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ABSTRACT

The solution of the polarized line radiative transfer (RT) equation in muti-dimensional geome-
tries has been rarely addressed and only under the approximation that the changes of frequencies
at each scattering are uncorrelated (complete frequency redistribution). With the increase in
the resolution power of telescopes, being able to handle radiative transfer in multi-dimensional
structures becomes absolutely necessary.

In the present paper, our first aim is to formulate the polarized RT equation for resonance
scattering in multi-dimensional media, using the elegant technique of irreducible spherical tensors
T K

Q (i,Ω). Our second aim is to develop a numerical method of solution based on the polarized
approximate lambda iteration (PALI) approach. We consider both complete frequency redistri-
bution (CRD) as well as partial frequency redistribution (PRD) in the line scattering.

In a multi-D geometry the radiation field is non-axisymmetrical even in the absence of a
symmetry breaking mechanism such as an oriented magnetic field. We generalize here to the 3D
case, the decomposition technique developed for the Hanle effect in a 1D medium which allows
one to represent the Stokes parameters I,Q,U by a set of 6 cylindrically symmetrical functions.
The scattering phase matrix is expressed in terms of T K

Q (i,Ω), (i = 0, 1, 2,K = 0, 1, 2,−K ≤
Q ≤ +K), with Ω, being the direction of the outgoing ray. Starting from the definition of the
source vector, we show that it can be represented in terms of 6 components SK

Q independent of Ω.
The formal solution of the multi-dimensional transfer equation shows that the Stokes parameters
can also be expanded in terms of the T K

Q (i,Ω). Because of the 3D-geometry, the expansion

coefficients IK
Q remain Ω-dependent. We show that each IK

Q satisfies a simple transfer equation

with a source term SK
Q and that this transfer equation provides an efficient approach for handling

the polarized transfer in multi-D geometries. A PALI method for 3D, associated to a core-wing
separation method for treating PRD, is developed. It is tested by comparison with 1D solutions
and several benchmark solutions in the 3D case are given.

Subject headings: line: formation – radiative transfer – polarization – scattering – Sun: atmosphere

1. Introduction

The solution of the polarized line radiative
transfer equation in multi-dimensional media is
necessary to model the solar atmospheric fea-
tures. This requirement stems from the non-
axisymmetry of the radiation field arising purely
due to inhomogeneous structures in the solar at-
mosphere. An idealization to simplify this prob-
lem, is to represent the inhomogeneities as com-
putational cubes, characterized by their shape

and the physical parameters. This approach has
proved useful in the hydrodynamics as well as the
theory of radiative transfer applied to the solar at-
mosphere (see below). In this paper we focus on
the radiative transfer aspects only. Our goal is to
set up the polarized transfer equation suitable for
a given geometry, and to develop numerical tech-
niques to solve them.

Extensive work has been done in unpolarized

multi-dimensional transfer in recent years. Here
we mention only a few important developments on
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this subject. A classic paper on multi-dimensional
unpolarized radiative transfer is by Mihalas et al.
(1978), who undertook an extensive analysis of the
nature of 2D radiative transfer solutions and pre-
sented illustrative examples that helped later de-
velopments. They used a formal solver based on
short characteristics but solved the problem us-
ing a second order transfer equation. A faster and
more efficient formal solution based on short char-
acteristics method for 2D was developed by Ku-
nasz & Auer (1988). An Approximate Lambda
Iteration (ALI) method for unpolarized line trans-
fer was formulated by Auer & Paletou (1994) who
used PRD in the line scattering. Auer et al. (1994)
formulated an ALI method for line transfer in a
3D medium for a multi-level atom model, under
the CRD approximation. Vath (1994) and Pap-
kalla (1995) also proposed efficient 3D transfer
codes based on the short characteristics formal
solvers. Folini (1998) has done extensive work on
the numerical techniques to solve the multi-D ra-
diative transfer equation, and applied them to few
astrophysical problems of practical interest. van
Noort et al. (2002) have developed a general multi-
dimensional transfer code applicable to a variety of
astronomical problems. This list of papers to the
unpolarized transfer in 3D does not pretend to be
complete. Indeed 3D transfer techniques and ap-
plications have been the subject of keen interest in
other branches of astrophysics (see e.g. Nagendra,
Bonifacio & Ludwig 2009).

There are two formalisms to write the transfer
equation for line polarization. The density ma-
trix formalism (see for e.g. Landi Degl’Innocenti
& Landolfi 2004, hereafter LL04), and the scatter-
ing phase matrix formalism (see e.g. Stenflo 1994).
The density matrix formalism may handle polar-
ized scattering in multi-level atoms, while it is not
the case for the scattering formalism, but with the
advantage that it is well adapted to handle the po-
larized line scattering with PRD. Again there are
two streams in the scattering phase matrix formal-
ism. The first one used the Stokes vector trans-
fer equation (see e.g. Stenflo 1976; Dumont et al.
1977; Rees & Saliba 1982; Faurobert 1987; Nagen-
dra 1988, 1994; Nagendra et al. 2002; Sampoorna
et al. 2008a). The second stream worked with the
polarized transfer equation for a reduced intensity
vector (see e.g. Faurobert-Scholl 1991; Nagendra
et al. 1998, 1999; Fluri et al. 2003; Sampoorna et

al. 2008b; Frisch et al. 2009; Sampoorna & Trujillo
Bueno 2010).

The solution of multi-D polarized line transfer

equation formulated in the Stokes vector basis is
rather complicated to solve. The reason for this
is the explicit dependence of the physical quanti-
ties on the spatial co-ordinates (X,Y,Z), angular
variables (θ, ϕ) and frequency x, in the standard
notation. Therefore it is advantageous to write
the transfer equation in a basis where it takes a
simpler form. For example Chandrasekhar (1960)
showed that in a one dimensional geometry, the
monochromatic polarized transfer equation in the
Stokes vector (I,Q,U)T basis can be transformed
to a Fourier basis, where the physical quantities no
longer depend on the azimuthal angle ϕ. A trans-
fer equation can be written for the Fourier compo-
nents of the Stokes vector and the solution is trans-
formed back to the original (I,Q,U)T basis. This
technique was later extended by Faurobert-Scholl
(1991), (see also Nagendra et al. 1998) to the case
of polarized line transfer in the presence of a mag-
netic field (Hanle effect). Frisch (2007, hereafter
HF07) decomposed the Stokes vector (I,Q,U)T in
terms of irreducible spherical tensors for polarime-
try (see LL04 and the references cited therein).
In HF07 it is shown that the Fourier expansion
approach and the irreducible spherical tensor ap-
proach are somewhat equivalent, the latter being
more compact and convenient to use in the scat-
tering theory.

Dittmann (1997) formulated the solution of the
polarized transfer equation for continuum scatter-
ing in 3D media. Later he proposed (Dittmann
1999) an approach of factorizing the Hanle phase
matrix into a form which is suitable for the solu-
tion of the line transfer equation in 3D geometries,
under the assumption of complete frequency redis-
tribution (CRD). The Hanle line transfer equation
in 2D and 3D media with CRD using the den-
sity matrix formalism was solved by Manso Sainz
& Trujillo Bueno (1999). Paletou et al. (1999)
solved the non-magnetic polarized resonance scat-
tering with CRD using a perturbative approach, in
a 2D geometry. Trujillo Bueno et al. (2004); Tru-
jillo Bueno & Shchukina (2007, 2009, and refer-
ences cited therein) have applied their multi-level
3D polarized transfer code to a variety of prob-
lems to understand the nature of the line transfer
in the second solar spectrum. An escape proba-
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bility method to compute the polarized line pro-
files in non-spherical winds was developed by Jef-
frey (1989). In all the works mentioned above, the
authors used the CRD in line scattering. Hillier
(1996) solved the problem of Rayleigh scattering
polarization in a 2D-spherical geometry based on
the Sobolov-P approach (polarized line transfer in
high speed winds) using the angle averaged partial
frequency redistribution functions.

