tan \cdot 25^{\circ}+8 \mathrm{cc}}{703}
$$

we find, that the uncertainty of refraction for the Palermu, observations is such as would apply to a Star situated $43^{\circ}, 15$ from the zenith; at which place, half a second is certainly the extreme limit of error, or $d r= \pm ", 5$: with regard to the Madras results, the case is much more favorable, for the Stars are so evenly disposed on either side of the zenith, that it matters not what table of
cxxii Proper Motion of the Fixed Stars.
refractions had been employed; hence $d r \equiv 0$ and we have found altogether

$$
\mathrm{S}=3^{\prime \prime}, 61=d l-1^{\prime \prime}, 0 \pm 0^{\prime \prime}, 5 \pm 0 \therefore d l \text { is between } 4^{\prime \prime}, \mathrm{l} \text { and } 5^{\prime \prime}, 1
$$

or it would appear that the Latitude of Palermo is above $4^{\prime \prime}$ less than that assigned to it by Piazzi.

A variation of above $4^{\prime \prime}$ however, and that built only upon very slender grounds,-cannot for the present be admitted; we will therefore substract the mean result of each catalogue from its several constituents' values, and then combine the results according to their weight; when, putting s, for the true correction which remains to be applied to these to render them just; and x for any error which may result from a wrong assumption of the General Precession, we obtain as follows-

A. R.	General P. M. in Declination.	Cord. General P. M. in Declination.
h. m.	No. 1.	No.
030	$s+, 0078+, 991 x$	s-, 0071
[30	+,0172 +, 923	+ ,0038
II 30	+ , 0032 + ,793	-,0083
III 30	+,0099 + ,608	+,0009
IV 30	$+, 0072+, 382$	+,0015
V 30	+,0146 +, 130	+,0127
VI 30	+ ,0216-,130	+,0235
VII 30	+,0139 - ,382	+,0196
VIII 30	+,0037-, 608	+,0127
IX 30	+,0073-,793	+,0188
X 30	-,0121 - ,923	+,0013
XI 30	-,0171 -, 991	-,0023
XII 30	-,0037 - ,991	+,0111
XIII 30	-,0009 - ,923	+,0126
XIV 30	二,0111-,793	+,0004
XV 30	-,0043-,608	+,0047
XVI 30	-,0142 - ,382	-,0085
XVII 30	-,0134 - ,130	-,0115
XVIII 30	-,0190 + ,130	-,0211
XIX 30	-,0160 + ,382	-,0217
XX 30	-,0090 + 608	-,0180
XXI 30	-,0094 + ,793	-,0209
XXII 30	+ , $0019+, 923$	-,0115
XXIII 30	+,0108 + ,991	-,0041

In which s,-if the above error of $4^{\prime \prime}$ in the Palermo Latitude be admitted, $=+, 00595$.

Examining column No. 1, we find a pretty regular determination to + and -, which cannot possibly arise from accident-we notice, that any small correction for error of Precession, such as found at page cxix,-since it interferes in no respect with the general tendency of the numbers, it may be applied or not, at pleasure; to be consistent however, it will be proper to apply the
correction due to an alteration of ," 041 in the General Precession as found at page cxix; viz, thus ",0150 cos. A. R.: thus No. 2. If we now divide the line A, B, Fig. 1 into 24 equal parts, to represent hours of A. R., and, making use of any convenient scale-set off opposite to $0 h .30 \mathrm{~m} . \mathrm{l} h .30 \mathrm{~m} . \& \mathrm{c}$. the perpendiculars $a 1, a 2, \& c$. corresponding to the values given in the table at page cxix, and perform the same for the above table; we get two series of lines $1,2,3$, and $1,2,3$, exhibiting in the firstinstance, the observed annual Proper Motion in A. R., of Stars supposed to be situated at $0 \mathrm{~h} .30 \mathrm{~m} .1 \mathrm{~h} .30 \mathrm{~m} . \& \mathrm{c}$. of Right Ascension, and at a distance of 75° from the North Pole; and in the second case, exhibiting the nature of the annual P. M. of the same Stars in declination, but not its extent. If we now with freedom draw a curve line through each of these serieses of points, conforming as nearly with them as is consistent with the character of a curve; we shall by measuring the ordinates, obtain corrected values of the Proper Motion, thus

