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Using the relativistic coupled-cluster method, we have calculated ionization potentials, electric dipole tran-
sition amplitudes, and dipole polarizabilities of many low-lying states of Ca+. Contributions from the Breit
interaction are given explicitly for these properties. Polarizabilities of the ground and the first excited d states
are determined by evaluating the wave functions that are perturbed to first order by the electric dipole operator
and the black-body radiation shifts are estimated from these results. We also report the results of branching
ratios and lifetimes of the first excited p states using both the calculated and experimental wavelengths and
compare them with their measured values.
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I. INTRODUCTION

Singly ionized calcium �Ca+� is an interesting candidate in
many areas of physics. It is especially important in astro-
physics for investigating the radiative properties of stellar
objects �1,2�. Its transition wavelengths and electric dipole
amplitudes are required to find out isotopic abundances �3�
and the energy transfers in stars �1,2�. They are also used for
obtaining information on emission and absorption lines of
the electric dipole transitions between the low-lying states in
galaxies, interstellar gas clouds, and gas disks surrounding
the stars �1,2,4,5�. Ca+ is also suitable for laboratory physics.
Using the techniques of laser cooling and ion trapping, it has
been subjected to many precision measurements, optical fre-
quency methodology, quantum processing, and accurate fine
structure constant measurements �6–12�. In these measure-
ments, the knowledge of polarizabilities is necessary to esti-
mate the black-body shift �BBS� and the Stark shift due to
the external electromagnetic fields. In our recent works, we
have reported the hyperfine structure constants and quadru-
pole moments in Ca+ using the relativistic coupled-cluster
�RCC� method �13–15�. The determination of electric dipole
polarizabilities requires electric dipole �E1� matrix elements
and excitation energies of all the allowed transitions. Due to
the importance of these quantities, a number of calculations
based on various many-body methods including the sum-
over-states approach in the framework of the RCC theory
have been employed to evaluate them �16–19�. There are
also measurements of the static dipole polarizability of the
ground state in Ca+ �20,21�, but the results do not agree with
each other. In fact, all the calculations �16–19� differ from
the recent measured value �20�. Therefore, it is necessary to
carry out thorough investigations on the role of electron cor-

relation, higher order relativistic effects, and contributions
from the two-hole–two-particle and the neglected one-hole–
one-particle excited states in the calculations of polarizabil-
ities using an all order ab initio approach such as the RCC
theory. We have developed a technique to account for the
importance of different correlation effects in these properties
for closed-shell and one-valence atomic systems by directly
obtaining the atomic wave functions perturbed to first order
by the electric dipole operator in the framework of the RCC
theory �22,23�. This method avoids the sum-over-states ap-
proach and thereby includes different types of correlation
effects in a rigorous manner. This theory has been employed
to determine the ground state polarizabilities in a few alkali
metal atoms and singly ionized alkaline earth metal ions in-
cluding Ca+ checking the validity of the theory �22�. Al-
though, the theory for the tensor polarizabilities has been
developed, it has not been applied to excited states. In this
work, we calculate the E1 matrix elements and excitation
energies and employ the above approach to determine scalar
and tensor polarizabilities of the 4S and 3D states of Ca+.
The role of the Breit interaction had not been studied in the
earlier works which we investigate here using this ab initio
method.

There have been recent measurements of the branching
ratios �BRs� of the 4p 2P3/2 state and the corresponding tran-
sition probabilities in Ca+ �24� which need to be theoretically
investigated. We carry out these studies using our ab initio
approach and by combining our E1 matrix elements with the
experimental wavelengths and compare with their corre-
sponding experimental results. We also evaluate the lifetimes
of the 4p states using these results.

The remaining part of the paper is organized as follows.
In Sec. II, we present a brief outline of the theory. This is
followed in Sec. III by a discussion of the method to evaluate
the unperturbed and the first-order perturbed atomic wave
functions using the RCC method. We then present the results*b.k.sahoo@rug.nl
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and discuss the effect of correlation on various properties in
Sec. IV and in Sec. V we make some concluding remarks.

