C. Sivaram

Indian Institute of Astrophysics
Bangalore 560034 Indta

ABSTRACT

The ubiquitous occurrence of the Dirac-Eddington large dimensionless numbers when relating the physical parameters such as mass, radius, angular momentum etc. of typical astrophysical objects like stars and galaxies to the fundamental constants of atomic physics is currently interpreted in terms of constraints imposed on these parameters as a result of physical processes underlying the existence of these objects rather than as chance coincidences, i.e. these relations can be understood in terms of the underlying physics governing these objects. Again various cosmological parameters such as the total number of nucleons, the photon-to-baryon ratio etc. can be expressed in terms of these numbers, which again can be understood in terms of the physics involved. In fact it would appear that Eddington's cloud bound observer can also get a good idea about the overall mass, size and background temperature of the universe, apart from his classic deductions on the masses and luminosities of stars sans observations. Further the weak and strong interaction coupling constants can be included in the large number hypothesis (LNH) and dimensionless relations connecting these constants to cosmological parameters can be constructed. The gross parameters characterizing the universe such as overall size and mass can be arrived at from microphysical considerations involving the fundamental interactions of elementary particle physics with interesting relations for the

Hubble radius and closure density obtained entirely in terms of the coupling constants underlying these interactions. SEveral other interesting coincidences and relationships connecting the parameters of cosmology and elementary particle physics are pointed out. The significance of these inter-relations is explored especially in connection with the time variation of the fundamental constants and the unification of cosmology and quantum physics. The above topics being close to Eddington's interests seem particularly appropriate for discussion at this meeting.

1. INTRODUCTION

The Eddington-Dirac dimensionless large numbers arose in discussions involving physics and cosmology as follows: If one considers the ratio of the electrostatic force between a proton and an electron to the gravitational force between them one obtains a large number, i.e. $e^{2} / G m_{p} m^{\prime} \approx 10^{40}$, the electrostatic force being proportional to e^{2}, e being the electric charge (same for both proton and electron) and the gravitational force being proportional to the product of the proton and electron's masses (m_{p} and m_{e} respectively) multiplied by the universal gravitational constant G. The inverse squared distance dependence being same for both these long range forces of course cancels out. Now one can form another large dimensionless number by expressing the so called Hubble age of the untverse (i.e. the time elapsed since the universal expansion began) given by the inverse of the Hubble's constant H (i.e. $1 / H$) in units of the so called atomic time, given for instance by the time it takes light to cross a typical elementary particle dimension (say the classical electron radius $e^{2} / \mathrm{m}^{2} \mathrm{c}^{2} 3 \times 10^{-13} \mathrm{cms}$) which is $\approx 10^{-23}$ secs. The ratio of the two times is again a large number, $\sim 10^{40}$ which is remarkably the same as the first large number. Another large number is the total number of nucleons in the universe which 15 estimated as $\sim 10^{80}$. This number is the square of the previous two large numbers, again quite remarkable as there was no apriori reason to expect this or for that matter the equality of the previous two large numbers. A dimensionless large number (LN)

230

involving the Planck's constant $\hbar, m_{p} G$ and C is ($\left.\overline{\mathrm{c}} / \mathrm{Gm}_{\mathrm{p}}{ }^{2}\right)=10^{38}$. It being the inverse of the gravitational fine structure constant ($G m_{p}{ }^{2} /$ fic $=10^{-38}$) and hence expressing the strength of the gravitational binding between protons we may expect this number (or its appropriate powers) to crop up in situation involving the gravitational assembly of a large number of nucleons, i.e. in celestial bodies. Indeed the masses of most stars turn out to be within a numerical factor of the mass $M_{s}=\left(\hbar i c / G m_{p}^{2}\right)^{3 / 2} m_{p} \simeq M_{\theta}, M_{\theta}$ being the solar mass. The Chandrasekhar limiting mass for white dwarf stars (where the gravitational 'charge' Gm^{2} is balanced by the quantum 'charge' Kc of the degenerate Fermi gas) is again precisely M_{s}. If we denote the $L N$ i.e ($\hbar c / \mathrm{Gm}_{\mathrm{p}}{ }^{2}$) by N_{1} it turns out that several physical parameters characterising stars can be expressed as simple powers of N_{1} multiplied by the appropriate quantum physical fundamental constants.

To give some examples:

$$
\text { Mass: } M_{s}=\left(\pi c / G m_{p}^{2}\right)^{3 / 2} \times m_{p}=N_{1}^{3 / 2} \cdot m_{p}
$$

Radius:

$$
\begin{aligned}
& \text { (Typical Main-Sequence Star) } R_{s}=N_{1}^{1 / 2} \times \\
& \text { Bohr radius }=N_{1}^{1 / 2} \times \hbar^{2} / m_{e} e^{2}
\end{aligned}
$$

