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Abstract. An efficient numerical method called the Preconditioned Bi-Conjugate Gradient
(Pre-BiCG) method is presented for the solution of radiative transfer equation in spherical
geometry. A variant of this method called Stabilized Preconditioned Bi-Conjugate Gradient
(Pre-BiCG-STAB) is also presented. These methods are based on projections on the sub-
spaces of the n dimensional Euclidean space Rn called Krylov subspaces. The methods are
shown to be faster in terms of convergence rate compared to the contemporary iterative
methods such as Jacobi, Gauss-Seidel and Successive Over Relaxation (SOR).
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1. Introduction

The Krylov subspace methods are a class
of projection methods which can solve large
systems of equations rapidly (see, for e.g.,
Saad 2000). Such methods were introduced
to radiative transfer by Klein et al. (1989).
Recently Paletou & Anterrieu (2009) proposed
Preconditioned Bi-Conjugate Gradient (Pre-
BiCG) method to solve transfer in planar ge-
ometry. A slightly different method called
GMRES was introduced to radiative trans-
fer by Hubeny & Burrows (2007). Here we
present the Pre-BiCG method as applied to the
case of spherical radiative transfer with 2-level
atom model and complete frequency redistri-
bution. See Anusha et al. (2009) for more de-
tails. We also present a more advantageous,
transpose free variant of it namely Pre-BiCG-
STAB method.
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2. Governing equations

The geometry of the problem is described in
Anusha et al. (2009). The transfer equation is
solved on a set of tangent rays.

For the outgoing (+) and incoming (−) rays
respectively, the transfer equation can be writ-
ten as

±∂I±(z, p, x)
∂z

= [χL(r)φ(x) + χC(r)]

×[S(x, r) − I±(z, p, x)]. (1)

Here r is the radial distance, z is the distance
along the tangent rays and p is the distance
from the center to those points on the vertical
axis (the mid-line), where the tangent rays in-
tersect it. The direction cosines µ (0 ≤ µ ≤ 1)
and p are related by µ =

√
1 − (p/r)2 for a

shell of radius r. The optical depth scale along
the tangent rays are computed using dτ(z) =
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dτ(r)/µ. The line source function is given by

S(r) = (1 − ε)
∫ 1

−1

dµ′

2

∫ ∞

−∞
dx′

φ(x′)I(τ, µ′, x′) + εBν(r). (2)

Substituting the formal solution expression for
I in Eq. 2 we get an integral equation for S,
which can be written in an operator form as

[Î − (1 − ε)Λ̂]S = εBν. (3)

We can re-write the above equation as

ÂS = b; with Â = [Î − (1 − ε)Λ̂],
and b = εBν. (4)

3. Basics of the Preconditioned
Bi-Conjugate Gradient method

Let Rn denote the n-dimensional Euclidean
space of real numbers, and

Km = span{v1, Âv1, . . . , Âm−1v1}, (5)

define an m-dimensional subspace of Rn. We
denote byLm another m-dimensional subspace
of Rn orthogonal toKm.

Lm = span{w1, ÂT w1, . . . , ÂT (m−1)w1}. (6)

Here v1 is taken as the initial residual vec-
tor r0 = b − ÂS0 with S0 being the initial
guess for the solution of Eq. (4). The vector
w1 is taken arbitrarily such that the inner prod-
uct 〈v1,w1〉 , 0. The Pre-BiCG method recur-
sively constructs a pair of bi-orthogonal bases
{vi; i = 1, 2 . . . ,m} and {wi; i = 1, 2 . . . ,m} for
Km andLm respectively, such that they satisfy
the bi-orthogonality condition 〈vi,wj〉 = δij.
We refer to Anusha et al. (2009) for the Pre-
BiCG algorithm applied to the spherical trans-
fer. We give below a transpose free variant of it
namely Pre-BiCG-STAB.

4. Transpose free variant of the
Pre-BiCG method (Pre-BiCG-STAB)

In spite of higher convergence rate, computa-
tion and storage of the ÂT matrix is a main dis-
advantage of the Pre-BiCG method. To over-
come this difficulty, the governing equations

Fig. 1. Convergence history of the source func-
tion S(τ) in the Pre-BiCG-STAB method.

can be re-formulated to use only the ‘action’ of
Â matrix on an arbitrary vector. Re-defining the
residual polynomial as a product of two poly-
nomials and obtaining a recursive relation for
the new residual polynomial constitutes the ba-
sis of the Pre-BiCG-STAB method. This prod-
uct involves residual polynomial of the Pre-
BiCG method and a new polynomial which
‘smoothens’ the iterative process. In this sec-
tion we give the computing algorithm of the
Pre-BiCG-STAB method as applied to a radia-
tive transfer problem. As described below, we
can avoid computing and storing of the ÂT ma-
trix. However we would now need to call the
formal solver twice per iteration unlike the Pre-
BiCG method, where it is called only once.
This results in an increase in number of op-
erations per iteration when compared to Pre-
BiCG method, causing a slight increase in the
CPU time per iteration. In spite of these the
Pre-BiCG-STAB method turns out to be al-
ways faster than the regular Pre-BiCG method
in terms of convergence rate (lesser number of
iterations for convergence). The convergence
behavior of this method is shown in Fig. 1.
What is shown is the history of convergence of
the line source function plotted as a function
of optical depth τ in log scale. The S(τ) in the
first iteration is shown as the dotted line. The
convergence rate shows a non-uniform behav-
ior in the beginning. However, after the fourth
iteration, the convergence rate is uniform.
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4.1. The Pre-BiCG-STAB algorithm

