HYDROGEN DEFICIENT STARS AND RELATED OBJECTS
ASTROPHYSICS AND SPACE SCIENCE LIBRARY

A SERIES OF BOOKS ON THE RECENT DEVELOPMENTS OF SPACE SCIENCE AND OF GENERAL GEOPHYSICS AND ASTROPHYSICS PUBLISHED IN CONNECTION WITH THE JOURNAL SPACE SCIENCE REVIEWS

Editorial Board

R.L.F. BOYD, University College, London, England
W. B. BURTON, Sterrewacht, Leiden, The Netherlands
L. GOLDBERG, Kitt Peak National Observatory, Tucson, Ariz., U.S.A.
C. DÈ JAGER, University of Utrecht, The Netherlands
J. KLECEK, Czechoslovak Academy of Sciences, Ondrejov, Czechoslovakia
Z. KOPAL, University of Manchester, England
R. LÜST, European Space Agency, Paris, France
L. I. SEDOV, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.
Z. ŠVESTKA, Laboratory for Space Research, Utrecht, The Netherlands

VOLUME 128
PROCEEDINGS
TABLE OF CONTENTS

PREFACE ix
EDITORIAL NOTE xi
LIST OF PARTICIPANTS xv

I. INTRODUCTION
W.P. BIDELMAN: Introductory comments 3

II. BASIC DATA
J.S. DRILLING: Basic data on hydrogen-deficient stars (Review) 9
J.S. DRILLING, U. HEBER: Radial velocities of extreme helium stars and of hot sdO stars 23

III HOT EXTREME HELIUM STARS
U. HEBER: Spectroscopic analyses of hot extreme helium stars (Review) 33
A.U. LANDOLT: Photometric properties of the extreme helium stars (Review) 51
U. HEBER, G. JONAS, J.S. DRILLING: High resolution spectroscopy of six new extreme helium stars 67
U. HEBER: Emission lines in high resolution spectra of extreme helium stars 73
C.S. JEFFERY: The peculiar spectrum of the extreme helium star BD −9°4395 81
A.E. LYNAS-GRAY, D. KILKENNY, I. SKILLEN, C.S. JEFFERY: Non-radial pulsations in the extreme helium star HD 160641 87
C.S. JEFFERY, P.W. HILL, K. MORRISON: The period of the extreme helium star BD +1°4381 95
C.S. JEFFERY, U. HEBER, P.W. HILL: A preliminary analysis of the pulsating extreme helium star V 652 Her (BD +13°3224) 101
P.W. HILL, C.S. JEFFERY: The radial velocity curve of V 652 Her (BD +13°3224) 109
A.E. LYNAS-GRAY, D. KILKENNY: The light curve of the pulsating extreme helium star BD +13°3224: further evidence of a decline in the period decrease rate 117
IV COOL HYDROGEN DEFICIENT STARS

D.L. LAMBERT: The chemical composition of cool stars: II—the hydrogen deficient stars (Review) 127
M.W. FEAST: The RCB stars and their circumstellar material (Review) 151
A.E. ROSEN BUSH: Distribution of light minima of R Coronae Borealis type stars 173
S. GIRIDHAR, N. KAMESWARA RAO: Abundance analysis of R CrB variable UW Cen 177
N. KAMESWARA RAO, R. VASUNDHARA, B.N. ASHOKA: Spectrophotometric observations of R CrB during 1972, 74 minima 185
A.V. RAVEENDRAN, B.N. ASHOKA, N. KAMESWARA RAO: Photometric and radial velocity variations of R CrB near maximum light 191
R. SURENDIRANATH, K.E. RANGARAJAN, N. KAMESWARA RAO: Preliminary analysis of the broad He I emission lines in R CrB 199
K. NANDY, N. KAMESWARA RAO, D.H. MORGAN: 3.0 to 3.5 micron spectrum of V 348 Sgr and R CrB 203
J.W. MENZIES: RY Sgr: Can the time of the next deep minimum be predicted? 207
W.A. LAWSON: RY Sgr: Pulsation related phenomenon 211
D. SCHÖNBERNER, U. HEBER: Anomalous UV-extinction and the effective temperature of V 348 Sgr 217
D. SCHÖNBERNER: On the mass and luminosity of V 348 Sgr 221
D.H. MORGAN, K. NANDY, N. KAMESWARA RAO: The Large Magellanic Cloud R CrB star—HV 12842 225