$R_{\text {white }}$ dwarf $=N_{1}{ }^{1 / 2} \times \pi / m_{e} c^{R_{n e u t r o n ~ s t a r ~}^{n}} \mathrm{~N}_{1} 1 / 2 \times \mathrm{k} / \mathrm{m}_{\mathrm{r}} \mathrm{c}$
Angular momentum: $\quad{ }^{J_{S t a r}}=N_{1}{ }^{2} n(\pi=$ quantum unit of angular
Life time of hottest stars $t_{s}=N_{1} \times \pi / m_{p} c^{2}$
and several such relations as we shall see later, including typical relations for galaxies (mass $N_{1} 7 / 4 \mathrm{~m}_{\mathrm{p}}$, etc.,) and the universe (mass $\mathrm{N}_{1}{ }^{2} \mathrm{~m}_{\mathrm{p}}$, etc.,).
II. LARGE NUMBER COINCIDENCES IN ASTROPhYSICS

Now we can understand the above typical relations for stellar objects in terms of the physics involved in their structure and evolotion. For instance the virial theorem tells us that for the star to be in equilibrlum the radiation pressure (given by $\sim(K T)^{4}\left(h C F^{3}\right.$ T being the temperature) should not exceed the kinetic gas pressure $N_{S} R_{s}^{-3} K T, N_{S}$ and R_{s} being the total number of nucleons and the radius respectively. Using the virial theorem relation, $K T=G N_{s}$ $m_{p}{ }^{2} R_{s}{ }^{-1}$ and equating the above two pressures then gives the equilobrium number of nucleons for which the star $1 \$ / 2$ table as:

$$
N_{s}=\left(G m_{p}^{2} / \pi c\right)^{-3 / 2}=N_{1}^{3 / 2}=10^{57} \text {, }
$$

which is the coincidence we observed earlier. Again the Chandrasekhar mass for a white dwarf is obtained as $N_{1}{ }^{3 / 2} m_{p}$ by balancing the pressure of the relativistic degenerate fermion gas (proportional to number density $n^{4 / 3}$), with the gravitational force proportional to n^{2}. The radius of the equilibrium configuration can also be obtained in the above cases and gives $N_{1}^{1 / 2} \times$ Bohr radius and $N_{1}^{1 / 2} \times \pi / m_{e}^{c}$ for mainsequence stars and white dwarfs respectively. The relation involving the stellar life time can be accounted for as follows. If L be the luminosity of the star and η be the fraction of rest mass energy converted into radiation in nuclear fusion reactions ($n=0.008$) then the lifetime t_{s} of the star is $t_{s}=\left(\eta N_{s} m_{p} c^{2} / L\right)$. Now the maximal luminosity of a star of given mass is given by the so called 'Eddington luminosity' for which the radiation pressure on the stellar material just balances the inward gravitational pull (at higher luminosities than the Eddington limit the stellar material will be blown away by radiation pressure). The Eddington limit on the luminosity is given by $L=N_{s} G m_{p}{ }^{2} \mathrm{c} / \mathrm{k}$ and if the opacity k is the one corresponding to Thompson (electron-photon) scattering as is indeed the case for the hottest stars, then $k=\sigma_{t} / m_{p}, \sigma_{t}=\frac{8 \pi}{3}\left(e^{2} / m_{e} c^{2}\right)^{2}$ is the Thompson scattering cross-section. Writing σ_{T} as $\sigma_{T}=\alpha^{2} \beta^{2}$ $\left(\pi / m_{p} c\right)^{2} ; \alpha=e^{2} / \hbar c, \beta=m_{p} / m_{e}$ and substituting for K and L in the formula for t_{s} :
Now $n \alpha^{2} \beta^{2} \cong$ unity (!) so that

$$
t_{s}=\left(\pi / m_{p} c^{2}\right) \times\left(\pi c / G m_{p}{ }^{2}\right)
$$

$=N_{1} \times\left(\hbar / m_{p} c^{2}\right)$, which was the relation given earlier. So it is no coincidence that $t_{s} \simeq N_{1} x$ atomic time : For the angular momentum $\left(J_{s}\right)$ of a typical star we have $J_{s}=M_{s}$ $V_{s} R_{s}$, where M_{s}, V_{s} and R_{s} are typical mass, rotational velocity and radius. As seen above; $M_{s}=\left(\mathrm{hc} / \mathrm{Gm}_{\mathrm{p}}{ }^{2}\right)^{3 / 2} \mathrm{~m}_{\mathrm{p}} ; \mathrm{R}_{\mathrm{s}} a\left(\mathrm{Hic} / \mathrm{Gm}_{p_{2}}{ }^{2}\right)^{1 / 2}$. $\left(\frac{\hbar^{2}}{m_{e^{2}} e^{2}}\right)$ and $V_{s}=\left(G M_{s} / R_{s}\right)^{1 / 2} \simeq G_{G}^{1 / 2}\left(\hbar c / G m_{p}\right)^{3 / 4} \cdot m_{p} I / 2\left(\hbar \mathrm{Hc} / \mathrm{Gm}_{\mathrm{p}}\right)^{-1 / 4}$ $x\left(\frac{\hbar^{2}}{m_{m} e^{2}}\right)^{-1 / 2}$ Substituting the above expressions for M_{s}, R_{s} and V_{s} we have :

$$
\begin{gathered}
\mathrm{J}_{5}(\text { main sequence }) \simeq\left(\hbar \mathrm{c} / \mathrm{Gm}_{\mathrm{p}}^{2}\right)^{5 / 2}\left(\frac{\mathrm{~m}_{\mathrm{p}}^{3}}{\mathrm{~m}_{\mathrm{e}}}\right)^{1 / 2} \frac{G}{\mathrm{G}}^{1 / 2} \\
\simeq 10^{78} \hbar \approx N_{1}^{2} \hbar
\end{gathered}
$$

