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Probing CP violation with the electric dipole moment of atomic mercury
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The electric dipole moment of atomic 199Hg induced by the nuclear Schiff moment and tensor-
pseudotensor electron-nucleus interactions has been calculated. For this, we have developed and
employed a novel method based on the relativistic coupled-cluster theory. The results of our theo-
retical calculations combined with the latest experimental result of 199Hg electric dipole moment,
provide new bounds on the T reversal or CP violation parameters θQCD, the tensor-pseudotensor

coupling constant CT and (d̃u − d̃d). This is the most accurate calculation of these parameters to
date. We highlight the the crucial role of electron correlation effects in their interplay with the P,T
violating interactions. Our results demonstrate substantial changes in the results of earlier calcu-
lations of these parameters which can be attributed to the more accurate inclusion of important
correlation effects in the present work.
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The existence of a nonzero permanent electric dipole
moment of a non-degenerate physical system is a sig-
nature of the simultaneous violations of parity (P) and
time-reversal (T) symmetries [1]. T violation implies the
combined charge conjugation (C) and P violation ; i.e.,
CP violation via the CPT theorem [2]. The origin of
CP violation is still not well understood. It has so far
been observed only in the K [3] and B [4, 5] mesons and
the results are essentially in agreement with the predic-
tions of Kobayashi and Maskawa in the framework of the
Standard Model [6]. However, this model cannot explain
the matter-antimatter asymmetry [7] in the universe for
which CP violation is a pre-requisite [8]. In addition, it
predicts atomic EDMs several orders of magnitude be-
low their current limits [9, 10]. Indeed, atomic EDMs
are excellent probes of physics beyond the Standard
Model [9, 10] and they provide important insights into
a rich variety of CP violations–leptonic, semi-leptonic
and hadronic sectors. Experimental searches are under-
way for the EDMs of para-magnetic (open-shell) and dia-
magnetic (closed-shell) atoms [11, 12]. The results of the
experiments can be combined with those of sophisticated
atomic many-body calculations to determine various CP
violating coupling constants at the atomic level which
can ultimately be related to the CP violation parame-
ters at the elementary particle level [13]. The EDM of
dia-magnetic atoms arises predominantly from the nu-
clear Schiff moment (NSM) and/or the electron-nucleon
tensor-pseudotensor interactions [13]. These in turn arise
from the nucleon-nucleon interactions or the EDM of nu-
cleons, which originate due to the quark-quark interac-
tions, EDMs and chromo EDMs of quarks at the elemen-
tary particle level.

In the present work, we concentrate only on the EDM
of mercury (199Hg), a closed-shell atom. The present lim-
its on important CP violation parameters like, θQCD for
strong interactions and the chromo EDMs of quarks have
been obtained from the EDM of 199Hg [11], which is the

most accurate of all the data from atomic EDMs to date.
The focus of our work in this Letter is to improve the cur-
rent limits on the coupling constants associated with the
electron-nucleon tensor-pseudotensor (T-PT) interaction
(CT ) and the NSM(S). A nonzero value of CT implies
physics beyond the Standard Model. The dependence
of the T-PT interactions and the NSM on the nuclear
spin makes closed-shell atoms, in particular, those hav-
ing nonzero nuclear spin the best candidates to measure
EDMs sensitive to the nuclear sector.

For heavy atoms like mercury, it is customary to use
the Dirac-Coulomb Hamiltonian HDC, in atomic units

HDC =
∑

i

[
cαi · pi + βimc2 + VN (ri)

]
+

∑

i<j

1

|ri − rj|
,

(1)
where ri refers to the electron coordinates, α and β,
the Dirac matrices and VN (ri), the nuclear potential,
and the last term is the electron-electron Coulomb in-
teraction. The key and the most challenging step in
atomic many-body physics is to incorporate the effects
of electron-electron Coulomb interaction, last term in
Eq.(1), as accurately as possible. Under the independent
particle and the central field approximations [14], with
the introduction of the Dirac-Fock potential, the above
Hamiltonian can be separated into an exactly solvable
part (H0) and a residual interaction part which consists
of the Coulomb interaction and the Dirac-Fock potential
[14]. The single particle wave functions are computed
self-consistently from H0 and the many particle wave-
functions are expressed as Slater determinants built out
of the single particle wavefunctions. The effects of the
residual Coulomb interaction are calculated with many-
body methods. For this, finite order many-body per-
turbation theory (MBPT) and the configuration inter-
action (CI) approach are two widely used methods [14].
An even superior method, with strong theoretical many-
body physics underpinnings is the coupled-cluster theory.

