Report on the Madras Observatory for the year 1898-99.

1. Staff.-The only change in the staff during the year was caused by the resignation of Mr. Sambasiva Pathar, 6th assistant. His place was taken by Mr. Nagaraja Aiyar.
2. Buildings and Instruments.-The buildings and instruments were maintained in good order during the year. The "Shepherd " mean-time clock and the "Shelton" siderial-time clock were cleaned, and the latter was fitted with an attachment for making electrical contacts every second.

Milne's Seismograph, for recording photographically distant earthquakes, was brought into regular use in May, and except from June 4 to August 11 (when the Government Astronomer was absent from Madras), has been in constant operation. The following is a list of the shocks recorded. The time given is the Greenwich mean time, reckoned from midnight, of the beginning of each shock :-

The instrument, though on the whole working well, has given a great deal of trouble and it is intended to move it to Kodaikanal as soon as the buildings there are ready for it. It is anticipated that it will be much easier to work it there than in Madras, since a good rock foundation can be obtained at Kodaikanal instead of the clay foundation in Madras, while photographic difficulties will be much decreased. Prof. Milne approves of the proposed removal of the instrument.
3. Time Service.-The time service was maintained as in former years. The time.gun at Fort St. George failed on 14 occasions out of 910 giving a percentage of success of $98 \cdot 5$. The semaphore at the Port Office failed at I P.M, on five days, but on three of these it was dropped correctly at 2 P.M. The semaphore was temporarily replaced by a time ball on January 24,1899 . The 4 P.M. signal was received at the Central Telegraph office on every day except one. The number of failures is somewhat larger than usual, but on only two occasions, so far as could be ascertained, did the fault lie at the Observatory. The following table shows all the failures and their causes so far as these could be ascertained :-

4. Observations and Reductions.-The observations for the determination of time were carried on as usual. Four hundred and sixty-three observations of time stars, 84 of azimuth stars, and 107 determination of level and collimation were made during the year.

Observations of the November meteors (Leonids) were made by the Government Astronomer, and Mr. K. V. Siva Ramiah on 4 nights in accordance with the plan of international observations issued by the Harvard College observatory. The results of these observations were forwarded to Prof. E. C. Pickering, and will be published along with the observations made elsewhere. Observations were also made of stars occulted by the moon during the total eclipse of

December 27 , in compliance with a request made by Dr. O. Backlund of the Pulkowa Sternwarte. The observations were partly interrupted by clouds and by the unfavourable position of the moon which towards the end of totality got behind the anemometer staging. The observations were communicated to Dr. Backlund. The preparation of the New Madras Star Catalogue made considerable progress. The press manuscript was completed in August and by the close of the year the first 20 hours were printed off.
5. Library.-During the year 240 books and pamphlets were presented to the library.
6. Kodaikanal Observatory.-As mentioned in last Report the Government of India requested the Astronomer Royal, and Sir Norman Lockyer to report on the various Indian observatories. The former after visiting Kodaika nal approved generally of the plans for the observatory there and made some suggestions for minor alterations which were at once adopted. Sir Norman Lockyer, on the other hand, without visiting the place objected entirely to the plans, and on his return to England represented to the Secretary of State for India that the buildings were "too costly and too permanent" and generally were badly designed and unsuited for their purpose. He went on to point out that "the South Kensington Solar Physics Observatory thus equipped with temporary structures is the most powerful in the world. It does more and better work than the similar institution at Potsdam where the buildings cost $£^{2} 50,000$," and urged that the new buildings at Kodaikanal should be like those at South Keningston "shanties', built of wood and canvas. As a consequence, the Secretary of State telegraphed out that the work on the observatory was to b_{e} stopped till the reports of the Astronomer Royal, and Sir Norman Lockyer had been duly considered.