Corrected Proper Motion.

h.	in A. R. in are		in Declination.
	m.		
0	30	+,0312	s-, 0100
1	30	+ ,0250	-,0070
II	30	+,0180	-,0020
1 II	30	+,0135	+,0040
IV	30	+,0060	+,0100
V	30	-,0035	+,0145
VI	30	-,0110	+,0180
VII	30	-,0160	+,0190
VIII	30	-,0175	+,0180
IX	30	-,0190	+,0170
\mathbf{X}	30	-,0200	+,0145
XI	30	-,0210	+,0115
XII	30	-,0210	+,0080
XIII	30	-,0200	+,0040
XIV	30	-,0190	-,0015
XV	30	-,0180	-,0065
XVI	30	-,0158	-,0110
XVII	30	-,0115	-,0145
XVIII	30	-, 0045	-,0175
XIX	30	+,0067	-,0195
XX	30	+,0163	-,0195
XXI	30	+,0240	-,0175
XXII	30	+0300	-,0160
XXIII	30	+,0320	-,0140

These numbers it will readily be admitted, have been arrived at in a legitimate way, and they are to all intents and purposes Proper Motions: since then it will not for a moment be contended that they represent "true" or actual Proper Motions of the Stars themselves, we will see how far the supposition of a motion of the Solar System in space will account for the several values;
for this purpose, on the centre P (fig. 3) with the chord of 75° describe a circh. which divide into 24 equal parts, corresponding to the several points at which we have determined the Proper Motions: with reference to the P. M. in A. R. we find, that it arrives at O at about V and XIX hours; whereas to represerat the effect of motion of the Solar System these points should be separated by 12 hours: let us then assume VI and XVIII to reprosent the zero points is A. R., and draw the line VI-XVIII : if we assume the point to which the motion of the Solar System is directed, to be situated any where in the dinsetime P. XVIII, it will at once represent the nature of the above table for the A.R. : for the effect of advancing to any point N, being to increase the are N S. to $\mathbf{N S}^{\prime}$ (in which S. $\mathrm{S}^{\prime}=$ M. sin. N S.) its effect at any point hetwert 18 h. and $6 h$, is to increase the Right Ascension, whereas at the corropmoning points between 6 . and $18 h$. it causes a diminution to the like amount : examining these results, it appears on trial that no single value for M, will satisty both of these tables; if we allow that Piazzis Latitude has been correctly ob. served (and since writing the above, I find in the Nautical Almanar, from latte observations an exact confirmation of the value assigued by Piazzi); then, the distance of the point N from P, comes out between 23° and $24^{\prime \prime}$, a point which is sufficiently enough distinguished, as being the Pole of the liclipftic: with regard to the Declination Proper Motions, - the very improbable result arrived at, at page cxxifrom the mean of the whole 24 hours, teaches us... that little drpendance can be placed upon individual results; and on examining differn tables of Refraction, it will be found, that the various corrections for temperature, which are given in one or other of these, offers a sufficicut explanation for the want of agreement of the P. M. from the Declination ohservations, with that found from the Right Ascensions. Since writing the above, on consultimg the three several results of the table at page exvi-instead of the meran which has hitherto been employed-I find that the determination to 'I and ...maximum is much more strongly marked in the first catalogne than it is in the second; and that the second is more strongly marked than the third: Now this result is precisely the one which should obtain from a motion of the solar system in space; for, on consulting the first catalegue (Vol. II) it will be found to contain several stars of the first and second maguitudes, and a great many of the third and fourth \&c. or it may be assumed, that-...