http://arXiv.org/abs/0902.4790v1


2

In the present work, the P and T violating interactions
are treated perturbatively to first order in addition to the
electron-electron residual Coulomb interaction within the
framework of the relativistic coupled-cluster theory.

The wavefunction in coupled-cluster theory has an ex-
ponential structure, see [15] for a recent review of the
method, to describe correlation effects in many-body sys-
tems. It is non-perturbative and defines atomic states as
superposition of states of different levels of excitations,
which arise from the residual Coulomb interaction, with
respect to a reference state.

Mathematically, the coupled-cluster wavefunction can
be expressed as

|Ψi〉 = eT (0) |Φi〉, (2)

where |Φi〉 is the reference state containing a fixed num-
ber of electrons and T (0) is an operator which excites
electrons out of it, thereby giving rise to states with
different levels of excitations corresponding to differ-
ent many-body effects. In our calculations we use the
coupled-cluster singles and doubles approximation, that

is T (0) = T
(0)
1 + T

(0)
2 . In second quantized form

T
(0)
1 =

∑

a,p

a†
paatpa(0) and T

(0)
2 =

∑

a,b,p,q

a†
pa

†
qabaatpq

ab(0),

excite one and two electrons respectively from the refer-
ence state. The equations that determine the amplitudes
of T (0) are a set of coupled non-linear algebraic equations
and these are solved iteratively till convergence.

For closed-shell atoms, as mentioned earlier, one
prominent source of EDMs is the nuclear Schiff moment
S (NSM), a P and T odd electromagnetic moment of the
nucleus. For a finite size nucleus of radius RN , the Schiff
moment potential [16] is

ϕ(R) = −3S · R
B

ρ(R), (3)

where B =
∫

ρ(R)R4dR and ρ(R) is the nuclear density.
This potential interacts electrostatically with the elec-
trons, it mixes atomic states of opposite parities and gen-
erates a finite atomic EDM, dA. Then, the atomic Hamil-
tonian is Hatom = HDC+λHPTV, where HSchiff

PTV = −ϕ(R)
is the P and T violating interaction Hamiltonian and λ is
a T or CP violation parameter which can be considered
as perturbation parameter. The eigenstates of the Hatom

are the mixed parity states |Ψ̃〉. To incorporate HPTV

as a first order perturbation, the exponential operator in

coupled-cluster theory is redefined as eT (0)+λT (1)

. The
cluster operator T (1) has one order of HPTV and mixes
the states of opposite parities. As a result of this, the
ground state

|Ψ̃0〉 = eT (0)+λT (1) |Φ0〉. (4)

Then, unlike the T (0) equations, since HPTV is considered
to first order only, the equations for the amplitudes of

T (1) are a set of linear algebraic equations,

〈Φ′
0|

[
HN, T (1)

]
|Φ0〉 = −〈Φ′

0|HPTV|Φ0〉 (5)

O = eT (0)†
OeT (0)

where O is a general operator, HN is the
normal-ordered Hamiltonian and |Φ′

0〉 are opposite parity
Slater determinants. Further, like in the unperturbed
cluster operators T (0), we use the approximation T (1) =

T
(1)
1 + T

(1)
2 . Then, the atomic EDM of the ground state

is

dA =
〈Ψ̃0|D|Ψ̃0〉
〈Ψ̃0|Ψ̃0〉

, (6)

where D is the electric dipole operator. In the above
expression, after expanding in terms of the cluster op-
erators T (0) and T (1), only the terms first order in T (1)

contribute. Often, dA is computed perturbatively with
the sum over states approach, which necessitates a trun-
cation after the first few intermediate states. On the
contrary, our relativistic coupled-cluster scheme doesn’t
involve summing over states and subsumes all possible in-
termediate states within the chosen configuration space.