Similarly for a neutron star (NS)
$M_{N s} \simeq\left(\mathrm{Hc} / \mathrm{Gm}_{\mathrm{p}}{ }^{2}\right)^{3 / 2} \mathrm{~m}_{\mathrm{p}} ; R_{\mathrm{Ns} \sim}\left(\frac{\mathrm{nc}}{\mathrm{Gm}_{\mathrm{p}}{ }^{2}}\right)^{1 / 2} \cdot \frac{\hbar}{m_{\pi} \mathrm{c}}$
m_{π} is the pion mass (the neutrons are separated by a distance $h / m_{\pi} c$, the range of nuclear interactions on the average, thus the value of $\left.R_{N S}\right)$ and $V_{N S}\left(\mathrm{GM}_{\mathrm{Ns}} / \mathrm{R}_{\mathrm{Na}}\right)^{1 / 2}$. As before putting together the formulae for $M_{N s}, R_{N s}$ and $V_{N s}$ give :
$J_{N s} \propto\left(\frac{\hbar c}{G_{m}^{2}}\right)^{5 / 2}\left(\frac{m_{p}^{3}}{m_{m}}\right)^{1 / 2}(\mathrm{G} / \hbar c)^{1 / 2}=10^{76} \mathrm{~K}$
Similarly for a white dwarf: (WD)
$J_{W D=}=\left(h c / G m_{p}^{2}\right)^{5 / 2}\left(\frac{m_{p}^{3}}{m_{e}}\right)^{1 / 2}\left(\frac{G}{\hbar c}\right)^{1 / 2}$
$=10^{77} \hbar$, so that angular momentum like the mass is more or less the same for all stars being $N_{1}{ }^{2} \pi$, white dwarfs and neutron stars having lower angular momentum the reason being that the star during its evolution loses mass and for a neutron star it is distinctly lower as seen because a substantial portion is transferred to the expanding envelope during the supernova
explosion. We shall see later how other physical parameters like magnetic moment of stars can also be expressed in terms of powers of N_{1} times the corresponding microscopic quantity, i.e., Bohr magneton eौ/2mc for magnetic moment etc. Again a typical interstellar magnetic field (10^{-6} gauss) when compared with the upper limit for magnetic fields in neutron stars the so called critical Schwinger field (i.e. when the Larmor radius $\mathrm{mc}^{2} / \mathrm{eB}$ becomes equal to the electron's Compton wavelength \hbar / mc, giving $B \sim \mathrm{~m}^{2} \mathrm{c}^{3} / \mathrm{eh} \sim 10^{13}$ gauss) once more gives a ratio $\mathrm{N}_{1}^{1 / 2} \approx 10^{19}$.

The above analysis can also be extended to galaxies, imposing constraints on their physical parameters which also turn out to be related to the ubiquitous N_{1}. An estimate of the typical mass and size of a galaxy can be arrived at by considering a collapsing gas cloud of mass M contracting to radius R (so that the virial temperature $T \approx \frac{G M m p}{K_{B} R}, K_{B}=$ Boltzmann constant) and $K_{B} T \sim 1$ Rydberg $\sim \alpha^{2} m_{e} c^{2} \approx 10 \mathrm{eV}$, the heated up cloud cools chiefly by bremsstrahlung emission, the cooling time being $t_{c}=\left(m_{e} c^{2}\right)$ $\left.K_{B}\right)^{-1 / 2} \cdot \pi / n \sigma_{T} e^{2}(n=$ number density) Now for the cloud to be supported by pressure, t_{c} should be less than the free-fall time, $t_{f f} \approx\left(R^{3} / G M\right)^{1 / 2}$, i.e $t_{c}<t_{f f}$ giving:
$R \simeq \alpha^{4} .\left(\hbar c / G m_{p}^{2}\right)\left(m_{p} / m_{e}\right)^{1 / 2} \frac{\hbar^{2}}{m_{e} e^{2}} \leqslant 10^{2}$ kiloparsec (Kpc).
With corresponding :
$M \geqslant \alpha^{5}\left(\pi c / G m_{p}{ }^{2}\right)^{2}\left(M_{p} / m_{e}\right)^{1 / 2} m_{p} \geqslant 10^{10} M_{\mathcal{O}} \approx N_{1}{ }^{7 / 4} \cdot m_{p}$ which agrees well with the obsered scales for galaxies.
As is well known, the so called Jeans mass characterises the initial fluctuations or inhomogenities which ultimately evolved into galaxies, masses smaller than the Jeans mass are dissipated by pressure forces. The Jeans length is given by $]_{J} \approx C_{S} / \sqrt{G_{\rho}}$, C_{s} being the velocity of sound, $C_{s}=\left(K_{B} T / m_{D}\right)^{1 / 2}$, T being the average temperature of the ambient gas. The Jeans mass is $M_{j} \sim$ $\rho^{1} J^{3} \sim C_{s}{ }^{3} / G^{3 / 2} \rho^{1 / 2}$, the rotational velocity of the mass $\sim C_{s}$. So we can write for the angular momentum of a typical galaxy
objects, $\left.J_{G} \sim M_{J}\right]_{J} C_{S} \sim C_{S}^{5} / G^{2} \rho$. Another well known cotncidence involving N_{1} to which we shall return later is that the ratio of the nucleon number density n to the photon number density $(\mathrm{KT} / / \mathrm{hc})^{3}$ is $N_{1}^{-1 / 4}$ i.e $\left(\mathrm{Gm}_{\mathrm{p}}^{2} / \hbar \mathrm{c}\right)^{1 / 4}$; so that $\rho=(\mathrm{KT} / \hbar c)^{3}\left(\mathrm{Gm}_{\mathrm{p}}^{2} / \hbar \mathrm{c}\right)^{1 / 4} \cdot \mathrm{~m}_{\mathrm{p}}$. Hence substituting for and C_{S} in J_{G}, we get the following formula for the angular momentum of a typical galaxy, expressed in terms of \hbar as:

