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ABSTRACT

Context. The solar limb observations in spectral lines display evidence of linear polarization, caused by non-magnetic
resonance scattering process. This polarization is modified by weak magnetic fields — the process of the Hanle effect.
These two processes serve as diagnostic tools for weak solar magnetic field determination. In modeling the polarimetric
observations the partial frequency redistribution (PRD) effects in line scattering have to be accounted for. For simplicity,
it is common practice to use PRD functions averaged over all scattering angles. For weak fields, it has been established
that the use of angle-dependent PRD functions instead of angle-averaged functions is essential.

Aims. We introduce a single scattering approximation to the problem of polarized line radiative transfer in weak magnetic
fields with an angle-dependent PRD. This helps us to rapidly compute an approximate solution to the difficult and
numerically expensive problem of polarized line formation with angle-dependent PRD.

Methods. We start from the recently developed Stokes vector decomposition technique combined with the Fourier
azimuthal expansion for angle-dependent PRD with the Hanle effect. In this decomposition technique, the polarized
radiation field (I, @, U) is decomposed into an infinite set of cylindrically symmetric Fourier coefficients fgc)K, where
K = 0,2, with —K < Q < +K, and k is the order of the Fourier coefficients (k takes values from —oo to +00).
In the single scattering approximation, the effect of the magnetic field on the Stokes I is neglected, so that it can be
computed using the standard non-local thermodynamic equilibrium (non-LTE) scalar line transfer equation. In the case
of angle-dependent PRD, we further assume that the Stokes I is cylindrically symmetric and given by its dominant
term féo)o. Keeping only the contribution from 1:(()0)0 in the source terms for the K = 2 components (which give rise to
Stokes @ and U), the value of k is limited to 0, %1, £2. As a result, the dimensionality of the problem is reduced from
infinity to 25 for the K = 2 Fourier coefficients.

Results. We show that the single scattered solution provides a reasonable approximation to the emergent polarization
computed using the polarized line transfer equation including angle-dependent PRD and the Hanle effect. While the
full problem is computationally expensive, the single scattering approximation provides a faster method of solution.

The presence of elastic collisions particularly enhances the domain of applicability of this approximation.
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1. Introduction

It is now well established that the Hanle effect serves as
a diagnostic tool to determine the deterministic or tur-
bulent weak magnetic fields on the Sun (see e.g., Stenflo
1982; Trujillo Bueno et al. 2004). The Hanle effect is a
magnetic modification of the Rayleigh scattering spectral
line polarization. The scattering polarization signatures in
strong resonance lines are particularly sensitive to the fre-
quency redistribution mechanism used in their computa-
tion. In the case of Rayleigh scattering, the differences in
Q/I computed using angle-averaged and angle-dependent
partial frequency redistribution (PRD) functions is between
10 % and 30 % (Sampoorna et al. 2011, see also Faurobert
1988). In the presence of weak magnetic fields, Nagendra
et al. (2002) showed that the Stokes U is very sensitive to
the angle-averaging of the redistribution function. However,
these authors used a computationally expensive numerical
method to solve the polarized line transfer equation in-
cluding angle-dependent PRD function and the Hanle ef-

fect. Our aim here is to present an approximate method
based on the concept of the single scattering approxima-
tion (see Frisch et al. 2009; Frisch 2010; Anusha et al. 2010;
Sampoorna et al. 2011) to solve the above-mentioned prob-
lem efficiently.

The problem of angle-dependent PRD is characterized
by intricate coupling between angle and frequency vari-
ables. This makes the evaluation of scattering integrals,
and the solution of polarized transfer equation a challeng-
ing problem. A decomposition technique to reduce the non-
axisymmetric Stokes transfer equation to cylindrically sym-
metric one was developed by Frisch (2007), for the case of an
angle-averaged PRD with the Hanle effect. This technique
was extended by Frisch (2009) to handle angle-dependent
PRD with the Hanle effect. Basically the Stokes vector
(I,Q,U) is first decomposed into a set of six irreducible
components Ig . In the particular case of angle-dependent
PRD, these components are also non-axisymmetric. An az-
imuthal Fourier expansion of the angle-dependent PRD
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functions then allows us to further reduce Ig into an
infinite set of cylindrically symmetric Fourier coefficients
fg)K. This method helps us to construct an infinite set
of integral equations for the Fourier coefficients of the ir-
reducible source vector components. As shown in Frisch
(2010), the problem simplifies when the magnetic field is
set to zero or assumed to be turbulent. In this case, the
Fourier wavenumber k takes only the values £ = 0,1, 2, and

four components fg)K are sufficient to represent the polar-

ized radiation field. As shown in Sampoorna et al. (2011),
the polarized radiation field can be calculated by solving a
set of integral equations for the corresponding cylindrically
symmetric irreducible source vector components. Several
numerical methods are described in this reference: two ac-
celerated lambda iteration (ALI) methods, associated with
either a core-wing or a frequency-angle by frequency-angle
technique, and one scattering expansion method, based on
a Neumann series expansion in terms of the mean number
of scattering events.