V HYDROGEN DEFICIENT BINARIES

M.J. PLA VEC: Hydrogen-poor binary stars (Review) 231
P. NAGAR, K.D. ABHYANKAR: Hydrogen deficiency in Algol secondaries 251

VI INTERMEDIATE HELIUM STARS

K. HUNGER: Intermediate helium stars: Atmospheric parameters, oblique rotators and shells (Review) 261
P.K. BARKER: Magnetic fields and winds of the intermediate helium stars (Review) 277
A.P. ODELL, S.A. VOELS: Helium-rich stellar atmosphere models for B stars 297
A.P. ODELL: Analysis of the helium strong star HD 37017 301
G. LANGHANS, U. HEBER: SB 939—a new intermediate helium star at high galactic latitudes 309
TABLE OF CONTENTS

VII RELATED OBJECTS

U. HEBER, J.S. DRILLING, D. HUSFELD: UV- and visual spectroscopy of nine extremely helium rich subluminous O-stars 345

D. HUSFELD, U. HEBER, J.S. DRILLING: NLTE-analysis of three extremely helium-rich O-type subdwarfs 353

J. LIEBERT: The origin and evolution of helium-rich white dwarfs (Review) 367

J. LIEBERT, F. WESEMAEL, C.J. HANSEN, G. FONTAINE, H.L. SHIPMAN, E.M. SION, D.E. WINGET, R.F. GREEN: Temperatures for hot and pulsating helium-rich (DB) white dwarfs obtained with the IUE observatory 387

I. SUES: Line band profiles in the spectra of cool magnetic helium-rich white dwarfs 391

VIII IRAS - RESULTS

H.J. WALKER: IRAS results for hydrogen deficient stars (Review) 407

IX THEORY

H. SAIO: Pulsations of hydrogen deficient stars (Review) 425

Y.A. FADEYEV: Theory of dust formation in R Coronae Borealis stars (Review) 441

G. MICHAUD: Diffusion and He overabundances: hydrodynamical implications (Review) 453

D. SCHÖNBERNER: Evolutionary status and origin of extremely hydrogen-deficient stars (Review) 471

A. TUTUKOV: On the origin of helium rich stars 483

P.W. HILL: Summary 489

X APPENDIX

The first helium star was discovered in 1942, the first scientific meeting on the subject, however, took place in 1985. The meeting was hence long overdue for, in the meantime, a substantial amount of material had been accumulated by a rather small, but active scientific community. Hence, it appeared necessary to review the field in order to define the subject, assess its present status and discuss future developments.

Hydrogen deficiency is a widespread phenomenon, occurring in a large variety of stellar and nonstellar objects. It can be readily detected in B stars as these exhibit both hydrogen and helium lines, if the elements are present in appreciable amounts. It becomes less manifest in cool stars, where the temperature is too low to excite helium and where one has to devise indirect methods for proving hydrogen deficiency. Clearly, it was not possible to discuss the whole complex of hydrogen deficiency, i.e. in both stars and diffuse matter, but rather to concentrate on the issue of helium stars.

