ANNUAL REPORT

OF THE

DIRECTOR

KODAIKANAL AND MADRAS

OBSERVATORIES

FOR 1918

MADRAS:
PBINTED BY THE SUPERINTENDENT, GOVERNMENT PRESG.
1919.

KODAIKANAL AND MADRAS OBSERVATORIES.

REPORT FOR THE YEAR 1918.

CONTENTS.

I.-Kodaikanal Observatory.

Page

1. Staff	\ldots	\ldots	\ldots	...	1
2. Instruments	\ldots	\cdots	...	1
3. Weather conditions	\ldots	\cdots	\ldots	\ldots	1
4. Photoheliograph	\ldots	\ldots	\ldots	\ldots	\ldots	1
5. Spectroheliographs	\ldots	\ldots	...	\ldots	2
6. Six-inch Cooke equator	rial	d sp	ros		\ldots	\ldots	\ldots	...	\ldots	\ldots	2
7. Grating spectrograph	\ldots	\ldots	2
8. The Venus spectra	\ldots	\ldots	\ldots	\ldots	\ldots	...	\ldots	2
9. The Cyanogen bands	\ldots	\ldots	\cdots	\ldots	\ldots	3
10. The solar rotation	\ldots	\ldots	\ldots	\ldots	\ldots	3
11. Nova aquilæ	\ldots	\ldots	\ldots	4
12. Conjunction of Venus	and		\ldots	\ldots	...	\ldots	4
13. Sunspots	\ldots	\ldots	...	\ldots	...	5
14. Prominences	\ldots	\ldots	\ldots	...	5
15. Magnetic observations		...	\ldots	\cdots	\cdots	\ldots	6
16. Workshop construction		\ldots	...	\ldots	\ldots	\ldots	\ldots	...	6
17. Time	\ldots	...	\ldots	...	\ldots	\ldots	6
18. Meteorology	...	\ldots	\ldots	\ldots	\ldots	7
19. Seismology	\ldots	\ldots	\ldots	7
2i. Library ...	\ldots	\ldots	...	\ldots	\ldots	...	\ldots	\ldots	7
21. Publications		\ldots	7

II.-Madras Obsertatory.

KODAIKANAL AND MADRAS OBSERYATORIES.

I.-REPORT OF THE KODAIKANAL OBSERYATORY
FOR THE YEAR 1918.

Staff-—The staff of the Observatory on December 31, 1918, was as follows:-

The death occurred on October 14 of Second Assistant G. Nagaraja Ayyar after a partial recovery from a severe attack of influenza. He joined the staff of the Observatory in April 1, 1899, as writer and was promoted to Second Assistant on February 12, 1909. Mr. Nagaraja Ayyar was a good observer and was very skilful in the handling of instruments. He early succeeded in photographing an excellent series of spectra of large sunspots and was the author of a paper on the weakened lines in spot spectra published in the Astrophysical Journal in 1907, Vol. XXVI, p. 143.

The subordinate staff consists of a book-binder, an assistant bookbinder, a mechanic, six peons, a boy peon for the dark room and two lascars.
2. Instruments.-With the exception of the new constructions and adaptations mentioned in paragraph 16 the instrumental equipment of the Observatory has remained the same. The 15 -inch lens borrowed from the Nizamiah Observatory, Hyderabad, is still in use for photographing solar and Venus spectra. The Kullberg sidereal chronometer lent to the Nizamiah Observatory in 1917 remains at that Observatory.
3. Weather conditions.-The partial failure of the south-west monsoon in the months June to September inclusive resulted in less unfavourable conditions than is usual in those months. On the other hand the months of May and November were unusually cloudy and wet. The mean definition in the north dome between 8 and $10 \mathrm{a} . \mathrm{m}$. was $2 \cdot 9$ on a scale in which 1 is the worst and 5 the best ; the best monthly mean was $3 \cdot 3$ in April and in December. There were thirty-nine days. in the year when the definition was 4 or over.

Phatographic and visual observations.
4. Photoheliograph.-Photographs on a scale of 8 inches to the Sun's diameter were obtained on 303 days. In June the 6 -inch photo-visual lens previously employed for this work was replaced by a visual
achromatic of the same diameter and focal length, and the daily photographs are now taken with a green colour screen limiting the effective light to the spectral region between F and G. Some experimental photographs have also been obtained in red light with lantern plates dyed with pinacyanol.
5. Spectroheliographs.-Monochromatic images of the disc in K light were obtained on 337 days, prominence plates on 249 days and Ha disc plates on 261 days.
6. Six-inch Cooke equatorial and spectroscope. - Work with this instrument has been continued on the same lines as formerly for visual observations of solar phenomena which cannot be readily photographed.
7. Grating spectrograph.--This was employed mainly in researches connected with displacements of the solar lines, the programme of work including photographs of the spectrum of Venus with Fe are comparison lines, also control plates of sunlight and Fe arc. A good series of third and fourth order plates of the carbon arc and solar spectra was secured for measuring the displacements of the cyanogen band-lines near λ 3883. During a spell of exceptionally clear sky in February and March about fifty solar rotation plates were also obtained.
8. The Venus spectra.-In the six months A pril to September inclusive high-dispersion Venus spectra were obtained on twenty-seven mornings. These and 31 plates of sunlight spectra have all been measured by the positive on negative method, and yield results of great interest. The control plates taken under precisely the same conditions as the Venus plates give a mean shift of the more affected iron lines in the region 4337-4494 of +0.010 A , and of the less affected lines +0.003 A . The Venus plates taken near the western elongation of the planet, when the angle Venus-Sun-Earth was about 45°, yield slightly smaller values of the shifts, and there is a progressive diminution of wave-length as the angle at the Sun increases. When this angle exceeds 90° the displacements Sun-arc all have the minus sign, that is the solar lines reflected by Venus are shifted to violet instead of to red with reference to the iron arc.

This very striking result is shown in the following table :-

It also appears that the more affected lines diminish in wave-length more than the less affected lines, so that when the light is derived from a hemisphere of the Sun turned about 90° to Earth, the Fe arc and solar lines nearly coincide.

The result of the Venus work seems to dispose finally of the possibility that the solar line-shifts are due to the gravitational effect resulting from Einstein's generalized relativity hypothesis. As the shift towards red of the solar lines, according to these observations, is only observed in the light derived from a hemisphere of the Sun facing towards Earth, it seems necessary to admit an earth effect whether the shift is interpreted as motion or otherwise. It is very desirable that confirmation of these results should be obtained independently by other observers.