II. THEORETICAL APPROACH

The static dipole polarizability of a state �J0 ,M0� is given
by

�0 = �0
1 +

3M0
2 − J0�J0 + 1�

J0�2J0 − 1�
�0

2, �2.1�

where �0
1 and �0

2 are the scalar and tensor polarizabilities.
From the angular momentum selection rule, it is obvious that
�0

2 will be nonzero only for the states with J0�1 /2. In an
explicit form, the expression for the polarizability in the
sum-over-states approach can be written as

�0
i = 2�

n�0
Ci

��J0��D��Jn��2

E0 − En
, �2.2�

with

C1 = −
1

3�2J0 + 1�
,

C2 = 	 10J0�2J0 − 1�
3�J0 + 1��2J0 + 1��2J0 + 3�
2

�− 1�J0−Jn�J0 1 Jn

1 J0 2
� ,

and the E’s are the energies of the atomic states. In a single
valence system, �0

i can be divided into three parts in general
as follows:

�0
i = �0

i �v� + �0
i �cv� + �0

i �c� , �2.3�

where v, cv, and c inside the parentheses represent for va-
lence, core-valence, and core-correlation contributions, re-
spectively. In the sum-over-states approach, it is customary
to evaluate �0

i �v� by calculating the important valence ex-
cited states. However, contributions from �0

i �cv� and �0
i �c�

are generally taken approximately in such an approach. On
the other hand, it is possible to calculate �0

i exactly in a
particular configuration space by evaluating the wave func-
tion that is perturbed by the electric dipole operator D in the
following manner.

Let us rewrite Eq. �2.2� as

�0
i = 2�

n�0
Ci�− 1�J0−Jn

�J0��D��Jn��Jn��D��J0�
E0 − En

, �2.4�

which in Dirac notation can be expressed as

�0
i = 2�

n�0
Ci�− 1�J0−Jn

���0��J0,����D����0��Jn,�������0��Jn,�����D����0��J0,���
E0 − En

= ���0��J0,����D̃i����1��J0,���� + ���1��J0,�����D̃i����0��J0,��� , �2.5�

where � represents parity eigenvalue of the state �J0 ,M0� and
�� is its opposite eigenvalue and we define an effective di-

pole operator as D̃i=Ci�−1�J0−JnD. Here, ���1��J0 ,���� is the
first-order perturbation correction to the wave function
���0��J0 ,��� due to the dipole operator D and given by

���1��J0,���� = �
n�0

���0��Jn,����
���0��Jn,�����D����0��J0,���

E0 − En
.

�2.6�

It can be equivalently written as

���1��J0,����

=
1

E0 − H
�
n�0

���0��Jn,�������0��Jn,�����D����0��J0,���

=
1

E0 − H
�

n,�=�,��

���0��Jn,������0��Jn,����D����0��J0,���

�2.7�

since the matrix elements between the same parity states
vanish. Applying the completeness condition, we get

�H − E0����1��J0,���� = − D���0��Jn,��� . �2.8�

The above equation can be considered as a first-order pertur-
bation equation arising from D. By solving the above equa-
tion and Eq. �2.5� it is possible to evaluate �0

i in the frame-
work of the relativistic coupled-cluster theory.

The BR of a state �f� to a lower energy state �i� is defined
as

� f→i =
Af→i

�
i

Af→i

, �2.9�

where Af→i is the transition probability of the corresponding
transition and sum over i represents total probabilities of all
possible transitions. As shown the low-lying energy levels of
Ca+ in Fig. 1, the electrons from the 4p 2P1/2 state will jump
either to the 4s 2S1/2 or 3d 2D3/2 states due to the allowed
transition with different probabilities. Again, electrons from
the 4p 2P3/2 state will jump to the 4s 2S1/2, 3d 2D3/2, and
3d 2D5/2 states due to the allowed transitions and 4p 2P1/2
state due to the M1 forbidden transition. The lifetime of the
state can be determined from
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� f =
1

�
i

Af→i

. �2.10�

By combining Eqs. �2.9� and �2.10�, it yields

Af→i = � f� f→i. �2.11�

From the same or different measurements of � f and � f→i, it is
possible to estimate the corresponding Af→i for various tran-
sitions.

The probabilities due to E1 and M1 transitions are given
by

Af→i
E1 =

2.026 13 � 1018

�2Jf + 1�	 f→i
3 ��Jf��D��Ji��2 �2.12�

and

Af→i
M1 =

2.697 35 � 1013

�2Jf + 1�	 f→i
3 ��Jf��M1��Ji��2, �2.13�

respectively. In the above equations, 	 f→i is the wavelength
of the corresponding transition and it is the reciprocal of the
excitation energy �EE�.