Besides the NSM, the other possible source of EDM
in closed shell atoms is the tensor-pseudotensor electron-
nucleus interaction

HT−PT
PTV =

iGF CT√
2

∑

i

σN · γiρN (r), (7)

where GF is fermi constant, CT is coupling constant,
σN is nuclear spin and γi is Dirac matrix. It must be
emphasized that, this form of interaction does not exist
within the Standard Model of particle physics and CT is
zero. However, there are models which predict such an
interaction [13].

To extract the T or CP violation parameters, the
atomic theory calculations are combined with the exper-
imental data. In this context it is appropriate to rewrite
Eq.(6) as

dA = λη, (8)

where η is the atomic enhancement factor. As defined
earlier, the constant λ is a T or CP violation parameter
considered as a perturbation parameter. It can for ex-
ample be the nuclear Schiff moment S or the coupling
constant CT . A precision atomic many-body calculation,
like the coupled-cluster calculation reported here, would
provide the value for a particular η. Experimentally, the
measured atomic EDM dA is the sum total of contribu-
tions from all the P and T symmetry violating phenom-
ena within the atom. A bound on λ = dA/η is obtained
by combining the results of atomic theory and experi-
mental data. Depending on the choice of the atom, it
is possible to identify the dominant sources of T or CP
violation and derive tighter bounds.

For the present set of calculations, we employ the even-
tempered Gaussian basis set expansion [17, 18]. The
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orbital basis set consist of (1 − 18)s, (2 − 18)p1/2,3/2,
(3 − 13)d3/2,5/2, (4 − 11)f5/2,7/2, (5 − 9)g7/2,9/2 and
(6− 7)h9/2,11/2. This orbital basis set is considered com-
plete for the coupled perturbed Hartree-Fock (CPHF)
calculations. That is, further increase in the number
of orbitals does not change the results. In addition, we
compute the ground state dipole scalar polarizability for
199Hg. We obtain a value 33.294ea3

0, where a0 is the Bohr
radius, which is in excellent agreement with its experi-
mental value [19, 20, 21].

To date, among the closed-shell atoms, 199Hg as men-
tioned earlier sets the standard for the most precise EDM
results. In a recent paper [11], the new upper limit is re-
ported as

|d(199Hg)| < 3.1 × 10−29e cm (95% C. L.). (9)

Our atomic calculation based on the relativistic coupled-
cluster theory gives

dSchiff
A (199Hg) = −5.07 × 10−17

(
S

e fm3

)
e cm. (10)

This is the first ever relativistic coupled-cluster result
for any atomic EDM calculation arising from the NSM.
Combining with the experimental result, the limit on the
NSM is

S(199Hg) < 6.1 × 10−13e fm3. (11)

There is a large change of 96% from the result of coupled
perturbed Hartree-Fock calculation

dSchiff
A (199Hg) = 2.8 × 10−17

(
S

e fm3

)
e cm, (12)

reported earlier [22], which is in excellent agreement with
the result of a similar calculation but in the framework
of the relativistic coupled-cluster theory [23]. The large
change in the two results demonstrates the importance
of electron correlation effects and their interplay with the
HSchiff

PTV interaction in determining the magnitude of the
NSM.

It is possible to separate the contributions of individ-
ual terms in Eq.(6) and the many-body perturbation di-
agrammatic representation of the dominant terms are
shown in Fig.1. These diagrams represent the excita-
tions and de-excitations due to cluster operators and
dressed dipole operator D. Earlier calculations [22, 24]
incorporate only a certain class of two-particle two-hole
excitations which are subset of the correlation effects
we have included through the cluster operator T (0) in
the present calculation. The two most dominant terms

are T
(1)
1

†
D and T

(1)
1

†
DT

(0)
2 , in Eq.(10) these terms in-

dividually contribute −5.40× 10−17(S/(e fm3))e cm and
−0.17×10−17(S/(e fm3))e cm respectively. In Fig.1, the
diagrammatic equivalent of these terms are (a) and (b)
respectively.