$$
J_{G}=T^{1 / 2}\left(\frac{\hbar^{9} C^{13}}{K_{B}^{2} G^{9} m_{p}^{16}}\right)^{1 / 4} \pi \approx 10^{100} \cdot \hbar \approx N_{1}^{5 / 2} . \pi
$$

This would explain the empirical observation that the mass and angular momentum of galaxies are respectively $\mathrm{N}_{1}{ }^{7 / 4} \mathrm{~m}_{\mathrm{m}}$ and $/ 2_{\mathrm{N}} \mathrm{N}_{1}^{5 / 2} \mathrm{n}_{\mathrm{n}}$, whereas the mass and angular momentum of stars are $N_{1}^{3 / 2} \mathrm{~m}_{\mathrm{p}}^{1}$ and $N_{1}{ }^{2} \hbar$. Thus the mass of a typical galaxy is $N_{1}{ }^{1 / 4}$ times the mass of a star whereas its angular momentum is $N_{1}^{1 / 2} t i m e s$ that of a star. This is consistent with another empirical relation which is now well known, i.e. that the angular momentum of a wide range of celestial objects ranging from planets to galaxies, goes as the square of their mass, i.e $J \sim M^{2}$. This is also valid for black holes where one can write: $J=G / c \mathrm{M}^{2}$; (1.e for extreme kerr black holes). For other bodies ($\left.J=(G / V) M^{2}\right)$ In the next section we shall see that a similar results holds for elementary particle resonances, their angular momenta rising as mass squared for the higher spin states, the slope of the so called Regge trajectories being $\left(G \sqrt{N_{1}} / \mathrm{hc}\right) \sim(1 \mathrm{Gev})^{-2}$. Now according to Blackett, the angular momentum and magnetic moment (H) of astrophysical objects are related according to:

$$
H=\frac{6^{1 / 2}}{c} J, \quad \text { one. }
$$

We can write this as:

$$
H=\frac{e n}{2 m_{p} c}\left(\frac{J}{\hbar}\right)\left(\frac{G m}{\hbar} \frac{p}{\hbar}\right)^{1 / 2}\left(\frac{1}{\alpha}\right)^{1 / 2}
$$

..e Bohr magneton x angular mom. In units of $\pi \times 1$ 的 $\times N_{1}^{1 / 2}$;
As magnetic moment $=$ Magnetic Field (B) x volume, we can estimate the magnetic fields of various celestial bodies. For the Earth,
this gives about 0.5 gauss, for the sun about 5 gauss for neutron stars $\sim 10^{12}$ gauss and for the galaxy about 10^{-6} gauss in agreement with what is observed. We shall now try to understand how Eddington's cloud bound observer could proceed further to deduce that the mass and radius of the universe would be given by N_{1}. $e^{2} / m_{e} c^{2}$ and $N_{1}^{2} m_{p}$. As a bonus he would also arrive at $N_{1}^{1 / 4}$ for the ratio of the number densities of photons to nucleons. Assume that the microwave background could have been produced by pregalactic supermassive stars which may have formed in the period between decoupling and galaxy formation. Clusters of these objects could form culminating their evolution eventually as black holes. Being massive these objects would be radiation dominated and the total luminosity of a large number of these objects in a cluster would be given by the Eddington value, $L_{E}=4 \pi G M c / k=\frac{4 \pi G c}{k} \Sigma M$ where $\Sigma M=M_{T}=$ total cluster mass. If $M_{T} 15$ the total cluster mass, then general relativity imposes as is well known a lower imit on its spatial localisation or size given by $R_{m} \sim G M_{T} / c^{2}$ and the shortest time-scale that can be associated with the cluster is then $t_{m} \sim G M_{T} / c^{3}$. If during t_{m} a substantial portion $\eta(\sim 1)$ of the mass is converted into energy, then the maximum possible luminosity is given by $L_{M} \sim \eta M_{T} C^{2} / G M_{T} / c^{3} \sim c^{5} / G$; with $\eta=1$ this becomes the so called 'Gunn luminosity', which gives the upper limit to the power that can be radiated by the cluster, and as all the individual objects are radiating at their maximal Eddington luminosity we can equate above to $L_{E_{8}}$ above to L_{M}. Thus with $L_{E}=L_{M}$ and substituting $k=\sigma_{T} / m_{p} \quad \sigma_{T}=\frac{8 \pi}{3}\left(e^{2} / m_{e} c^{2}\right)^{2}$ the upper 11mit to the cluster

