Table of Contents

Introduction
- Background
 - Born–Oppenheimer approximation
 - Approximate methods
 - Independent particle model
 - Configuration interaction
 - Electron correlation
 - Size-extensivity and size-consistency

Occupation Number Representation
- Background
 - Creation and annihilation operators
 - Occupation number representation of operators
 - Evaluation of matrix elements
 - Normal order product of ordinary operators
 - Hole-particle formalism and Fermi vacuum
 - Evaluation of Hamiltonian elements between reference states
 - Normal order product for Fermi vacuum
 - Normal product form of quantum mechanical operators
 - Graphical representation of normal product operators

Perturbation Theory
- Background
 - Rayleigh–Schrödinger perturbation theory: traditional approach
 - Projection operator-based formulation of perturbation theory
 - Brillouin-Wigner perturbation theory
 - Rayleigh–Schrödinger perturbation theory
 - Wave operator-based formulation of Rayleigh–Schrödinger perturbation theory
 - Factorization theorem and cancellation of unlinked terms
 - Choice of zeroth order Hamiltonian H_0
 - Intruder state problems in Rayleigh–Schrödinger perturbation theory
 - Comparison of Brillouin–Wigner and Rayleigh–Schrödinger perturbation theories

Multi-Reference Perturbation Theory
- Introduction
 - Choice of Fermi vacuum and the hole-particle states
 - Multi-configuration self-consistent field method
 - Improved virtual orbital complete active space configuration method
 - Classification of perturbative methods
 - Formal multi-reference perturbation theory for complete model space
 - Multi-reference perturbation theory for incomplete model space
Intermediate Hamiltonian methods
Effective valence shell Hamiltonian method

State-Specific Perturbation Theory
Background
Multi-reference Møller–Plesset second-order perturbation theory
Multi-configuration quasi-degenerate perturbation theory
Complete active space second order perturbation theory
Multi-state complete active space second order perturbation theory

Coupled Cluster Method
Introduction
Single-reference coupled cluster method
Extensivity
Relation with full configuration interaction (FCI) method
Coupled cluster equation for doubles (CCD) and singles and doubles (CCSD) approximations
Evaluation of the matrix elements for the coupled cluster doubles equations
Diagrammatic representation of coupled cluster doubles (CCD) matrix elements
Emergence of many-body perturbation theory from CC method
Other variants of CC theory

Fock Space Multi-Reference Coupled Cluster Method
Background
Choice of wave operator for multi-reference systems
Connectivity of the effective Hamiltonian
Fock space coupled cluster theory for energy difference
Systematic generation of cluster equations for various valence sectors
Equation of motion coupled cluster method
Relationship between FSMRCC and EOMCC
Numerical examples
Intermediate Hamiltonian-based multi-reference coupled cluster theory

Hilbert Space Coupled Cluster Theory
Introduction
State universal multi-reference coupled cluster (SU-MRCC) theory
Development of state-specific theories