In the present paper we solve the 3D polarized
line transfer equation in a non-magnetic medium
under the assumption of partial frequency redis-
tribution (PRD). For this purpose we use the tra-
ditional scattering phase matrix approach. We
follow the decomposition technique of HF07 all
through the present paper. Basically we start from
the decomposition of Stokes parameters in terms
of the irreducible spherical tensors for 1D media,
developed by HF07, and extend it to handle the
case of transfer in multi-dimensional media. For
the PRD we consider the collisional redistribution
matrix (Domke & Hubeny 1988; Bommier 1997)
for a 2-level atom model with unpolarized ground
level.

A polarized RT equation in Stokes vector for-
malism is presented in § 2. A general multipolar
expansion of the Stokes source vector and Stokes
parameters in terms of the irreducible spherical
tensors and the corresponding RT equation is pre-
sented in § 3. For the formal solution of the
transfer equation we use the finite volume element
method formulated by Adam (1990), extended
here to include polarization and PRD. We briefly
explain in § 4 the numerical method that we have
developed in the present paper. Details of the nu-
merical method are presented in Appendix B. In
§ 5 we present some solutions to understand the
nature of polarization in a 3D scattering medium.
They may serve as benchmarks for further explo-
ration. In § 6 we present our conclusions.

2. Polarized radiative transfer in a 3D

medium – Stokes vector basis

The transfer equation in divergence form in the
atmospheric reference frame (see Figure 2) is writ-

ten as

Ω · ∇I(r,Ω, x) =

−[κl(r)φ(x) + κc(r)][I(r,Ω, x) − S(r,Ω, x)],

(1)

where I = (I,Q,U)T is the Stokes vector, with
I, Q and U the Stokes parameters defined below.
Following Chandrasekhar (1960), we consider an
elliptically polarized beam of light, the vibrations
of the electric vector of which describe an ellipse.
If Il and Ir denote the components of the specific
intensity of this beam of light along two mutually
perpendicular directions l and r, in a plane trans-
verse to the propagation direction, then we define

I = Il + Ir,

Q = Il − Ir,

U = (Il − Ir) tan 2χ, (2)

where χ is the angle between the direction l and
the semi major axis of the ellipse. Positive value of
Q is defined to be in a direction perpendicular to
the surface, and negative Q in the directions par-
allel to it. The quantity r = (X,Y,Z) is the posi-
tion vector of the ray in the Cartesian co-ordinate
system. The unit vector Ω = (nX , nY , nZ) =
(sin θ cos ϕ , sin θ sinϕ , cos θ) describes the direc-
tion cosines of the ray in the atmosphere with re-
spect to the atmospheric normal, with θ, ϕ being
polar and azimuthal angles of the ray. The quan-
tity κl is the frequency averaged line opacity, φ
is the Voigt profile function and κc is the contin-
uum opacity. Frequency is measured in reduced
units, namely x = (ν − ν0)/∆νD, where ∆νD is
the Doppler width. The total source vector S is
given by

S(r,Ω, x) =
κl(r)φ(x)Sl(r,Ω, x) + κc(r)Sc(r, x)

κl(r)φ(x) + κc(r)
.

(3)

Here Sc is the continuum source vector namely
(B(r), 0, 0)T with B(r) being the Planck function
at the line center frequency. The line source vector
can be expressed as

Sl(r,Ω, x) = G(r) +

∫ +∞

−∞

dx′

×
∮

dΩ′

4π

R̂(x, x′,Ω,Ω′)

φ(x)
I(r,Ω′, x′), (4)
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where G = (ǫB(r), 0, 0)T is the thermal source.
ǫ = ΓI/(ΓR+ΓI) with ΓI and ΓR being the inelas-
tic collision rate and the radiative de-excitation
rate respectively, so that ǫ is the rate of destruc-
tion by inelastic collisions, also known as the ther-
malization parameter. The damping parameter is
computed using a = aR[1 + (ΓE + ΓI)/ΓR] where
aR = ΓR/4π∆νD and ΓE is the elastic collision
rate. R̂ is the redistribution matrix. The solid
angle element dΩ′ = sin θ′ dθ′ dϕ′ θ ∈ [0, π] and
ϕ ∈ [0, 2π]. To construct the decomposition in
multipolar components, it is convenient to work
with the transfer equation written along a ray
path. It has the form

dI(r,Ω, x)

ds
= −κtot(r, x)[I(r,Ω, x)−S(r,Ω, x)],

(5)
where s is the path length along the ray (see Fig-
ure 1) and κtot(r, x) is the total opacity given by

κtot(r, x) = κl(r)φ(x) + κc(r). (6)

The formal solution of Equation (5) is given by

I(r,Ω, x) = I(r0,Ω, x)e
−

∫ s

s0

κtot(r − s′′Ω, x)ds′′

+

∫ s

s0

S(r − s′Ω,Ω, x)e
−

∫ s

s′

κtot(r − s′′Ω, x)ds′′

×[κtot(r − s′Ω, x)]ds′. (7)

I(r0,Ω, x) is the boundary condition imposed at
r0 = (X0, Y0, Z0).

3. Decomposition of Stokes vectors for

multi-dimensional radiative transfer

In this section we show how to generalize to a
multi-D geometry the Stokes parameters decom-
position method developed for the Hanle effect in
1D geometry.

3.1. A multipolar expansion of the Stokes

source vector and the Stokes intensity

vector in a 3D medium

We derive the required decomposition starting
from the polarized transfer equation in (I,Q,U)T

basis. For simplicity, we assume that the redistri-
bution matrix can be written as a product of angle-
averaged redistribution functions and an explicit

angle (θ, ϕ) dependent phase matrix. The scatter-
ing phase matrix can be expressed in terms of the
irreducible spherical tensors introduced in LL04.
The ij-th element of the redistribution matrix in
the atmospheric reference frame (Bommier 1997)
is given by

Rij(x, x′,Ω,Ω′) =
∑

KQ

WKT K
Q (i,Ω)(−1)QT K

−Q(j,Ω′)RK(x, x′),

(8)

where (i, j) = (1, 2, 3) and

RK(x, x′) = WK{αRII(x, x′)+[β(K)−α]RIII(x, x′)}.
(9)

In the present paper, we consider only the lin-
ear polarization. Therefore, K = 0, 2 and Q ∈
[−K,+K]. The weights WK depend on the line
under consideration (see LL04). Here RII(x, x′)
and RIII(x, x′) are the angle-averaged versions of
redistribution functions (see Hummer 1962). The
branching ratios are given by

α =
ΓR

ΓR + ΓE + ΓI

, (10)

β(K) =
ΓR

ΓR + D(K) + ΓI

, (11)

with D(0) = 0 and D(2) = cΓE , where c is a
constant, taken to be 0.379 (see Faurobert-Scholl
1992). Substituting Equations (8) and (9) in
Equation (4), we can write the i-th component
of the line source vector as