$$
\begin{aligned}
& \text { mass then turns oyt to be: } \\
& \qquad M=M_{T} \approx \frac{e^{d}}{G m_{p} m_{e}^{2}} \sim\left(\frac{e^{2}}{G m_{e}^{2}}\right)\left(\frac{e^{2}}{G m_{p}^{2}}\right) m_{p} \approx 4^{\prime} \times 10^{78} m_{p} \approx N_{1}^{2} m_{p} \approx 10^{21_{M}}{ }_{\odot}
\end{aligned}
$$

The effective cluster size corresponding to the maximal luminosity would be: $\left(G M_{T} / c^{2}\right)$:

$$
R_{m} \approx\left(e^{2} / m_{e} c^{2}\right)\left(e^{2} / G m_{p} m_{e}\right) \approx N_{1} \cdot \quad \frac{e^{2}}{m_{e}} c^{2}
$$

Very interesting to note that these relations for the critical mass and radius of the cluster compare well with the mass and radius
of the universe quite naturally accounting for the Eddington-Dirac Large Number relations. The effective temperature of the total radiation produced by the cluster (assuming thermalisation has taken place via grains, etc.) would be given by:
$T_{\text {eff }}=\left(L_{T} / 4 \pi \sigma_{S B} R_{m}^{2}\right)^{1 / 4} \quad$, where
$\sigma_{S B}=\pi^{2} K_{B}{ }^{4} / 45 \hbar^{3} C^{2}$ is the stefan Boltzmann constant. Using the given expressions for $L_{T_{3}}$ and $R_{1 / 4}$ gives for $T_{\text {eff }}$,

$$
\begin{aligned}
& \text { pressions for } L_{T^{\prime}} \text { and } R_{m} \text { gives for } T_{\text {eff }}, \\
& T_{e f f}=\left(\frac{G m_{p}^{2} \hbar^{3}}{4 \pi^{3}}\right)^{1 / 4^{m}}\left(\frac{m_{e}}{K_{B} e^{2}}\right) c^{11 / 4} \approx 10^{\circ} \mathrm{K} \text { and }
\end{aligned}
$$

as baryon number is conserved we can estimate the maximal entropy per baryon:

$$
S_{\max }=4 a T^{3} / 3 n K_{B}=\left(\frac{e^{2}}{m_{e} c^{2}}\right)\left(\frac{1}{\left(L_{p} \gamma_{p}\right.}\right)^{1 / 2} \text {, where }
$$

$L_{p}=\left(\pi G / C^{3}\right)^{1 / 2}$ (the Planck length) and $\gamma_{p}=\pi_{1} / m_{p} c$ Substituting values give $S_{\text {max }} \approx 10^{9}$ photons/baryon $\approx N_{1}{ }^{1 / 4}$, comparing well with what is observed. Rees has obtained a somewhat similar relation for the entropy per baryon i.e.

$$
S \sim\left(e^{2} / G m_{p}^{2}\right)^{1 / 4}\left(m_{p} / m_{e}\right)\left(\frac{e^{2}}{\hbar c}\right)
$$

by considering the characteristic nuclear burning time-scale (so called Salpeter time ($t \sim \mathrm{C}_{\mathrm{T}} / 4 \mathrm{KG} \mathrm{m}_{\mathrm{p}}$) for radration dominated objects.