The Venus spectra obtained in 1918 leave still undecided the question of the rotation period of the planet, although such evidence as has been obtained favours a short period. . Four excellent plates obtained in November and December 1917 near the eastern elongation of the planet
give consistently low values of the orbital velocity, but this may be interpreted in two ways: either the planet rotates in the same.direction as the Earth and with approximately the same period, or the Sun-arc displacements are not constant but liable to considerable changes.

It was hoped to obtain confirmation of the low values of orbital velocity, implying a rapid and direct rotation, at the western elongation of the planet in April; but owing to the very bad definition prevalent in the spring months at Kodaikanal, it was found impossible in a long exposure to keep the planet in a fixer position on the spectrograph slit. The spectra therefore represent more or less the integrated light of the half disc, including rays from parts of the planet approaching the Earth, and from other parts receding from the Sun; resulting in a partial compensation of the effect looked for. The mean of eight plates gives an orbital velocity only 0.7 per cent below that derived from Nautical Almanac data, whilst the plates taken at eastern elongation gave a value 3.5 per cent below the calculated velocity, a defect which is over ten times the probable error of a single plate.

The uncertainty as to the effect of the planet's rotation, and the possibility of variations in the wave-lengths of the solar lines, make it useless at present to derive a value of the solar parallax from the determinations of orbital velocity. Observations have been instituted however to test the constancy of the Sun-arc shift. Plates taken at weekly intervals in September, October and November indicate only very small changes when longitudes on the Sun differing by 90° are compared; but monthly tests will also be made, extending over a much longer period.

In photographing the spectrum of Venus with the grating spectrograph in the blue and violet regions, it was noticed that longer exposures were required than is necessary when the image of a brightly illuminated terrestrial cloud is brought on to the slit. Direct comparisons of the spectra in a low dispersion prism spectrograph, using a parabolic mirror to form the image of Venus, showed that with exposures regulated to give equal density in the green region the Venus spectra are much weaker in the violet than the cloud spectra, suggesting that the atmosphere of Venus is devoid of clouds, or if these are present the atmosphere above them must be strongly absorptive for the violet rays.
9. The cyanogen bands.-The measures of the cyanogen band-lines in the Sun and in the carbon arc have shown that most of the lines are shifted towards red, both at the centre of the dise and at the limb, and as in the case of iron the stronger lines give the larger shifts. The shift at the limb is on the average greater than at the centre of the disc, but is less than the theoretical gravitational shift equivalent to $0.634 \mathrm{~km} . / \mathrm{sec}$. A systematic difference was found between north and south polar limbs. which requires further investigation.
10. The solar rotation.-Of the series of plates of the $\mathrm{H} a$ region obtained in the fine weather of March and April, 32 have been measured by the positive on negative method. The results show that despite the increased accuracy obtained in the measures large discordances in rotational velocity are still found in individual plates. In the equatorial regions, where spot disturbances are generally absent, plates taken on thesame day will sometimes differ by as much as 3 per cent. The provisional mean value of the sidereal velocity at the equator from this series of plates is about $1.92 \mathrm{~km} . / \mathrm{sec}$. but the extreme values differ by about 6 per cent in excess or defect of this. The average probable error of a plate from ten strong Ca and Fe lines of mean intensity 6 is $\pm 0.006 \mathrm{~km}$./sec. In exceptionally good plates it is as low as $\pm 0.003 \mathrm{~km}$./sec. The measuring errors are found to be smaller than the plate irregularities. Probably more uniform results might be obtained if the solar image were not well focussed on the slit, or were affected by astigmatism, so that the light, forming the spectrum would be derived from a larger area of the Sun's
surface. The question of haze affecting the results is ruled out by the fact that photographs were obtained only on the clearest possible days.

In the case of the $\mathrm{H} a$ line, which was also measured, the local distortions are nearly always present, and greatly interfere with the accuracy of the measures. The velocities obtained are generally but not always larger thun for the iron lines. The mean equatorial velocity derived from $\mathrm{H} a$ is 2.05 km ./sec.
11. Nova aquilce.-Two series of prismatic camera spectra of the Nova were obtained between June 12 and July 11, and the result of a study of these have been communicated to the Royal Astronomical Society. The changing wave-lengths of the double series of hydrogen absorption lines and of the enhanced lines of iron suggest an analogy with the solar eruptive prominences, for Kodaikanal photographs have proved these to move out from the Sun with accelerating velocity, indicating the action of a repulsive force, which is probably operative also in novæ. The hydrogen emission bands in the Nova are shown to have widths proportional to wave-length, which would not be the case if pressure or density were concerned in the widening; it is therefore considered to be a Doppler effect also, due to a vast explosion or expansion of the gases in all directions. The narrow absorption line H which is found superposed upon the broad emission band H_{ϵ} is shown to have a displacement which is almost the same in amount and sign as that due to the solar motion in space, implying a stationary condition of the calcium vapour with reference to the sidereal system ; it probably has no connexion with the star, and appears to be widely distributed in the milky way region.
12. Conjunction of Venus and Sun.-Arrangements were made with the 6-inch photoheliograph to obtain a series of photographs of Venus in red light, before, during, and after superior conjunction with the Sun, by the method proposed by Mr. Lindemann for photographing Regulus in conjunction with the Sun. On November 24 the planet was within 6^{\prime} of the Sun's limb and had it been possible to carry out the programme it would have been of great interest to ascertain whether the track of the planet was bent inwards towards the Sun (Einstein effect) or pursued a perfectly straight path past conjunction. On October 28 the sky was perfectly clear and it was found possible to photograph the planet, then only 7° west of the Sun, with a red filter and special arrangements for blocking out scattered sunlight. An exposure of 10 seconds was found sufficient to give a distinct image of the planet with plates dyed with pinacyanol. The scale is nearly $10^{\prime \prime}$ to the millimeter, equivalent to a ratio $F / A=140$, enlarging lenses being used and a mirror to reflect the image to a convenient position. The red glass filter was placed near the focus of the 6-inch object glass; and in order to obtain photographs on the day of conjunction the filter was carefully silvered, the Sun's image could then be brought on to it without risk of fracturing the glass. At the same time, owing to the partial transparency of the silver film, sufficient red light was transmitted to give a distinct photograph of the Sun with a 10 seconds exposure. A small part of the film was removed to allow the light of Venus to be freely transmitted. It was hoped by this means to photograph both planet and Sun with a single exposure, but everything would depend on the purity of the sky near the Sun and the absence of scattered light in the instrument.

Experiments showed that there was considerable fogging of the plate through the opening in the silver film when the Sun was photographed in this way, but perhaps not enough to entirely block out the image of Venus. However after October 28 no clear skies occurred for about two months. and the experiments were abandoned.