Si,l(r,Ω, x)

= Gi(r) +
1

φ(x)

∫ +∞

−∞

dx′

∮

dΩ′

4π

×
3
∑

j=0

∑

KQ

T K
Q (i,Ω)(−1)QT K

−Q(j,Ω′)

×RK(x, x′)Ij(r,Ω′, x′). (12)

Denoting GK
Q = δK0δQ0G(r), where G(r) = ǫB(r)

we can write the i-th component of the thermal
source vector as

Gi(r) =
∑

KQ

T K
Q (i,Ω)GK

Q (r). (13)
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Substituting Equation (13) in Equation (12) we
can write the line source vector as

Si,l(r,Ω, x) =
∑

KQ

T K
Q (i,Ω)SK

Q,l(r, x), (14)

where

SK
Q,l(r, x) = GK

Q (r) +
1

φ(x)

∫ +∞

−∞

dx′

∮

dΩ′

4π

×RK(x, x′)

3
∑

j=0

(−1)QT K
−Q(j,Ω′)Ij(r,Ω′, x′).

(15)

Notice that the components SK
Q,l(r, x) now depend

only on the spatial variables (X,Y,Z) and fre-
quency x. The (θ, ϕ) dependence is fully contained
in T K

Q (i,Ω). These quantities are listed in LL04
(chapter 5, Table 5.6, p. 211, see also Table 2 of
HF07). We can define the monochromatic optical
depth scale as

τx(X,Y,Z) =

∫ s

s0

κtot(r − s′′Ω, x) ds′′, (16)

where τx is measured along a given ray determined
by the direction Ω. We use the notation τX , τY

and τZ to denote the optical depths along the X, Y
and Z axes respectively at line center. Substitut-
ing Equation (14) in Equation (7), the components
of I can be written as

Ii(r,Ω, x) =
∑

KQ

T K
Q (i,Ω)IK

Q (r,Ω, x), (17)

where

IK
Q (r,Ω, x) = IK

Q,0(r0,Ω, x)e
−

∫ s

s0

κtot(r − s′′Ω, x) ds′′

+

∫ s

s0

e
−

∫ s

s′

κtot(r − s′′Ω, x) ds′′[
pxSK

Q,l(r − s′Ω, x)

+(1 − px)SK
Q,C(r − s′Ω, x)

]

[κtot(r − s′Ω, x)] ds′.

(18)

IK
Q,0 = I0(r0,Ω, x)δK0δQ0 are the intensity com-

ponents at the lower boundary. The quanti-
ties SK

Q,C = SC(r, x)δK0δQ0 denote the contin-
uum source vector components. We assume that
SC(r, x) = B(r). The ratio of the line opacity to
the total opacity is given by

px = κl(r)φ(x)/κtot(r, x). (19)

Expressed in terms of optical depth along the ray,
Equation (18) can be written as

IK
Q (r,Ω, x) = IK

Q,0(r0,Ω, x)e−τx,max

+

∫ τx,max

0

e−τ ′

x(r′)
[

pxSK
Q,l(r

′, x)

+(1 − px)SK
Q,C(r′, x)

]

dτ ′

x(r′).

(20)

In Equation (20) τx,max is the maximum optical
depth when measured along the ray. Let SK

Q =

pxSK
Q,l + (1 − px)SK

Q,C . Using the expansions in

Equations (14) and (17), it can be shown that SK
Q

and IK
Q satisfy a transfer equation of the form

− 1

κtot(r, x)
Ω · ∇I

K
Q (r,Ω, x) =

[IK
Q (r,Ω, x) − SK

Q (r, x)]. (21)

The great advantage of working with the irre-
ducible intensity components IK

Q is that the cor-

responding source terms SK
Q become independent

of the direction Ω of the ray.

Substituting Equation (17) in Equation (15) we
obtain

SK
Q,l(r, x) = GK

Q (r) + J̄K
Q (r, x), (22)

where

J̄K
Q (r, x) =

1

φ(x)

∫ +∞

−∞

dx′

∮

dΩ′

4π
RK(x, x′)

×
3
∑

j=0

∑

K′Q′

(T K
Q )∗(j,Ω′)T K′

Q′ (j,Ω′)IK′

Q′ (r,Ω′, x′).

(23)

The symbol ∗ represents the conjugation. T K
Q sat-

isfy the conjugation property

(T K
Q )∗(j,Ω) = (−1)QT K

−Q(j,Ω). (24)

Equation (23) can be expressed in a matrix form
as

J (r, x) =
1

φ(x)

∫ +∞

−∞

dx′

∮

dΩ′

4π

R̂(x, x′)Ψ̂(Ω′)I(r,Ω′, x′), (25)

where the components of the vectors J and I are
J̄K

Q and IK
Q respectively. The matrix R̂ is given by

R̂(x, x′) = Ŵ [α̂RII(x, x′) + (β̂ − α̂)RIII(x, x′)],
(26)
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where

Ŵ = diag{W0,W2,W2,W2,W2,W2}, (27)

α̂ = diag{α, α, α, α, α, α}, (28)

β̂ = diag{β(0), β(2), β(2), β(2), β(2), β(2)}. (29)

The elements of the matrix Ψ̂(Ω) are

ΨKK′

QQ′ (Ω) =

3
∑

j=0

(T K
Q )∗(j,Ω)T K′

Q′ (j,Ω). (30)

ΨKK′

QQ′ are exactly the same as ΓKK′,QQ′(Ω) given
in LL04 (Appendix A.20). We stress here that
the phase matrix Ψ̂(Ω′) in Equation (25) depends
only on the directions Ω′ of the incident rays. The
dependence on Ω, present in the phase matrix
when one works with the (I,Q,U) basis, disap-
pears when the polarized radiation field is repre-
sented with the six IK

Q components. For short we
refer to this representation as the “reduced ba-
sis”. The matrix Ψ̂(Ω′) differs from the Ψ̂(µ′) ma-
trix that appears in 1D radiative transfer problems
(see HF07, Nagendra et al. 1998), since it now de-
pends on the azimuthal angle ϕ′ of the incident
ray.

3.2. Polarized Radiative transfer equation

for the real irreducible intensity vec-

tor in a 3D medium

The irreducible components IK
Q and SK

Q and the

phase matrix elements ΨKK′

QQ′ introduced in § 3.1
are complex quantities. For practical computa-
tions, we prefer working with the real quantities.
In this section we transform those quantities into
the real space. For this purpose we follow the pro-
cedure given in HF07. We define

IK,x
Q (r,Ω, x) = Re{IK

Q (r,Ω, x)},
IK,y
Q (r,Ω, x) = Im{IK

Q (r,Ω, x)}. (31)

It can be shown that I
r = (I0

0 , I2
0 , I2,x

1 , I2,y
1 , I2,x

2 , I2,y
2 )T

and the corresponding source vector S
r satisfy a

transfer equation of the form

− 1

κtot(r, x)
Ω · ∇I

r(r,Ω, x) =

[I r(r,Ω, x) − S
r(r, x)], (32)

where S
r(r, x) = pxS

r
l (r, x) + (1 − px)Sr

C(r, x)
with

S
r
l (r, x) = ǫB(r) +

1

φ(x)

∫ +∞

−∞

dx′

×
∮

dΩ′

4π
R̂(x, x′)Ψ̂r(Ω′)I r(r,Ω′, x′).(33)

In the above equation, the real part of the scatter-
ing phase matrix Ψ̂r(Ω) has the form

Ψ̂r(Ω) = T̂−1Ψ̂(Ω)T̂ , (34)

where the matrix T̂ is given by

T̂ =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 i 0 0
0 0 −1 i 0 0
0 0 0 0 1 i
0 0 0 0 1 −i

















. (35)

The elements of the scattering phase matrix
Ψ̂r(Ω) are given in the Appendix A. The ma-
trix Ψ̂r(Ω) has only 21 distinct coefficients due to
symmetry reasons. We remark that Ψ̂r(Ω) is a full
matrix to be used in Multi-D case, unlike the Ψ̂(µ)
that is used in the 1-D case, which has a sparse
structure. After solving the transfer problem in
the real, reduced basis, one has to transform back
to the Stokes (I,Q,U)T basis. This can be done
using the following equations (see also Appendix
B of HF07).