For the Cataloguc in Vol. II. the average mag. . .5,4

Although in individual instances-the degree of brightness exhibited by the fixed stars cannot be assumed as a measure of their relative distances; still in large catalogues such as the above, it is natural to suppose that-taken en masse, those are nearest to us which are the brightest ; hence the stars in Vol. II. from being brighter-nearer to us-should render a movement of the Solar System in space more apparent than those given in Vol. III or IV: with this view of the subject, the anomalies met with at pages cxxi and cxxii, (where the P. M. in Declination from the three catalmg'l s gave $S=3^{\prime \prime}, 61$ and Piazzi's Latitude above $4^{\prime \prime}$ in error) are fully explained and accounted for : and for the present it may be assumed-that the Solar System is in motion in space, and that its motion is directed towards the North Pole of the Ecliptic; and, exhibiting in the fixed Stars with reference to their average distance (if such an expression can be tolerated), -an annual change of place in Latitude, to the amount + ",059 cos. Lat. of the Star.

Supplimentary Observations and Memoranda.

In the ordinary course of Observing and computing, it often happenedthat an appearance different from ordinary, an error, an omission, or a discordance of some kind or other-has offered, which it was desireable should be placed on record, or, that the matter if doubtful, should on a subsequent occasion be re-examined \&c.-in either of these cases the observing or computing books not offering sufficient accomodation for remarks, and in some cases being in-appropriate,--I have been in the habit of entering into a memorandum book, these circumstances \&c. as they have occurred, and in the course of printing, when opportunity has offered-I have availed myself of its contents;-several of these memoranda which still remain, are for my own private, information and guidance, whilst others again-appear to belong to this work: such as they are, I have thought it best to give them here in the rough manner and order in which they have been made, thus-

Memoranda \&c.

I. Re-examined the N. P. D. of 40 Lyncis r which exhibits a strange disagreement when compared with the Greenwich place-thus

Greenwich plac Madras	observations in	Reduced to Jan. 1, ${ }_{\text {o }}^{1 / 835 .}$			
		1825	54	54	52,76
		1831			58,20
	-	1832			57,45
-		1833			57,38

cxxvi Supplimentary Observations \&c.

		,	"	
1836	March 26	5455	12,01)	56,25
	April 13		10,61 $\} 1836$	
	- 16		10,59	
1837	Feb. 4		11,92 12,08	57,53
	March $\begin{array}{r}18\end{array}$		12,08 11,73	
	7		12,76 1837	
	18		12,69 ${ }^{1837}$	
	19		12,32	
	20		12,84	
	April 13		12,47	

II. No. 171 in II hours is preceded by another Star at 16 seconds, whereas Piazzi says at 12 seconds.
III. No. 152 in IV hours:-Piazzi's Declination probably five minutes in error; examine this.
IV. No. 64 in IX hours is not observed :-I looked for it on the 29th and 30th April 1837 (it being very clear), saw No. 65 but 64 had disappeared.
V. No. 15 in XI hours:-It is very extraordinary that Piazzi has not noticed the star following this at 4-5 seconds, and $23^{\prime \prime}$ to the North.
VI. No. 154 in XII hours :-in Piazzi's Catalogue the A. R. is given $187^{\circ} 36^{\prime} 50^{\prime \prime}, 4$; instead of $187^{\circ} 39^{\prime} 50^{\prime \prime}, 4$ I imagine.
VII. No. 39 in XIII hours:-Piazzi's Annual Precession is erroneous, hence the Right Ascension is probably so too.
VIII. No. 25 in XIII hours:-Piazzi gives diff. Declination between this and the accompanying Star $\quad=16^{\prime \prime}, 9$ whereas from our obs. 1837 May $23=25^{\prime \prime}, 0$

$$
-24=27^{\prime \prime}, 2
$$

IX. No. 12 in XXI hours :-or No. 2511 of R.A.S. C. the Proper Motion is determined by \quad B. \mathbf{F}. with $\mathbf{P}=-1^{\prime \prime}, 09$

