KODAIKANAL AND MADRAS OBSERVATORIES.

REPORT FOR THE YEAR 1905.

OONTENTS.

I.-Kodaikánal Observatory.
 Page

II.-Madras Obgervatory.

1. Staff 10
2. Time service 10
3. Meteorological observations 10
4. Buildings 10
5. Instruments 10
6. Weather Summary 11

Appendix I.-Seismometer reoords, Kodaikánal 12
" II.-Extreme and mean monthly and annual meteorological results, Kodaikínal14
III.-Mean hourly wind velocity, Kodaikánal 15
IV.-Mean hourly bright sunshine, Kodaikénal 16
V.-Visibility of Nilgiris for clearness of atmosphere 16
VI.-Provisional monthly meteorological means for Kodaikánal 17
VII.-Extreme and mean monthly and annual meteorological results, Periyákulam 18
VIII.-Abstract of the mean meteorological condition of Madras 19
IX.-Number of hours of wind from each point, Madras 20
X. -Number of miles of wind from each point, Madras 21
XI.-Number of inches of rain from eaoh point, Madras 22
XII.-Wind, cloud and bright sunghine, Madras 23
XIIL.-Extreme and mean monthly and annual meteorologioal results, Madras. 24
XIV.- Abnormals from the monthly means, Madras 25

KUDATKANAL AND MADRAS OBSERVATORIES.

I.--REPORT OF THE KODAIKÁNAL OBSERVATORY FOR THE YEAR 1905.

1. Staff.-The staff of the Observatory on the 31st December 1905 was as follows:-

The First Assistant was absent on furlough and extraordinary leave from the beginning of the year till May 29 . The Second Assistant was absent on privilege leave from August 1.5 to September 23. The Third A ssistant was absent on privilege leave from September 24 to December 23. Mr. M. G. Subrahmanya Aiyar of the Madras Observatory staff, who was acting as Third Assistant during the absence of the First Assistant on furlough. was trausferred to the Survey of India Department on May 6 as Magnetic ()bserver here. Mr. S. S. Ramaswami Aiyangar acted for three months as an extra Assistant, and subsequently acted as Fourth Assistant during the absence of the Second and Third Assistants. Towards the end of the year Government, at the request of the Director, sanctioned the addition to the staff of a permanent Photographic Assistant.

The subordinate staff of the Observatory consists of a book-binder and bookbinder's boy, a meehanic, four peous and a boy peon for the dark room, and two lascars.
2. Distribution of work. -The Director takes charge of the spectroheliograph and is helped by the Photographic Assistant. The First, Second, and Third Assistants are also trained to use the instrument if necessary. The First, Second and Third Assistants are in charge of the work with the Cooke equarorial (spectroscopic), the Lerebour and Secretan equatorial (visual), the photoheliograph, the transit instrument, and the seismometer. They have also to do the astronomical computing and the preparation of the observations for the press. The Fourth Assistant has charge of the clock cumparisons and, with the help of the writer, is responsible for the whole of the meteorological work. The writer is responsible for the accounts, correspondence, and all office records.
3. Buildings and grounds-(a) Spectroheliograph building.-This building has continued to give much trouble In the main building venetian shutters have been placed in six of the windows with most beneficial results, but the roof continues to leale in several places. There is no particular difficulty in curing this as a suitable material bas been found for the purpose but for some unexplained reason, and in spite of frequent reminders, only a small part of the work has been done. The sliding roof which covers the siderostat was nearly blown off the rails several times during the south-west monsoon, and had to be temporarily strengthened internally by wooden struts. A design for a new and much smaller roof has been submitted and -sanction for this is now awaited.
(b) Photohelio, raph house.-It was mentioned in last year's report that plans for a new building for the photoheliograph had been prepared. These were sanctioned and the walls of the building have been completed except for the out stone ring which carries the rails. The dome has not yet arrived from the makers. The building consists of a 15 -foot dome with a small dark room on the south side and a porch to protect the door on the north.
(c) Workshop.-The new workshop has been finished and brought into use. The old workshop is now occupied by the book-binder and the old book-binder's shed is used as a store room. These changes add greatly to the convenience of the establishment.
(d) The Fourth Assistant's quarters were completed and occupied, but they still want a fence to keep off straying cattle.
(e) House for the Assistant Director.-Plans and estimates for this were prepared and after much delay have been forwarded to the Government of India for sanction. Work has not yet been begun on the building.
(f) The usual repairs have been carried out and the buildings, with the exception of the spectroheliograph house referred to above, are all in good order.
(g) Grounds.-The roads and paths have been kept in good order, and a number of trees and shrubs have been planted. Much more requires to be done in this direction, but the season was not a favourable one for planting out young trees. A number of seedlings have, however, been raised and if the weather is favourable will be planted out in the coming spring. In January some damage was done to the young trees in part of the compound by a forest fire which swept round nearly half a mile of the boundary of the Observatory grounds. Fortunately the Observatory fire lines were in good order and the long grass had been removed from the chief plantation so that it was found possible to stop the fire soon after it crossed the boundary. Some fifty blue gums were badly burned and had to be coppiced, and a number of young trees were scorched by the heat as much as 50 yards from the point actually reached by the fire. A few of these have died, but most of them have recovered.
(h) The well from which the aermotor pumps was dry for about three months, but a new well had been opened which fortunately proved permanent and yielded an ample supply of water. All the water, however, had to be carried from this well for a distance of a quarter of a mile with a rise of over 100 feet. During the rest of the year the aermotor and pumps gave satisfaction.

[^0]A high class screw cutting turning lathe by Messrs. Cooke \& Sons was received at the end of the year.

The Spectroheliograph.-The spectroheliograph has been in constant use throughout the year and has given satisfaction except as regards the slits. These are of a complicated structure and have proved far from satisfactory. A grain of dust-and dust is sadly too abundant here at certain seasons-throws them out, and it is exceedingly difficult to keep both jaws in the same plane. Various plans have been tried to make them work better with fair success so far as the camera slit is concerned. The collimating slit has been more difficult to correct and a new slit of a simpler design has been asked for. The negative lens for enlarging the image formed by the 12 -inch lens was received on May 9 and was at once set up, but has not been much used. It is not often that the sun's image is sufficiently steady to make it possible to get a really satisfactory enlarged image, and it is only when there is some special feature to photograph that the attempt is made. The want of steadiness in the image of the sun is due to several causes. The most prominent is, doubtless, the unsatisfactory position of the building. Why the present site was chosen is not known as two much better sites were available, but as it is too late to make a change now various attempts have been made to improve the surroundings. Unfortunately the ground surrounding the building is very rocky and it is difficult, if not impossible, to cover it with vegetation. An attempt is being made to cover it as far as possible but this will take time. Inside the large siderostat building blankets and mats have been placed on the floor and a wind screen has been placed near the mirror. These have done some good. Inside the main building the placing of venetian shutters in the windows had a good effect but it was not sufficient. A tube consisting of a wooden frame covered with very loosely woven cloth has been placed between the lens and the photoheliograph and this has made a most marked improvement. When the new building for the siderostat is erected the mirror will be brought much eloser to the lens and it is hoped that this will improve matters still further.