A more hopeful method would be to abolish the enlarging lenses and mirror and use a single object lens of at least 20 feet focus attached to a large equatorial. With a filter transmitting the extreme red and infra
red, and plates sensitised with dicyanin Venus could probably be photographed in superior conjunction with the Sun ; but a non-diffusive sky and good definition would be essential conditions, and these could probably be found only on an oceanic island, or in Kashmir.

Summary of sumspot and prominence observations.

13. Surspots.-The following table shows the monthly numbers of now groups observed at Kodaikanal. and their distribution between the northern and southern hemispheres. The mean daily numbers of spots visible are also given :-

The maximum spot activity of the present cycle took place during the second half of 1917 for both hemispheres when the mean monthly number of new groups reached 17 for the northern hemisphere, and 16 for the southern : and the mean daily number rose to $7 \cdot 1$. The above table for 1918 shows a considerable reduction in these figures.

The number of new groups decreased more rapidly in the northern hemisphere than in the southern and in 1918 the spot activity was about equal in the two hemispheres.

The approximate mean latitude of the spots was $11^{\circ .8}$ in the northern hemisphere and $14^{\circ} 6$ in the southern. a decrease of over 2° in each hemisphere compared with 1917.

The number of bright reversals and of displacements of the H ω line fell from 483 and 133 respectively in 1917, to 422 and 108 in 1918. There were 44 observations of D_{s} as a dark line in 1918, the great majority being recorded during the first half of the year.
14. Prominences. A rapid decline in prominence activity occurred during 1918. The mean daily areas in square minutes of arc, derived from the Kodaikanal photographic records. are as follows :-

The mean daily number recorded also fell from $18 \cdot 2$ for the first six months to 16.1 for the second half of the year.

The high latitude prominences reached their greatest development, in the southern hemisphere, and the closest approach to the poles during the early months of the year and then rapidly declined. After July there were no prominences of any magnitude recorded between latitude +50 and the north pole. In the south the polar regions maintained some activity until the end of the year. This decline of the polar prominences is a well marked phase in the prominence cycle and occurred last in the year1907.

Prominences generally attained a maximum development in the northern hemisphere early in 1917, whilst the southern maximum occurred during the first half of 1918. This delayed action of the south
has caused a reversal of the relative activity of north and south as is seen on comparing the areas given above with those in the report for 1917.

Prominences projected on the disc as absorption markings attained their greatest development during the first six months of 1918 in both hemispheres, but there was a rapid decline during the latter half of the year in the northern hemisphere only.

Prominence areas east and west of the Sun's axis show a. western excess during the first half of the year and an eastern excess during the second half. The denser prominences showing as absorption markings give the usual eastern excess throughout the year, the areas recorded east of the meridian being $52 \cdot 4$ per cent of the whole, derived from 5720 markings. Metallic prominences and prominences showing displaced lines were more frequent on the western limb than on the eastern.

The usual excess of displacements towards red is indicated for the hydrogen lines both at the limb and on the disc.
15. Magnetic observations.-Continuous magnetograph records are obtained of declination, vertical force, and horizontal force. Absolute observations for dip are made daily excepting Sundays, declination and horizontal force on three days per week alternately. All the records are made over to the Magnetic Survey Office, Dehra Dun, and the results are published by the Survey annually.

The vertical force magnetograph had occasionally to be readjusted during the year, and the earth inductor gave trouble owing to wear of the commutator, which was turned true in December.

Twenty-three "great" and 136 "moderate" magnetic storms were registered during the year. March, November, and December, were the most active months of the year, and January was the quietest month. There were nine "great" storms recorded in December.
16. Workshop construction.-The heavy equatorial mounting of the Poona 20 -inch reflector was erected under the old sliding roof originally used for covering the siderostat of the spectroheliograph. This roof was mounted on rails and made more manageable by cutting off one-third of its length. The driving clock of the equatorial was repaired and put into working order.

A truck built of teakwood with flanged brass wheels was constructed and mounted on rails in the spectroheliograph building, about twelve feet from the siderostat mirror. On the truck an 18 -inch parabolic mirror is mounted, and this can now be used alternatively with the spectroheliographs and other instruments depending on the 18 -inch siderostat. A prism spectrograph was also arranged near the siderostat for use with the parabolic mirror for star or comet spectra.

A Hilger micrometer of old pattern but provided with a high quality screw was entirely reconstructed and converted into a positive on negative micrometer. The screw is mounted near the base plate of the machine and is connected with a carriage provided with accurately turned wheels running on straight gun-metal ways. The microscope is of novel design consisting of two opposed object lenses each of $9 \frac{1}{2}$ inches focal length, and an eye-piece. The distance of about 20^{2}. inches separating the conjugate foci of the lenses is shortened by an arrangement analogous to that used in prism binoculars. The long focus solves the difficulty experienced with ordinary microscopes of focussing simultaneousily the positive and negative films, which are necessarily separated by a small space.
17. Time. The error of the standard clock is usually determined by reference to the 16-hour signal from the Madras Observatory. This is rendered possible by the courtesy of the Telegraph Department which permits the Madras wire to be joined through to this observatory. The signal is received with accuracy on most days and all failures are at once reported to the Postmaster-General, Madras.
18. Meteorology.-Eye observations are made at $8^{\mathrm{h}}, 10^{\mathrm{h}}$ and $16^{\text {hr }}$ local mean time as in former years. The Richard thermograph (wet and dry bulb) and barograph, the Beckley anemograph, and the sunshine recorder also continue in use. Cloud observations with the nephoscope are made three times daily.

Pressure.-The mean annual pressure differed very little from the normal but there were large variations in the individual months. The pressure was in excess in the monsoon months June to October inclusive and largely in defect in January and May.

Temperature.-The mean annual temperature was slightly higher than the normal, the greatest excess was 3° in July. The grass minimum temperature for the whole year was $23^{\circ} 0$ recorded on the 3rd February..

Humidity.-The monsoon months June to October inclusive were drier than normal but the mean humidity for the year was only 1 cent below normal.

Rainfall.-The total annual rainfall was in defect by $2 \cdot 18$ inches only, but there was a defect of 11.26 inches in the months July to October inclusive. There was an excess of $2 \cdot 86$ inches in January and $7 \cdot 95$ inches. in November.

Wind.-The mean daily wind movement was 276 miles, the normal being 306 miles. The defect occurred mainly in the months June to October. The greatest excess was in May. The mean direction in that month was S. by W., the normal direction being N.N.E.

Transparency of the atmosphere.-The transparency of the lower atmosphere as judged by the visibility of the Nilgiris, about 100 miles. distant, was much below the average.