The angular momentum for such a super cluster following the earlier approach for stars and galaxies, is shown to be $5 \approx N_{1}{ }^{3} \pi \approx$ $10^{120_{n}}$, corresponding to that for the whole universe and the Blackett relation gives the magnetic field (intergalactic) as 10^{-7} gauss.
III. A UNIFICATION OF THE PARAMETERS OF ELEMENTARY PARTICLES AND COSMOLOGY
In his well known book Gravitation and Cosmology, Weinberg has drawn attention to a curious empirical relation connecting the mass of a typical elementary particle to cosmological parameters (Eq.16.4.2 of Weinberg):
$m_{\pi}=\left(\frac{\hbar^{2} H_{0}}{G C}\right)^{1 / 3} ; m_{\pi}$ is the pion mass and $H_{0}=$ Hubble's constant. This relation can be understood in the sense of an operational requirement that the gqavitational self energy ($\mathrm{Gm} \frac{3}{c} / \hbar$) of a particle of spread $h / m c$ (So: $\frac{\mathrm{Gm}^{2}}{r} \simeq \frac{\mathrm{Gm}^{3} \mathrm{c}}{\hbar}$) be at least measurable over a Hubble time $\left(1 / H_{0}\right)$. The time-energy uncertainty principle then gives the above relation. This relation also arises naturally as a cosmological constraint on the upper limiting temperature of evaporating black holes giving rise to a characteristic or fundamental length, given by:
$1_{0}=\left(\frac{3 G \hbar}{32 \pi C^{2} H_{0}}\right)^{1 / 3}=\frac{e^{2}}{2 m_{e} c^{2}}=\frac{\pi}{m_{\pi} C}$,
$\left(1 / H_{0}=10^{18} \sec s\right)$, the 1miting temperature being $T_{\max }=\frac{m_{\mathrm{P}} \mathrm{c}^{2}}{K_{B}} \sim 2 \times 10^{12} \mathrm{~K}$, interestingly the same as the Hagedorn temperature which aricos in several bootstrap models of elementary particles. Stellar mas, black holes would have a Hawking temperature of $\sim 10^{-7}$ aK and so the ratio of this temperature to the Hagedorn temperature is again $N_{1}^{1 / 2} \sim 10^{19}$. The question arises as to whether from microphysical considerations involving the fundamental interactions of elementary particles we can arrive at the gross parameters characterising the universe. We mention below two ways in which this might be done. As gravity is a very long range force, the mediating quanta (the gravitons) must have a vanishingly small rest mass $\left(m_{g} \rightarrow 0\right)$ (corresponding to the smallest possible rest mass). Now a mass m in general relativity cannot be localised in space to a distance smaller than $G m / \mathrm{c}^{2}$ and thus with the smallest possible m, f.e. m_{g} we would obtain the smallest possible distance or length scale in Nature, i.e. $\mathrm{Gm}_{\mathrm{g}} / \mathrm{c}^{2}$. On the contrary, in quantum mechanics a particle or system of mass M cannot be localised over a distance smaller than $6 / M c$ in contrast to classical physics where a point particle can be identified with a vanishingly small mass (localisation proportional to m in $G \mathrm{~m} / \mathrm{c}^{2}$) and localisation is inversely proportional
to mass in quantum physics. The smallest possible length in the quantum picture corresponding to the largest possible mass whcih we assume as the mass of the universe M_{U} would then be $\pi / M_{Y} C$. Now if we insist for consistency that these two smallest length scales (defined in different ways) be the same we would have:

$$
\begin{align*}
& G m_{g} / c^{2}=\pi / M_{U} C \text {, or } G m_{g} M_{U}=\hbar c \quad \text { or } \\
& m_{g} M_{U}=m_{p l}{ }^{2}, \text { where } m_{p l}{ }^{2}=(\hbar c / G) \tag{2}
\end{align*}
$$

To get an estimate for m_{g}, we note that any two nucleons (in the universe) of mass m_{p} while they interact gravitationally by exchanging quanta, their mass would fluctuate by an amount: Δ on $=m_{p} / \sqrt{N}$, where N is the total number of nucleons in the universe and the fluctuation Δm could be identified with m_{g}, the mass of the mediating particles exchanged. Thus $m_{g}=m_{p} / \sqrt{N}$ and equation(2) then gives (noting that $M_{U}=N m_{p}$):

$$
\begin{equation*}
\sqrt{N} m_{p}^{2}=\pi c / G \text { or } N=\left(\hbar c / G m_{p}^{2}\right)^{2}=N_{1}^{2} \tag{3}
\end{equation*}
$$

thereby explaining apriorithe colncidence noted earlier; a deduction from microphysics. Considering that the proton and electron are the only stable conserved particles one can construct three and only three possible types of gravitational charges which would in the dimensionless form be:

$$
\mathrm{Gm}_{\mathrm{e}}^{2} / \hbar \mathrm{c}, \mathrm{Gm}_{\mathrm{p}}{ }^{2} / \pi \mathrm{c} \text { and } \mathrm{Gm}_{\mathrm{p}} \mathrm{~m}_{\mathrm{e}} / \hbar \mathrm{c}
$$

and these would dominate the long range interactions between all these particles in the universe. If N be the total number of particles one can write the local fluctuations in these couplings as:

$$
\begin{aligned}
& \sqrt{N-G m_{e}}{ }^{2} / \pi c, \sqrt{N \cdot G m_{p}}{ }^{2} / \hbar c \text { and } \sqrt{N \cdot G m_{p} m_{e} / \hbar c .} \\
& \text { If } N=10^{79} \text {, we get the following intriguing relations }
\end{aligned}
$$ for the three possible dimensionless constants:

$\sqrt{N \cdot G m_{e}}{ }^{2} \mu_{c} \approx 10^{-5}$ ideptified $\left(\frac{G_{F}}{\hbar c}\right)\left(\frac{\Pi_{p} c}{\hbar}\right)^{2}=\frac{g_{W}{ }^{2}}{\pi c}$

$$
\sqrt{N} \cdot \operatorname{Gm}_{\mathrm{p}} \mathrm{~m}_{\mathrm{e}} / \hbar \mathrm{hc} \approx 10^{-2} \quad \begin{gathered}
\text { 1dentıfy } \\
\text { with }
\end{gathered} \mathrm{e}^{2 / \hbar \mathrm{cc}} \begin{aligned}
& \text { (only protons interact } \\
& \text { strongly) electromagnetic } \\
& \text { coupling constant }
\end{aligned}
$$