For the Hanle effect with an angle-dependent PRD, the
numerical solution is possible only if one truncates the infi-
nite set of integral equations for the Fourier coefficients of
the irreducible source vector components. For the type II
PRD function (frequency coherent scattering in the atomic
rest frame) of Hummer (1962), Domke & Hubeny (1988)
showed that, at least five terms in the azimuthal Fourier
expansion are needed to get a good agreement with the ex-
act value of the function. This implies that the azimuthal
order k takes values 0, &1, +2, +3, and £4, for each com-
bination of K and @ of the irreducible source vector. For
the Hanle problem, K = 0 and 2, with —K < @ < +K.
Hence, we obtain a total of 54 coupled integral equations.
Although they can be numerically solved, it is computa-
tionally demanding. To simplify this numerically difficult
problem, we present an approximate method of solution
based on the concept of a single scattering approximation.

In Sect. 2, we briefly recall the decomposition technique
presented in Frisch (2009) for the Hanle effect with angle-
dependent PRD. In Sect. 3, we derive approximate expres-
sions for the Fourier coeflicients of irreducible source vector
components applying the single scattering approximation.
A generic form for the Hanle scattering redistribution ma-
trix is assumed in Sects. 2 and 3 (see Eq. (4) below). In
Sect. 4, we generalize the results of Sects. 2 and 3 to the
Hanle scattering redistribution matrix derived by Bommier
(1997b, the so-called approximation-IT). Sect. 5 is devoted
to the comparison of results computed using the single scat-
tering approximation with those computed using the per-
turbation method of Nagendra et al. (2002). Conclusions
are presented in Sect. 6. Some technical details are given in
Appendices A and B.

2. A decomposition method for Hanle effect with
angle-dependent PRD

For the sake of clarity, we recall some important equations
from Frisch (2009). The polarized transfer equation for the
Stokes vector can be written in component form as

n % = lp(a) + ) li(r,,9) -

where Q (6, x) is the outgoing ray direction defined with
respect to the atmospheric normal and g = cosf. The line

Si(T,.'L',Q)] , 1=0, 1527(1)

optical depth 7 is defined by dr = —k; dz, where k; is the
frequency—averaged line absorption coefficient, and ¢(x) is
the normalized Voigt function. The frequency z is measured
in units of the Doppler width, with = 0 at the line cen-
ter. The ratio of continuum to line absorption coefficient is
denoted by r. The total source vector is given by

(,D(JU)SLZ'(T, Z, Q) + TSc,i
p(z) +7

where S;; are the components of the unpolarized contin-
uum source vector. We assume that S; o = B,,, where B,
is the Planck function at the line center, and S;1 =S¢ 2 =
0. The line source vector can be written as

Sui(mz, Q) = Gi(r)
/Y{Z il Q o QI B p 20, ) iﬁl

where Q' (6',x") is the direction of the incoming ray de-
fined with respect to the atmospheric normal, and dQ’ =
sin @’ d@’ dx'. For simplicity, we assume that the primary
source is unpolarized, namely that only Go(7) is non-zero,
and it is proportional to B,,. In Sect. 3, we assume a generic
form for the elements of the redistribution matrix in the
presence of a weak magnetic field B given by

Si(T7$7Q) =

; 2)

3)

Rij(z,Q,2',Q',B) = r(z,2',0)P;(Q,Q, B), (4)

where r(z,2',©) is any redistribution function with proper
normalization conditions, such as the type I, II, or III
PRD functions of Hummer (1962), and © is the angle be-
tween the incoming (2') and outgoing () rays. In terms
of the irreducible spherical tensors 7 (i, 2) introduced by
Landi Degl’Innocenti (1984), the Hanle phase matrix ele-
ments can be written as (see Chapters 5 and 10 of Landi
Degl’Innocenti & Landolfi 2004, or Frisch 2007, 2009)

]Dij (97 QI; B)
= T3 Y No (B)(-
KQ Q

For the coefficients J\/gQ, we assume the simple form

NQQ'( )=

where MgQ, are coefficients that describe the effects of the
magnetic field, e the thermalization parameter, Wi the de-
polarizability factors depending on the J-quantum numbers
of upper and lower levels, (6p, xg) the polar angles defin-
ing the magnetic field orientation with respect to the atmo-
spheric normal, and " = 27v1,g, /Aw in standard notation
is the Hanle parameter.

