A multiwavelength study of the Stingray Nebula; properties of the nebula, central star, and dust

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2016 J. Phys.: Conf. Ser. 728 072011
(http://iopscience.iop.org/1742-6596/728/7/072011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 14.139.159.162
This content was downloaded on 19/10/2016 at 11:56

Please note that terms and conditions apply.

You may also be interested in:

The rapid evolution of the central star of the Stingray Nebula — latest news from the HST
Nicole Reindl, Thomas Rauch, Marcelo M. Miller Bertolami et al.

THE PECULIAR PLANETARY NEBULA 75+35 1.
Walter A. Feibelman

TWO NEW POSSIBLE PLANETARY NEBULAE.
R. A. Fesen, T. R. Gull and J. N. Heckathorn

THE PLANETARY NEBULA HE 1-3.
F. Sabbadin and A. Bianchini

THE PLANETARY NEBULA 164+31.1.
C. Barbieri and J. W. Sulentic

DO WE LIVE IN A SPIRAL NEBULA?
W. W. Campbell

THE GASEOUS NEBULA N. G. C. 346, ETC.
C. D. Perrine
A multiwavelength study of the Stingray Nebula; properties of the nebula, central star, and dust

Masaaki Otsuka1, Mudumba Parthasarathy2, Akito Tajitsu3, and Swetlana Hubrig4
1ASIAA, 11F of Astronomy-Mathematics Building, AS/NTU. No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, R.O.C.
2Indian Institute of Astrophysics, II Block Koramangala, Bangalore 560034, Karnataka, India
3Subaru Telescope, 650 N Aohoku Place, Hilo, HI 96720, U.S.A.
4Leibniz-Institut fuer Astrophysik Potsdam (AIP) An der Sternwarte 12, 14482 Potsdam, Germany
E-mail: otsuka@asiaa.sinica.edu.tw

Abstract. We performed a detail chemical abundance analysis and photo-ionization modeling of the Stingray Nebula (Hen3-1357, Parthasarathy et al. 1993[1]) to more characterize this PN. We calculated nine elemental abundances using collisionally excited lines (CELs) and recombination lines (RLs). The RL C/O ratio (0.20) indicates that this PN is O-rich, which is supported by the detection of the broad amorphous silicate features at 9 and 18 μm By photo-ionization modeling, we investigated properties of the central star and derived the gas and dust masses. The nebular elemental abundances, the core-mass of the central star, and the gas mass are in agreement with the AGB model for the initially 1.5 M_\odot stars with the $Z = 0.008$.

1. Nebular elemental abundances
We performed a chemical abundance analysis using the MPG ESO 2.2-m/FEROS 0.36-0.9 μm high-dispersion spectrum taken on 2006 April and the Spitzer/IRS spectrum taken on 2005 March. The result is summarized in Table 1. The RL C/O ratio (0.20) indicates that this PN is O-rich, which is supported by the detection of the broad amorphous silicate features at 9 and 18 μm By photo-ionization modeling, we investigated properties of the central star and derived the gas and dust masses. The nebular elemental abundances, the core-mass of the central star, and the gas mass are in agreement with the AGB model for the initially 1.5 M_\odot stars with the $Z = 0.008$.

2. Physical properties of the central star and the dusty nebula
Using the photo-ionization code CLOUDY [3], we investigated properties of the central star and the dusty nebula by fitting the near-UV FEROS to the Far-IR AKARI/FIS data.

Effective temperature (T_{eff}) and surface gravity ($\log g$) When we adopted the model atmosphere for yr 2006 with $T_{\text{eff}} = 55 000$K and $\log g = 6.0$ cm s$^{-2}$ by [4] and the distance of 1.6 kpc [4], CLOUDY overestimated the fluxes of higher excitation lines such as [NeIII] and [OIII]. T_{eff} could be cooler than 55 000K; we estimated T_{eff} to be 50.500 K using the nebular [OIII]/Hβ line ratio. We utilized TLUSTY O-star atmosphere [5] and searched for T_{eff} and $\log g$ to match the observations. We set $T_{\text{eff}} = 45 800$K and $\log g = 4.55$ cm s$^{-2}$.

Distance We calculated the post-AGB age of $\sim 379 D_{\text{kpc}}$ yrs using the expansion velocity (21 km s$^{-1}$, from the Hβ line) and the nebula’s outer radius (1.7") measured from the

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Figure 1. (upper panel) Comparison between the CLOUDY model and observational data of Hen3-1357. (lower panel) Closed-up plots for mid-IR wavelength. The mid-IR Spitzer/IRS spectrum shows the amorphous silicate broad features at 9 and 18 µm. We derived the dust mass of $2.2 \times 10^{-4} M_\odot$ and the temperature 50-176 K (grain radius $a = 0.01$-0.25 µm and $a^{-3.5}$ size distribution).

Table 1. Elemental abundances ($\log_{10} \epsilon(H) = 12$). The fourth and eighth columns are the predictions of the AGB star model by [2] for the initially 1.5 M_\odot stars with the $Z = 0.008$.

<table>
<thead>
<tr>
<th>X</th>
<th>$\epsilon(X)$</th>
<th>[X/H]</th>
<th>Model X $\epsilon(X)$</th>
<th>[X/H]</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>11.04</td>
<td>0.11</td>
<td>10.98</td>
<td>Ne</td>
<td>8.09</td>
</tr>
<tr>
<td>C(RL)</td>
<td>8.09</td>
<td>-0.30</td>
<td>8.06</td>
<td>S</td>
<td>6.71</td>
</tr>
<tr>
<td>N(CEL)</td>
<td>7.78</td>
<td>-0.05</td>
<td>7.70</td>
<td>Cl</td>
<td>5.12</td>
</tr>
<tr>
<td>N(RL)</td>
<td>7.81</td>
<td>-0.02</td>
<td>7.70</td>
<td>Ar</td>
<td>6.16</td>
</tr>
<tr>
<td>O(CEL)</td>
<td>8.65</td>
<td>-0.04</td>
<td>8.36</td>
<td>Fe</td>
<td>5.06</td>
</tr>
<tr>
<td>O(RL)</td>
<td>8.79</td>
<td>0.10</td>
<td>8.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HST/WFPC2 F487N image taken in 1998. Supposing that the central star was initially 1.5 M_\odot and the current T_{eff} is ~45 000-55 000 K, the post-AGB age is ~1000-3000 yrs from the predictions of [6]. Thus, we estimated the distance of 2.7-6.7 kpc. Here we set 5 kpc.

Result We compare the observed SED plots and the SED predicted by the model in Figure 1. The calculated gas mass (0.07 M_\odot) and the core-mass (0.62 M_\odot) are consistent with [2], who predict that the initially 1.5 M_\odot stars with $Z = 0.008$ will eject ~0.09 M_\odot during the last thermal pulse and end as ~0.63 M_\odot stars.

References