To any one acquainted with the climatic conditions existing at Kodaikanal the proposal to house valuable instruments in such "shanties," as Sir Norman Lockyer recommended seems as strange as his estimate of the relative value of the work done at South Kensington and Potsdam, and the Government Astronomer protested strongly against his proposals.* Whether or not this protest was forwarded to the Indian Observatories Committee is not known, but the result of the deliberation of the committee was that no reference whatever was made to the buildings and after a delay extending from the beginning of June to the end of October the buildings were allowed to go on according to the designs which had been so strongly condemned. The stopping of the work for so long naturally led to further delay, for not only was the favourable season for building lost and the staff of workmen dispersed, but the Assistant Engineer in charge of the work was given the superintendence of other works in Madura which necessitate his frequent absence from Kodaikanal and the consequent delay of the work there. Hence the buildings which would have been finished before the end of the year are still far from completion.

As it was necessary that the books and instruments which had to be transferred from Madras should be sent up the ghaut in the dry weather, packing was begun in December, and by the end of March most of the cases-more than 1,ooo coolie loads-had reached Kodaikanal. All the cases of books were received before the rain began, and on the whole the removal has been effected with remarkably little damage, considering the difficulties that had to be overcome. The Government Astronomer took up his residence in Kodaikanal towards the end of February as it was necessary for him to be there to advise the Assistant Engineer in charge of the buildings regarding details of the work and to take charge of the instruments on their arrival.

* Since this was written, the rocif of two of the out houses, though well fixed, have been blown off. The corrugated iron being in parts torn off as if it had been little stronger than card board.

7. Meteorological.-The meteorological registers were maintained as in former years. A Richard wet and dry bulb thermograph was set up in January, 1898 , and was maintained in use throughout the year. Special observations of the motion of the upper clouds were continued three times a day, and daily observations were made with the evaporimeter described in last report. The chief features of the meteorology of the year 1898 are shown in the appended tables and diagram. They may be summarised as follows :-

Pressure-was above average in January and August and below it during the other months. The highest mean daily pressure recorded was $3^{\circ} \cdot 143$ on January 29, the lowest 29.484 on July 25.

Temperature-was below average in January, March, September, and October, it was normal in November, and above average during the other months. The highest shade temperature recorded was $109^{\circ} .8$ on May 9 , the lowest was $59^{\circ .8}$ on February 3.

Humidity-was below average in February and above it in all other months. The driest day of the year was May 12 with a mean humidity of only 27 per cent.

Rainfall-was below average in January and from March to July and above average in the other month. The excess for the whole year was $19 \cdot 12$ inches. The rainfall, during the period, 15 th October to 3 rst December, was 43 inches against an average of 26 inches, and a fall last year of only $9 \frac{1}{2}$ inches. The greatest fall on one day was $5^{\circ} 65$ inches on December 26.

Wind.-The wind direction was nearly normal from January to October, but in November it was 3 points and in December 2 points more easterly than the normal. The air movement was below normal throughout the year, the defect being large in March, May, July, September, October, and December. This weakness of the wind is probably partly only apparent and is due to the sheltering effect of the trees in the region surrounding the Observatory-an effect which seems to be slowly increasing.

Cloud and Sunshine.-The percentage of cloudy sky was less than normal in January, March, May, October, and December; it was normal in June and above normal in the remaining months. There were 2,464 hours of bright sunshine during the year out of a total possible of 4,380 hours.

Storms.-The centre of a small cyclone passed a little to the south of Madras on November 6, but no damage was done by it in Madras.

> C. MICHIE SMITH,

Appendix I.

Abstract of the Mean Meteorological Condition of Madras in the year 1898, compared with the average of past years.

Mean values of	1898	Difference from	Average
Reduced atmospheric pressure .	29.849	0.018 below	29.867
Temperature of air - . -	81.4	0.3 above	81.1
Do. of evaporation . . .	754	0.9 do.	$74 * 5$
Percentage of humidity . . .	75	3 do.	72
Greatest solar heat in vacuo . . .	$147^{\circ} 0$	73 do.	139.7
Maximum in shade . . .	$91^{\circ} \mathrm{O}$	0.2 do.	90.8
Minimum in shade . - .	74.3	0.4. below	$74 * 7$
Do. on grass	724	0.5 above	7199
Rainfall since January ist on 102 days	68.14	19'12 do.	$49^{\circ} 02$
Ge neral direction of wind -	S.E.	Same as	S.E.
Daily velocity in miles . . .	151	20 below	171
Percentage of clear sky . . .	52	I above	51
Do. of bright sunshine .	563	4.8 below	$6 \mathrm{I} \cdot 1$

Duration and Quantity of Wind from different points.