The Stokes vector and the source vector can each be
decomposed into six irreducible components I, Q and SK
that are non-axisymmetric because of the angle dependence
of the PRD function. To describe this angle dependence
of the PRD function, we introduce an azimuthal Fourier
expansion written as (see Eq. (15) of Frisch 2009)

DT, (j, Q). (5)

- 6)I/I/I(-A/té(Q’ (aBJXBJF)7 (6)

k=40
1 : '
r(@2',0) =5 Y (0,20, (7)

k=—o0
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where
2 — dok
27

F®) (z,0,2',0") = (1 + oz

27
x / r(@,0,2',0',x — X' coslk(x — XV d(x —x).  (8)

It is easy to verify that #(¥) = #(=%)  To describe the az-
imuthal dependence of the irreducible components Ig , we
introduce the Fourier decomposition

k=+oc0
1 ~ .

1§ (ra,2) =5 Y I (rz,000" 9)
k=—o0

Assuming a similar expansion for the primary source term
G§, it is easy to show that S5 has an azimuthal expansion
similar to Eq. (9).

The Fourier coefficients fg)K satisfy a non-local ther-

modynamic equilibrium (hereafter non-LTE) transfer equa-
tion

915" (k) K &(k)K
p—— = lp(@) + 71 |1 (r,2,6) - §5'% (7,2,0)] , (10)

where the source term is given by Eq. (2) with 51(,2K and
5’ (k)K instead of S;; and S, ;. Since the continuum is as-

sumed to be unpolarized, S(k)K 200k00K 00@ By,- The
Fourier coefficients of the hne source vector are given by

1L,Q
+oo  pmox( k) .Z' 0 .’L' 0/ k—k')
/ / Z F%QI K'Q" (0 )

K’ QI/

xIGK (r,2',6") sin6' 46’ da,

(k)K

(11)

where the primary source term Gg)K(T) =
200k00k00@Go(T), and k' = k + Q' — Q". For a given
value of k, the values of k' are clearly restricted to
k—4 < k' < k + 4. The non-zero azimuthal Fourier
coefficients are of the form

2

P20 (0) = S (-0 T, 6,075 (1,6,
i=0

where K and K' are both even or both odd. The 7~bK (1,0)

are combinations of trigonometric functions that may be

written as T2(i, Q) = T4(i,0)e'9x. It is easy to verify

that S'I(’BK satisfy the following conjugation property

(kK™ a(—k)K
[560%] = (-1°s{g™.

We note that the range of k values extends a priori from
—00 to +00, thereby giving rise to an infinite set of integral
equations for Sz(,ng (1,2,0). A solution is possible only if we
truncate this infinite set. As already noted in Sect. 1, if we
restrict k to k = 0, &1, 2, +3, 4, we obtain a set of 54
coupled integral equations. Before going into such a difficult
numerical problem, we show in the following section how
the problem can be simplified by using a single scattering
approximation (see Frisch et al. 2009; Frisch 2010).

(12)

(13)

3. Approximate expressions for the Fourier
coefficients S‘l(BK(T, z,0)

First we make the reasonable assumption that Stokes I
is unaffected by the polarization. We can thus describe
Stokes I with I§ only, neglecting the contributions of the
K # 0 terms. For an angle-dependent PRD, I is non-
axisymmetric and can be Fourier expanded as in Eq. (9).
However, as Stokes I is almost independent of the magnetic
field (in the weak field Hanle regime that we consider), we
make a further assumption that IJ is independent of y.
Hence, only the k = 0 term contributes to I§ and we can
write

1~
I~10 ~ 5150’0.

(14)
With these approximations, the irreducible component 510,0
takes a simple form, namely

SlOTa?G ~eBy,, + (1 —¢)
+o0 (0 !
/ / ! a:GxH) (r,2',6")sin @' A9’ dz’,(15)

where r(© = #© /2 and the thermalization parameter
e = I't/(Tr + I'1), with T'g and I'; being the radiative
and inelastic collisional de-excitation rates.

To obtain approximate expressions for the Fourier com-
ponents 5’1(22 of SZ%Q, we apply the single scattering ap-
proximation to Eq. (11), namely we keep in the right-hand
side of this equation only the contribution from féo)o. This
amounts to assuming that ¥’ = K' = Q" = 0. Since
kK =k+Q — Q", we obtain kK = —Q'. Hence, only the
components 5’;}82 with ¥ = 0,+£1,+2 are non-zero. These
25 Fourier components are given by the following approxi-

mate expression
L[ [ et
2 —00 0 (p(:c)

ng)k 00 (‘9,)[8 (r,2',0")sin§' d0' d='.