It is not always easy to distinguish between unsteadiness due to parely local conditions and that due to the state of the higher atmosphere, but the contrast between the conditions at the spectroheliograph and at the spectroscope in the dome on the top of the hill is often so marked that there can be no doubt that the trouble at the former is often purely local. Some of the trouble here, as elsewhere, is probably due to deformation of the mirror by heat. This has been reduced to a minimum by keeping a lamp burning under the mirror case all night and by adopting Professor Hale's suggestion of removing the mirror cover only when a photograph is being taken. Changes in focus are usually small.

The inner surface of the back lens of the 12 -inch having become badly covered with fungus the lenses were taken apart and successfully cleaned during the visit of the Director-General in December.

All the other instruments belonging to the observatory are in good order and working well.

OBSERVATIONS.

(a) Solar Physics.

5. The year was, on the whole, a favourable one for solar observations, and there were ouly vineteen days on which no observations were possible. At the same time it should be noted that, especially in the latter part of the year, observations of prominences were to a larger extent than usual interfered with by cirrus clouds. Satisfactory statistics on the subject are not available, but the impression left on the observers is that trouble from this source, in otherwise fine weather, has been distinotly greater than in former years. On the other hand the increased skill of the observers has made it possible to record the prominences on days when the conditions were far from satisfactory. The following table shows for each day the observations that were made.
Solar Observations in 1905.

Solar observations－abstract．

		感	$\begin{aligned} & \text { 发 } \\ & \text { g } \end{aligned}$	品	安	$\stackrel{\text { ® }}{\text { ¢ }}$	$\stackrel{\square}{3}$		告		产		Tutal．
A	30	28	31	29	29	26	30	31.	28	27	26	31	348
B	10	21	18	12	12	16	12	16	3	19	13	23	179
C	28	27	29	25	27	22	24	24	20	23	18	30	297
D	27	28	31	28	28	20	27	29	28	26	24	31	327^{\prime}
E	27	28	31	26	29	23	27	29	24	22	21	30	317

6．Photographs of the sun with the Dallmeyer photoheliograph were taken on 327 days as against 264 in 1904．June was the least favourable month for this work as there were 10 days on which no photograph could be obtained．In February， March，and December there was no day on which a photograph could not be obtained． As a role only one photograph is taken daily．Negatives for 45 days have been sent to the Astronomer Royal at his request．

7．Observations of sunspots．－The sun is examined for spots and faculae every morning when the weather permits．When possible，the sun＇s image is projected on an 8 inch disc，and the positions of the spots and faculae are marked on it． Eye observations are also made of important features．There were only 19 days on which no observations of this class could be made，but on a good many other days the observations were made with diffeulty through breaks in clouds．

8．Sunspot spectra．－Observations！of widened lines in sunspot spectra were made with the Evershed three－prism spectroscope on 179 days．Ubservations of widened lines are made only when the spots are large enough to render the results satisfactory，but on all other days，when the weather permits，the neighbourhood of spots is carefully studied as regards the behaviour of the hydrogen and helium lines． The study of the helium line D_{3} has proved particularly interesting．

9．Prominences．－Prominences were recorded visually on 297 days，but on 47 of these the observations were either not complete or not satisfactory on account of the weather．On some other days，though the whole limb was swept for prominences， the work had to be done hurriedly through breaks in the clouds，and small prominences may have been overlooked．The record of the prominences is made round the dise on which the spots and faculae have been projected．This record is compared next day with the photographs taken with the spectroheliograph and all prominences shown in the photograph but not in the drawing are added in blue pencil．Where there is much difference between the photograph and the drawing the differences are noted on the disc．On a number of days the photographs have rendered it possible to complete the eye record which had been interrupted by clouds．Usually，however， a day on which it is impossible to get eye observations of prominences is one on which good spectroheliograms are also impossible．It has not been possible to derote much time to prominence spectra，and only the most conspicuous bright lines are recorded．

10．Spectroheliograms．－Photographs were obtained with the spectrohelio－ graph on 317 days，but on 47 of these the results were not satisfactory．These failures were due mainly to unsatisfactory weather conditions，but a few of them were due to slit troubles．When the weather is cloudy it is often found to be almost impossible to set the second slit on the H line with sufficient accuracy，and the construction of the slits is such as to render it impossible to use Professor Hale＇s old device of having a small window through which setting can be made on another and more easily seen line．The present setting arrangement is not quite satisfactory and a modified form of apparatus has been asked for．

As mentioned abore，much trouble has been caused by the want of steadiness in the sun＇s image，and the best results are usually obtained early in the forenoon．On some occasions excellent photographs of flocculi have been got through comparatively
thick clouds but，naturally，it is rarely possible to obtain good prominence pictures except with a clear sky．The plan of taking composite pictures of the floceuli and prominences on the same plate with two exposures has been given up as it is found much more satisfactory to take the two on separate plates．If the instrument was fed by means of a coelostat，there might be some advantage in the composite pictures， but when a siderostat is employed，as is the case here，the rotation of the image between the two exposures causes an objectionable displacoment of the one image relatively to the other．On the whole，including plates taken for focussing and other adjustments， 1,177 photographs were taken with the instrument，of which 215 have been rejected for various reasons．An enlarged copy of the best floceuli plate for each day is made on bromide paper，and these are found very useful for reference．Of course，any serious studies must be made on the negatives themselves，but the copies are useful for selecting suitable negatives and as a convenient index to the series． The general results obtained with the instrument may ke described as satisfactory，but the plates are not yet so uniformly good as is to be hoped they will soon be．The various changes which have been made in and about the buildings have undoubtedly done good，and the farther changes which are projected should improve the conditions still farther，while the small instrumental changes which are proposed would greatly simplify the use of the instrument．

Summary of Results．

11．Sunspots．－The following table shows the monthly number of new groups observed，the mean daily number of spots visible，and the distribution as regards the northern and southern hemispheres：－

－		容		荮	豆	䓓	$\stackrel{9}{5}$	官	谚			宮	䔡	Year．
New groups	．	24	26	20	27	27	17	32	28	27	16	29	22	295
Daily number	\cdots	$5 \cdot 8$	$6 \cdot 1$	3.6	3.7	$4 \cdot 3$	3.6	$5 \cdot 0$	$5 \cdot 1$	$4 \cdot 9$	$3 \cdot 3$	6.7	4.0	$4 \cdot 7$
North		13	11	10	14	20	8	17	22	17	11	13	13	169
Soath	－	11	15	10	13	7	9	15	6	10	5	16	9	126

The total number of new groups seen during the year was 295 against 239 in 1904．There were tro days，July 28 and 29 ，when the visible disc was free from spots，and there were 13 days on which only one group was visible．The greatest number of groups seen on any day was 13 on January 14 ．Ten or more groups were seen also on January 14 and 16 and on February 9 to 14.