III. METHOD OF CALCULATION

The RCC method which is equivalent to all order pertur-
bation theory has been recently used to obtain precise results
and account for the correlation effects in single valence sys-
tems �13–15�. Atomic wave functions for single valence sys-
tems can be expressed in the framework of RCC theory as

��v
�0�� = = eT1 + Sv��
v� , �3.1�

where �
v� is the reference state constructed from the Dirac-
Fock wave function �
0� of the closed-shell configuration
�1s22s22p63s23p6�����3p6��� of Ca+ by defining �
v�
=av

†�
0� with av
† representing addition of a valence electron

v. Here T and Sv are the RCC excitation operators which
excite electrons from ��3p6�� and av

†��3p6�� for the corre-
sponding valence electron v, respectively. The amplitudes of
these excitation operators are solved by

�
L�HNeT̂��
0� = 0, �3.2�

�
v
L�HNeT̂�Sv�
v� = − �
v

L�HNeT̂��
v� + �
v
L�Sv�
v��Ev,

�3.3�

with the superscript L�=1,2� representing the single and
double excited states from the corresponding reference states
and the wide-hat symbol over HNeT represents the linked
terms of normal order atomic Hamiltonian HN and RCC op-
erator T. �Ev is the corresponding valence electron affinity
�negative of the ionization potential �IP�� energy which is
evaluated by

�Ev = �
v�HNeT̂�1 + Sv��
v� . �3.4�

The EEs between two different states are determined from
the difference of their �Ev’s. In Eqs. �3.2� and �3.3� we have
considered only the single and double excitations �coupled
cluster with single and double excitations �CCSD� method�;
however we have incorporated contributions from important
triple excitations �CCSD�T� method� to the �Ev calculations.
After obtaining the amplitudes for T, the core excitation op-
erator, we solve Eqs. �3.3� and �3.4� simultaneously to obtain
the amplitudes for the Sv operator. We use the Dirac-
Coulomb-Breit Hamiltonian which is given by

H = c�� · p� + �� − 1�c2 + Vnuc�r� +
1

r12
−

�� 1 · �� 2

r12

+
1

2��� 1 · �� 2

r12
−

��� 1 · r�12���� 2 · r�12�
r12

3 � , �3.5�

where c is the velocity of light, � and � are the Dirac ma-
trices, and Vnuc�r� is the nuclear potential.

We extend the RCC ansatz for the perturbed atomic state
in the presence of the electric dipole operator D as

��̃v� = = eT+1 + Sv + �v��
v� , �3.6�

where  and �v are the modified RCC operators to the T and
Sv operators, respectively. Since Eq. �2.8� is first order in the
D operator, the above expression will reduce to

��̃v� = = eT1 + Sv + �1 + Sv� + �v��
v� . �3.7�

Now, separating the above wave function as ��v
�0�� and

��v
�1��, we get

��v
�1�� = = eT�1 + Sv� + �v��
v� . �3.8�

Following Eq. �2.8�, we solve again the amplitudes for the
modified operators as

�
L�HNeT̂��
0� = − �
L�DeT̂�
0� , �3.9�

�
v
L�HNeT̂��v�
v� = − �
v

L�HNeT̂�1 + Sv� + DeT̂�1 + Sv��

��
v� + �
v
L��v�
v��Ev, �3.10�

where DeT̂ represent again the connecting terms between D
and T operators. In the single and double approximations, we
write

T = T1 + T2, �3.11�

E1

E1

E1E1

E1

M1
4P

3D

3D3/2

3/2

1/24P

4S
1/2

5/2

FIG. 1. Schematic low-lying energy level diagrams and decay
channels of the P states in Ca+.
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 = 1 + 2, �3.12�

Sv = S1v + S2v, �3.13�

and

�v = �1v + �2v, �3.14�

where the subscripts 1,2� represent the single and double
excitations, respectively.