Cloud and sunshine.-The mean amount of cloud was in excess in January, May, November and December. The total number of hours of bright sunshine was 2399 which is 18 per cent above normal.

The most striking features in the weather at Kodaikanal in 1918 were (1) the early arrival of the south-west monsoon, which set in three weeks before the normal date, (2) the partial failure of the monsoon in the months July to October inclusive and (3) the heavy rains in January and November.
19. Seismology.-The Milne horizontal pendulum recorded one hundred and twenty-seven earthquakes, an exceptionally large number. Details of the records are given in Appendix I.
20. Library.-One hundred and seven volumes were bound during. the year.
21. Publications.-Bulletin Nos. 58 and 59, dealing with the prominences of the second half of 1917 and the first half of 1918, were issued during the year ; but only a few copies were distributed privately outsideIndia.

Kodaikanal, 6th February 1919.
J. EVERSHED,
Director, Kodaikanal and Madras

Observatories.

II.-REPORT OF THE MADRAS OBSERVATORY FOR THE YEAR 1918.

Staff-The staff of the Observatory on 31st December 1918 was as follows:-

Deputy Director	\ldots	\ldots	\ldots	\ldots	R. Ll. Jones.
Computer	\ldots	\ldots	\ldots	\ldots	\ldots
S. Solomon Pillai.					
First Assistant	\ldots	\ldots	\ldots	\ldots	C. Chengalvaraya Mudaliyar.
Second Assistant	\ldots	\ldots	\ldots	\ldots	P. Jayaram.

I was on leave from the 1st May to 16th June 1918 and Mr. James Angus was in charge of the Observatory and the Meteorological office during my absence. Mr. Solomon Pillai was absent on privilege leave from 15th July to 3rd September. Mr. E. Ramanujam Pillai, the Second Assistant, was transferred to the Meteorological office on 16th March 1918.
2. Time service.-The time gun at Fort St. George failed on 27 occasions out of 730 giving a percentage of success of 96 . Of these failures 3 were due to faults at the Observatory. The time ball at the Harbour failed altogether on eight days. On four of these days the releasing apparatus at the Harbour was out of order and on two other days the lines were interrupted. None of these failures were due to faults at the Observatory. On twelve other days the time ball failed at 1 p.m. but dropped correctly at 2 p.m. Most of these partial failures were found to be due to the fact that the line was interrupted at the Central Telegraph office at 1 p.m. by some one who did not know that it was required at that hour for another purpose. The 4 p.m. roll of signals was sent to the Central Telegraph office on every day and was received there correctly except on five occasions when the diffuser had not been joined on.
3. Meteorological observations.-Eye observations were made at $8^{\text {h }}$, $10^{\mathrm{h}}, 16^{\mathrm{h}}$, and 20^{h}, local mean time as in former years. The Richard thermograph and barograph, the Beckley anemograph, the sunshine recorder and self-registering rain-gauge also continue in use. Extra observations were taken for storm warning purposes and telegrams sent to Calcutta on 47 occasions and to Simla on one occasion.
4. Buildings.-The usual annual repairs to the office and quarters were carried out during the year.
5. Instruments.-The following is a list of the instruments at the Observatory on 31st December 1918 :-
(a) Astronomical.

Eight-inch Equatorial Telescope-Troughton and Simms. Sidereal clock-Haswall.

Do. Dent, No. 1408.
Do. S. Riefler, No. 61.
Mean Time clock-J. H. Agar Baugh, No. 105. Do. with galvanometer-Shepherd \& Sous.
Meridian circle-Troughton and Simms.
Portable transit instrument-Dolland.
Portable telescope with stand.
Tape chronograph-R. Fuess.
Relay for use with the chronograph-Siemens.
(b) Meteorological.

Richard's barograph-No. 10, L. Casella.
Do. thermograph-No. 29637, L. Casella.
Peander's self-recording rain-gauge-No. 116, Lawrence and Mayo. Beckley's anemograph-Adie.
Sunshine recorder-No. 149, L. Casella.
Nephoscope-Mons Jules Daboseq and Ph. Pellin.

The level error of the Transit Circle at the beginning of the year was $+0^{\text {s. }} 19$. Very little change occurred during the first three months. In April it began to change in the usual manner and reached its maximum negative value at the end of October, when the monsoon burst. In the course of a fer days of heavy rain at the beginning of November it went through a rapid change in the reverse direction. The error had almost disappeared by the 21st November and at the beginning of this year its value was $+0^{3} \cdot 25$. It is satisfactory to see that the variations though much larger than is desirable are no longer cumulative.

The rate of the Riefler clock has been very steady during the year, There was however a sudden change on the 9th July which is believed to have been due to the effect of the Calcutta earthquake of 8th July. A report on this matter was sent to Dr. Murray Stuart, who was deputed to investigate the earthquake, on the 11th September.
6. Weather summary.-The following is a summary of the meteorological conditions at Madras during 1918 :-

Pressure.-The mean monthly pressure was above normal in February, March, June, July, September, October and December and below normal in the remaining months, the greatest excess being 0.049 inch in October and the greatest defect 0.052 inch in January. The highest pressure was $30 \cdot 119$ inches on February 10 and the lowest 29.827 inches on May 1.

Temperature.-The mean temperature of the air was above normal in January, July, August, September, October, November and December and below normal in the remaining months. The maximum shade temperature was above normal in April, July, August, September and October and below normal during the rest of the year. The highest temperature recorded was $104^{\circ} 1 \mathrm{~F}$. on August 4. The minimum in shade was above normal in January, July, August, September, November and December and below normal in the remaining months. The lowest temperature recorded was $60^{\circ} 8 \mathrm{~F}$. on February 15. The highest sun maximum was $166^{\circ} \cdot 9 \mathrm{~F}$. on September 8 and the lowest on grass was $56^{\circ} 6 \mathrm{~F}$. on February 15.

Humidity.--The percentage of humidity was above normal throughout the year except in July, August and October. The driest day in the year was February 15, when the humidity was only 35.

Wind. - The wind velocity was in defect throughout the year except in January. The wind direction was normal in February, March, August and September.

Cloud.-The amount of cloud was normal in September and December. In January, May, August and November the sky was more cloudy than usual and less cloudy during the other months.

Sunshine.-The percentage of bright sunshine was normal in March, above normal in April, June, July, August and October and below in all
other months. The total number of hours of bright sunshine during the year was 2331.6 against 2190.9 in the previous year.