- - $\quad \mathbf{P} \quad \mathbf{P}-\mathbf{P}=-0^{\prime \prime}, 60$
X. No. 168 in XVIII hours:-On the 25th April 1837, I observed two stars here, 5^{\prime} North and 0,60 s. following.
XI. No. 53 in XIX hours:-Piazzi says, " 6 ", 2 temporis alia $\mathrm{s}, 9$ æ magnitud. praecedit, 3^{\prime} ad Boream": it now in (1837) differs 7,8 seconds.
XII. No. 106 in XIX hours:-May 3d 1837 I observed two stars here; Piazzi has not noticed this-
XIII. No. 252 in XIX hours :--Two Observations with the Transit give the A. R. $1 m$. or 15^{\prime} different from Piazzi ; in the Catalogue I have through inad vertence supposed our results to be erroneous; but this must be re-examined.
XIV. No. 103 in XX hours :-Piazzi mentions a Star accompanying this, its place now is $\left\{\begin{array}{l}\text { A. R. 20h. } 13 \mathrm{~m} .19,98 s . \\ \text { Dec. }-6^{\circ} 11^{\prime} 58^{\prime \prime}, 25\end{array}\right\}$
XV. No. 221 in XX hours:-Piazzi says " $8^{\prime \prime}$ temporis 6^{\prime} ad austrum alia 8 æ magn. sequitur: I cannot find this Star, but have observed one 20 seconds preceding and 6^{\prime} to the South-examine this again.
XVI. No. 286 in XX hours:-This Star is not to be found in the place assigned from Piazzi's Catalogue; the nearest Star is 10-11 minutes of space distant.
XVII. No. 42 in XX hours:-I re-examined the place of this Star on the 14th September in 1837, when the A. R. January 1, 1837 came out 20 h .4 m . $37,94 \mathrm{~s}$. confirming the large P. M. -, 330s. found in Vol. III.

Errata in the present Volume.

Page 4, line 15, for observations read observation - 57, - 39, - semid. $15^{\prime} 52^{\prime \prime}, 62$ read $15^{\prime} 58^{\prime \prime}, 62$

In the Catalogue No. 124 P. M. A. R. -,+ 905 read,+ 005
183 Mag. - 8 - 6
-- Declin. - No. obs. $2=32^{\prime \prime}, 36$ read $4=20^{\prime \prime}, 92$
709 A. R. - Joh. - 9 .
710 - insert 10h.
1233 Log. d - $-5,9780 \quad-\quad+5,9780$
1235 Log. $d-\quad-\quad+4,5105 \quad-\quad 4,5105$
Page xciv - No.69-Vol. II. - No. 69-Vol. III.
Additional Errata in Vol. II.

In the Catalogne No.	$\begin{array}{r} 21 \\ 109 \\ 147 \\ 155 \\ 157 \\ 274 \\ 701 \\ 805 \\ 989 \\ 1365 \\ 1540 \\ 1690 \\ 1968 \\ 2051 \\ 2110 \\ 2174 \\ 2455 \\ 2456 \end{array}$			read $43^{\prime \prime}, 27$ - $100^{\circ} 52^{\prime}$ - 3,833s. - 1 h .18 m . - 1 h. 19 m . - $2 h .28 \mathrm{~m}$. - $5 h .33 m$. - - it was not obsd. - $102^{\circ} .56^{\prime}$ - $102^{\circ} 16^{\prime}$ - $\overline{110}^{\circ} 38^{\prime}$ a wrong star. - $\quad 53,62 \mathrm{~s}$. - 17 h .47 m . - $18 h .13 \mathrm{~m}$. - 36,32s. - $56^{\circ} 39^{\prime}$ - 29,19s.

Additional Errata in Vol. III.
In the Catalogue at pages $x x$, xxvi, xxxii, xxxiv, xxxviii and xliv, correct the date to 1835 .

*This however must be re-examined.

$$
3
$$

[^0]: *There fell 7,5 Inches, in the course of 12 hours-for the indications of the Barometer see the end.

[^1]: *This is omitted in taking the Mean.