The distribution of the groups betreen the two hemispheres was again very far from uniform，there being 33 per cent．more groups seen in the northern than in the southern hemisphere．In the two months May and August there were 42 northern to only 13 southern groups．The mean latitude of the spots was less than in 1904， and in September there was a group within 1° of the equator．The most important groups seen daring the year were the following：－

Nos． $449,450,451$ came round the east limb as detached spots on the 10th and 11th January but in two or three days they formed into a continuous train covering 16° of longitude．

$$
\begin{aligned}
& \text { No. }\left\{\begin{array}{cc}
443 & \text { was the largest spot that had been seen for many years. It was } \\
464 & \text { seen during four rotations. It was a disturbe }
\end{array}\right. \\
& \text { seen during four rotations. It was a disturbed spot and was } \\
& \text { associated with very disturbed prominences at both limbs. It } \\
& \text { formed on the visible dise on January } 5 \text { and was last seen on } \\
& \text { April } 5 . \\
& \text { No. } \begin{cases}465 & \text { was seen first from February } 2 \text { to February 14. It returned } \\
491 & \text { to view as a very large spot on March } 1, \text { but soon began tc }\end{cases} \\
& \begin{array}{l}
\text { to view as a very large spot on March } 1 \text {, but soon began tc } \\
\text { grow smaller, and by the time it reached the western limb it }
\end{array} \\
& \text { was reduced to a small dot in a large field of faculae. }
\end{aligned}
$$

No. 547 appeared at the east limb on May 11. It was preceded by intensely bright prominences which were seen for two days. At its maximum. it covered 18° of longitude.
Nos. $\left\{\begin{array}{l}589 \\ 590 \\ 613 \\ 637 \\ 656\end{array}\right.$ in W spots Nos. 589 and 590 came round the limb on July 6, they appeared. to form two separate groups but thess rapidly increased in size and joined together forming one large group consisting of two main clusters joined by a number of small spots. It remained visible during four rotations.
Fos. $\left\{\begin{array}{l}594, \text { came round the east limb on July } 10 \text { and was the largest since the } \\ 690\end{array}\right.$
620 great spot of February. On the 16th the group was at least 120,000 miles long with a maximum width of about 44,000 miles. It was seen during two rotations.
No. 674, which appeared at the east limb on October 14 consisted of a large number of small spots covering about 130,000 miles in length and 65,000 miles in breadth.
No. 676, which appeared on October 22 was also a very large spot group but of a totally different type from 674 as it consisted mainly of one large spot. Both 674 and 676 were easily seen without a telescope.
No. . 708, consisted of a very long train of large spots and was first seen on November 25. It broke up into several groups which extended over some 28° of longitude.
12. Prominences.-As the prominence observations are being published in full in the Bulletins of the observatory it is not necessary to give a complete list here, but a few notes are given on some of the more important prominences of the year.

January.-Prominences were very abundant during this month. The highest noted was on the 22 nd in latitude $+42^{\circ}$ (east). It was 3^{\prime} high. There were four prominences seen of about 2^{\prime} and 13 of about $1 \frac{1}{2}^{\prime}$ high. On the 27 th there was a group of small prominences covering about 20° of the limb, on three days there were groups covering 15°, and on eight other days groups covering 10°.

February.-The tallest prominence that has been observed here was photographed on the 20 th in the calcium line $H,{ }^{*}$, at position angle 45°. When the first photograph was taken at $8^{\mathrm{h}} 36^{\mathrm{m}}$ it had a height of 95,000 miles, another photograph at $9^{\mathrm{h}} 18^{\mathrm{m}}$ showed that it had risen to 108,000 miles, while in a photograph taken at $10^{\text {b }} 14^{\mathrm{m}}$ its height exceeded 162,000 miles, and it had got beyond the limits covered by the spectroheliogram. On the 25 th, 26 th, and 27 th nearly 28° of the eastern limb was covered with bright prominences.

March.-On the lst, where spot No. 491 was coming round the limb, there was a large and rapidly changing prominence which reached a height of about 3^{\prime}, and the next day, near the same place, an eruptive jet was observed to reach a height, of nearly 4^{\prime}. Even on the following day a prominence nearly 2^{\prime} high was seen at the limb near the same place. Prominences more than 2^{\prime} high were observed on the 8 th, 11 th, 13th, and 30th. On the 15th a long series of prominences extended from position angle 230° to 237° and on the 23rd nearly 70° of the eastern limb was covered with prominences.

April. -The tallest prominence seen was one of 2^{\prime} on the 15 th at position angle 59°. On the 14 th about 40° of the limb was covered with short bright prominences none of which exceeded $45^{\prime \prime}$ in height. On the 24 th two great arehes, each corering 8° of the limb and joined in the middle, were photographed in calcium light. These reached heights of $65^{\prime \prime}$ and $70^{\prime \prime}$ respectively.

May.-A large number of conspicuous prominences were observed during this month. There were 50 of or over, 1 ' in height of which 7 were above 2^{\prime}. The most striking display was on the 1st near "the south point of the sun. At $8^{\mathrm{h}} 28^{\mathrm{m}}$ it was about $2 \frac{1}{2}^{\prime}$ high and at $10^{\text {h }} 31^{\mathrm{ma}}$ it reached a height of at least $4 \cdot \frac{1^{\prime}}{2}$. On the same day a large cloud was seen at position angle 10° which at one time was apparently quite detaohed from limb and about $2 \frac{1}{2}^{\prime}$ above it. On the 2ad nearly 50° of the west limb. was covered with short prominences.

June.-There were 27 prominences seen of or over 1^{\prime} in height, of which oneexceeded 3 minutes and two others exceeded 2 minutes. The tallest of these was seen and photographed about 9 o'elock on the morning of the 22 nd . It rose from the sun's limb at position angle 58° and drifted northwards like the smoke from a steamer till it could be traced to a height of 195 seconds over a point on the limb 20° north of where it was issuing. The form changed very rapidly.

July.-There were no very conspicuous prominences seeu during the month. Some 20 exceeded one minute in height and of these only two exceeded 100 seconds.

August.-Prominences exceeding 1^{\prime} in height numbered 44, and on 12 days prominences covering 15° or more of the limb were observed. The tallest prominence seen was one $3 \frac{1}{2}$ high which was photographed on the 15 th. The gas apparently issued at position angle 100° in a nearly vertical jet which reached a height of $90^{\prime \prime}$; it then streamed away northward reaching its maximum height over about position angle 80° where it seemed to settle down again towards the sun's surface. For four days, (10th to 13th), prominences, showing great changes from day to day, covered practically the same part of the limb (position angle $70^{\circ}-90^{\circ}$). On the 30 th, the day of the total eclipse, a group of four prominences about 1^{\prime} in height and joined at the tops formed a very conspicuous feature on the east limb.

September.-This month was a very unfavourable one for prominence work. There were four prominences seen of 100 seconds and upwards. One of these seen on the 10th was a slender arch reaching to a height of $120^{\prime \prime}$ and joining two points of the limb 16° apart. On the 30 th one was seen $140^{\prime \prime}$ high which was particularly bright in hydrogen light and very faint in calcium light.