Rainfall.-Rainfall was above the average in January, February, May, November and December and below in the remaining months, the greatest excess being 25.97 inches in November and the greatest defect .6 .66 inches in October. The total rainfall for the year was 75.00 inches on 88 days. The monsoon rainfall from October 15 to the end of the year was $50 \cdot 19$ inches. The heaviest rainfall on one day was 6.33 inches on November 2.

Storm.-A depression formed in the south of the Bay on the 10 th November. It developed into a severe storm and moved in a westerly direction and passed inland a little to the north of Madras shortly after 1 a.m. on the 11th. Between midnight and 1 a.m. the barometer fell about $\frac{1}{4}$ inch and the wind movement at the Observatory for that hour was 39 miles, though velocity in the fierce gusts just before 1 a.m. was much greater than 40 miles per hour. There was a lull between 1-5 a.m. and 1-25 a.m. when winds were very light. At 1-25 a.m. the gusts were renewed, accompanied by a change in wind direction from about N.N.W. to W.N.W. from 3 a.m. and the winds began moderating.

The Observatory, Madras, 3rd February 1919.
R. LL. JONES,
Deputy Director, Madras Observatory.

APPENDIX I.

STATION—KODAIKANAL OBSERVATORY.

SEISMIC RECORDS.

* There was a lull between $16^{4} \frac{1}{2}$ and $17^{4} 4$,

Latitude $10^{\circ} 13^{\prime} 50^{\prime \prime} \mathrm{N}$.
Longitude $\tilde{5}^{\text {n }} 9^{\mathrm{II}} 52^{\mathrm{s}} \mathrm{E}$.

Month.	Barometer.		Dry Bulb Thermometer.				Wet Bulb.		$\begin{array}{\|c\|c} \begin{array}{c} \text { Tension. } \\ \text { of Vapour. } \end{array} & \begin{array}{l} \text { Relative } \\ \text { Humidity. } \end{array} \\ \hline \end{array}$		$\begin{gathered} \text { Sun } \\ \text { in Max. } \\ \text { in Vac. } \end{gathered}$	$\begin{gathered} \substack{\text { Min. } \\ \text { Mrass. }} \\ \text { Grass. } \end{gathered}$	Wind.			Rain.		Slear.	Bright Sunshine.
	Reduced	$\begin{gathered} \text { Daily } \\ \text { Range. } \end{gathered}$	Mean.	Max.	Min.	Range.	Mean.	Min.	By Simpa	n's Tables			$\begin{aligned} & \text { Daily } \\ & \text { Velocty } \end{aligned}$		Mean	Amount.	Days.		
	Inohes.	Inches.							Iuches.	Cents.			Miles.	Points	Points.	Inches.	No.	Cents.	Hours.
${ }_{\text {Janaury }}$	22:805	0.065	53.1.	61.0	$45 \cdot 2$ 43.5	${ }_{21}^{15 \cdot 8}$	$\stackrel{483}{489}$	${ }_{3}^{48 \cdot 1}$	${ }^{0} 3.33$	${ }_{51} 7$	${ }^{115 \cdot 9}$	3800	${ }_{239}^{298}$		N.E. by N .	6.08 0.57	8	${ }_{83}^{44}$	${ }_{283 \cdot 5}^{21 \%}$
${ }_{\text {March }}^{\text {February }}$	${ }_{887}^{860}$	-056	${ }_{58.2}^{581}$	688.2.	43.9 47.9	20.6	48.0	${ }_{41}{ }_{1}$	-243	51 52 8		- 33.7	308 308		N. E. by E.	-	$\frac{1}{5}$	79	2975
April	:775	${ }^{.0088}$	62.2 60.0	${ }_{6} 76.7$		${ }_{13}^{20.3}$	${ }_{5}^{51 \cdot 9} 5$	${ }_{50} 46.5$	- 2.292	56 80		43.6 490	${ }_{329}^{269}$	${ }_{17}^{7}$	E. by N .	2112	3 11	74 25	${ }_{1414}^{282}$
	${ }_{7} 775$	${ }^{0057}$	${ }_{58.9}$	${ }_{66 \cdot 1} 66$	${ }_{5} 51.7$	14.4	${ }_{5} 53.7$	${ }_{47} 9$	${ }^{3} 370$	${ }_{76}$	${ }_{127.3}^{12.9}$	45.8	${ }_{253}$	24	West	5.90	10	41	198.3
July	797	${ }^{1043}$	${ }_{59} 5$	66:8	517	15.1	53.1	47.5	. 35	73	${ }^{12996}$	45.2	287		s. W. by w.	$2 \cdot 93$	5	42	${ }^{2017}$
${ }_{\text {August }}^{\text {Soptember }}$	785 .822	. 065	58.3 58.2	${ }_{\substack{65.1 \\ 65 \cdot 4}}$	51.5 51.1	13.6 14.3	${ }_{53}^{53.8}$	48.7 48.1	$\stackrel{.383}{ }{ }^{3} 8$	82 79	${ }^{126 \cdot 7}$ \|	$45 \cdot 9$ 43	3300 188	${ }_{20}^{25}$	W. by N.	573 1.94 1.9	${ }_{4}^{11}$	${ }_{34}^{27}$	163.1
	:899	${ }^{\circ} \mathrm{O} 60$	${ }_{5}^{57 \cdot 7}$	64.9 61.2	50.5 51.5	${ }_{9}^{14.4}$	53.3 53.9	4884	. 373	${ }_{81}^{81}$	${ }^{127.0}$	44.6 47.9	227	1		7.98 14.00	17 20	${ }_{15}^{41}$	${ }^{201.7}$
$\xrightarrow{\text { Norember }}$ December	:881	${ }^{.072}$	54:5	$61 \cdot$ $61 \cdot 1$	51.5 47.9	97 132	53.9 49.1	50, 4	${ }^{1} 103$	${ }_{74}$	${ }^{112.2}$	47.9 42.7	295 297	${ }_{3}^{6}$		+14:08	${ }^{20}$		160°
Annual	22:817	0.06	57.6	65.3	49.8	15.5	51.5	16.1	0:334	73	${ }^{125 \cdot 0}$	${ }^{43} 3$	276	${ }^{30}$	N.N. W.	P37	104	45	2399 4