I(r,Ω, x) = I0
0 +

1

2
√

2
(3 cos2 θ − 1)I2

0

−
√

3 cos θ sin θ(I2,x
1 cos ϕ − I2,y

1 sin ϕ)

+

√
3

2
(1 − cos2 θ)(I2,x

2 cos 2ϕ − I2,y
2 sin 2ϕ),

(36)

Q(r,Ω, x) = − 3

2
√

2
(1 − cos2 θ)I2

0

−
√

3 cos θ sin θ(I2,x
1 cos ϕ − I2,y

1 sin ϕ)

−
√

3

2
(1 + cos2 θ)(I2,x

2 cos 2ϕ − I2,y
2 sin 2ϕ),

(37)

U(r,Ω, x) =
√

3 sin θ(I2,x
1 sinϕ + I2,y

1 cos ϕ)

+
√

3 cos θ(I2,x
2 sin 2ϕ + I2,y

2 cos 2ϕ). (38)
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The irreducible components in the above equa-
tions also depend on r, Ω and x.

4. The Numerical Method of Solution

For the numerical solution of the 3D transfer
problem (Equation (32)), we use a polarized ap-
proximate lambda iteration (PALI) method, asso-
ciated to a core-wing separation method to handle
PRD. The 6 component scattering integral can be
expressed as

J
r
(r, x) =

∫ +∞

−∞

dx′
R̂(x, x′)

φ(x)
J

r(r, x′), (39)

with

J
r(r, x) =

∮

dΩ′

4π
Ψ̂(Ω′)I(r,Ω′, x). (40)

The formal solution for I(r,Ω′, x) allows us to
define the operator Λ̂x as

J
r(r, x) = Λ̂x[Sr(r, x)]. (41)

Applying the operator splitting technique, the
scattering integral at the (n + 1)-th iteration can
be written as

J
r,n+1

(r, x) =

∫ +∞

−∞

dx′
R̂(x, x′)

φ(x)

[Λ̂∗

x′ + (Λ̂x′ − Λ̂∗

x′)]Sr,n+1(r, x′). (42)

We can re-write the scattering integral as

J
r,n+1

(r, x) = J
r,n

(r, x) +

∫ +∞

−∞

dx′

R̂(x, x′)

φ(x)
Λ̂∗

x′px′δSr,n
l (r, x′). (43)

It is useful to notice here that δSr,n(r, x) =
pxδSr,n

l (r, x). The correction to the line source
vector in the n-th iteration is given by

δSr,n
l (r, x) =

J
r,n+1

(r, x) + ǫB(r) − S
r,n
l . (44)

Further details of the numerical method of solu-
tion to solve the 3D transfer equation is given in
Appendix B.

4.1. The formal solution in 3D geometry

In this section we generalize the method of
Adam (1990) for 3D transfer to include the po-
larization and PRD. For the sake of brevity we
drop the explicit dependence of the physical quan-
tities on the arguments. To start with, we divide
the computational domain (a cube) in to a 3 di-
mensional mesh of grid points (Xi, Yj , Zk) with
i = 1, 2, . . . NX ; j = 1, 2, . . . NY ; k = 1, 2, . . . NZ .
A discretization of Equation (32) on this mesh can
be written as

− 1

κtot

[

nX

I
r
ijk − I

r
i−a,j,k

Xi − Xi−a

+nY

I
r
ijk − I

r
i,j−b,k

Yj − Yj−b

+ nZ

I
r
ijk − I

r
i,j,k−c

Zk − Zk−c

]

= [Ir
ijk − S

r
ijk], (45)

where a, b, c are the increments, taking values +1
or −1 depending on the choice of the direction
vector Ω. In deriving Equation (45) we have used
a finite difference method where the differential
operator is represented to the linear order. Equa-
tion (45) can be simplified to get

I
r
ijk =

{

S
r
ijk +

1

κtot

[

nX

I
r
i−a,j,k

Xi − Xi−a

+nY

I
r
i,j−b,k

Yj − Yj−b

+ nZ

I
r
i,j,k−c

Zk − Zk−c

]}/

{

1 +
1

κtot

(

nX

Xi − Xi−a

+
nY

Yj − Yj−b

+
nZ

Zk − Zk−c

)}

.

(46)

Equation (46) is solved recursively, namely the in-
tensity at any spatial point (ijk) depends only
on the intensity at 3 previous neighboring points
(i − a, j, k), (i, j − b, k), (i, j, k − c).

It is shown by Adam (1990) that this numeri-
cal approach is unconditionally stable. The linear
differencing is relatively less accurate compared to
the short characteristic method, as a formal solver.
However, we can overcome this problem of accu-
racy by taking sufficiently small step sizes in the
(X,Y,Z) co-ordinates. The main emphasis of the
present paper is to understand the nature of 3D
solutions for the problem at hand, instead of de-
vising highly accurate and rapid methods. These
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issues would be addressed in another paper. In § 5
we present few benchmark solutions computed by
the method presented in Appendix B.

Computational details: We consider a self-emitting
cube (or a slab) for the results presented in this
paper. A Gaussian angle grid of 6 inclination
(θ=83.5◦, 60◦, 27.4◦, 96.5◦, 120◦, 152.6◦) and 8
azimuths (ϕ=7◦, 36◦, 85◦, 146◦, 213◦, 274◦, 323◦,
352◦) are used. We have numerically tested that
this kind of angular resolution is quite reason-
able and gives stable solutions. A spatial grid
resolution of 15 points per decade or 20 points
per decade in X, Y and Z directions are used.
The spatial grid is logarithmic, with fine griding
near the boundaries. A logarithmic frequency
grid of 31 points covering 20 Doppler widths
(0 ≤ x ≤ xmax = 20) is sufficient for the ex-
amples shown in this paper. The standard model
parameters are listed in § 5.1. The specific model
parameters for each Figure are given in the Fig-
ures and the respective Figure captions.

5. Results and Discussions

In this section we present sample results to
show the correctness of the Stokes decomposition
procedure, as applied to the 3D case. Further
we show some results to validate the numerical
method that computes the 3D solution. The de-
parture of the radiation field from axi-symmetry
is discussed in some detail. A study of the PRD
effects in 3D media is also presented along with
the role of collisional redistribution.