Now the expression for the dipole polarizability follows
as

�0
i =

��v
�0��D̃i��v

�1�� + ��v
�1��D̃i��v

�0��
��v

�0���v
�0��

=
�
v�1 + Sv

†�D̃i�1 + Sv� + �v��
v� + �
v��v
† + �1 + Sv

†�†�D̃i1 + Sv��
v�

1 + Sv
†�N̄01 + Sv�

,

�3.15�

where we define D̃i= �eT†
D̃ie

T� and N̄0=eT†
eT. Generally,

both D̃i and N̄0 in the RCC approach are each represented by
a nonterminating series. However, we have devised a proce-
dure motivated by physical considerations to deal with them
using the Wick’s generalized theorem. We evaluate first the
effective zero-body, one-body, two-body terms, etc., system-
atically and then sandwich them �except zero-body terms�
between the Sv, �v, and their conjugate operators. We have
successfully applied this method in our earlier works
�13–15,22,23�. The above zero-body terms, open terms con-
necting only with , and terms with �v give us core ��0

i �c��,
core-valence ��0

i �cv��, and valence ��0
i �v�� correlation ef-

fects, respectively.
We also explicitly present contributions from the normal-

ization factors evaluating them in the following way:

Norm = ���v
�0��D̃i��v

�1�� + ��v
�1��D̃i��v

�0���� 1

1 + Nv
− 1� ,

�3.16�

where Nv= 1+Sv
†�N̄01+Sv�.

IV. RESULTS AND DISCUSSIONS

We have employed two different types of the basis func-
tions to generate the atomic orbitals: Slater-type orbitals
�STOs� and Gaussian-type orbitals �GTOs�. These orbitals
are defined on a grid given by

ri = r0�eh�i−1� − 1� , �4.1�

where i represents the grid points which we have taken as
750 in total, the step size h is taken as 0.03 in the present
case, and r0 is the starting point of the radial distribution
from where the electron orbitals become finite and taken as
2�10−6. The STOs and GTOs are given by

FSTO�ri� = rn�e−�iri �4.2�

and

FGTO�ri� = rn�e−�iri
2
, �4.3�

respectively. Here n� is the radial quantum number of the
orbitals and �i is a parameter whose value is chosen to obtain
orbitals with proper behavior inside and outside the nucleus
of an atomic system. We further define �i as

�i = �0�i−1. �4.4�

We have considered �0=0.0975 and �=1.77 for STOs and
�0=0.005 25 and �=2.83 for GTOs. However, we have
taken 35, 35, 30, 30, and 25 STO and GTO basis functions to
construct the s, p, d, f , and g orbitals, respectively. For our
RCC calculations, we have considered excitations from all
the core orbitals and the energies of the virtual orbitals are
considered up to 3500 a.u. for s, p, and d symmetries and
1500 a.u. for f and g symmetries in the present calculations.
In fact, it is observed that the number of virtual orbitals
obtained using the STOs is greater for a given upper energy
limit than that using the GTOs, but the number of occupied
orbitals and their energies are same for both cases. To ac-
count for the contributions from the high lying orbitals in
some of the properties that we have considered, we have
estimated contributions from virtual orbitals using the
second-order many-body perturbation theory �MBPT�2�� and
recommended �reco� results are given by taking into account
all these contributions.

In Table I, we present our IP results for the low-lying
states and compare them with the corresponding experimen-
tal results. These results using STOs and GTOs were consis-
tent. Some of the IPs for the excited states deviate from the
experimental results and it might be possible to improve
them by increasing the virtual space. We give the estimated
errors inside the parentheses of our results. The errors have
been evaluated by considering the differences between the
results obtained using the CCSD�T� and the CCSD methods
and finding the uncertainties in order to obtain consistent
results from the different sets of basis functions. We also
compare our results with other theoretical results. Guet and
Johnson �26� employed the relativistic MBPT�2� method to
obtain their results. Liaw �27� employed the Brueckner ap-
proximation method to evaluate these energies and his results
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match with the above MBPT�2� results. In a recent work,
Mitroy and Zhang �18� used a one electron semiempirical
core potential in the nonrelativistic framework to estimate
these energies which cannot distinguish the fine structure
levels. Our method in contrast is ab initio and the electron
correlation effects are included to all orders in perturbation
theory in the residual Coulomb and Breit interaction in the
one-hole–one-particle, two-hole–two-particle, and partial
three-hole–three-particle approximations.