Month.	Baromoter.					Dry Bulb Thermometer.				Bulb		Humidity		${ }_{\substack{\text { Sun Th. in } \\ \text { Vacao. }}}^{\text {and }}$		$\underset{\text { Therms }}{\text { Grass }}$		Wind.				Rain.	
	Highest.		Lowest.		Range.	Highest.		Lowest.		Lowest.		Lowest.		Highest.		Lowest.		Highest.		Lowest.		Greatest Fall.	
	Inches.	Day.	Inches.	Day.	Inches.	-	Day.	-	Day.		Day.	Cen	Day.		Day.		Day.	les.	Day.	Miles.	Day.	Inche	Day.
January	22:979		. 777	17	0.179	${ }^{68 \cdot 4}$	1	$37 \cdot 2$	29	$32 \cdot 2$	29	${ }^{23}$	17829	${ }_{1}^{133 \cdot 1}$	10	${ }^{28.0}$	30	740	27	104	${ }^{21}$	2.48	27
${ }_{\text {March }}$	-945	${ }_{9}$	${ }_{764} 7$	$\stackrel{5}{24}$. 172	${ }_{742}^{706}$	100	44-2	$\stackrel{4}{3}$	ce33.2 341 1	488	${ }_{12}^{12}$	${ }_{29}^{19}$	${ }_{1}^{135 \cdot 9}$	$16{ }_{15} 15$	23.0	3 4 4	退 485	${ }_{29}^{12}$	178	${ }_{22}^{1}$	${ }_{0}^{6.37}$	${ }_{27}^{23}$
April	-931	${ }^{30}$. 757	${ }^{3}$. 178	78.4	18	47.7	1	${ }^{37.1}$		${ }^{1+}$	1	${ }_{1}^{143 \cdot 1}$	8	35.6	1	430	25	173	4	${ }^{1.76}$	29
${ }^{\text {June }}$	${ }^{866}$		${ }^{6} 677$	29	. 189	6998	20	47.3		${ }_{39} 39$		${ }_{38}$	$8 \& 9$	${ }_{136} 146$	10828	${ }_{38 \cdot 9}$	${ }_{7} 7$	5480	18	${ }_{85} 9$	${ }_{1} 1$	1.17	$\stackrel{8}{5}$
July	:855	9	$\cdot 716$	1	. 138	${ }^{72} 2$	8	49.2	$5 \& 31$	41.1		32		$145 \cdot 1$	${ }^{12}$	${ }^{40} 3$	11	590	29	108	14	1.05	27
${ }_{\text {August }}^{\text {Soptember }}$	- 9708	11 18 18	${ }^{\text {:744 }}$	28 4 4	-177	69.4	${ }_{26}^{8}$	49924		43.6 42.0	${ }^{12} 8$	${ }_{42}^{53}$		140.9 148.4	$\stackrel{13}{13}$		7	478 399	-16	${ }_{88}^{128}$	$\stackrel{23}{23}$	1.40 0.76	17
ober	. 909	11	. 786	31	. 123	687	$4{ }_{4} 5$	$45 \cdot 2$	26	41.2	26	26	26	141.6	30	$35 \cdot 1$	${ }^{26}$	373	21	109	${ }^{13}$	1.05	20
November	-918	$4,19 \times 20$.752	$1{ }_{9}^{17}$.196	64.9 67.8	130	${ }_{413}^{47}$	23	${ }_{35}^{42 \cdot 9}$	${ }_{30}^{10}$	${ }_{7}^{46}$	${ }_{9}$	141.0 $136 \cdot 3$	${ }_{9}^{13}$	39.2	23	${ }_{490}^{493}$	9	171	132	1.85 0.95	13 18

APPENDIX III.

Month.	Hours.																							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	2.2	23	24
January	14	14	14	14	14	13	13	13	13	14	13	12	12	11	9	9	8	9	10	11	12	11	13	12
February	15	15	15	16	15	14	14	14	14	15	16	16	14	11	11	9	8	8	9	11	12	13	14	15
March	15	15	15	15	15	14	15	14	15	15	16	15	13	13	12	10	9	8	8	9	9	11	14	14
April	10	10	10	10	10	11	12	12	13	14	16	14	13	11	11	11	10	9	10	11	9	9	10	11
May	14	14	15	16	15	15	15	14	12	13	13	13	12	12	12	13	12	12	12	14	14	14	14	14
June	13	12	12	12	12	12	12	10	9	8	9	9	9	9	8	9	9	10	11	12	12	12	11	11
July	13	13	12	13	12	13	12	11	11	12	11	10	11	11	11	11	10	12	13	13	12	13	14	13
August	15	10	15	14	14	14	13	12	11	11	11	11	10	11	10	10	11	12	12	13	13	14	14	15
September	8	8	8	8	8	8	8	7	7	8	8	8	8	8	8	9	8	7	8	7	7	8	8	8
October	9	10	11	11	11	11	11	11	11	12	11	10	9	9	9	8	8	8	7	8	8	8	8	9
November	12	12	12	12	11	11	12	12	11	11	12	11	11	10	9	8	8	8	9	10	10	10	11	12
December	14	13	14	13	13	13	14	13	13	13	13	13	12	11	10	9	8	10	12	13	13	13	14	14
Mean	13	12	13	13	13	12	13	12	12	12	12	12	11	11	10	10	9	9	10	11	11	11	12	12

APPENDIX IV.

Kodaikanal mean hourly bright sunshine for the year 1918.

Month.	Hours.											
	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18
January	0.36	0.76	$0 \cdot 82$	0.78	0.76	0.74	0.67	0.59	0.51	0.45	$0 \cdot 29$	$0 \cdot 05$
February	$\cdot 56$	$\cdot 92$	$\cdot 93$	$\cdot 93$.95	$\cdot 94$	$\cdot 92$. 93	$\cdot 85$	-87	-81	53.
March	$\cdot 53$	$\cdot 92$	$\cdot 97$	$\cdot 97$	$\cdot 97$	$\cdot 92$	$\cdot 87$	-82	79	$\cdot 74$	72	$\cdot 37$
April	$\cdot 48$	$\cdot 96$	-99	1.00	1.00	$\cdot 98$	$\cdot 94$. 89	$\cdot 77$	64	-51	$\cdot 26$
May	$\cdot 14$	$\cdot 37$	$\cdot 46$	0:50	$0 \cdot 53$	$\cdot 68$	$\cdot 49$	-40	$\cdot 34$	$\cdot 32$	$\cdot 18$	$\cdot(07$
June	$\cdot 22$	$\cdot 76$	-88	$\cdot 91$. 87	$\cdot 77$	$\cdot 71$	$\cdot 51$	-33	-32	$\cdot 23$	$\cdot 09$
July	-27	$\cdot 71$. 80	-80	$\cdot 80$	$\cdot 72$	-63	$\cdot 52$	$\cdot 53$	$\cdot 45$	$\cdot 23$	$\cdot 051$
August	$\cdot 20$	$\cdot 60$	$\cdot 72$	$\cdot 71$	-64	$\cdot 55$	$\cdot 46$	-42	$\cdot 40$	$\cdot 29$	$\cdot 20$	$\cdot 08$
September	$\cdot 27$	$\cdot 64$	-81	$\cdot 78$	$\cdot 75$	$\cdot 57$	$\cdot 52$	$\cdot 36$	$\cdot 29$	$\cdot 23$	$\cdot 15$	$\cdot 07$
October	$\cdot 26$	$\cdot 67$	-78	$\cdot 79$	-84	$\cdot 75$	$\cdot 71$	$\cdot 54$	$\cdot 46$	$\cdot 36$	-26	$\cdot 10$.
November	$\cdot 05$	$\cdot 23$	$\cdot 32$	$\cdot 31$	-28	$\cdot 37$	-42	-38	$\cdot 38$	$\cdot 26$	$\cdot 17$	- $02{ }^{\prime}$
December	$\cdot 07$	$\cdot 40$	$\cdot 52$	$\cdot 61$	$\cdot 66$	$\cdot 58$	$\cdot 58$	-55	$\cdot 48$	$\cdot 39$	$\cdot 29$	$\cdot 02$
Mean	0.28	0.66	0.75	0.76	$0 \cdot 76$	0.71	$0 \cdot 66$	0.58	0.51	$0 \cdot 44$	0.34	0.14