S0 (1,2,0) ~ N _(B

(16)

The explicit forms of the azimuthal Fourier coefficients

ng)k 00(@) are given in the Appendix A.

The irreducible components S, 127 o and their Fourier com-
ponents for k # 0 are complex numbers. We introduce here
their real components. Following Frisch (2007, Eqgs. (25)
and (26)), we define the real components of S7, to be

1
Sio =5 [Stq + (=18t ¢l (17)

i .
Sio =5 [Sle — (-1t ¢]. (18)

For the Fourier components 5;,22, we use the conjugation

property given in Eq. (13) to define their real components
as

- 112 L
S = 2 [51(22 + (—1)QS,(7_’82] . Q>0 (19)
~ i - o

Slo” = —3 [51(22 - (—1)QS,(,722] , Q>0 (20)
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For k # 0, using the conjugation property of f‘gk_)k’oo(t‘))
(see Appendix A) and of N3 ,(B) (see Chapter 5 of

Landi Degl’Innocenti & Landolfi 2004), we can deduce from
Eq. (16) that

Sx( k)2 _ — Sx(k)2

(—k)2 _
1,0 i Sy

~5y§2. (21)

Combining Egs. (17) and (18) with the azimuthal
Fourier expansion of S/, we obtain

1 x x
S =350 +Si0 " cosx + S cos 2x
_SZ(()lﬁ sinxy — SZ(()Z)Z sin 2, (22)
1~y &x
Sih = 5Sie +Sia" cosx + 55" cos 2
+87 .M sinx + 8, sin2x, Q>0,  (23)
1 . o ~
ST = S+ S onx + SIEP cosy
+§;é(1)2 sin x + S’ZC_Q(2)2 sin2y, Q >0, (24)
where
ax+(k)2 1 x(k)2 x( k)2
Sl Q — 9 [ S ]
ex—(k)2 _ 1 Gx(k)2 _ x( k)2
SZ,Q ~ 9 [ ]
gy+(2 _ 1 [ av(h2 Gy
SZ,Q - 2 [ S ]
1 ~
3§ (k)2 _ [S —k)2 SZS)Z] 7 (25)

for k > 0 and @ > 0. There are 25 non-zero real components
of 55’22. Explicit expressions are given in Appendix B.

4. The Hanle scattering redistribution matrix

In Sect. 2, the decomposition method is presented with an
oversimplified redistribution matrix. Here we show how to
extend it to a standard Hanle redistribution matrix that
takes into account elastic collisions and that the Hanle ef-
fect only operates in the line core.

Using a QED approach, Bommier (1997a,b) derived
the Hanle scattering redistribution matrix including the
effects of elastic collisions for a two-level atom with un-
polarized lower level. For practical applications, she also
presents the so-called approximation-II and approximation-
ITI, where the two-dimensional (2D) frequency space (z, z')
is decomposed into several domains, in each domain the fre-
quency redistribution being decoupled from the polariza-
tion. The approximation-II uses the angle-dependent PRD
functions and approximation-III the corresponding angle-
averaged functions. The approximations-II and III of the
Hanle redistribution matrix were considered in Nagendra
et al. (2002, see also Nagendra et al. 2003), where a per-
turbation method is used to solve the polarized transfer
equations. For approximation-III, a polarized ALI method
based on the core-wing approach was later developed by
Fluri et al. (2003).

For approximation-III, the domains depend on (z, z'),
but for approximation-II they depend in addition on the

scattering angle © between the incoming and outgoing rays
(see Figs. 1 and 2 in Nagendra et al. 2002). Thus, one prac-
tical question that arises when applying the decomposition
technique developed for angle-dependent PRD presented
in Sect. 2 to the case of approximation-II, is how to re-
duce or remove the (x — x') dependence appearing in the
expression of the redistribution matrix given in Eqgs. (90)-
(98) of Bommier (1997b). Here, to circumvent this prob-
lem, we use the angle-averaged domains of approximation-
ITI, together with the angle-dependent redistribution func-
tions of approximation-II. With this simplifying assump-
tion, which as shown in Sect. 5 yields a reasonable solu-
tion, it is straightforward to generalize all the equations
given in Sects. 2 and 3 to handle the approximation-II of
Bommier (1997b). The only difference is that N, now
depends on both z and z'. Therefore in Egs. (11) and
(16), NgQ, should be inside the frequency integral, and

NE (B)F®) (x,6,2',8") should be replaced by
NCIQ(Q’ (ma B)Fgc) (:L'a 0; mla 01)
+ Ny (m, B (,0,2,6"), (26)

where the index m (= 1,2,3,4,5) stands for different (z,
z') frequency domains. The domains relevant to the type-I11
redistribution are represented by m = 1,2,3 and those rel-
evant to the type-1I redistribution by m = 4, 5. Expressions
for the ./\/'gQ, (m, B) can be found in Bommier (1997b, see
also Nagendra et al. 2002, Frisch 2007, Anusha et al. 2011).