October.-The daily number of prominences was rather lower than usual, especially towards the end of the month. Prominences exceeding $100^{\prime \prime}$ in height were seen on four days, one on the 17th, two on the 23 rd, one on the 29 th, and one on the 30th. The last two were rather remarkable as they were apparently different parts of one enormons prominence. It reached a height of $165^{\prime \prime}$ on the 29 th and was still $140^{\prime \prime}$ high on the 30 th. On the 27 th and 28th there were lower prominences visible at almost exactly the same latitude.

November.-Prominences were fairly numerous. Four were observed of a height exceeding $100^{\prime \prime}$, one on the 4th, one on the 17th and two on the 18th There was a slightly disturbed prominence on the 3rd, at latitude $+12^{\circ}$ west, which when first seen was $75^{\prime \prime}$ high. Later it apparently rose up bodily and became quite separated from the limb. Metallic prominences were seen on the 1st, $6 \mathrm{th}, 7$ th and 16 th .

December. -The prevalence of cirrus was unfavourable for prominence work. Only one prominence was seen of a height exceeding $100^{\prime \prime}$. This was observed on the 17 th and consisted of a group of tall slanting jets covering about 20° of the limb which attained a maximum height of $120^{\prime \prime}$. Metallic prominences were observed on four days (1st, 6th, 7th, and 9th) and on three of these the prominences were associated with spots.

(b) Other Obshrvations.

13. Time.-Time is determined with the transit instrument when necessary. The standard clock of the observatory is also compared daily with the Madras standard clock by means of the signal sent at 4 P.M. over all the telegraph lines in India. From July 1 all time signals have been sent by Indian Staudard time, 5 hours 30 minutes fast of Greenwich mean time. All observations, from the same daie, have been recorded in Standard time. A time signal is given daily from this observatory by means of a flag at 10 a.m.
14. Meteorology.-Meteorological observations have been carried on exactly as in former years. The instruments are read at $8^{\mathrm{h}}, 10^{\mathrm{h}}$, and 16^{h}, local mean time. Temperature and pressure are recorded by a Richard thermograph and barograph and the mean daily temperature and pressures are obtained from the traces corrected by reference to the eye observations. The wind direction and velocity are got from a Beckley anemograph placed on a tower some little distance from the observatory. The cups and wind vane are at a higher level than the tops of the domes.

Tenıperature.-The mean temperature for the year was nearly normal, but it was slightly in defect in January and in excess in Deeember. The shade maximum rose to $74^{\circ} \cdot 7$ on May 5 , and the shade minimum fell to $39^{\circ} .8$ on Tanuary 29. The grass minimum fell to $18^{\circ} \cdot 5$ on December 11, which is the lowest reading which has been recorded here. The mean temperature of the year was $56^{\circ} \cdot 5$ and the difference between the means of the hottest and coldest months was $8^{\circ} \cdot 9$, which is greater than the average.

Humidity.-The relative humidity was above the average for the first six months of the year and below it during the second six months. The difference was large in January, July, and December. The minimum recorded was 10 per cent. on January 16.

Wind.-The daily wind velocity was about the average. The highest record for any one day was 709 miles on August 24. The mean direction was N.N.E. which is the same as the average.

Rain.-The rainfall was above average in February, August, and October, and below average in all other months. The deficiency for the whole year was about 6 inches. The heaviest fall in one day was 3.80 inches on October 9 .

Cloud and Sunshine.-As judged by cloud observations at $8^{\mathrm{h}}, 10^{\mathrm{h}}$, and 16^{h}, the year was rather more cloudy than usual, but, at the same time, the number of hours of bright sunshine recorded was considerably above the average. This is probably due to the abundance of cirrus cloud which has already been referred to. Curiously enough the largest number of hours of bright sunshine was recorded in December, when there was a daily average of 8.3 hours.

The transparency of the lower atmosphere, as judged by the visibility of the Nilgiris, was slightly below the average of the last five years and much below that for 1902.
15. Seismology.-The Milne horizontal pendulum was in use throughout the year and the results are given in appendix I. The instrument has worked well, but the record of oue large earthquake on July 9 was lost by bad driving of the paper, due to the clamp not having been properly adjusted. The first and last parts of the great Indian earthquake of April 4 were well recorded, but during the large motion the boom went completely off the scale and remained there till brought back by hand. Stops have now been placed in the box to limit the motion of the boom.
16. Library.-In addition to a large number of books and pamphlets received as exchanges, the library received 186 sheets of the Greenwich Astrographic Chart and 28 sheets of the French Darte Photographique du ciel: 171 volumes were bound during the year.
17. Pablications.-Three bulletins were published and distributed during the year, and a fourth is in type. Bulletin No. I. gives the observations on widened lines in sunspot spectra made betreen January 1903 and February 1904. No. II. contains a list of prominences observed between 1903 September 1 and 1904 December 31. No. III. gives an account of the observations of D_{3} as a dark line in the solar spectrum. No. IV. will bring the record of sunspot spectra up to the end of June 1905.
18. General.-The Director inspected the Madras Observatory in November. The whole staff has worked well during the year, and it is mainly due to the activity and interest shown by them that observations have been obtained on such a large number of days.

This observatory has, with the sanction of the Government of India, promised to take part in the scheme now being elaborated by the "International Union for Co_{0} operation in Solar Research ". It is intended to help both in spectroheliography and in photographic spectra of sunspots, but the latter must lie over till the arrival of the long expected assistant to the Director, as the work at present going on is quite as much as the existing staff can perform efficiently.

C. Michir Smith, 31st January 1906. Director, Kodaikánal and Madras Observatories.

II.-REPORT OF THE MADRAS OBSERVATORY FOR THE YEAR 1905.

I was away on leave for two months from 17th May to 16th July. Mr. R. Littlehailes, Professor of Mathematics, Presidency College, acted as Deputy Director, during this period.

Mr. C. Chengalvaraya Mudaliar of the Meteorological office continued to act for Mr. M. G. Subrahmanyam, the First Assistant, who was on duty at Kodaikánal, throughout the year.

The Second Assistant took two months' privilege leave from the 23 rd March.
2. Time Service.-The astronomical observations made during the year were, as usual, solely directed to time determinations. They were made by the Computer and the acting First Assistant. Transits of the Sun were also taken occasionally in order to check the rate of the clock when cloud or unfavourable weather prevented the regular star observations from being made.

The Government of India having sanctioned the introductiou of Standard Time for India, all the time signals from the Observatory have, from 1st July 1905, been sent in accordance with this new system, which is $5 \frac{1}{2}$ hours in advance of Greenwich mean time and 0 hr .9 m .0 .4 s . in advance of Madras mean time.

The time gun at the Fort was fired correctly at noon and at 8 p.m. on 702 occasions out of 730 , giving a percentage of success of 96.2 .