APPENDIX V.

Number of days in each month on which the Nilgiris were visible in 1918.

Month.	Very clear.	Visible.	Just visible.	Tops only visible.	Total.
January	...	12	3	-	15
February	...	3	5	...	8
March	\ldots	4	3	...	7
April		...	\cdots
May	2	5	2	...	9
June	1	7	8
July		4	3	...	7
August	1	3	4
September	2	8	2	...	12.
October	\ldots	1	1	-	2
November	2	5-	7
December	2	13	...	1	16
Total	10	65	19	1	95

APPENDIX Vín.

Abnormals of				January.	February.	March.	April.	May.	June	July.	August.	September	October.	November	December.	Annual.
Reduced atmospheric pressure	- 0.05	+ 0.039	+0.008	- 0.002	-0.043	+ 0.012	+ 0:023	-0006	+ $0 \cdot 023$	+ 0.049	- 0.049	+ 0.005	+ 0.00
Temperature of air	+ 0.4	- 11	-0.7	-0.2	- 0.5	-0.5	+ $2+$	+ 24	+ 13	+ $2 \cdot 8$	+ 1.2	+ 15	+ 0.8
Do. of evaporation	+ 23	-0.6	$+0.5$	+ $0 \cdot 9$	+ 0.8	+ 0.6	+ 0.8	+ 0.8	+ 22	+0.5	+ $3 \cdot 2$	+20	$+1 \cdot 1$
Percentage of humidity	+ 8	+ 2	+ +	+ 4	+	+ 4	-4	-4	$+5$	-8	+ 9	+ 3	+ 2
ertest solar heat in vacuo	\cdots	+ 21	+ 11.2	+ 112	+ $10 \cdot 4$	+6.4	+ 48	+ 10.8	+ $11 \cdot 8$	+ 10.1	+ 16.4	- 49	+ 9.5	+ 8 ?
Maximum in shade	- 28	-11	14	$+0.4$	- 1:5	-0.1	+ 34	$+3.6$	+ 13	+ 31	- 13	-0:5	$+0 \cdot 3$
nimum in shade	+ $2 \cdot 4$	- 1.7	- 15	- 1.0	- 13	- 11	+17	+ 16	+ 10	- 0.2	+ 27	+ 2	+ $0 \cdot 4$
Do. on grass	\ldots	+ 42	- 0.6	-10	- 10	- 1.0	-0.9	+ 20	+ $2 \cdot 1$	$+14$	$0 \cdot 4$	+ 44	+ 3.5	+ 1 4
Rainfall in inches	+ 7.16	+ 1.90	-0:37	-0.62	+ 3.68	-0.31	3.22	- 150	- 1.44	- 6.66	+ $25 \cdot 97$	+ $1 \cdot 39$	
Do. since January 1st'	+9.06	+ 8.69	+ 8.077	+11	+ 11	+ 8.22	+ 6.72	+5\%8	- $1: 38$	+ 2459	+ 25.98	+ $25 \cdot 98$
General direction of wind	2 points N	same as	same a	1 points.	points	point S .	1 point S.	same as	same as	1 point E .	points E.	1 point E .	same a
Daily velocity in miles"	+ 46	- 29	- 37	- 5	- 47	-86	- 57	- 74	- 89	- 52	- 56	- 68	- 43
ercentage of cloody sky	+ 15	- 6	-9	- 1	+ 8	- 12	-	+3	same	- 27	+ 17	+ 1	- 4
Do. of bright suushine		- 17.6	- 11	same as	+ 105	- 4.6	+ 6.8	+ 13.0	+	~ 51	+ 18.4	-26.0	-8.1	-5.5

[^0]
APPENDIX VII．

ABSTRACT of the Mean Meteorological Condition of Madras in the year 1918 compared with the average of past years．

DURATION and quantity of the wind from different points．

From	莌	Miles．	From	完	Miles．	From	莒	Miles．	From	\％	Miles．
North．	228	1640	East．	240	986	South．	252	1415	West．	334	2487
N．by E．	389	21×2	E．by S．	312	1288	S．by W．	186	1031	W．by N．	172	1123
N．N．E．	221	1622	E．S．E．	135	621	S．s．W．	190	1163	W．N．W．	129	979
N．E．by N．	331	3178	S．E．by E．	100	1815	S．W．by S．	137	595	N. W.by	74	421
N．E．	246	1457	S．E．	589	3078	S W．	133	676	N．W．	41	280
N．E．by E．	105：	738	S．E．by S．	709	4345	S．W．by W．	139	700	N.W. by	86	505
E．N．E．	79	461	S．S．E．	655	4849	W．S．W．	217	1461	N．N．W．	53	363
E．by N ．	207	942	S．by E	280	1744	W．by S．	225	1392	N．by W．	144	1165

There were 1,044 calm hours during the year．The resultant corresponding to the above numbers is represented by a S．F．wind，blowing with a uniform daily velocity of 25 miles．
APPENDIX VIII.

APPENDIX IX.

APPENDIX X.

APPENDIX XI.

Madras Observatorx.-Wind, cloud and bright sunshine, 1918.