The scope of the meeting was further determined by the intention to bring together predominantly those scientists who work in the actual field of hydrogen-deficient stars, as it was vital in this first meeting on the subject to set the right accents. To outline this in some detail: the helium stars are divided into two distinct classes, those with hydrogen down by a factor 1000, and those with equal amounts by number of hydrogen and helium. The former we call "extreme helium stars", the others "intermediate helium stars". These two groups represent two totally distinct groups with respect to age, mass and evolution. The extreme helium stars appear to be old, evolved stars with masses of the order of unity, while the intermediate helium stars in most cases appear to belong to rather young or intermediate populations, with masses of the order of 3 solar masses or even main sequence masses. While in the extreme helium stars the helium enrichment of the photospheres appears to be genuine, that in the intermediate helium stars may be the result of diffusion. At least, this subgroup of intermediate helium stars, which has near main sequence star masses, is intimately related to the Ap-stars. However, as we do not want to reiterate the Ap-star physics, a topic that has been dealt with abundantly in the past, we made a cut in the program. We also made a cut at the hot end of the H.–R. diagram for similar reasons: we left out the WR stars, although they are definitively hydrogen-deficient objects. However, their physics differs widely from that of our helium stars, and meetings on WR stars have also been quite frequent in the past. A slight concession was made, however, towards
The white dwarfs as some of these stars are no doubt genetically linked to our helium stars.

The central and most startling problem in the field of helium stars, something which has puzzled us from the very beginning, is how extreme helium stars are formed and how a star of one solar mass may get rid of all its original hydrogen. A few rivalling hypotheses are known but up to now none of them are convincing.

The aim of the meeting was to bring us closer to the answer and discuss paths along which a solution to the above problem can be found, both theoretically and, probably more so, by new methods of observation. To this end, the item "joint discussion" was included in the program, the discussion centering on the point as to whether the Hubble Space Telescope can be used for our key problem. As a result, a number of international collaborative programs have been started during the meeting, comprising further instruments such as IRAS, ESO, CASPEC and, possibly, SEST.

The colloquium was organized by a scientific organizing committee consisting of: J.S. Drilling, M.V. Feast, G.H. Herbig, P.W. Hill, I.M. Kopylov, M. Peimbert, N. Kameswara Rao, D. Schönberner, A.V. Tutukov and K. Hunger (Chairman), and a local organizing committee consisting of: K.R. Anantharamaiah, R.C. Kapoor, P.V. Kulkarni, D.C.V. Mallik, T.M.K. Marar, V.R. Venugopal and N. Kameswara Rao (Chairman). The colloquium was jointly sponsored by the presidents of the IAU commissions 27, 29, 34 and 35. The meetings were held at the famous Lalitha Mahal Palace in Mysore.

The participants are very much indebted to the following supporting organizations: International Astronomical Union; Indian Institute of Astrophysics; Indian National Science Academy; C.Z. Instruments India Pvt. Ltd.; Central Food Technological Research Institute, Mysore; Indian Tourism Development Corporation Jaycees, Mysore; Karnataka Tourism Development Corporation; Tata Consulting Engineers; Vikrant Tyres; Walchandnagar Industries Ltd.

Institut für Theoretische Physik und Sternwarte, Kiel
April, 1986

K. Hunger
EDITORIAL NOTE

Due to technical problems, the transcripts of the discussion recordings were incomplete and occasionally damaged. The editors tried their best to correct for this. It cannot be excluded, though, that in a few cases our printed version does not fully reflect what the speaker intended to state. The editors apologize for this.

Even more regrettable is that for a major part of the contributions the discussions have been lost entirely. This may lead to the impression that no discussions took place, whereas the opposite was the case: there was not a single contribution without discussion. The editors apologize to the authors concerned.