5. Results and discussions

Here we validate the single scattering approximation pre-
sented in Sect. 3, by comparing the solutions computed with
this approximation, and those obtained by solving the full
radiative transfer equation with an angle-dependent PRD
and the Hanle effect. For the latter, we use a perturba-
tion method developed by Nagendra et al. (2002). To ob-
tain the single scattering solution, we first solve the scalar
radiative transfer equation with the source term given by
Eq. (15), using an ALI method based on the core-wing ap-
proach or frequency-angle by frequency-angle approach (see
Sampoorna et al. 2011). The scalar intensity I obtained in
this way is then used in Eq. (16) or Egs. (B.1) and (B.2), to
compute the single scattered source vector. A formal solu-
tion then gives the corresponding single scattered radiation
field.

We consider isothermal, self-emitting plane-parallel at-
mospheres with no incident radiation at the boundaries.
These slab models are characterized by (T, a, €, r, Tg/Tg),
where T is the optical thickness of the slab and T'g is the
elastic collisional rate. The depolarizing collisional rate D)
is assumed to be 0.5 x I'g. For all the figures presented in
this paper, a = 1072, ¢ = 1073, r = 0 (pure line case), and
the line of sight is defined by y = 0.11 and x = 0°. The
magnetic field parameters are taken as I' = 1, 8 = 30°,
and xyp = 0°.

In Fig. 1, we compare the single scattered solution
(dashed lines) with the full radiative transfer solution (here-
after, multiple scattered solution; see solid lines) for T' =1
(panel (a)), 100 (panel (b)), and 10* (panel (c)). For brevity,
we only show the Q/I and U/I profiles. The comparison is
carried out for the type-II angle-dependent redistribution
function of Hummer (1962), i.e., with 'y, /T g = 0. We have
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(a) Angle-dependent PRD (T=1)

(¢) Angle-dependent PRD (Tf104)

o

QT (%)
QT (%)

(b) Angle-dependent PRD (T=100)

Q7 (%)

U (%)

Frequency z

Frequency z

6 g8 10 IR 0 24 6 8 10 R
Frequency z

Fig. 1. Comparison of single scattered (dashed lines) and multiple scattered (solid lines) solutions computed with the angle-
dependent PRD. A 1D cut-off assumption is used with z, = 3. The model parameters are (a, €, r, T'r/Tr) = (1073, 1072, 0, 0)
and the magnetic field parameters are (T, 85, xB) = (1, 30°, 0°). The line of sight is represented by p = 0.11 and x = 0°. Panel
(a) corresponds to T = 1, panel (b) to T' = 100, and panel (c) to T = 10*.

used a one-dimensional (1D) cut-off assumption, setting the
Hanle effect to zero for x > z. with 2, = 3. Owing to this
abrupt cut-off, spikes or dents are observed around z = 3
(see Fig. 1). Smoother curves can be obtained by using the
more realistic 2D domains of Bommier (1997b) (see Fig. 3).

Figure 1 shows that the single scattering approximation
can capture the main features of the /I and U/I profiles.
It is the first time that this approximation has been em-
ployed for Stokes U. We can see that it is able to follow
the very non-monotonic behavior of U/I. From a quantita-
tive point of view, we observe at line center that the single
scattering approximation underestimates the polarization
for T = 1 and overestimates it for 7 = 100 and T = 10*.
The transition takes place around 7' = 100. As explained
in Frisch et al. (2009) for the case of complete frequency
redistribution (CRD), this change in behavior is related to
the competition between a limb-darkened outgoing radia-
tion and a limb-brightened incoming one (see also Trujillo
Bueno 2001). In the near wings of /I, the single scat-
tering approximation strongly underestimates the polariza-
tion. We recall that these wings are formed by Rayleigh
scattering. For the angle-dependent case, Sampoorna et al.
(2011) showed that the exact value of @Q/I all along the pro-
file can be obtained by an iterative method incorporating
successive scattering orders (see Fig. 5 in this reference). It
is likely that this method will also be able to improve the
estimation of U/I.