The time ball at the Port office was dropped correctly on all occasions except one when it failed at 1 but was dropped correctly at 2 p.m.
3. Meteorological Observations.-Meteorological observations were made as usual, viz., at 8 hr . $10 \mathrm{hr} ., 16 \mathrm{hr}$., and 20 hr . A wet minimum thermometer was brought into use and observations recorded from 1st September. The observations of 10 hr . and 16 hr . were reduced and sent to the office of the Meteorological Reporter to the Government of India, Alipore (Calcutta), on Form A till September and on Form Fa more elaborate one-from October. The record of movements of the clouds observed by means of the nephescope were also sent to that office every month. Besides the ordinary daily weather messages, special storm observations were called for and supplied to (1) Simla on one occasion and (2) Calcutta on the following dates-April 16 and 17, October 8 to 16 and 20 to 24 .

The tabulation of the traces of the Barograph, Thermograph and Anemograph at Madras and of the Anemograph at Dodabetta are up to date.
4. Buildings.-Considerable repairs to the buildings have been effected during the year.
5. Instruments.-A tape chronograph by R. Feuss, Berlin, was received during the year, but has not yet been brought into use, as there is no seconds contact fitted to the Transit Clock as yet. The Transit Clock by Dent and the Chronometer by Kullberg were cleaned during the year. The rate of the Transit Clock was very variable for the greater part of the year, but has become fairly steady since it was cleaned in November. Annexed is the list of instruments at the Madras Observatory on 31st December 1905 :-

(a) Astronomical.

Eight-inch Equatorial Telesoope-Troughton and Simms. Sidereal Clock-Haswall.

Dent No. 1408.
Electric Mean Time Clock with galvanometer-Shephard \& Sons.
Meridian Circle-Troughton \& Simms.
Mean Time Clook-J. Monk.
Mean Time Chronometer-V. Kullberg 5394.
" \quad, 6544
Portable Trausit Ïnstrument-Dollond Frodsham 2352.
Portable Trausit Instrument-Dollond.
Portable Telescope with stand.
Tape Chronograph-R. Feuss.
(b) Meteorological.

Richard's Thermograph-No. 36188 L. Casella. Beckley's Anemograph-Adie.
Sunshine kecorder-No. 149 L.C.
Anemoscope-P. Orr \& Sons.
Nephescope-Mons. Jules Daboseq \& Ph. Pellin.
Wind Resultant Indicator-(i. K. Winter.
Barometer, Fortins-No. 1771 L.C.
Barometer-No. 725 L.C. (spare).
Dry bulb thermometer-No. 94221 L.C.
Dry bulb thermometer-No. 38037 Negretti and Zambra (spare).
Wet bulb thermometer- 94219 L.C.
Wet bulb thermometer-38037 N. \& Z. (spare).
Dry maximum thermometer-No. 8581 N. \& Z.
Dry minimum thermometer-No. 69047 L.C.
Wet minimum thermometer-No. 91753 N. \& Z.
Sun maximum thermometer-No. 10479
Grass minimum thermometer-No. 3377 ",
Raingange ($8^{\prime \prime}$ diameter). 1042 N. \& Z.
Measure Glass for above.
Raingauge ($5^{\prime \prime}$ diameter).
Measure Glass for above.
6. Weather Summary.-The following is a summary of the meteorological and weather conditions at Madras during the year 1905 :-

Pressure. -The mean atmospheric pressure was normal in February and June, below normal in March, August and September and above normal during the other months. The excess in November was 0.061 inch. The highest pressure recorded was $30 \cdot 230$ inches on January 1, and the lowest $29 \cdot 820$ inches on June 14.

Temperature.-The mean temperature was normal in May, below normal in January, April and December and above normal during the rest of the year, the excess being $2^{0.8}$ in July and $2^{\circ .3}$ in September. The highest shade temperature recorded was $108^{\circ} \cdot 2$ on June 2 and the lowest $57^{\circ} \cdot 4$ on January 29. The mean maxima in June and July were $102^{\circ} \cdot 4$ and $100^{\circ} 3$, respectively, being much above the average. The greatest solar heat in vacuo was $152^{\circ} \cdot 1$ on September 26 and the lowest on grass $52^{\circ} \cdot 8$ on January 29.

Humidity.-Humidity was much above normal in October and almost normal in the other months, the lowest being 24 on July 24.

Wind.-The wind direction was normal in April, May, July, August and September. It was two points more easterly in January, November and December and three points more northerly in October. The wind velocity was deficient in all the months except February, March, July and September. The highest wind velocity on any day was 327 miles on March 21 and the lowest 65 on December 28 and 29.

Cloud.-The percentage of cloud was in excess in February, March and April and. below normal in all the other months.

Sunshine.-The percentage of bright sunshine was below normal in all months except July and December.

Rain.-The rainfall was above the average during, the first three months of the year and in October, and below during the rest of the year. The fall in October was 19.65 inches - 8.65 inches in excess of the average for the month. The north-east monsoon rainfall from October 15 to the end of the year was 17.85 inches against an average of $27 \cdot 6$ inches.

Storms.-No storm crossed the coast of Madras during the year.
Madras,
7 th February 1906.
R. Lu. Jones,
Deputy Director.

Appendix I.

Kodaitanal Observatory Seismological Records.