[^2]: * In Vol. III. page 17 line 34 et seq., I have committed an unaccountable mistake and an oversight;-1st in stating the reading of the Reflecting Collimator tolbe $(\mathbf{C}+\mathbf{L}+\mathbf{P}) \times 2$,-and 2ndly, in omiltins a correction due to the want of parallelism of the centre and moveable wires. As the numbers stand in Vol. III. they are however right, or veryincarly so, in consequence of the correction for want of parallelism inmonting to 7 or 8 tenths of a second-nearly that of P;-thus, the reading of the last column or $2 P$, should be $P+^{\prime \prime}, 75 \therefore P=-0^{\prime \prime}, 77$. And for lines 1-5 page 18 the followins should be substituted -

 Illuminating Pivot East, the reading was $+13^{\prime \prime}, 81=(C+L) \quad \times 2$
 West, $\quad-5,43=-\overline{C+L-2 ~} \times 2$
 assuming $P=-0^{\prime \prime}, 80$, we get $L=1^{\prime \prime}, 29 \mathrm{E}$. and $C=5,{ }^{\prime \prime} 61$; whereas from the level Observations we find $L=2^{\prime \prime}$, 11 $E ;$ and, from the Observation of the N. and $S . M a r k s ~ C=6, " 15$, and from inversion $6^{\prime \prime}, 39$.

[^3]: * This is omitted in taking the mean.

[^4]: * Mean A. R. January 1, $\left\{\begin{array}{lccr}1836 & \text { h. } & \text { m. } & \text { s. } \\ 1837 & & 1 & 6,06 \\ 22,15\end{array}\right.$

[^5]: * This is omitted in taking the Mean,

[^6]: *The Greenwich Catalogue here alluded to, refers to that of 720 Stars for 1830 , published in 1829 or 1830 -there have I believe been later catalogues issued from the Greenwich Royal Observatory, but I have not been so fortunate as to obtain a copy.

[^7]: * The regularity of the barometer in inter-tripical climates will permit this mode of proceedure, whereas in a high Latitude; one, or even two tenths of an inch might be lost sight of in the varied amount of atmospheric pressure which is experienced.

[^8]: - Rerromeously stated per zen in Vol. III.

[^9]: * Omitted in taking the Mean ${ }_{\text {. }}$

[^10]: * I was watching the approach of this star to the Moon's dark border, when my attention was arrested by the appearance of a nebulosity, abont as bright as a star of the 6 th magnitude,-situated upon the Moon's disc, at about 4 minutes from the unenlightened cdge;-on referring to a chart of the Moon, the phenomenon evidently proceeded from the spot Aristarchus; I have frequently looked for this appearance during the early age of the Moon, but have never before seen any thing to compare with the brilliancy which 1 have this evening witnessed.
 \dagger The same appearance continues.

[^11]: * See errata.

[^12]: * It has long been a subject of great perplexity to me-that the discordances to be met with among observations, should occasionally so far exceed the probable, and even what one conld suppose the possible limits of error-this complaint however, is not altogether new ; - for, so far' back as 1825, Mr. Pond remarked that the results of observations of the Star Regulus derived from the two Mural Circles at Greenwich, differed, to an amount exceeding that which could reasonably be attributed either to the observers, or to the Instruments; be this as it may - the discordance which here occurs is so singularly large, that it merits particular investigation;-according I have examined and re-examined again and again every figure of the computation, in the hope of finding an error, or some circumstance, whereby the credit of the observer and instrument might be vindicated; the only circumstances which affect the two observations in the one case from those in the other, are-different observers-and, that in the former observations a Lyrce was observed in conjunction with this star (it being in the field with observers-and, that in the former observations a Lyra was observed in conjuyction witter circumstance may mploun hiflius ; but I have noticed, that any disturbance of the observer's attention, such as being hurried to observe a second star, invariably causes lim to note the time too soon.

[^13]: - By the term true" Proper Motion is meant an actual movement of the Star in space with reference to any point we may consider fixed; whereas apparent Proper Motion is such as would result from a movement of the Solar System.

[^14]: * Agreable to the formulx employed in deducing these three catalogues;-the Precession in A. R. for $1830=46^{\prime \prime}, 0206+20,0426 \sin$. $\alpha \tan . \delta$, whereas it would appear from this result, that the proper formulx is $=46^{\prime \prime}, 0587+20,0577 \sin . \alpha \tan . \delta$