In Fig. 2, we present the single scattered and multi-
ple scattered solutions computed for T = 10*, using the
more realistic 2D domains of Bommier (1997b). Panel (a)
corresponds to the collisionless case and panel (b) to an
equal mix of type-IT and type-III scattering. We recall that
single scattered solutions are calculated with the angle-
averaged domains corresponding to approximation-IIT and
the multiple scattered solutions with angle-dependent do-
mains corresponding to approximation-II. Figure 2 shows
that this simplifying assumption gives solutions that com-

(a) Angle—dependent PRD (/T ,=0) (b) Angle—dependent PRD (I/T,=1)

Q1T (%)

u/T (%)

4 4 6 8 10 12
Frequency z

Frequency z

Fig. 2. Comparison of single scattered (dashed lines) and
multiple scattered (solid lines) solutions computed with
approximation-II of Bommier (1997b). The model parameters
are (T, a, €, 7) = (10, 1073, 1073, 0) and the magnetic field pa-
rameters are (I, 85, xB) = (1, 30°, 0°). Panel (a) corresponds
to collisionless case (I'e /T'r = 0) and panel (b) to an equal mix
of type-II and III scattering (I'g/T'r = 1).

pare reasonably with the corresponding multiple scattered
solutions. The comparison between Fig. 2a and Fig. 2b
shows that the single scattered solution can become a very
good approximation to the multiple scattered solution in
the presence of elastic collisions, particularly at the near
wing maximum in @/I profile. For angle-averaged PRD,
we also have examples of single scattering solutions provid-
ing very accurate approximations (see Fig. 4 of Anusha et
al. 2010).

The comparison of Fig. 2a with Fig. lc suggests that
U/I is very sensitive to the type of cut-off approximation
used. We now discuss this point in more detail. Figure 3
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(a) Single Scattered Solution (b) Multiple Scattered Solution

o

QT (%)
Q1 (%)

o o

UT (%)
I
U/sr (%)

0 2 4 6 8 10 12 0 2 4 6 8 10 12
Frequency © Frequency =

Fig. 3. The effect of three types of frequency domains on Q/I
and U/I profiles computed using angle-dependent PRD func-
tions. Solid lines correspond to the 1D cut-off assumption (z. =
3), dotted lines to 2D square domains (z. = z, = 3), and dashed
lines to the approximation-II of Bommier (1997b). The model
parameters are the same as in Fig. 2a. Panel (a) corresponds
to single scattered solutions, and panel (b) to the multiple scat-
tered solutions.

shows the @Q/I and U/I profiles computed for the colli-
sionless case, and with three types of frequency domains.
The solid lines are computed using a 1D cut-off assump-
tion (z. = 3), and dashed lines with actual 2D domains of
Bommier (1997b). The dotted lines are computed using a
square domain (z. = z!, = 3). Such square domains have
been used by Fluri et al. (2003, see their Fig. 2b). Figure 3a
shows the single scattered solution, while Fig. 3b shows the
multiple scattered solution. Clearly (/I is insensitive to
the type of frequency domains used, while U/I is quite sen-
sitive, particularly in the transition region (3 < z < 5).

6. Conclusions

The solution of a polarized line transfer equation with an
angle-dependent PRD and the Hanle effect is computa-
tionally very demanding. To reduce the complexity of the
numerical problem, Frisch (2009) developed a decomposi-
tion technique for angle-dependent Hanle problem. In this
technique, the non-axisymmetric polarized radiation field
is decomposed into an infinite set of cylindrically symmet-
ric Fourier coefficients, by applying an azimuthal Fourier
expansion of the angle-dependent PRD function. Such a
decomposition method allows one to construct an infinite
set, of integral equations for the Fourier coefficients of the ir-
reducible source vector components, the solution of which
is possible only if we truncate this infinite set. Although
the truncated integral equations can be numerically solved,
this solution is still computationally demanding (at least
54 integral equations need to be solved simultaneously).
Therefore, to simplify the problem, here we have presented
an approximate method of solution, based on the single
scattering approximation. An approximate solution can be
obtained by keeping only the contribution of the zeroth or-
der Fourier coefficient, namely, féo)o in the source terms for
the K = 2 components (see Eq. (16)), which are responsi-
ble for the generation of Stokes ) and U. As a result, the

number of Fourier coefficients reduces to 25 for K = 2 com-
ponents. The Stokes I in this approximation is assumed to
be cylindrically symmetric and decoupled from Stokes @
and U, so that it is computed through a solution of the
scalar non-LTE transfer equation with an angle-dependent
PRD function. An ALI method associated with a core-wing
technique or frequency-angle by frequency-angle technique
is used to solve this scalar transfer problem (see Sampoorna
et al. 2011).