The editors are happy that John Drilling and Phil Hill agreed to compile a list of objects which is reproduced in the Annex. In view of the many newly discovered helium stars, the reports of which are scattered in literature, such a list appears especially important and will add to the value of this volume.
LIST OF PARTICIPANTS

Abhyankar K.D., Osmania University, Hyderabad
Ashoka B.N., Indian Institute of Astrophysics, Bangalore
Babu G.S.D., Indian Institute of Astrophysics, Bangalore
Badalia J.K., Punjabi University, Patiala
Bagare S.P., Indian Institute of Astrophysics, Bangalore
Bhatt H.C., Indian Institute of Astrophysics, Bangalore
Bhattacharyya J.C., Indian Institute of Astrophysics, Bangalore
Balasubramaniam K.S., Indian Institute of Astrophysics, Bangalore
Barker P.K., University Of Western Ontario, Ontario
Bues I., Astronomisches Institut der Universität Erlangen, Bamberg
Drilling J.S., Louisiana State University, Baton Rouge
Deshpande M.R., Physical Research Laboratory, Ahmedabad
Feast M.W., South African Astronomical Observatory, Cape
Garrison R.F., David Dunlop Observatory, Ontario
Gurm H.S., Punjabi University, Patiala
Heber P.W., Institut für Theoretische Physik und Sternwarte der Universität, Kiel
Hill P.W., University Observatory, St. Andrews
Hunger K., Institut für Theoretische Physik und Sternwarte der Universität, Kiel
Jeffery C.S., University Observaory, St. Andrews
Joshi S.C., U.P. State Observatory, Nainital
Jyotsna V., Indian Institute of Astrophysics, Bangalore
Kameswara Rao N., Indian Institute of Astrophysics, Bangalore
Kapoor R.C., Indian Institute of Astrophysics, Bangalore
Kilambi G.C., Osmania University, Hyderabad
Kutty K.R.N., ISRO Satellite Centre, Bangalore
Lambert D.L., University of Texas, Austin
Lawson W.A., University of Canterbury, Christchurch
Liebert J.W., Steward Observatory, Tucson
Lynas-Gray A.E., University College, London
Lyubimkov L.S., Crimean Astrophysical Observatory, Crimea
Mallik D.C.V., Indian Institute of Astrophysics, Bangalore
Marar T.M.K., ISRO Satellite Centre, Bangalore
Mendez R.H., Instituto de Astronomia Fisica del Espacio, Buenos Aires
Michaud G.J., Université de Montréal, Montréal
Mohan Rao D., Indian Institute of Astrophysics, Bangalore
Odell A.P., Institute for Astronomy, University of Vienna
Pottasch S.R., Kapteyn Laboratorium, The Netherlands
Praveen Nagar, Osmania University, Hyderabad
Pugach A.F., Main Astronomical Observatory, Ukrainian
Ramadurai S., Indian Institute of Science, Bangalore
Rangarajan K.E., Indian Institute of Astrophysics, Bangalore
Rao A.R., Tata Institute of Fundamental Research, Bombay
Raveendran A.V., Indian Institute of Astrophysics, Bangalore
Rautela B.S., U.P. State Observatory, Nainital
Saio D., University of Tokyo, Tokyo
Schönberner D., Institut für Theoretische Physik und Sternwarte der Universität, Kiel
LIST OF PARTICIPANTS

Seal P., Indian Institute of Astrophysics, Bangalore
Shylaja B.S., Indian Institute of Astrophysics, Bangalore
Surendiranath R., Indian Institute of Astrophysics, Bangalore
Tapde S.C., Indian Institute of Astrophysics, Bangalore
Tutukov A.V., Astronomical Council of the Academy of Sciences, Moscow
Vardya M.S., Tata Institute of Fundamental Research, Bombay
Vasundhara R., Indian Institute of Astrophysics, Bangalore
Venugopal V.R., Radio Astronomy Centre, Ootacamund
Vivekananda Rao P., Osmania University, Hyderabad
Vyas M.L., Osmania University, Hyderabad
Walker H.J., Queen Mary College, London
Wehlau W.H., University of Western Ontario, Ontario
Wing R.F., Ohio State University, Columbus
HIGHLIGHTS OF THE DISCUSSIONS

It is very easy to make a guess; it is very difficult to prove something.

Tutukov

The unwritten rule whenever a talk on magnetic stars is given: never to ask basic questions.

Liebert

There are no real spectral features, but some spectroscopists never give up.

Walker