5.1. A validation test for the 3D polarized

radiative transfer solution

It is possible to test the correctness of a 3D
solution by going to a geometric situation where
the 3D cube mimics an 1D slab. For TX >> TZ

and TY >> TZ , with a finite value of TZ = T ,
the computational box looks like a planar slab of
optical thickness T . We can expect the emergent
solution (I,Q/I, U/I)T at the center of the upper
surface (TX/2, TY /2, τZ = 0) of such a cube to ap-
proach the emergent 1D solution (I,Q/I, U/I)T

at τZ = 0. Figure 3 presents this validation
test. The 1D benchmark solution is computed
using a PALI method (see e.g. Nagendra et al.
1999; Fluri et al. 2003). The model parameters
are TX = TY = 107, and TZ = T = 10; the

elastic and inelastic collision rates are respectively
ΓE/ΓR = 10−4, ΓI/ΓR = 10−4. The damping pa-
rameter of the Voigt profile is a = 2 × 10−3. The
branching ratios for this choice of model param-
eters are (α, β(0), β(2)) ≈ (1, 1, 1) (see the exact
values in Table 2). We consider the pure line case
(κc = 0), and scattering according to PRD (see
Equation (8)). The internal thermal sources are
taken as constant (the Planck function B = 1).
The medium is assumed to be self-emitting (no
incident radiation on the boundaries). The emer-
gent (I,Q/I, U/I) profiles are shown for a choice
of angles (µ, ϕ)=(0.11, 7◦). From Figures 3(a)
and 3(b), we see that there is a good agreement
between the two solutions. In the planar case
U/I ≡ 0. The U/I in the 3D case approaches this
value to a high accuracy (10−5 percent). This fig-
ure shows the correctness of the Stokes decompo-
sition expressions, and also the numerical method
that computes the 3D solution.

5.2. The nature of irreducible intensity

components I
r in a 3D medium

In § 3 we showed how to express the Stokes
parameters in terms of the irreducible intensity
components. These components are more fun-
damental than the Stokes parameters themselves.
Their study is useful to understand the behavior
of Stokes parameters - which are actually the mea-
surable quantities. If we choose optical thickness
in the X, Y , and Z directions as TX = TY = TZ =
T , then we encounter a situation where the 3D na-
ture of the transfer problem is clearly exhibited.
Figure 4 shows the spatially averaged emergent
I

r at the top surface (τZ = 0). We prefer to show
the surface averaged I

r because the components
themselves sensitively depend on the spatial loca-
tion on the surface. It is useful to note that the
spatially averaged I

r retain the original symme-
tries even after averaging. The results are shown
for µ = 0.11 and for all the 8 values of the azimuth
angle ϕ (namely 7◦, 36◦, 85◦, 146◦, 213◦, 274◦,
323◦, 352◦). The model parameters and the phys-
ical conditions chosen for Figure 4 are the same as
in Figure 3, except for TX=TY =TZ=T=100.

The I0
0 component is the driving term. It is also

the largest in magnitude. The I2
0 component is two

orders of magnitude smaller than I0
0 . In a corre-

sponding 1D medium the last 4 components of I
r

become zero because of the cylindrical symmetry
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of the radiation field. In a 3D medium, these com-
ponents are non-zero. Specifically for our chosen
model the components I2,x

1 and I2,y
1 are nearly one

order of magnitude larger than I2
0 itself. The com-

ponents I2,x
2 and I2,y

2 are of the same order as I2
0 .

Because I0
0 is the largest of all the components,

the behavior of the I
r can be understood by con-

sidering the action of the first column elements of
the Ψ̂r matrix on I0

0 . The quantities I0
0 in panel

(a) and I2
0 in panel (b) are nearly independent of

the azimuthal angle ϕ. This comes from the ϕ-
independence of the elements Ψr

11 and Ψr
21 of the

scattering phase matrix in the reduced basis. Ψr
31

and Ψr
51 elements contain cos ϕ and cos 2ϕ func-

tions respectively. The ϕ values are chosen in such
a way that ϕi = 2π − ϕnϕ−i+1 with i = 1, 2, 3, 4
and nϕ = 8. Due to symmetry of cos ϕ and cos 2ϕ
functions with respect to ϕ = 2π and 4π respec-
tively, only 4 curves are distinguishable among the
8 in Figures 4(c) and 4(e). The elements Ψr

41 and
Ψr

61 contain sinϕ and sin 2ϕ functions respectively.
Due to antisymmetry of sinϕ and sin 2ϕ functions
with respect to ϕ = 2π and 4π respectively, in Fig-
ures 4(d) and 4(f) the curves for ϕi, i = 1, 2, 3, 4
have opposite signs with respect to the curves for
ϕnϕ−i+1, nϕ = 8. Moreover, ϕ2 and π − ϕ4 are
close, and ϕ5 and 3π − ϕ7 are also close. Due
to symmetry of sin ϕ with respect to ϕ = π and
3π, in Figure 4(d) curves for ϕ2 and ϕ5 nearly co-
incide with those for ϕ4 and ϕ7 respectively. On
the other hand, 2ϕ2 is close to 2π−2ϕ4 and 2ϕ5 is
close to 6π−2ϕ7, which in turn lead to the ϕ2 and
ϕ4 curves and ϕ5 and ϕ7 curves to have opposite
signs in Figure 4(f) due to the anti symmetry of
sin 2ϕ function about ϕ = 2π and 6π respectively.
Therefore, all the curves are clearly resolved.

In Figure 5 we present the spatially averaged
emergent (I,Q/I, U/I) corresponding to the irre-
ducible intensity components shown in Figure 4.
The Stokes I profile has dominant contribution
from I0

0 (see Equation (36)). The Q/I profile on
the other hand has significant contributions from
I2
0 , I2,x

1 and I2,y
1 . The component I2

0 is nearly ϕ-
independent, however I2,x

1 and I2,y
1 are strongly

ϕ-dependent. This dependence is responsible for
a strong variation of Q/I with respect to the az-
imuthal angle ϕ (see Equation (37)). On the other
hand, in a 1D medium I2

0 is the only component
that is responsible for the generation of Stokes Q.
Because of this, Q/I in 1D medium becomes ϕ-

independent. The dominant contribution to U/I
comes from I2,x

1 and I2,y
1 . The magnitude of U/I

is quite significant, and could become larger than
Q/I, unlike the corresponding 1D situation, where
U/I ≡ 0 always.

5.3. Linear polarization in 3D medium of

finite optical depths

In this section we show (I,Q/I, U/I) profiles at
chosen spatial points on the top surface (τZ = 0).
Our purpose is to understand the spatial depen-
dence of the solution. In Figure 6 we show the so-
lutions for a cube defined by TX = TY = TZ = T
with T =10, and 100. All the other model param-
eters and physical conditions are taken to be the
same as in Figure 3. The curves in Figure 6 rep-
resent the emergent (I,Q/I, U/I) at the spatial
locations marked as points 1–9 on the top surface
of the computational cube as shown in Figure 2
(see Table 1 for optical depth information). The
corresponding 1D solution is shown for compari-
son as dash-triple-dotted lines in all the panels.