We have presented the single scattering approximation
for a Hanle scattering redistribution matrix with (i) 1D
cut-off assumption (see Sect. 3) and (ii) the more realis-
tic frequency domains (see Sect. 4) introduced by Bommier
(1997b). We show that the single scattered solution pro-
vides a reasonable approximation to the emergent solutions
computed by solving the full polarized line transfer equa-
tion with angle-dependent PRD and the Hanle effect. To
compute the full solution, we use a perturbation method
developed by Nagendra et al. (2002). While the perturba-
tion method used by Nagendra et al. (2002) is computa-
tionally expensive, the single scattering approximation pre-
sented here provides a rapid method of solution. For exam-
ple, for T = 10* with 41 depth points, seven p points (eight
X points required only in the case of perturbation method),
and 39 frequency points, the perturbation method requires
24 minutes with 2.7 G Bytes of memory, while single scat-
tered solution can be computed in 20 seconds with 22 M
Bytes of memory, on a Sun Fire V20z Server, 2385 MHz,
with a Single-core AMD Opteron processor.

The differences between single scattered and multiple
scattered solutions for angle-dependent, as well as angle-
averaged PRD are somewhat similar to those for CRD in
the line core region. In the case of an angle-dependent and
an angle-averaged type-II PRD function, the differences are
particularly large at the near wing maximum in Q/I (see
Fig. 1c¢). This difference is reduced in the presence of elas-
tic collisions (see Fig. 2b). Thus, elastic collisions seem to
expand the domain of applicability of single scattering ap-
proximation. We have also presented the sensitivity of U/I
profiles to the choice of different frequency domains (see
Fig. 3).

The single scattered solution presented in this paper
can be improved by including higher orders of scattering.
Such a method was presented in Frisch et al. (2009) for the
Hanle effect with CRD, and in Sampoorna et al. (2011) for
Rayleigh scattering with angle-dependent PRD, where it
was referred to as “scattering expansion method”. It is also
possible to construct such a scattering expansion method
for the case of Hanle effect with an angle-dependent PRD
discussed in this paper. The single scattered solution should
be seen as an ‘approximate solution’ to the exact solution,
and can be used in many practical applications that do
not require highly accurate solution of this rather difficult
problem, involving angle-dependent PRD matrices.
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Appendix A: The azimuthal Fourier coefficients f‘(lng,OO

The azimuthal Fourier coefficients f%}%’@, are defined in Eq. (12). It is easy to verify that they satisfy the properties

[ .(’?Q I?')Q'] —I‘&?,Q,Q&@ (A1)
BE Sk g = (1% 1 2] - (A.2)

In this Appendix, we give only those Fourier coefficients that are of relevance to the problem at hand, namely those
corresponding to K’ = @' = 0. Owing to the above-mentioned symmetry relations, there are only four independent
coeflicients, which are given by

D% 0.00(8) = (=1)27&(0,0). (A.3)

If we chose the reference angle v = 0 (see Landi Degl’Innocenti & Landolfi 2004), then from Eq. (A.6) of Frisch (2010), it

is clear that ’7~'QK (0,0) are real and hence that I‘% )Q 00(0) are also real. Using Eq. (A.6) of Frisch (2010) in our Eq. (A.3),
we obtain the explicit form for these coefficients

1
F(O) — 1 F(O) 3 2 _ 1 ,
00,00 20,00 — 2\/5( H )
1 ~ (-1 V3
g )1 ,00 = _Fgl,o)o = 9 MV 1—p?,
V3
5500 = Do = (1= 4. (A4)

Appendix B: The explicit form of the real components of 5‘;’82

In this Appendix we list the explicit analytic forms of the 25 non-zero real components of 51(22, defined in Egs. (19),
(20), and (25) of the text. For K = 2, we define

+oo (k:)
Z¢M, == / / il 0 PE@ 8T ) f W @V, 8 sind’ a8’ da'. (B.1)

We can express all the 25 non-zero real components of S Gk ) in terms of Z, (k )k as follows:

S = RING) 250 St = RING ﬂzé”l,

S = RING] 252, S10 = SINGL Zz3Y,

ST = SING_a) 282 S = RING] 250,

SEMT = IR - NBIZD; ST = DRINE, + NG 2,
ST = SR HAMLIZE; ST = LS - AL 2,
S = RING) 289 SHMT = SR, - A2,
Slx;(z)z = %%[ 22t ]Z2(2)27 5?:2_(1)2 = % NG + N5 1]2(1)
S = JSING, - MZ o] 22y S = SN2,