From	Hours	Miles	From	Hoars	Miles	From	Hours	Miles	From	Hours	Miles
North.	88	6,13	East.	226	1,199	South.	162	1,133	West.	259	2,12I
N. by E.	162	x,102	E. by S.	366	1,896	S. by W.	224	1,379	W. by N.	268	2,453
N.N.E.	370	2,396	E.S.E.	337	1,721	S.S.W.	232	1,419	W.N.W.	144	1,166
N.E. by N.	486	3,361	S.E. by E.	464	2,887	S.W. by S.	253	I,348	N.W. by W.	72	490
N.E.	391	2,3II	S.E.	389	2,636	S.W.	140	793	N.W.	37	260
N.E. by E.	449	2,630	S.E. by S.	879	6,924	S. W. by W.	184	1,002	N.W. by N.	46	229
E.N.E.	281	1,762	S.S.E.	374	2,780	W.S.W.	221	1,370	N.N.W.	49	235
E. by N.	281	1,610	S. by E.	261	1,645	W. by S.	302	2,18t	N. by W.	66	264

There were two hundred and ninety-seven calm hours during the year. The resultant corresponding to the above numbers is a S.E. by S. wind, blowing with a uniform daily velocity of 39 miles.
Appendix II.
Mean Monthly and Annual Meteorological Results at the Madras Observatory in 1898.

Appendix III.

Appendix IV.

	Janury	February	March	April	may	June	July	.Aygust	September	October	November	Decomber	Annal
				-022	-0.012	-0.016	-0.043	+0.005	-0.005	-0.007	-0.045	-0.004	-0.018
Temperature of air	-0'5	+0's	-0.6	+0.5	+1:5	+0.7	+1\%	+0.8	-0.9	-0'3	Same as	+1/5	+0.3
Do. evaporation	+0'2	-0.2	-0'3	+1/4	+r3	+10	+1'3	+0.8	+10	+1'5	+1/4	+2\%	+0'9
Percentage of humidity	+3	-1	+1	+4	+1	+2	+3	+1	+8	+8	+6	+3	+3
Greatest solar heat in vacuo	+59	+8.0	+9.5	+15\%	$+147$	+9\%	$+6.9$	+7\%	+57	+ I I	+0.1	+4:	+73
Maximum in shade	-0.5	Same as	+0.7	Same as	+2'2	+0.6	+1.8	+1/2	$-2 \cdot 1$	-ro	-1.2	+0.4	+0.2
Minimum do.	$-{ }^{2}$	-13	-3°	$+0.5$	+0.6	+0.6	+0.4	+0. ${ }^{2}$	-1:	-0.6	+0.6	+ro	-0.4
Do. on grass	$-r^{\prime}$	+0'3	-2.1	+1'4	+14	+1:1	+0.8	+o.7	-0.2	+0.6	$+1 \cdot 1$	$+1 \cdot 3$	+0.5
Rainfall in inches	-0.89	+0.21	-0'39	-0.62	-1.47	-0.02	-0.46	+2.58	+3:51	+6.91	+6.92	$+2 \cdot 84$...
Do. since January ist	...	-0.68	-1'07	- ${ }^{1} 69$	-3.16	-3.18	-364	-1.06	+2.45	+9.36	+16.28	+1912	+19.12
General direction of wind	I point N	Same as	1 point W	1 point S	Same as	1 point E	3 points E	2 points E	Same as				
Daily velocity in miles	-5	-3	-25	-13	-33	-14	-28	-10	-38	-26	-19	-25	-20
Percentage of clear sky	+ 10	-7	+14	-7	+10	Same as	-7	-1	-3	+2	-3	+5	+1
Do. bright sunshine	$-1 \cdot 5$	-114	-2.4	-8.2	+2'3	-135	-2.8	$+43$	+ro	-9.5	-147	-2'3	-48

Madras Observatory Meteorological Observations-Abnormals for Monthly Means.