Stokes I: In Figures 6(a) and 6(d) we plot the
Stokes I in 1D and 3D media. The 3D solutions
are shown at spatial points 1, 2, 3, 4, 5 as solid,
dotted, dashed, dot-dashed, long dashed lines re-
spectively. The results are shown for µ = 0.11
and ϕ = 7◦. In all the cases, Stokes I shows
an emission line spectra, and the [I]3D is less in
magnitude than the [I]1D. This indicates the leak-
ing in the 3D case, of the radiation through the
surface boundaries perpendicular to X and Y di-
rections in contrast to the 1D case characterized
by TX , TY → ∞. As we are showing Stokes I
for µ = 0.11 (positive µ direction), the Stokes I
for points 2 and 4 are much smaller in magnitude
than those at points 3 and 5. This is because
the incident intensity is zero at the boundaries
adjacent to the points 2 and 4. At points 3 and
5 Stokes I emergent in the direction µ = 0.11
is larger in magnitude due to the contribution
of scattering in the medium. Stokes I shows a
larger spatial gradient in the regions covered by
[TX , TX/2] and [TY , TY /2], when compared to the
region covered by [TX/2, 0] and [TY /2, 0]. This
can be seen clearly by looking at the surface plots,
namely Figure 7(a) and 7(b).

Stokes Q: In Figures 6(b) and 6(e) we plot the
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Q/I in 1D and 3D medium. The 3D solutions are
shown at spatial points 1, 2, 3, 6, 7 as solid, dotted,
dashed, dot-dashed, long dashed lines respectively.
There exist significant differences between [Q/I]1D
and [Q/I]3D. For T = 10, the maximum value
of [|Q/I|]3D is for the spatial location 2. At this
point, [|Q/I|]3D is about 4 percent and [|Q/I|]1D is
3 percent at line center. However in the near wings
(x ≤ 6), [|Q/I|]1D reaches a maximum of around 8
percent at x = 2 and the corresponding [|Q/I|]3D
is around 3 percent. For T = 100, the [|Q/I|]3D
reaches a maximum of 10 percent for the spatial
point 2 at x = 2 and [|Q/I|]1D reaches maximum
of 7 percent at x = 4. For the points 2 and 6,
[|Q/I|]3D takes largest values for both T = 10 and
T = 100. The dominant quantity that dictates the
emergent Q/I is the radiation anisotropy within
the cube. The above results show the existence
of a sharp variation of anisotropy within the cube
than within a slab which has only one degree of
freedom for transfer in the spatial domain. Also
from the surface plots Figures 7(c) and 7(d) we see
a sharp variation of [|Q/I|]3D at the edges of the
top surface. However, the polarization remains
nearly constant (≈ 2 percent) at x = 0 in the in-
ner parts of the top surface. The spatial variation
of [|Q/I|]3D at x = 2 is quite different from that at
x = 0. There is a sharp increase in [|Q/I|]3D near
the edge region (τX = 0 or τX = TX), reaching a
maximum value of around 10 percent.

Stokes U : In Figures 6(c) and 6(f) we show U/I
in 1D and 3D medium. The 3D solutions are
shown at spatial points 1, 4, 5, 6, 7 as solid, dot-
ted, dashed, dot-dashed, long dashed lines respec-
tively. [|U/I|]1D ≡ 0, whereas [|U/I|]3D has a
significant value. The variation of [|U/I|]3D with
an increase in T is analogous to the behavior of
[|Q/I|]3D. For the points 4 and 5, [|U/I|]3D takes
largest values for both T = 10 and T = 100. It
reaches a maximum of 15 percent at the spatial
point 4, for x = 0 and T=10 (see Figure 6(c)) and
25 percent at the spatial point 4, for x = 2 and
T=100 (see Figure 6(f)). This shows that U/I is
much more sensitive to the anisotropy of the ra-
diation field within a 3D medium. At the spatial
point 1, [|U/I|]3D ≈ 0 as expected, namely the axi-
symmetry of the emergent radiation at the central
point. From the surface plots Figures 7(e) and
7(f) we can see a large variation of [|U/I|]3D again

at the edges of the cube, where non-axisymmetry
reaches maximum. As in [|Q/I|]3D the behavior of
[|U/I|]3D at x = 2 is quite different from that at
x = 0. However its maximum is now reached near
the edge region (τY = 0 or τY = TY ), which is
oriented at 90◦ with respect to the regions where
[|Q/I|]3D shows a maximum variation (τX = 0 or
τX = TX). In general, the run of anisotropy in
the 3D case depends on the optical depths in X,
Y and Z directions simultaneously. This is clearly
seen in the complicated frequency dependence of
(Q/I, U/I) profiles in the 3D case unlike the 1D
case. Although the linear polarization (Q/I, U/I)
may take large values at different spatial points
(for e.g., points 1–9), the surface averaged values
of (Q/I, U/I) are usually less, in the self-emitting
cubes that we have considered in this paper. The
effect of surface averaging can be seen in Figure 5.
The fact that 1D values of (Q/I, U/I) differ con-
siderably from the 3D situation shows that real-
istic modeling of the observed linear polarization
using 3D model atmospheres is not as straight for-
ward as the use of 1D model atmospheres.

5.4. The effect of collisional redistribution

on the Stokes parameters in a 3D

medium

Figure 8 shows spatially averaged (I,Q/I, U/I)T

results computed for a T = 100 model with a
range of elastic collision rate parameters ΓE/ΓR =
(10−4, 0.1, 1, 10). The models corresponding to
the curves shown in Figure 8 are given in Table 2.
Models 2 and 3 can be termed as radiative de-
excitation models (dominated by RII-type PRD).
Model 4 has a mixture of RII and RIII type PRD
scattering mechanisms. The collisions dominate
(RIII-type PRD) in the model 5. Model 1, corre-
sponding to CRD, is presented for comparisons.

Stokes I: The Stokes I is controlled by α and
β(0) − α. The line core (x ≤ 1) of the Stokes
I profile is unaffected by collisions. In the line
core, the RII and RIII type functions both behave
like CRD function, and hence the PRD and CRD
profiles are similar. As we go from models 2 to
5, the relative contribution of RIII progressively
increases throughout the line profile. However its
effect is felt only in the wings (x ≥ 2).

Stokes Q: The ratio Q/I is controlled by α and
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β(2) −α. The models 1 to 3 yield nearly the same
magnitude for [|Q/I|]3D at line center again be-
cause of the CRD-type behavior of RII and RIII

in the line core. In model 4, both RII and RIII are
weighted by smaller values of α and β(2)−α. This
causes a large depolarization in the line core. In
the near line wings, RII dominated models 2 and 3
show largest polarization (≈ 1.5 percent). In the
CRD case (model 1), the scattering integral be-
comes constant in the optically thin wings. This
is because the contribution of the wing frequen-
cies to the scattering integral becomes smaller
and smaller, in comparison to the contribution
from the core frequencies. For this reason, the
anisotropy and hence the wing polarization takes
a constant value. In models 2 and 3 RII type scat-
tering dominates throughout the profile. For these
cases, the scattering integral approaches zero and
hence only the thermal (isotropic) part contributes
to the line source function. As a consequence, po-
larization goes to zero in these optically thin wings
(see Faurobert 1987). The other two models are a
combination of these two extreme conditions and
therefore the corresponding Q/I curves lie in be-
tween the two extreme situations.

Stokes U : As discussed before, generation of
Stokes U is a characteristic of multi-D transfer
(through a large non-axisymmetry). The quali-
tative behavior of U/I profile is similar to that
of Q/I for all the models. In the CRD case the
magnitude of U/I in the wings is much larger (≈ 2
percent) than that of Q/I (≈ 0.72 percent).