Our result of 199Hg EDM arising from the electron-
nucleus tensor-pseudotensor interaction is

dT−PT
A = −4.3 × 10−20CT σNe cm. (13)

FIG. 1: Two of the dominant many-body perturbation dia-

grams of dA. Diagrams (a) and (b) represent the terms T
(1)
1

†
D

and T
(1)
1

†
DT

(0)
2 respectively. At the interaction vertices, the

horizontal wavy blue, black and red lines represent the HPTV,

T
(0)
2 and the electric dipole operator D respectively.

Compared to the CPHF result −6.19× 10−20CT σNe cm
[23, 24], the change with the additional correlation effects
is not so dramatic. There is a decrease of 31%, which
is significant but not so spectacular as in dSchiff

A (199Hg).
This comparison demonstrates, without any ambiguity,
the importance of electron correlation effects in precision
atomic EDM calculations. A closer examination of the
structure of the two P and T violating Hamiltonians in
the present work sheds some light on why the electron
correlation effects are larger in the case of the NSM than
the tensor-pseudotensor interaction. Both the p1/2 and
p3/2 electrons are actively involved in the interplay of the
HPTV and electron correlation effects in the former, while
the contribution of the p3/2 electrons is negligible in the
latter [22].

The individual contributions follow similar trend as

in the case of NSM. The terms T
(1)
1

†
D and T (1)†DT

(0)
2

give the largest (≈ 95%) and the second largest contri-

butions to dT−PT
A , −4.8 × 10−20CT σNe cm and −0.27 ×

10−20CT σNe cm respectively. Then, a limit

CT < 1.4 × 10−9, (14)

is obtained after combining our results with the experi-
mental data.

Assuming that the NSM arises from the nucleon-
nucleon interactions with pions as the dominant medi-
ators [25]

S(199Hg) = gπNN

[
0.01ḡ

(0)
πNN + 0.07ḡ

(1)
πNN

+0.02ḡ
(2)
πNN

]
e fm3, (15)

where gπNN and ḡ
(i)
πNN are the CP conserving and CP

violating pion-nucleon coupling constants respectively.
Here, i = 0, 1, and 2 represent isoscalar, isovector and

isotensor respectively. Considering ḡ
(1)
πNN as the most

dominant

ḡ
(1)
πNN < 6.4 × 10−13. (16)
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The coupling constant ḡ
(1)
πNN is related to the chromo-

EDMs of quarks [26], from the above result

(d̃u − d̃d) < 3.2 × 10−27e cm. (17)

Next, consider the maximum contribution to NSM aris-

ing from ḡ
(0)
πNN , then

ḡ
(0)
πNN < 4.5 × 10−12. (18)

Since, ḡ
(0)
πNN = 0.027θQCD [27], we get the bound

θQCD < 1.7 × 10−10. (19)

The value we have obtained for the NSM is likely to
give the most stringent bounds for supersymmetric CP
violating phases [9, 10, 28]. In addition, from our re-
sults and the experimental data, it is also possible to set
improved limits on the specific CP violating parameters
predicted by various extensions of the Standard Model,
ǫSUSY
q , ǫHiggs, xLR [29].
In conclusion, we have developed a unique relativistic

coupled-cluster based many-body method that takes into

account the physical effects arising from the interplay of
two very different kinds of fundamental interactions–the
CP conserving electron-electron Coulomb and CP violat-
ing electron-nucleus interactions. The results obtained
for the EDM of 199Hg by the application of this method
and the latest experiment on this atom [11] yield the
most accurate limits to date on some important CP vio-
lating parameters. The electron correlation effects play a
critical role in improving the existing limit on these pa-
rameters. These limits constrain the possible extensions
to the Standard Model, thereby enhancing our current
knowledge of the intriguing phenomenon of CP violation.

Computations of the results presented in the paper
were performed using the computing facilities of Center
for computational material science, JNCASR, Bangalore.
Parts of the code used in our computations were written
by R. K. Chaudhuri. We (BPD and DA) thank the Di-
rector and staff of INT, University of Washington, Seat-
tle for hospitality during our visit there in 2008, and W.
Haxton, N. Fortson and B. Heckel for helpful discussions.
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