SO = SR, -ARIZY: ST = JSINEL + MBI ZE,
S = CRNE L+ ARIZD: ST = DRIV, - MBI 2,
I = SN 250 STEU? = LSl - MG 20,
S’ly,;@p = %g[ 5 o+ N3] 22(2_)2§ 5,;;(1)2 = 1%[-/\/'2 1+ 221]Z§1_)1,
9;5@)2 = %éR[ 52— N3] 22(2_)2- (B.2)



M. Sampoorna: Single scattering approximation for the Hanle effect with angle-dependent PRD

The above equations are valid for z < z. in the case of a 1D cut-off assumption. For z > z., we have to set /\/’57 B =
Wa(1 — €)dg—k- In the case of approximation-II, the various Nf% » appearing in the above equations should be taken
inside the frequency integral appearing in Eq. (B.1), and Egs. (106)—(113) of Bommier (1997b) have to be used.

The various Né_ « appearing in the above set of equations are given by Eq. (6) in the case of the 1D cut-off assumption
and Eqgs. (A9)—(A16) of Anusha et al. (2011) in the case of the 2D frequency domains of Bommier (1997b). Below we
give the explicit forms of MgQ, (0B, xB,T) appearing in those equations. We introduce the abbreviations, Cg = cosp,

Sp =sinfp, ¢; = cosxB, §1 = sin xB, c2 = cos2xp, and s = sin 2xp. In terms of the elements of the m" matrix given
below (see also Appendix C in Frisch 2007), we have

C? 52 .
RM3Z,] =mi = 1—3S5T? 1 +BI‘2 +7 +ZF2 ; RIMI | — M3] = —cimas — s3mas,
RIMZ_, + M3y] = crcomas + 8185235 + S2c1Ms + C281M34; RIMZ_,] = —cimia — s1ma3,
=M, + M) = (¢f + 87)maz — 181 (mas — m3); RIMG 5] = camas + s2mus;
S[M3, — Mi_,] = sacimag — c281m3s — creamas + $182Ma4; J[Ma_y] = simiz — c1mas,
%[Mg_l — M§1] = —C1C2M24 — S$182M35 + S2C1Ma5 + C251M34; Q[M(Z)—z] = —s8aMmi4 + CoMys,
%[Mf_2 + Mﬁ] = S201Mg35 — C251M24 + C1C2M34 — S152Mas5; %[M%o] = c1myz — §1M13,
—S[M3; + M3_] = sacimss — cas1mag — c1c2Mas + S182Mas; R[M32] = camug — samys,
SIM3, — M5_,] = —(c5 + 83)mas + casa(mas — mss); SM3g] = —simiz — cimug,
SIMI_ = Mi] = (c] + sT)mas + cis1(maz — mas); RIMS_, + M35] = c3maq + symss,
%[Mf,Q — Mfiy] = —cicamas — 5182Mog + 521 M34 + C281Ms5; %[M%—l + M%l] = C%m33 + 5%m227
SIM3E_, = M3,] = sacimag — c2s1mass + creamas — $182Ma4; J[M3] = —samig — comys,
S[M3E_y + M3,] = —(& + 83)mas — 282 (1mas — Ms3); RIM3G_y — M3,] = —chmss — s3maa,
RIM3 | + M3, ] = cicamss + s159mag + 83¢1Mizs + Ca81Mos, (B.3)
where
3 20% —1 252 3 C?% Sz
— /2 e B _|. _ \/j r|_%s B
2 \[QSBCB [1+I‘2 T iyare)’ s 25PN |1 YA
3 C?% 1+ C% 3 . 1 1
— _52 F2 B B . - _ _SZ CrT _
i \ﬁ’f [1+r2 14402’ s 2°BYEN T4 T 1442’
(1-2C%)* 4S4C% 1-2C% 252
=1-1? . : = —Cpl - )
a2 [ 1+12 14402 mas BEl 1+ T 144
,[1-202  201+C2) 1-20% 202
— _ 1—\2 B B . — r B B
mz = —CpSp { 1+12 © 1q4r2 |’ mas = SeU\ S0 F i)
C? 452 C? 1+ C?
= 1= F2 B B . — SaT B _ B
mas [1+r2+1+4r2 ’ M4 = OB T T2 T 1442’
1 4 C28% (14 02)?
= CpSpT™ - | = 1-T2|2B08 B\
mss = BB [1+r2 1+4r2] mas [1+1“2+ 1+ 4r?
S2 1+ C% S? 4C%
— Opl |-2B B|. —1-12 |28 B B.4
mas = OB [1+I‘2+1+4F2] mss 1402 " 14412 (B-4)