6. Conclusions

In this paper we formulate the polarized trans-
fer equation in 3D geometry using the technique
of irreducible spherical tensors T K

Q (i,Ω). The po-
larized transfer equation for the irreducible com-
ponents of the Stokes parameters lends itself for
solution by the standard PALI methods, extended
appropriately to handle the transfer of the rays in
a 3D geometry. We present 3D solution on some
test cases, which may serve as benchmarks. The
nature of line radiative transfer in 3D geometry,
as compared to the 1D case is discussed in some
detail.

We show that the 3D PALI method gives cor-
rect results in the limit of 1D geometry. The

3D transfer is characterized by the anisotropy of
the radiation field within the computational cube.
The 3D anisotropy is characteristically different
from the 1D anisotropy of the radiation field. The
difference arises due to the finite optical depths
in the horizontal directions (X,Y ). This causes
large differences between the 3D and 1D values of
the degree of linear polarization (Q/I, U/I). In
fact, in 3D geometry the radiation field is non-
axisymmetric (even in the absence of magnetic
fields) because the finite optical depths in X,Y,Z
directions break the azimuthal symmetry of the
radiation field. In a 1D geometry, the radiation
field is axisymmetric about the Z-axis. Due to
these reasons, the shapes and magnitude of the
(Q/I, U/I) spectra differ significantly from the
corresponding 1D cases. We compare the sur-
face averaged (I,Q/I, U/I) spectra computed un-
der the CRD and PRD assumptions. The na-
ture of differences between CRD and PRD pro-
files in 3D geometry remain the same as that for
the 1D geometry. We notice that [|U/I|]3D is in
general larger in magnitude, than [|Q/I|]3D in the
3D models. This is because the radiation field
in a 3D medium is highly non-axisymmetrical in
nature. The degree of linear polarization in the
spatially resolved (Q/I, U/I) spectra are generally
larger in magnitude when compared to the corre-
sponding surface averaged values, clearly due to
the fact that a surface averaging over sign chang-
ing quantities leads to smaller values of Q/I and
U/I. Another reason for this is the fact that linear
polarization is largest in the very narrow regions
close to the boundaries (see Figure 7). When a
surface averaging is performed, the relative contri-
butions from these highly polarized narrow regions
are dominated over by the inner regions, where the
linear polarization is considerably smaller.

We show that the advantage of solving the
transfer equation in the irreducible components
basis, is that the irreducible source vector SK

Q be-
comes completely independent of the angle vari-
ables, making it easier to extend the existing 1D
PALI methods to the 3D case. However the ir-
reducible intensity components IK

Q remain depen-
dent on the inclination and also on the azimuthal
angle of the ray. It is important to recognize the
fact that the multipolar expansion for Stokes in-
tensity and Stokes source vectors presented in this
paper allows us to write a transfer equation in
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terms of IK
Q and SK

Q . A further advantage is that
this formalism allows to efficiently use the scatter-
ing phase matrix approach to different problems in
multi-D geometry. We have demonstrated this by
taking the example of polarized line transfer with
PRD. In the following papers we try to apply the
solution method presented in this paper, to model
the polarimetric observations of the resolved struc-
tures like solar filaments and prominences.
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improve the paper substantially. We thank Dr. M.
Sampoorna for helpful comments and suggestions.
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A. The scattering phase matrix in real form in the reduced basis

In § 3.2 it was mentioned that for practical computations, it is preferable to work with the real form of
the scattering phase matrix, in the reduced basis. Here we list the elements of such a 6 × 6 phase matrix.
The coefficients T K

Q (i,Ω) depend on a reference angle, usually denoted by γ, to define the reference frame of
the electric field in a plane perpendicular to Ω. Here we take γ = 0, which means that positive Q is defined
to be in a direction perpendicular to the surface (τZ = 0). The phase matrix is written as

Ψ̂r =































Ψr
11 Ψr

12 Ψr
13 Ψr

14 Ψr
15 Ψr

16
1
2Ψr

12 Ψr
22 Ψr

23 Ψr
24 Ψr

25 Ψr
26

1
2Ψr

13
1
2Ψr

23 Ψr
33 Ψr

34 Ψr
35 Ψr

36

1
2Ψr

14
1
2Ψr

24 Ψr
34 Ψr

44 Ψr
45 Ψr

46

1
2Ψr

15
1
2Ψr

25 Ψr
35 Ψr

45 Ψr
55 Ψr

56

1
2Ψr

16
1
2Ψr

26 Ψr
36 Ψr

46 Ψr
56 Ψr

66































, (A1)

where the distinct matrix elements are:

Ψr
11 = 1; Ψr

12 =
1

2
√

2
(3 cos2 θ − 1);

Ψr
13 = −

√
3

2
sin 2θ cos ϕ; Ψr

14 =

√
3

2
sin 2θ sinϕ; Ψr

15 =

√
3

2
sin2 θ cos 2ϕ;

Ψr
16 = −

√
3

2
sin2 θ sin 2ϕ; Ψr

22 =
1

4
(9 cos4 θ − 12 cos2 θ + 5);

Ψr
23 =

√
3

4
√

2
sin 2θ(1 − 3 cos 2θ) cos ϕ; Ψr

24 = −
√

3

4
√

2
sin 2θ(1 − 3 cos 2θ) sin ϕ;

Ψr
25 =

√
3

2
√

2
sin2 θ(1 + cos2 θ) cos 2ϕ; Ψr

26 = −
√

3

2
√

2
sin2 θ(1 + cos2 θ) sin 2ϕ;

Ψr
33 =

3

4
sin2 θ[(1 + 2 cos 2θ) − (1 − 2 cos 2θ) cos 2ϕ];

Ψr
34 =

3

4
sin2 θ(1 − 2 cos 2θ) sin 2ϕ; Ψr

35 =
3

16
sin2 θ[(3 + cos 2θ) sin ϕ − (1 − 2 cos 2θ) sin 3ϕ];

Ψr
36 = − 3

16
sin2 θ[(3 + cos 2θ) sin ϕ − (1 − 2 cos θ) sin 3ϕ];

Ψr
44 =

3

4
sin2 θ[(1 + 2 cos 2θ) + (1 − 2 cos 2θ) cos 2ϕ];

Ψr
45 =

3

16
sin2 θ[(3 + cos 2θ) sin ϕ + (1 − 2 cos θ) sin 3ϕ];

Ψr
46 =

3

16
sin2 θ[(3 + cos 2θ) cos ϕ + (1 − 2 cos θ) cos 3ϕ];

Ψr
55 =

3

16
[(1 + 6 cos2 θ + sin4 θ + cos4 θ) + (1 − 2 cos2 θ + cos4 θ + sin4 θ) cos 4ϕ];

Ψr
56 = − 3

16
[(1 − 2 cos2 θ + cos4 θ + sin4 θ) sin 4ϕ];

Ψr
66 =

3

16
[(1 + 6 cos2 θ + sin4 θ + cos4 θ) − (1 − 2 cos2 θ + cos4 θ + sin4 θ) cos 4ϕ]. (A2)

The elements of the matrix Ψ̂r satisfy certain symmetry properties with respect to the main diagonal. Hence
the number of independent elements are only 21.
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B. A core-wing method for the 3D polarized line transfer

An unpolarized version of the core-wing method was originally developed by Paletou & Auer (1995).
It was extended later to resonance polarization with PRD by Paletou & Faurobert-Scholl (1997) and to
the Hanle effect by Nagendra et al. (1999). The above cited papers used simple forms of PRD functions
(combination of RII, III of Hummer 1962). Fluri et al. (2003) proposed a core-wing method for the Hanle
scattering problem with the very general PRD matrices of Bommier (1997).