We present the E1 and M1 matrix elements in Table II. As
can be seen, results from our STOs and GTOs differ for
different transitions. We have considered contributions from
virtual orbitals from both the basis functions using MBPT�2�
and finally given the consistent results as reco values. Errors
in these quantities are estimated from the numerical inaccu-
racies in the basis used, as well as the contributions from
higher symmetry basis functions that were not included in
the RCC calculations, but their contributions were taken at
the MBPT�2� level. Guet and Johnson �26� used B-spline
basis based MBPT to obtain these results. Arora et al. �16�
also used a B-spline basis but a linearized RCC method to
obtain their results. Liaw �27� used the Brueckner approxi-
mation method to get E1 matrix elements using both the
length and velocity gauge expressions. Our method contains
all these many-body effects. We have also evaluated the M1
matrix element between the 4p 2P3/2→4p 2P1/2 transition

which is around 1.15 a.u., which is almost the same as
3d 2D5/2→3d 2D3/2 transition �28�.

Using the above matrix elements, we have determined the
transition probabilities and presented them in Table III. We
have followed two approaches to calculate them. First we
have considered energies from our calculations and derived
wavelengths �	cal� to obtain the ab initio results. In the other
case, we have used our matrix elements with the experimen-
tal wavelengths �	expt�. Although the M1 transition ampli-
tude involving the 4p 2P states is finite due to a very small
fine structure splitting, the corresponding transition probabil-
ity is almost negligible. We have only estimated errors in the
transition probabilities for which we have used the experi-
mental energies by considering the uncertainties in the cor-
responding E1 matrix elements. We have also compared our
results with other ab initio and semiempirical results in the
same table. In a recent work, Gerritsma et al. �24� measured
the BRs �we discuss these results below in detail� from the
4p 2P3/2 state and obtained various transition probabilities
from this state by combining their results with the lifetime
measurements as given by Eq. �2.11�. Our results using 	expt

match well with their results.
Using the above transition probabilities, we have deter-

mined BRs from different calculations and presented them in

TABLE I. Ionization potentials �in a.u.� of Ca+ from different
works.

State This work Others Expt.a

4s 2S1/2 −0.43628�1� −0.43836 b −0.43628

−0.43802 c

−0.436287d

3d 2D3/2 −0.37397�12� −0.37407 b −0.37408

−0.37485 c

−0.373921d

3d 2D5/2 −0.37361�19� −0.37379 −0.37381

−0.37448 c

−0.373921d

4p 2P1/2 −0.32124�32� −0.32217 b −0.32150

−0.32224 c

−0.320844d

4p 2P3/2 −0.32025�27� −0.32111 b −0.32048

−0.32118 c

−0.320844d

5s 2S1/2 −0.19789�92� −0.198293d −0.19859

4d 2D3/2 −0.17675�98� −0.175144d −0.17730

4d 2D4/2 −0.17666�99� −0.175144d −0.17721

5p 2P1/2 −0.15978�46� −0.160060d −0.16047

5p 2P3/2 −0.15944�47� −0.160060d −0.16011

aReference �25�.
bRelativistic MBPT�2� �26�.
cBrueckner approximation �27�.
dNonrelativistic Coulomb approximation �18�.

TABLE II. Transition matrix elements �in a.u.� from different
calculations. Recommended values from our work are given as
reco. Errors are estimated from higher symmetry orbitals and con-
sistent of obtained results from different sets of basis functions.

Transition

This work

OthersSTOs GTOs Reco

4p 2P1/2→4s 2S1/2 2.86 2.90 2.88�1� 2.890a

2.866b

2.861c

2.898d

4p 2P1/2→3d 2D3/2 2.50 2.41 2.40�2� 2.373a

2.410b

2.244c

4p 2P3/2→4s 2S1/2 4.02 4.09 4.03�1� 4.088a

4.060b

4.059c

4.099d

4p 2P3/2→4p 2P1/2 1.15 1.15 1.15�1�
4p 2P3/2→3d 2D3/2 1.12 1.09 1.09�1� 1.059a

1.076b

1.028c

4p 2P3/2→3d 2D5/2 3.36 3.28 3.22�4� 3.186a

3.234b

2.995c

3.306d

aRelativistic MBPT�2� �26�.
bLength gauge result with Brueckner approximation �27�.
cVelocity gauge result with Brueckner approximation �27�.
dLinearized RCC method �16�.
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Table IV. These results are compared with the recently mea-
sured values of the 4p 2P3/2 state �24�. As presented in this
table, our results using 	expt match well with the measure-
ments. Our error estimations are based on the errors associ-
ated with their transition probabilities. We have also evalu-
ated BRs for the 4p 2P1/2→4s 2S1/2 and 4p 2P3/2→4s 2S1/2
transitions due to the 3d states using the relation

� f→4s 2S1/2
=

Af→→4s 2S1/2

�
i=3d 2D3/2,3d 2D5/2

Af→i

�4.5�

and obtained 14.97�50� and 14.4�5�, respectively, which are
not within the error bar of the existing experimental results
�29� and hence require further measurements for verification.