Month.	Wind resultant.		Cloud ($11-10$).					Bright sunshine.	
	Velocity.	Direction.	8 H.	10 H.	16 H.	20 H.	Mean.	Average per day	Greatest number in a day.
	milus.	points.						hours.	hours.
January	154	N N.E.	56	57	47	46	5.2	$5 \cdot 8$	$9 \cdot 3$
February	67	East	1.6	$\cdots 2$	$1 \cdot 9$	15	$1 \cdot 8$	$\times \cdot 9$	$10 \cdot 1$
March	107	S E. by S.	1.5	19	11	1×2	15	$x \cdot 9$	1108
April	113	S.E. by S.	$3 \cdot 3$	24	117	105	17	$9 \cdot 9$	10.8
May	90	South.	$5 \cdot 1$	4×2	49	+4	$4 \cdot 6$	71	9.9
June	86	s.s.w.	$5 \cdot 1$	4.3	58	58	5	60	8.8
July	76	S. by W.	$4 \cdot 4$	+4	5.9	50	50	56	8.8
Augast	51	S.W.	$6 \cdot 3$	$5 \cdot 7$	$8 \cdot 1$	53	$6 \cdot 4$	46	$8 \cdot 6$
September	19	S. by W.	6.7	6.8	6.7	46	6.2	$4 \cdot 4$	10.6
0 ctober	49	E. by N .	3.7	40	29	1.8	32	8.0	103
November	73	N. by E.	78	7.9	$8: 3$	64	7.6	$2 \cdot 5$	$8 \cdot 9$
December	104	N.N.E.	$5 \cdot 3$	62	60	:5	$5 \cdot 3$	$5 \cdot 1$	$8 \cdot 2$
Annual	25	S.E.	4.7	4.6	47	37	45	$6 \cdot 4$...

Appendix xil．

Month．	Barometer．		Dry Bulb Thermometer．				Wet Bulb．		Tension of Vapour． Rumiative		$\begin{gathered} \text { Sun } \\ \text { Suna } \\ \text { in Vac. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Min. } \\ \text { crass. } \\ \text { crass. } \end{gathered}\right.$	Wind．			Rain．		$\underset{\text { clear }}{\text { cky．}}$	$\begin{array}{\|c\|c\|} \hline \begin{array}{c} \text { Bright } \\ \text { sight } \\ \text { shine. } \end{array} \\ \hline \end{array}$
	$\begin{aligned} & \text { Reduced } \\ & \text { to } 32^{2} \text {. } \end{aligned}$	$\begin{aligned} & \text { Daily } \\ & \text { Range. } \end{aligned}$	Mean．	Max．	Min．	Range．	Mean．	Min．	${ }^{\text {By }} \mathrm{Bl}_{\text {T }}$	ford＇s			$\begin{gathered} \text { Dilly } \\ \text { Velo. } \\ \text { civo } \end{gathered}$		$\underset{\text { Meean }}{\text { rection．}}$	Amount．	Days．		
	Inches．	Inches．					。		Inche	Cents．	。		Miles．	Points	Points．	Inches．	No．	Cents．	Hours．
January	－ 2.9 .946	9．109	${ }^{75 \%}$	${ }_{8}^{81} 9$	${ }_{66}^{69.9}$	1900	71.5	－68．7．		${ }_{81}^{81}$	140.5 150.9	${ }_{6}^{67.3}$	${ }_{93}^{190}$	8	NE．by N N．	$\stackrel{8}{\substack { \text { P／} \\ \begin{subarray}{c}{18{ \text { P／} \\ \begin{subarray} { c } { 1 8 } } \\{\hline}\end{subarray}}$			${ }_{218}^{178}$
March	${ }_{29} 9973$	124	${ }_{79} 7$	88.1	70.9	17.1	74.4	70.6	－802	78	${ }^{10517}$	67.6	${ }_{115}^{1156}$	12	SE：	0.02	1	15	${ }^{2757}$
${ }_{\text {Apma }}^{\text {April }}$	${ }_{6692}$	${ }^{122}$	－	${ }_{96}^{93} 3$	${ }_{79.5}^{76.2}$	17.8	789	76.0	－897	72	${ }_{1}^{19494}$	77.9	186 180	17	S．by w．	¢¢ $\times 0$		17	${ }_{\text {219．9 }}^{2975}$
June	． 711	． 112	85.9 86	98．${ }^{8}$	${ }_{8}^{79.2}$	19.0 198	77.2	${ }^{33} 7$	－885	${ }_{6}^{66}$	115：3	${ }_{78} 7.7$	${ }_{141}^{167}$	118	SSW．	${ }_{1}^{1880}$	10	${ }_{50}^{5}$	180.0
${ }_{\text {Jung }}$	${ }_{744}^{741}$	${ }^{129}$	${ }_{85}^{86}$		${ }_{88}^{80} 9$		${ }_{76} 8$	${ }_{73}$	${ }^{8} 885$	$6{ }_{6} 6$	${ }^{1515}$	77.5	100	19	S．W．bys．	$3: 06$	12		
September	880	138	${ }_{84}$	${ }^{44} 5$	78.1	16.4	78.5	70．2	－928	77	1514	${ }^{76 \cdot 4}$	67	18	s．s．w．	3.25	8	62	$132 \cdot$
October	8890	．112	${ }_{78} 8.7$	83.7	${ }_{750}$	${ }_{8}^{18.7}$	${ }_{76} 6.1$	${ }_{73} 9$				${ }_{73} 9.9$	109	$\stackrel{8}{5}$	N．E．byst．		2_{2}^{2}	${ }_{76}$	250.0 74.8
November December	－983	106	770	${ }_{83}^{83}$	72.0	111	$72 \cdot 6$	$70 \cdot 4$	743	80	${ }_{145 \cdot 3}$	69.9	115	3	N．E．by N．	6.67	8	53	157.0
Annal	29.844	0.120	81.9	${ }^{91} 1$	75.1	16.0	${ }^{756}$	${ }^{72 \cdot 6}$	0.813	74	148．0	$73: 3$	128	${ }^{12}$	SE．	75.00	88	45	$2331 \cdot 6$

Extreme Monthly Meteorological Records at the Madras Observatory in 1918.

䨌	碳	商ニッツ\％
皆		
		臬
		－－¢inutide
	$\begin{aligned} & \text { 意 } \\ & \text { 渭 } \end{aligned}$	
		－
$\begin{aligned} & \text { 喜 } \\ & \text { 県 } \end{aligned}$		官
	$\begin{aligned} & \text { 瞢 } \\ & \stackrel{y}{G} \end{aligned}$	㝘－¢
		－
	荗	育芶
	$\begin{gathered} \text { 董 } \\ \stackrel{y}{9} \end{gathered}$	
	$\begin{aligned} & \text { 菜 } \\ & \text { 品 } \end{aligned}$	

[^0]: + means above normal ; \rightarrow means below normal.