Kodaikánal Observatory Seismological Records-cont.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { 商 } \\
\& \text { 品 }
\end{aligned}
\] \& Date. \& \[
\begin{gathered}
\text { P.T. } \\
\text { Conumenee } \\
\text { G.M.T. }
\end{gathered}
\] \& \[
\underset{\substack{\text { L.W. } \\ \text { Comence } \\ \text { G.M.T. }}}{ }
\] \& \(\underset{\substack{\text { Maxima } \\ \text { G.M.T. }}}{\text {. }}\) \& End. \& Max. Amp. \& Duration. \& Remarks. \\
\hline 28 \& \[
\begin{array}{|cc}
\& \\
\hline \text { July } \& \\
\hline
\end{array}
\] \& \(\begin{array}{ccc}\text { E. } \& \text { s. } \\ 16 \& 31.5\end{array}\) \& \(\begin{array}{cc}\text { H. } \& \text { m. } \\ 17 \& 00.5\end{array}\) \& \& \[
\begin{array}{ll}
\text { H. } \& \text { M. } \\
18 \& 21
\end{array}
\] \& \[
\begin{aligned}
\& 3 \cdot 0=1 \cdot 3 \\
\& 2 \cdot 0=0.9
\end{aligned}
\] \& \& \\
\hline 29 \& 9 \& \& ... \& ... \& ... \& ... \& ... \& Very large earthguake lunt time cortuin as clock was driving \\
\hline 30 \& 14 \& 94.30 \& P \& 9 55.6 \& 10 098 \& \(0 \cdot 4=0.2\) \& 026 \& bedily. \({ }^{\text {a }}\) \\
\hline 31 \& 14 \& \(22 \quad 25 \cdot 4\) \& \({ }^{22} 2860\) \& \(22.26 \cdot 2\) \& 22. 45 \& \(1.1=0.6\) \& 020 \& \\
\hline 32 \& 16 \& 18 68.7 \& \(18 \quad 596\) \& 19 021 \& 1913 \& c. \(8=0.3\) \& 016 \& \\
\hline 33 \& 17 \& 047.3 \& ... \& ... \& 146 \& ... \& 059 \& P E.Q. Widening of live. \\
\hline 34 \& 23 \& 2546 \& 3098 \& ? \& 539 \& \(24+=9+\) \& 245 \& Light went off scale for some time
(Chita E. Q.). \\
\hline 35 \& \({ }^{27}\) \& 22.654 \& ... \& \(\cdots\) \& \({ }^{23} 003\) \& \& 008 \& Widening of line. \\
\hline 36 \& Sept. \& 152.8 \& 2217 \& \begin{tabular}{l}
29 \\
29.8 \\
31.0 \\
\hline
\end{tabular} \& \(\dddot{3} 43\) \& 1.4 \(=088\) \& \% \({ }^{\circ} 50\) \& Italian E.Q. \\
\hline \({ }^{57}\) \& 8 \& 533.1 \& \(533 \cdot 1\) \& 533.1 \& \({ }_{5} 87\) \& \(1.0=0.5\) \& 004 \& P п. Q . \\
\hline 38 \& 14 \& \({ }^{20} 0056\) \& ? \& \[
\begin{aligned}
20 \& \begin{array}{c}
351 \\
39 \cdot 2 \cdot \\
393 \\
43.6
\end{array}
\end{aligned}
\] \& \({ }_{21} \ldots\) \& \[
\begin{aligned}
\& 0.4=0.2 \\
\& 0 \cdot 5=0.2 \\
\& 0.440 .2
\end{aligned}
\] \& \[
\begin{array}{lll}
7 \& 05
\end{array}
\] \& \\
\hline 39 \& 15 \& 6159 \& 6510 \& 656.7 \& 913 \& ris \(=3 \cdot 6\) \& 258 \& \\
\hline 40 \& \({ }^{27}\) \& 138.2 \& 1 42:3 \& 1433 \& 237 \& \(1.6=0.8\) \& 101 \& \\
\hline 41 \& 29 \& 1153.6 \& 12129 \& \(1213 \cdot 9\) \& 1324 \& \(1 \cdot 1=0.4\) \& 130 \& \\
\hline 42 \& Oct. 19 \& \(16 \quad 27 \cdot\) \& 16320 \& 1632.5 \& 1700 \& \(4 \cdot 2=2 \cdot 0\) \& 033 \& \\
\hline 43 \& Nor. 8 \& 22197 \& \(2240: 3\) \& 2248.1 \& \({ }_{23} 34\) \& \(1.6=0.7\) \& 114 \& \\
\hline 44 \& 22 \& \({ }^{23} \quad 29.6\) \& ... \& ... \& \(25 \quad 36\) \& ... \& 006 \& Widening of line. \\
\hline \({ }^{45}\) \& 22, 23 \& 23 55\%6 \& 013.1 \& - 14.1 \& 029 \& \(0.6=0.3\) \& 038 \& \\
\hline 46 \& 26 \& 959.5 \& \(10 \quad 12.7\) \& 10127 \& 1023 \& \(0.7=0.3\) \& 0 93 \& ? e.q. \\
\hline 47 \& Deo. \& \(7{ }^{20.3}\) \& 73.0 \& 7

3
376

37 \& \% 905 \& $$
\begin{aligned}
& 0 \cdot 6=0.3=3 \cdot\left(\begin{array}{l}
0 \cdot 8 \\
0 \cdot 8=0.4
\end{array}\right.
\end{aligned}
$$ \& O" 45 \&

\hline 48 \& 10 \& 13879 \& 13 38.1 \& ${ }^{13} \begin{aligned} & 35.1 \\ & 37.2\end{aligned}$ \& $1{ }_{14} 04$ \& $$
\begin{aligned}
& 0.5=0.2 \\
& 0.6=0.3
\end{aligned}
$$ \& O" 36 \& Felt in $\mathrm{N} . \mathrm{India}$.

\hline 49 \& 10 \& 1819.4 \& $18 \quad 30 \cdot 5$ \& 18350 \& 19 o2 \& $0.6=0.3$ \& 043 \&

\hline
\end{tabular}

Mean monthly and annual Meteorological Results at the Kodaikanal Observatory in 1905.

Âppendix IIİ.

Appendix IV.

Kodaikânal.-Mean hourly Bright Sunshine for the year 1905.

Month.	Howrs.												Remarks.
	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-18	16-17	17-18	
Sambary ...	0.05	0.71	0.81	0.84	0.88	0.78	0.65	0.57	0.48	0.49	0.33	0.04	The total number of hours
February	$\cdot 11$	$\div 9$	-94	1.00	-95	-83	$\cdot 72$	$\cdot 60$. 56	$\cdot 42$	$\cdot 34$	-04	2,114.2 or $48 \cdot 3$ per cent.
Yarch ...	$\cdot 10$	-82	-91	0.86	-80	$\cdot 78$	$\cdot 71$	$\cdot 60$	$\cdot 53$	$\cdot 51$	$\stackrel{40}{ }$	$\cdot 14$	
April ...	-10	$\cdot 64$	$\cdot 72$	$\cdot 74$	-83	-75	$\cdot 64$	$\bullet 41$	$\cdot 35$	- 30	-18	-10	
May ...	$\cdot 13$	$\cdot 62$	-82	-85	81	-83	$\cdot 73$	$\cdot 56$	4.7	-38	$\cdot 35$	-10	
June ...	-13	- 44	-55	$\cdot 60$	-59	$\cdot 55$	$\cdot 47$	-39	31	$\cdot 21$	$\cdot 11$	$\cdot 05$	
July ...	-18	$\cdot 60$	-78	$\cdot 74$	$\cdot 71$	$\cdot 81$	-53	$\cdot 42$	38	31	$\cdot 21$	$\cdot 04$	
Augost ...	-29	$\cdot 68$	$\cdot 75$	$\cdot 70$	-63	-51	-39	$\cdot 28$	$\cdot 23$	$\cdot 15$	-17	-04	
September ...	$\cdot 10$	$\cdot 48$	-55	$\cdot 56$	-55	-51	$\cdot 42$	33	$\cdot 28$	$\cdot 17$	-10	$\cdot 03$	
Octaber ...	74	$\cdot 62$	-65	$\cdot 64$	-66	$\cdot 59$	- 56	$\cdot 50$	$\cdot 43$	$\cdot 35$	$\cdot 31$	-10	
November ...	-02	-25	$\cdot 33$	- 6	${ }^{4} 48$	$\bullet 45$	$\bullet 40$	${ }^{4} 40$	$\cdot 46$	$\cdot 32$	-21	$\cdot 02$	
December07	71	$\cdot 92$	$\cdot 97$	$\cdot 96$	-93	$\cdot 90$	$\cdot 86$. 81	74	$\bullet 45$. 02	
Mean ...	0.17	0.61	0.73	0.75	0.74	$0 \cdot 68$	0.59	$0 \cdot 49$	$0 \cdot 44$	0.36	0.26	0.08	

Appendix V.