The core-wing method assumes that CRD is a good description in the line core region (x ≤ xc) and
frequency coherent scattering (CS) is a good approximation in the line wings (x > xc). The choice of the
separation frequency xc is not critical. A practical choice is xc = 3.5. In other words the RII function of
Hummer (1962) can be replaced by a weighted combination of CRD and CS. RIII function is set to CRD in
the line core, and to zero in the line wings.

The application of the core-wing separation method to Equation (43) leads to

∫ +∞

−∞

dx′
R̂(x, x′)

φ(x)
Λ̂∗

x′px′δSr,n
l (r, x′) = (1 − gx)

∫

core

dx′Ŵ [α̂φ(x′) + (β̂ − α̂)φ(x′)]Λ̂∗

x′px′δSr,n
l (r, x′)

+gx

∫

wing

dx′Ŵ α̂
δ(x − x′)φ(x′)

φ(x)
Λ̂∗

x′px′δSr,n
l (r, x′), (B1)

where

gx =

{

0 for x ≤ xc,
RII(x,x)

φ(x) for x > xc,
(B2)

is the separation coefficient. Simplifying the above integral we obtain

δJ
r,n

(r, x) =

∫

core

dx′Ŵ β̂φ(x′)Λ̂∗

x′px′δSr,n
l (r, x′) for x ≤ xc,

and

δJ
r,n

(r, x) = (1 − gx)

∫

core

dx′Ŵ β̂φ(x′)Λ̂∗

x′px′δSr,n
l (r, x′) + gxŴ α̂Λ̂∗

xpxδSr,n
l (r, x) for x > xc.

(B3)

Substituting Equation (B3) in Equation (43) we obtain separate equations for J
r,n+1

(r, x) in the core and
the wing domains. After simple algebraic manipulations, Equation (44) can be re-written as

δSr,n
l (r, x) = δJ

r,n
(r, x) + r

n
x , (B4)

where δJ
r,n

is given by Equation (B3). The residual vector r
n
x is

r
n
x = J

r,n
(r, x) + ǫB(r) − S

r,n
l (r, x). (B5)

We now proceed to derive the line source vector corrections for the core domain. Defining a vector

∆T
n =

∫

core

dx′Ŵ β̂φ(x′)Λ̂∗

x′px′δSr,n
l (r, x′), (B6)

the line source vector correction takes the form

δSr,n
l (r, x) = r

n
x + ∆T

n, for x ≤ xc. (B7)

Applying the integral operator
∫

core
dx′Ŵ β̂φ(x′)px′Λ̂∗

x′ on both sides of the Equation (B7), we finally obtain

∆T
n =

r
n

1 −
∫

core
dx′Ŵ β̂φ(x′)px′Λ̂∗

x′

, (B8)
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where

r
n =

∫

core

dx′Ŵ β̂φ(x′)px′Λ̂∗

x′r
n
x′ . (B9)

Notice that r
n and ∆T

n are independent of the frequency x. Using Equations (43), (B3) and (B7) we obtain

δSr,n
l (r, x) =

(1 − gx)∆T
n + r

n
x

[1 − gxŴαΛ̂∗

xpx]
, for x > xc. (B10)

The updated line source vector can be computed using

S
r,n+1
l (r, x) = S

r,n
l (r, x) + δSr,n

l (r, x). (B11)

The above core-wing equations are set up in the form of an iterative algorithm to compute the line source
vector corrections. We define

c1 = max
τX ,τY ,τZ ,x

{

δS0,r,n
0,l (r, x)

S0,r,n
0,l (r, x)

}

, and p = max
τX ,τY

{

1

I

√

Q2 + U2

}

, (B12)

where the I, Q and U are computed at the top surface (τZ = 0). Further, we consider p only at the line
center (x = 0), and for µ = 0.11, and ϕ = 7◦. Finally we define the maximum relative change (MRC) as

Rn
c = max {c1, p} . (B13)

The iterative progress is followed through a convergence test on Rn
c . We have chosen a convergence criteria

of 10−4 on the Rn
c .
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Table 1: The optical depth information for the spatial points 1–9 on the top surface (τZ = 0) in Figure 2.

Spatial point τX τY τZ

1 TX/2 TY /2 0
2 TX TY /2 0
3 0 TY /2 0
4 TX/2 TY 0
5 TX/2 0 0
6 0 TY 0
7 TX 0 0
8 0 0 0
9 TX TY 0

Table 2: The values of the free parameters corresponding to different models shown in Figure 8.

Model Scat. mechanism α β(0) β(2) (β(0) − α) (β(2) − α)
1 CRD 0.00 1.00 1.00 1.00 1.00
2 ΓE/ΓR = 10−4 0.99 0.99 0.99 0.00 0.00
3 ΓE/ΓR = 0.1 0.90 0.99 0.96 0.09 0.06
4 ΓE/ΓR = 1 0.49 0.99 0.72 0.50 0.23
5 ΓE/ΓR = 10 0.09 0.99 0.21 0.89 0.12

X

Z

Ω
r = (X,Y,Z)

s’
r
0

s0

n
Z

s’

s’n
X X − s’n

X

Y

n
Y

nYs’

Y − s’

sZ − s’n
Z

Fig. 1.— The definition of the spatial location r and the projected distances r − s′Ω which appear in the
3D formal solution integral. r0 and r are the arbitrary initial and final locations considered in the formal
solution integral.
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Y

θ
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2

9

3

6
4

57

Fig. 2.— The geometry of the problem. The angle pair (θ, ϕ) defines the ray direction. The optical depth
information of the spatial points 1–9 on the top surface (τZ = 0) of the computational cube are given in
Table 1. The results are shown at the points marked on grid lines which are just inside the outermost
boundaries. The Z axis is along the atmospheric normal.
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Fig. 3.— Validation of a 3D radiative transfer solution through a comparison with a 1D benchmark. The
dotted line represents the solution for a 3D medium that mimics 1D planar slab of optical thickness T = 10.
The solid line is the 1D solution. The model parameters chosen for the 3D cube are given in § 5.1.
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Fig. 4.— The azimuth angle (ϕ) dependence of the surface averaged irreducible intensity components of
polarization at τZ = 0 in a 3D medium. The model parameters used are the same as those in Figure 3
except for TX=TY =TZ=T=100. The values of the azimuth are ϕ1,8=7◦, 36◦, 85◦, 146◦, 213◦, 274◦, 323◦,
352◦. The intensity components approach a constant small value, or tend to zero in the wings (x ≥ 3).
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Fig. 5.— Spatially averaged emergent (I,Q/I, U/I) in a 3D medium. The model parameters are the same
as those in Figure 4.
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Fig. 7.— Surface plots of the intensity I and the degree of linear polarization (Q/I, U/I) on the top surface
(τZ = 0) of the computational cube. The model parameters are same as in the T = 100 case of Figure 6.
See § 5.3 for details.
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Fig. 8.— The effect of collisions on the surface averaged emergent (I,Q/I, U/I). The model parameters are
the same as in Figure 5. Refer to Table 2 for details of the branching ratios. The solid lines represent the
special case of CRD solution. The indices near the curves correspond to the model numbers given in Table 2.
The collisions have a strong effect on polarization in a 3D geometry (which has a non-zero U/I), as in the
case of a 1D slab.
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