It is to be noted that strengths of strong and weak interactions are in the ratio $\left(m_{p} / m_{e}\right)^{2} \sim 10^{6}$ and strength of strong and electromagnetic interactions in the ratio $\left(m_{p} / m_{e}\right) \sim 10^{3}$. So apart from gravitation, there are three possible types of gravitational charges and eqs (4) give their values in remarkable agreement with those observed. In Sivaram 1982(a), a formula was obtained for the gravitation mass m_{g} from the gravitational charge $g_{g}{ }^{2}=G m_{p} m_{e}$ as $m_{g}=$ $g_{g}^{2} / l_{o} c^{2} ; \quad$ where $l_{0} l_{0}$ is the fundamental length in equation (1) (also using $g_{s}{ }^{2} / m_{p} c^{2}=e^{2} / m^{\prime} c^{2} ; g_{s}$ is the strong interaction charge given in eq. (4)) thereby giving

$$
\begin{equation*}
m_{g}=\frac{G m_{p} m_{e} m^{m} \pi}{\hbar c} \tag{5}
\end{equation*}
$$

which
gives from the uncertainty principle the maximal range associated with such fluctuations of energy due to the gravitational interaction as (this is to be identified with the Hubble radius of the universe):

$$
\begin{equation*}
R_{H}=\frac{\pi^{2}}{G m_{p} m^{m} e^{\pi} \pi} \tag{6}
\end{equation*}
$$

One can use the following relations (eq.7) seen to arise from the unification of weak, electromagnetic and strong interactions

$$
\begin{align*}
& e^{2} / 2 m_{p} c^{2}=\left(G_{F} / \hbar c\right)^{1 / 2} \\
& g_{s}^{2} / 2 m_{p} c^{2}=e^{2} / 2 m_{e} e^{2}=\hbar / m \pi^{c} \tag{7}
\end{align*}
$$

to eliminate the masses m_{p}, m_{e} and m_{π} from eq.(6) to give

$$
\begin{aligned}
& =\frac{g_{w}{ }^{2}}{\text { Kc }}=\begin{array}{l}
\text { dimensionless weak interaction decay coupling } \\
\text { constant }
\end{array} \\
& \text { (} \mathrm{G}_{\mathrm{F}}=\text { universal Fermi constant }=1.5 \times 10^{-49} \text { ergs } \mathrm{cm}^{3} \text {) } \\
& \sqrt{N} . \mathrm{Gm}_{\mathrm{p}}{ }^{2} / \hbar \mathrm{fc} \approx 15 \quad \begin{array}{c}
\text { identif } \mathrm{y} \\
\text { with }
\end{array} \quad \frac{\mathrm{g}_{\mathrm{s}}{ }^{2}}{\hbar c}=\begin{array}{c}
\text { strong interaction } \\
\text { coupling constant }
\end{array}
\end{aligned}
$$

$$
\begin{equation*}
R_{H}=\frac{g^{4}}{G e^{8}}\left(\frac{\mathrm{C}^{7} \mathrm{GF}^{3}}{\hbar}\right)^{1 / 2} \simeq 10^{28} \mathrm{~cm} \tag{8}
\end{equation*}
$$

and the closure mass $M=C^{2} R_{H} / G$ (from general relativity) gives for the closure density:

$$
\begin{equation*}
P_{H}=\frac{3 G e^{16 \sigma_{H}}}{4 \pi c^{5} g_{G_{F}} 3^{3}} \times 10^{-29} \mathrm{~g} / \mathrm{cc} \tag{9}
\end{equation*}
$$

Eqs.(8) and (9) express cosmological parameters, solely in terms of the coupling constants of the four fundamental interactions. (truly in the Eddington spirit). Also substituting for m_{g} in eq.(2) from the relation given in eq.(5), we get the elegant relation:

$$
\begin{equation*}
G m_{p} m_{e} m_{\pi} m_{u}=m_{p l}{ }^{2} \text { hc } \tag{10}
\end{equation*}
$$

or $\quad m_{p} m_{e} m_{\pi} m_{U}=m_{p l}{ }^{4}=(\pi c / G)^{2}$
Writing m_{J} as Nm_{p} we have

$$
\begin{equation*}
N=\frac{m_{p 1}^{4}}{m_{p}^{2} m_{\pi} m_{e}} \tag{11}
\end{equation*}
$$

and further from the equality: $e^{2} / 2 m e^{c^{2}}=\hbar / m_{\pi} c$ (cf.eq.(1) and eq.(7)):

$$
\begin{equation*}
N=\frac{\alpha}{2}\left|\frac{m_{p l} l^{2-}}{m_{p} m_{e}}\right|^{2} \tag{12}
\end{equation*}
$$

relating the electromagnetic fine structure constant to the total number of particles in the universe through the proton, electron and Planck masses. Again the cosmological Robertson-Walker models, the positionand momentum are not quite independent of each other but connected by Hubble's law $r=(R / C) V$ and if V fluctuates by ΔV, the distance also fluctuates by $\Delta r=(R / C) \Delta V$ and the kinetic energy of a particle fluctuates by $1 / 2 \mathrm{~m}\langle\Delta V\rangle^{2} \sim \mathrm{mc}^{2} / V N$