Kodarkánal Observatory.-Number of days in each month on which the Nilginis were visible in 1005.

Month.	Very olear.	Visible.	Jast visible.	Tops only visible.	Total.
January ...	2	5	1	8	16
February ...	\cdots	2	3	1	6
March	1	2	4	..•	7
April $\quad .$.	1	3	3	1	8
May	6	4	...	\cdots	10
June	8	10	1	...	19
Taly $\quad .$.	1	5	1	1	8
August	6	5	10	1	22
Ieptember	5	6	4	\cdots	15
October	6	3	4	...	13
Kravember .	2	2	3	1	8
Bucember	7	15	6	...	28
Total ...	45	62	40	18	160

Appendix VI,

Month.	Barometer.		Dry Bulb Thermometer.				Wet balb.		Tension of vapour.	Relative hamidity.	$\begin{gathered} \text { Sun } \\ \substack{\text { Max. } \\ \text { in Vac. }} \end{gathered}$	$\underset{\substack{\text { Min. } \\ \text { on } \\ \text { grass. }}}{ }$	Wind.			Rain.		Clear sky.
	Reduced	Daily	Mean.	Max.	Min.	Range.	Mean.	Min.	By Blanford's tables.				$\begin{array}{\|} \hline \text { Daily. } \\ \text { velooity. } \end{array}$	Mean	direction.	Amount.	Days.	
							\square		inches.	cents.	。	-	milis.	pornts.	pornts.	inches.	No.	crnts.
	${ }^{1 N}$	inches. 0.151	77.0	$89 \cdot 1$	64.8	24:3	${ }^{67} 3$	$61 \cdot 6$	$0 \cdot 542$	58	$141 \cdot 6$	58.5	$63 \cdot 1$	13	s.E. by s.	0.05	...	68
January 050		77.0 80.6	93.9	$67 \cdot 5$	$26 \cdot 3$	$69 \cdot 2$	$63 \cdot 7$	563	54	$146 \cdot 9$	61.5	$75 \cdot 2$	11	S.E. by m.	$0 \cdot 43$	1	72
February	11	$\cdot 169$	80.6	93.7	7706	27.2	71.0	$66 \cdot 4$	593	51	$152 \cdot 2$	65.0	$70 \cdot 3$	34	s.s.E.	1.2	3	73
Maroh ...	28-964	163	83%	97.7	706	27.4	73.6	70.7	$\cdot 708$	63	$155 \cdot 4$	697	$58 \cdot 9$	15	S. by E.	5.02	11	58
April	943	141	$82 \cdot 8$	$95 \cdot 7$	$73 \cdot 3$	$22 \cdot 4$	73.6		$\cdot 706$	61	153.6	70.8	74.5	19	S.W. by s.	6.84	6	55
May ...	866	'125	842	96.5	74.7	21.8	74.0	$71 \cdot 5$	-673	62	$151 \cdot 1$	$68 \cdot 9$	$95 \cdot 2$	19	S.W. by s.	1.82	6	44
Jnne	856	110	81.8	98.3	$72 \cdot 9$	$20 \cdot 4$	$72 \cdot 5$	$70 \cdot 1$	-673		156-4		108.4	17		$0 \cdot 14$		56
July ...	$\stackrel{8}{8}$	$\cdot 117$	-2	$95 \cdot 4$	$71 \cdot 1$	24.4	$70 \cdot 9$	${ }^{67} 3$	$\cdot 607$	55	156.4	66.5	108.4	20	S. by W.	0.68	4	53
Augnst ...	877	-118	$81 \cdot 7$	$95 \cdot 7$	$71 \cdot 2$	244	$71 \cdot 1$	68.0	'609	57	159.3	$66 \cdot 5$	85.1	13	S.E. by S.	$3 \cdot 12$	5	52
September	-887	$\cdot 138$	$82 \cdot 1$	94,7	717	23.0	71.6	68.8	-639	58	$156 \cdot 8$	67.0	751	17	s.E. by s.	10.66	11	54
October	937	-132	$80 \cdot 1$	899	$71 \cdot 4$	18.5	72.6	$69 \cdot 3$	$\cdot 763$	68	145.5	672	4.0	13	S. by s	2.17	7	43
November	29.030	$\cdot 130$	77.7	87.0	$70 \cdot 6$	26.4	71.0	${ }^{68 \cdot 3}$	${ }^{\cdot 673}$	71	189.3	65.7	626	13	s.x. by s.	0.06		68
Deoember	. 016	-140	74.4	87.5	$62 \cdot 3$	25.2	$85 \cdot 7$	$60 \cdot 2$	-520	60	138.1	54.7	517	14	s.s.E.		...	
Annaal	28993	$0 \cdot 136$	$80 \cdot 7$	93.0	$70 \cdot 2$	$22 \cdot 9$	$70 \cdot 9$	$67 \cdot 2$	$0 \cdot 628$	60	1497	$65 \cdot 1$	71.6	15	S. by E.	$31 \cdot 20$	54	58

Extreme monthly Meteorological Records at the Perigakulam Observatory in 1905.

Appendix VIII.

Abstract of the mean meteorological condition of Madras in the year 1905 compared with the average of past years.

Mean values of					1905.	Diference from	Average.		

Duration and quantity of the wind from different points.

From	Hours.	Milos.	From	Hours.	Miles.	From	Hoars.	Miles.	From	Hoars.	Miles.
North	107	618	East	198	1,165	South	132	991	West.	226	2,310
N. by E.	177	1,114	E. by S. ..	$38 \pm$	2,001	S. by W...	262	1,805	W. by N...	230	2,215
N.N.E.	171	1,095	E.S.E.	316	1,877	S.s.W.	212	1,531	W.N.W.	139	1,326
M.E. by N...	418	2,745	S.E. by E.	519	3,318	S.W. by S.	215	1,412	N.W. by W.	125	994
N.E.	220	1,661	S.E.	381	2,720	S.W.	129	903	N.W. ..	48	281
N.E. by E.	299	1,837	S.E.by S.	1,272	10,964	S.W. by W.	204	1,390	N.W. by N.	55	238
E.N.E.	222	1,345	S.S.E.	451	3,439	W.S.W.	203	1,351	N.N.W. ..	122	631
E. by N. .	316	1,696	S. by E. ..	284	2,148	W.by S...	364	2,958	N. by W...	204	1,083

There were 155 calm hours during the year. The resultant corresponding to the absve numbers is represented by a S.E. by S. wind, blowing with a uniform daily velocity of 51 miles.
Appendix IX.