Now we give the algorithm of Pre-
BiCG-STAB method to solve the system
M̂−1ÂS = M̂−1b. Here M̂ is a suitably chosen
preconditioner matrix. The computing algo-
rithm is organized as follows:

(a) The initial preconditioned residual vectors
are defined through

z0 = M̂−1b − M̂−1ÂS, z∗0 = z0. (7)

The initial conjugate direction vector P0 can be
taken as z0 itself.
(b) For j = 1, 2, . . . the following steps ((c)-(k))
are carried out until convergence.

(c) Using Pj instead of the source function a
call to the formal solver is made, to compute
ÂPj.

(d) The coefficient αj can now be evaluated as

αj =
〈zj, z∗0〉

〈M̂−1ÂPj, z∗0〉
. (8)

(e) Another vector qj is calculated as

qj = zj − αjM̂−1ÂPj. (9)

(f) Using qj in place of the source function a
call to the formal solver is made to obtain Âqj.

(g) The coefficient ωj is estimated as

ωj =
〈M̂−1Âqj, qj〉

〈M̂−1Âqj, M̂−1Âqj〉
. (10)

(h) The updated new source function is calcu-
lated using

Sj+1 = Sj + αj Pj + ωjqj. (11)

(i) Test for convergence is made as in the
Pre-BiCG algorithm.

(j) Before going to the next iteration a set of re-
cursive relations are used to compute residual
vectors

zj+1 = qj − ωjM̂−1Âqj, (12)

and the conjugate direction vectors

Pj+1 = zj+1 + βj(Pj − ωjM̂−1ÂPj), (13)

for the next iteration, where the coefficient βj is

βj =
〈zj+1, z∗0〉
〈zj, z∗0〉

αj

ωj
. (14)

(k) The control is now transferred to the step
(b).

5. Comparison of ALI and Pre-BiCG
methods

In this section we compare the maximum rel-
ative change Rc for the Jacobi, Gauss-Seidel
(GS), Successive Over Relaxation (SOR), Pre-
BiCG and the Pre-BiCG-STAB methods. The
SOR parameter used is 1.5. The maximum rel-
ative change is defined as

Rc = max
τ
{δSn/Sn}, (15)

where δSn is the source function correction at
nth iterate. It is worth noting that the over-
rates (the time taken to prepare the necessary
set up, before initiating the iterative cycle) are
expected to be different for different methods.
For instance, in Jacobi and GS/SOR this is es-
sentially the CPU time required to set up the
Λ̂∗ matrix. In the Pre-BiCG method this in-
volves the time taken to construct the ÂT ma-
trix, which is a critical quantity of this method.
For the Pre-BiCG-STAB method it is the time
taken to construct the preconditioner matrix M̂.

Fig. 2 shows a plot of Rc for different meth-
ods. We can take Rc as a measure of the con-
vergence rate. In the case of spherical radia-
tive transfer a spatial grid with a large num-
ber of points per decade becomes necessary
to achieve reasonable accuracy. In the follow-
ing we discuss how different methods respond
to the grid refinement. It is a well known fact
with the ALI methods, that the convergence
rate is small when the resolution of the depth
grid is very high. On the other hand the Rc of
Pre-BiCG and Pre-BiCG-STAB methods have
higher convergence rate even in a high resolu-
tion grid. Fig. 2(a) shows Rc for different meth-
ods when a low resolution spatial grid is used
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Fig. 2. Dependence of the Maximum Relative Change Rc on the iterative progress for different
iterative methods. Panels (a), (b), and (c) represent models with low, medium and high spatial
resolution respectively. The model parameters are (ñ, R, T , a, ε, βc, Bν)= (0, 10, 103, 10−3, 10−4,
0, 1) in standard notation (see Mihalas 1978). The convergence criteria is chosen arbitrarily as
ω̄ = 10−8. The SOR parameter ω =1.5. The figures show clearly that Jacobi method has the
smallest convergence rate, which progressively increases for GS and SOR methods. Pre-BiCG
and Pre-BiCG-STAB methods have the largest convergence rate compared to the other three.

(5 points per decade, in short 5 pts/D, in the
logarithmic scale for τ grid). Fig. 2(b) and 2(c)
are shown for intermediate (8 pts/D) and very
high (30 pts/D) grid resolutions. The essential
point to note is that, as the grid resolution in-
creases, the convergence rate decreases drasti-
cally and monotonically for the Jacobi and the
GS methods. It is not so drastic for the SOR
method. The Pre-BiCG and Pre-BiCG-STAB
methods are relatively less sensitive to the grid
resolution.

6. Conclusions

It is shown that the class of iterative methods
called Pre-BiCG and Pre-BiCG-STAB which
are derived from the idea of Krylov subspaces
are quite efficient, when compared to the tra-
ditionally used iterative methods in radiative
transfer theory.
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