There are a number of experimental lifetime measure-
ments available for the 4p 2P1/2 and 4p 2P3/2 states �30–35�
using beam laser, beam foil, beam foil with cascade correc-
tion, and Hanle techniques. Among them the laser-beam–ion-
beam spectroscopy in the results of Jin and Church �30� is
the most precise. Substituting our transition probabilities in
Eq. �2.10�, we obtain the lifetimes of the 4p 2P1/2 and

4p 2P3/2 states as 6.931 and 6.881 s with 	calc, respectively,
whereas 6.978�56� and 6.926�36� s with 	expt, respectively.
The errors are estimated from the errors associated with the
transition probabilities. Other calculations based on the
above discussed results also predict results close to ours. In
fact, our result 6.926�36� s as the lifetime of the 4p 2P3/2
state is in good agreement with the experimental results, as
shown in Table V.

With the same wave functions that were used to obtain the
above properties and solving Eq. �2.8�, we obtain the static
dipole polarizabilities of the 4s 2S1/2, 3d 2D3/2, and 3d 2D5/2
states with STOs and GTOs and they are presented in Table
VI. The dipole polarizabilities for the ground state from
STOs and GTOs are in good agreement, but the 3d state
dipole polarizabilities differ by 4%. Since we were able to
generate fewer virtual orbitals using GTOs than STOs for a
given energy upper bound, the convergence of these results
was checked with virtual orbitals with higher energies which
proved to be impractical for the STOs. Therefore, we con-

TABLE III. Transition probabilities �in 106 s−1� in Ca+. Uncer-
tainties in E1 elements are taken for error estimation.

Transition

This work

Others	calc 	expt

4p 2P1/2→4s 2S1/2 135.240 134.333�1.0� 135.26a

132.9b

132.5c

136.0d

4p 2P1/2→3d 2D3/2 9.0431 8.971�150� 8.77a

9.0b

7.8c

9.452d

4p 2P3/2→4s 2S1/2 135.842 135.034�671� 138.95a

136.9b

136.9c

139.7d

4p 2P3/2→4p 2P1/2 �10−10 �10−10

4p 2P3/2→3d 2D3/2 1.055 0.979�18� 0.93a

0.95b

0.87c

0.997d

4p 2P3/2→3d 2D5/2 8.435 8.367�262� 8.24a

8.5b

7.2c

8.877d

aRelativistic MBPT�2� is used �26�.
bLength gauge result with Brueckner approximation �27�.
cVelocity gauge result with Brueckner approximation �27�.
dLinearized RCC method is employed �16�.

TABLE IV. BRs of 4p 2P1/2 and 4p 2P3/2 states in Ca+. Errors
are estimated from the used transition probabilities.

Transition

This work

Others Expt.a	calc 	expt

4p 2P1/2→4s 2S1/2 0.9373 0.9374�74� 0.9391b

0.9366c

0.9444d

0.9350e

4p 2P1/2→3d 2D3/2 0.0627 0.0626�5� 0.0609b

0.0634c

0.0556d

0.0650e

4p 2P3/2→4s 2S1/2 0.9347 0.9350�62� 0.9381b 0.9347�3�
0.9354c

0.9443d

0.9340e

0.9357f

4p 2P3/2→4p 2P1/2 �0 �0

4p 2P3/2→3d 2D3/2 0.00726 0.00666�4� 0.00628b 0.00661�4�
0.00649c

0.00600d

0.00667e

4p 2P3/2→3d 2D5/2 0.0581 0.0583�4� 0.0556b 0.0587�2�
0.0581c

0.0497d

0.0593e

0.0643f

aReference �24�.
bRelativistic MBPT�2� is used �26�.
cLength gauge result with MCDF method �27�.
dVelocity gauge result with MCDF method �27�.
eLinearized RCC method is employed �16�.
fSemiempirical �18�.
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sider our results based on GTOs as more accurate than those
using STOs. We present our reco values by taking results
from GTOs and errors from the consistent results from dif-
ferent sets of basis functions. We also overestimate these
errors for the d states where contributions from f states are