	Month.		N.																							23	\|w.	V. 26	28	27	28	29	30	31	Calm.
Junuary Febraary	1	6		15114	21	72		${ }^{6} 120$	77	114	78	63		2.4		..	. 1	..	1	2	.			.				.	\because				15
		1	1.	$1 .$.	..	17	1728	881	22	100	59	192	23	${ }^{6} 101$	3	a	3	6	7	7	,			I..	..					16
ch		\cdots					1	3	316	1618	6	27	${ }^{40}$	27	${ }^{3} 36$	36300				24	20	14				1	2	2							15
April 2	28	12	29	${ }^{4} 38$	58	8137	7292	46	12	12	26	15	5		,				$.1 .$.				21
M		1	1		. 2	.	.	. 1	12	1	5	512	44	$4{ }^{49}$	9276	92	48	25	45	30	23	1	1		18	7	12	1	3	2	1		3	11
	..			1		11	2		2 ..	. 1	4	7	711	17	176	651	29	50	10	36	39	47	1	5	33	104	61	54	25	16	10	5		1	
July			3	3	$2 .$.			1.	.. 2	2	27	74	27	727	27-53		41	13	25	19	25	2	2	5	104	79	88	42	20	3	4		8	5
Angust	..		2													972				55	32	37	2			62						3	1	1	10
September		2						6		$2 \mid 12$	$2{ }^{27}$	18	817	1793	70	47		41	33	41	3	3	4	58	33	24	21	18	4	5	11	2	
Ootober	14			15.27	25	32	34	${ }^{3} 45$	42	235	523	26	${ }^{6} 19$	1926	4	3	$3{ }^{3}$	4	9	11		1	2	16			18	17	20	16	50	79	${ }^{48}$
NoremberDeeembar	30	52	68	${ }^{68} 110$) 99	106	${ }^{65}$	${ }^{5} 27$	22	27	27		41	1				..	1	$\begin{array}{l\|l} 1 & . \end{array}$.			. 1	1	2		2	3	3	20		3
		102	${ }^{2} 8$	81153	68	64	${ }^{4} 19$	${ }^{2}$ 24	7	712	1212	16	1612	24	3	.	..	\cdots	.	.	.			\cdot.		1	1	18	33	60	10
Deeember																																			
																											${ }^{226}$				48				155

Appendix X.

Madras Observatory.-Number of miles of wind from each point in the year 1905.

Appendix XI.

Month.	N.	1	2	3	4	5	6	7	E.	9	10	11	12	13	14	15	s.	17	18	19	20	21	22	23	w.	25	26	27	28	29	30	31	Calm.
January	0.08	024	0.78	..	$0 \cdot 34$	0.48	..	.	\cdots	\cdots	\cdots	\cdots	-	\cdot
February	\cdots	0.18	\cdots		.	0.07	0.06	\cdots	\cdots
March	\cdots	$0 \cdot 18$.	.	$0 \cdot 18$		0.01	\cdots	$0 \cdot 16$	\cdots
April	\cdots	0.04			.	0.25		\cdots	\cdots	\cdot	..	\cdots
May	\cdots	-•	-	..	0.03	0.02	..	\cdot	.	..	0.01
June	0.06	..	0.04	0.01	$0 \cdot 08$	0.05	..	0.13	$0 \cdot 14$	0.07	0.09	0.09	$0 \cdot 10$	0.07	.	0.05	.
Jaly	0.41	\cdots	0.01		$0 \cdot 06$	0.09	$0 \cdot 11$		0.14	0.03	$0 \cdot 03$	0.04	.	0.26	0.06	0.14	$0 \cdot 40$	0.06	0.05	$0 \cdot 21$.	..	0.04	$0 \cdot 17$..
August	\cdots	-•	-	.	002	008	..	0.05	0.19	0.01	0.12	..	0.07	0.15	0.02	0.19	053	$0 \cdot 41$	0.08	\cdots
September ..	\cdots						$0 \cdot 89$	0.67	0.01	.	0.01		.	0.01	008	0.03	0.43	0.06	$0 \cdot 19$	0.02	0.23	\cdots
October	0.01	0.32	041	0.78	0.51	0.68	026	1.42	0.23	0.35	0.160	0.05	0.76	0.95	..	0.45	0.03	0.67	.	0.08	0 O	0.03	0.03	1.70	5.05	4.63	0.15
November .. .	$0 \cdot 90$	0.78	0.29		$0 \cdot 13$	1.75	120	0.18	0.92	$0 \cdot 49$	$0 \cdot 2.2$	0.20	0.27	..		$0 \cdot 31$	$0 \cdot 67$	006	1	..	$0 \cdot 65$	076	
Decamber .. .	0.17	0.03	0.03	001		\cdots			0.11	..	005	
Annual .	$1 \cdot 49$	$1 \cdot 21$	$0 \cdot 97$	$2 \cdot 77$	0.64	$2 \cdot 78$	$1 \cdot 91$	1.79	1.23	0.89	$1 \cdot 32$	0.99	0.38	0.33	0.39	0.34	0.25	0.41	$1 \cdot 23$	1.15	$0 \cdot 96$	0.90	0.24	1.12	$1-40$	0.93	$0 \cdot 61$	0.39	$0 \cdot 13$	1.88	5.74	$5 \cdot 87$	0.15

Appendix-XII.

Appendix XIII.

Appendix XIV.

[^0]: 4. Instruments.-The following are the principal instruments belonging to the Observatory:-

 Six-inch Cooke equatorial.
 Six-inch Lerebour and Secretan equatorial, remounted by Grabb with a 5-inch Grubb portrait lens of 36 -inches focis attached.
 Spectrograph-consisting of an 11 -inch polar siderostat, 6 -inch Grubb lens of 40 -feet tocus, and a 4 -inch concave grating of 10 -feet focus, mounted on Rowland's plan. A plane grating with collimator and camera lenses of 8 -feet focas can be substituted for the concave grating.
 A rhomb with ends cut at 45°, mounted on a graduated circle, can be placed in front of the slit so as to enable any part of the limb to be brought on to the slit.
 Six-inch transit instrument and barrel chronograph, formerly the property of the Great Trigonometrical Survey of India.
 Six-prism table spectroscope-Hilger.
 Photoheliograph Dallmeyer No, 4.
 Theodolite, six-inch-Cooke.
 Two phototherdolites by Steinheil for cloud photography.

 ## Sextant.

 Spectroheliograph with 18 -inch siderostat and 12 -inch Cooke triple achromatic lens of 20 -feet focus, by the Cambridge Scientific Instrument Company, Limited.
 Evershed spectroscope with three prisms for prominence and sunspot work, by Hilger.
 Mean time olock, Kullberg 6326.
 Sidereal clock, Shelton.
 Mean time chronometer, Kullberg 6299.
 Sidereal chronometer, Kullberg 6134.
 Tape chronograph, Fuess.
 Micrometer for measuring spectrum photographs, Hilger.
 Dividing engine, Cambridge Scientific Instrument Company, Limited.
 Two Balfour Stewart actinometers.
 Buchanan's solar calorimeter.
 Induction coil with necessary adjunets.
 Small polar siderostat.
 Universal instrument.
 Complete set of meteorological instraments, including Richard barograph and. thermograph, and wind recorders.