$$
m \Delta V \Delta r=m(\Delta V)^{2} R / C \sim 2 m C R / V N=n h
$$

(for consistency with the uncertainty principle) h is then determined
then determined by R and N and is $\simeq 10^{-2 /} \mathrm{erg} \sec$.
What can all these relations tell us about the variation of the fundamental constants? In the original Dirac cosmology, in order to preserve the equality of the ratios of $e^{2} / G_{m} m^{m} e$ to Hubble age/ atomic time, it was suggested that G vary as $\left.\bar{t}^{-1}\left({ }^{2}\right) t=e p o c h\right)$ and the total number of particles vary as t^{2}. In all the above relations, we see tha the coupling constants of the other fundamental interactions always occur in the form of the product \sqrt{N}. G, which means that they vary as t°, 1.e. are constant with respect to epoch. Even if G does not vary with time (as some very recent experiments based on radar time delay from the viking probes on Mars seem to suggest: (see for eg. Hellings, et al. PRL 51, 1609 1983) and N is strictly conserved (which is reasonable) the product $\sqrt{N} G$ is constant with epoch. This would imply that the coupling constants of the strong, weak and electromagnetic interactions are constant in time (cf. eqs.(12), (4)). (In eqs. (8) and (9) R_{H} is to be interpreted as the maximal value of the closed universe radius and therefore a constant). The tightest limits claimed for the constancy of the weak(w), strong(s) and electromagnetic (E) couplings are based upon the abundance ratio of the Samarium isotopes Sm^{149} and Sm^{148} from the Oklo Uranium Mine, the ratio of these isotopes is ~ 0.02 as compared to the natural ratio ~ 0.9 the depletion being due to bombardment from thermal neutrons over the several millions of years of the running of the natural 'reactor'. The capture cross-section for thermal neutrons on Sm^{149} is dominated by a strong capture resonance and the $0 k 10$ samples $1 m p l y$ that it has not shifted by more than 0.02 eV over the past 2×10^{9} years. As the position of this resonance sensitively determines relative binding energies of the different $S m$ isotopes with respect to W, S and E interactions, this would imply time variations constrained by $E / E \leqslant 10^{-17} \mathrm{yr}^{-1}$, $W / W \leqslant 10^{-12} \mathrm{yr}^{-1}$ and $S / S \leqslant 10^{-19} \mathrm{yr}^{-1}$.

ADDITIONAL NOT ${ }_{L 3}$
I. Some other large number coincidences are:
(i) Entropy \quad Of a solar mass black hole $\simeq 10^{77} \mathrm{~K}_{\mathrm{B}} \simeq \mathrm{N}_{1}{ }^{2} \mathrm{~K}_{\mathrm{B}}=10^{19}$
(ii) Entropy of a black hole of Universe Mass $\simeq 10^{120} K_{B} \simeq N_{3}{ }^{3} K_{B}$ (iii) Entropy of a galactic mass black hole $\simeq 10^{100} \mathrm{~K}_{B} \simeq \mathrm{~N}_{1}{ }^{5 / 2} \mathrm{~K}_{B}$ (iv) PROTON decay time predicted by GUTS (10^{38} secs) to Planck time $\left(10^{-42}\right.$ s) RATIO is $\simeq 10^{80}\left(\mathrm{~N}_{1}{ }^{2}.\right)$
(v) Maximal decay time of proton (by quantum gravity tunneling) to Planck time RATIO is $\simeq 10^{100}$
(vi) Observational limit on cosmological constant $\Lambda \simeq 10^{-56} \mathrm{~cm}^{-2}$: Λ / P lance curvature $=10^{120}=N_{1}{ }^{3}$.
(vil) Nuclear density/Mean density of interstellar space $\simeq 10^{38} \simeq N_{1}$ II The Googol (i.e. $10^{100} \sim_{N_{1}}^{5 / 2}$) in Astrophysics.
It was noticed that several of the large numbers (especially those concerning galaxies) involved the googol 10^{100}, ie. angular momentum (typical galaxy) $=10^{109} \mathrm{~K}$, entropy of galactic blackhole $=$ googol K_{B} etc. An interesting combination giving the googol 1 s :

$$
\frac{1}{16}\left(\frac{3}{4 \pi}\right)^{1 / 3}\left(\frac{g^{4} e^{2}}{m_{e}{ }^{2} m_{p}}\right)\left(\frac{G_{F}^{3} c^{2}}{H_{0}{ }^{2}{ }^{1}{ }^{2}{ }_{\hbar}^{16}}\right)^{1 / 6} \simeq 900901\left(10^{100}\right)
$$

III Eq.(1) implies for a (the electromagnetic fine structure):

$$
\alpha=\left(\frac{3 m^{3} \mathrm{Gc}}{4 \pi \pi^{2} H_{0}}\right)^{1 / 3}
$$

IV In the true Eddington spirit, the mass given by: (Sivaram, Physics Today 34, 108 (1981)

$$
\begin{aligned}
& M=\frac{\hbar^{2}}{m_{e}} \xlongequal{F_{S G}} \quad \simeq \text { One gram. (a unified support } \\
& \ell_{G_{S}}=g_{S}{ }^{2} / \hbar c=14 \text {) for the metric mass!) }
\end{aligned}
$$