vital in obtaining the final results, but the accuracies of their
corresponding E1 matrix elements are not known. There
are also a number of calculations available for both the
ground and 3d excited states including our previous work
and references therein �16,18–20,22,36�. We had carried out
the ground state polarizability calculation in Ca+ along with
other atomic systems in the earlier work �22� to verify the
validity of the method that was proposed. In the present case,
we have investigated the accuracy of the wave functions in
Ca+ to obtain IPs and E1 matrix elements which are the
ingredients to evaluate accurate dipole polarizabilities. In
fact, the correlation behavior for the 3d state dipole polariz-
abilities has not been discussed in the literature. Patil and
Tang �19� used multipolar-matrix elements in the nonrelativ-
istic approximation to obtain the 4s 2S1/2 state dipole polar-
izability. This contains both summation and integration in
dealing with the intermediate states from different orbital
quantum numbers. Using the Coulomb approximation with
the Hartree-Slater core calculations, Theodosiou et al. �20�
reported the dipole polarizability of the same state. Their
result differs from ours and it seems as though they have not
taken core correlation into account. Recently, Arora et al.
�16� and Mitroy and Zhang �18� also evaluated dipole polar-
izabilities based on the sum over E1 matrix elements and
oscillator strengths between different states. The main differ-
ences in their results and ours are they have estimated core
�neglected for tensor polarizability� and core-valence corre-
lation effects approximately whereas we have used the first-
order perturbed RCC method to evaluate them. Contributions
from the continuum and doubly excited states with configu-
rations such as �4p5�nsms �n�m, with n ,m being principal
quantum numbers� which are also important for the dipole
polarizability calculations of the states have been considered

TABLE V. Lifetimes �in s� of 4p 2P1/2 and 4p 2P3/2 states in
Ca+. Errors are estimated from the used transition probabilities.

State

This work

Others Expt.	calc 	expt

4p 2P1/2 6.931 6.978�56� 6.94a 7.098�20�b

7.047c 7.07�7�d

7.128e 7.5�5�f

6.875g 6.62�35�h

4p 2P3/2 6.881 6.926�36� 6.75a 6.924�19�b

6.833c 6.87�6�d

6.898e 7.4�6�f

6.686g 6.68�35�h

6.72�2�i

6.61�30�j

aRelativistic MBPT�2� �26�.
bLaser-beam-ion-beam technique �30�.
cLength gauge result with MCDF method �27�.
dLaser-beam techniques �31�.
eVelocity gauge result with MCDF method �27�.
fBeam foil technique �32�.
gLinearized RCC method �16�.
hBeam foil technique with cascade correction �33�.
iHanle method �34�.
jHanle method �35�.

TABLE VI. Polarizabilities �in a.u.� of the 4s 2S1/2, 3d 2D3/2, and 3d 2D5/2 states in Ca+. Our recommended values with errors are given
as Reco.

State

This work Others

Expt.

GTOs STOs Reco

�0
1 �0

2 �0
1 �0

2 �0
1 �0

2 �0
1

4s 2S1/2 73.002 74.342 73.0�1.5� 76.1�1.1�a 70.89�15�b

75.49c 75.3�4�d

70.872e 72.5�19�d

70.6f

3d 2D3/2 28.504 −15.870 31.604 −17.678 28.5�1.0� −15.8�7� 32.73e −25.20 e

25.4f

3d 2D5/2 29.307 −22.492 32.531 −25.516 29.5�1.0� −22.45�5� 32.0�1.1�a −24.5�4�a

32.73e −25.20 e

25.4f

aLinearized RCC method is employed �16�.
bLifetime measurements and oscillator strengths in �20�.
cNonrelativistic sum-over-oscillator strength approach �18�.
dReference �21�.
eNonrelativistic sum-over-oscillator strength approach �20�.
fNonrelativistic sum-over-oscillator strength approach �36�.
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by us. They are implicitly accounted for in the present work
by evaluating the first-order perturbed wave functions due
to the electric dipole operator. We have also corrected our
results due to the normalization of the wave functions. In
Table VII, we present contributions from the DF and the
individual RCC terms obtained using GTOs. The differences
between these two results give the correlation contributions
associated in evaluating these quantities. It is evident from
our studies that correlation effects in the 3d states are more
than 50%, while it is about 20% in the 4s 2S1/2 state. The
�0

i �c� and �0
i �cv� contributions are found to be smaller for

the scalar dipole polarizability than the previously estimated
results. We also present these contributions for the tensor
polarizabilities which were neglected earlier. Contributions
due to the doubly excited states and normalization correc-
tions cannot be neglected in precision calculations. There are
three experimental results for the ground state dipole polar-
izability �20,21�, but they do not agree with each other. Al-
though the result given by Theodosiou et al. �20� is the latest,
our results are close to Chang and Nyoes �21�.

The frequency shift �in Hz� due to a black-body shift
�BBS� due to the frequency-dependent electric field at tem-
perature T=300 K by neglecting the dynamic correction in
the 4s 2S1/2→3d 2D5/2 transition is approximated by �37�

�� =
1

2
�831.9 V/m�2�T �K�

300
�4

��0
1�4s� − �0

1�3d5/2�� .

�4.6�

By substituting our results in the above expression, we ob-
tain ��=0.37�1� Hz which is in agreement with 0.38�1� Hz
by Arora et al. �16� and 0.368 Hz by Mitroy and Zhang �18�.
This also supports the measured value of 0.39�27� Hz �10�.
The agreement between different calculations is mainly due
to the cancellation of the results of 4s 2S1/2 and 3d 2D5/2
states.

In Table VIII, we present the contributions from the Breit
interaction to different properties. These contributions are

smaller in these properties than in the hyperfine structure
constants which were reported recently �14�. In contrast to
the hyperfine constants where the Breit interaction contrib-
utes more to the 4s 2S1/2 state, it is larger in the 3d states than
in the ground state in these properties.

TABLE VII. Contributions from the DF and the important RCC terms for the dipole polarizabilities. D̃i

and D̃i are the core ��0
i �c�� and core-valence ��0

i �cv�� correlation effects, respectively. The remaining terms
except Norm represent the valence correlation contributions. Norm gives the correction due to the normal-
ization of the wave functions. Note that subscripts 1v and 2v represent the valence contributions due to the
singly and doubly excited states, respectively.

Terms 4s 2S1/2 3d 2D3/2 3d 2D5/2

DF 96.201 91.487 −59.261 89.340 −81.330

D̃i 2.730 2.730 −0.178 2.730 −0.178

D̃i+c.c. 0.038 0.151 −0.245 0.268 −0.268

D̃i�1v+c.c. 77.283 32.427 −18.317 33.162 −27.573

D̃i�2v+c.c. −1.865 −0.927 −0.271 −0.910 0.618

S1vD̃i�1v+c.c. −2.543 −5.097 2.876 −5.161 4.277

S2vD̃i�2v+c.c. −2.017 −0.298 0.105 −0.289 0.132

Others 0.130 0.161 −0.226 0.161 −0.050

Norm −0.754 −0.643 0.386 −0.654 0.550

TABLE VIII. Breit interaction contributions to various
properties.

State Results

IP �a.u.�
4s 2S1/2 0.00003056

3d 2D3/2 −0.00034491

3d 2D5/2 −0.00027547

4p 2P1/2 0.00005439

4p 2P3/2 0.00002354

5s 2S1/2 0.00001018

4d 2D3/2 0.00003778

4d 2D5/2 0.00001114

5p 2P1/2 0.00001729

5p 2P3/2 0.00000674

E1 elements �a.u.�
4s 2P1/2→4s 2S1/2 0.001

4s 2P1/2→3d 2D3/2 −0.012

4s 2P3/2→4s 2S1/2 0.001

4s 2P3/2→3d 2D3/2 −0.002

4s 2P3/2→3d 2D5/2 −0.005

Polarizability �a.u.� �0
1 �0

2

4s 2S1/2 −0.011

3d 2D3/2 −0.384 0.226

3d 2D5/2 −0.499 0.415
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V. CONCLUSION

We have employed the relativistic coupled-cluster method
with two different basis functions to study ionization poten-
tials, electric dipole matrix elements, and dipole polarizabil-
ities in singly ionized calcium. We have also evaluated tran-
sition probabilities, branching ratios, and lifetimes of the first
excited p states using these results. By determining the first-
order perturbed wave function due to the electric dipole op-
erator, we obtain ab initio results for the static dipole polar-
izabilities in the ground and first excited d states. Black-body
shift in the 4s 2S1/2→3d 2D5/2 transition has been evaluated

using these results and compared with the other available
results. Contributions from the Breit interaction to the above
properties have been studied in singly ionized calcium.
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