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The P ,T-odd interaction constant, WS, for the ground state of YbF and BaF molecules are calculated using
the second-order many-body perturbation theory �MBPT� via Z-vector technique. The interaction constant WS

reported here agrees favorably well with other correlated calculations. We also address the convergence be-
havior of WS with respect to the number of active orbitals used in the perturbative calculations.
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I. INTRODUCTION

Heavy atoms and heavy-polar diatomic molecules are
well understood to be the potential candidates for the experi-
mental search of permanent electric dipole moments �EDMs�
arising from the violations of space inversion symmetry �P�
and time reversal invariance �T�. At the level of presently
accessible experimental sensitivity, the search for a nonzero
electron EDM, arising particularly due to the nonvanishing
P- and T-violating effects in these systems, would indicate
the presence of the so-called “new physics” beyond the stan-
dard model �SM� of elementary particle physics �1�, which is
certainly of fundamental importance. Though there are well-
known drawbacks and unresolved problems of the SM, ex-
perimental data available are not good enough to be in direct
contradiction with this theory. It is also realized that some
popular extensions of the SM, which explain some of its
shortcomings are yet to be confirmed experimentally. For
more details, we refer the reader to the original Refs. �2,3�.

Calculations of the expectation values of suitable P- and
T-violating operators and combining them with measured
data can provide the P ,T-odd coupling constants in mol-
ecules. These P- and T-violating operators are highly domi-
nant around the nuclear region, which cannot be measured
and their theoretical study is a nontrivial task. During the last
several years the significance as well as requirement of ab
initio calculation of electronic structure providing a high
level of reliability and accuracy in accounting for both rela-
tivistic and correlation effects associated with these proper-
ties has gained in importance. In this article, we consider one
of the P ,T-odd interaction constants WS which is scalar-
pseudoscalar �S-PS� in nature. The knowledge of WS is nec-
essary to link the experimentally determined P ,T-odd fre-
quency shift with the electron-nucleus �S-PS� coupling
constant ks, which can arise from the mixing of scalar and
pseudoscalar particles in multi-Higgs-boson models.

The P ,T-odd interaction constant WS of YbF was first
computed by Titov et al. �4� at the restricted active space
�RAS� self-consistent field �SCF� level using generalized ef-
fective core potential �GRECP� method. Assuming that the
valence-valence electron correlation effect is negligible, Par-
pia �5� estimated WS from the all-electron unrestricted Dirac-

Fock �UDF� method in 1998. The first ab initio many-body
perturbation calculation of WS was due to Quiney et al. �6�
However, they consider only the core-polarization �CP�
terms in their perturbative calculations of WS. The first cal-
culation of the P ,T-odd interaction constant WS for the BaF
molecule was carried out by Kozlov et al. �7� at the SCF and
RASSCF level using the GRECP method. In early 2007, we
have also computed the P ,T-odd interaction constant WS for
YbF and BaF molecules using the restricted active space
�RAS� configuration interaction �CI� method �8�.

In this paper, we report P ,T-odd interaction constant WS
for the ground �2�1/2� state of YbF and BaF molecules esti-
mated from the second-order many-body perturbation theory
�MBPT� with all-electron DF orbitals. Since the second-
order MBPT calculation includes all the terms correct up to
second order, we believe that our predicted WS for YbF and
BaF should be quite reasonable at this level of approxima-
tion. Studies have shown �9� that the second-order MBPT is
capable of providing reasonable estimate of the P ,T-odd in-
teraction constant Wd for these systems.

The organization of the paper is as follows. Section II
briefly reviews the Z-vector method �10–12� which has been
applied here to compute the P ,T-odd constant Wd. The cal-
culated results are presented and compared with other meth-
ods in the subsequent section.

II. METHODOLOGY

The calculation of molecular properties can be regarded
as a by product of the molecular electronic wave function
calculation. Once the molecular electronic wave function �
is known, the properties of interest can be computed from the
expectation value

�O� = ���H���� , �2.1�

where H� is an appropriate operator for the property of in-
terest. For one-electron properties, Eq. �2.1� reduces to the
contraction of a density matrix with property integrals. The
property values can also be computed using perturbation
theory. In this case, the property associated with H� is given
by
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�O� = �dE/d���=0, �2.2�

where

E��� = ���H0 + �H���� , �2.3�

in which H0 is the unperturbed Hamiltonian. Differentiating
Eq. �2.3�, with respect to �, we obtain

�dE/d���=0 = ���H���� + �	 d�

d�
�H0��
�

�=0

+ �	��H0�
d�

d�

�

�=0
, �2.4�

which reduces to Eq. �2.1� when � is an exact eigenfunction
of H0, i.e., when d� /d�=0. Under this circumstances the
wave function is said to obey Hellmann-Feynmann theorem
�13� for H�.

The simplest approach to compute the property is the fi-
nite difference approach �14�, where �dE /d���=0 is estimated
by finite differences, i.e.,

�dE

d�
�

�=0
=

E��̄� − E�0�

�̄
�2.5�

for small �̄. However, this approach is neither convenient nor
simple for general application. The alternative to Eq. �2.5� is
the “coupled perturb” approach where the non-Hellmann-
Feynmann terms are computed explicitly via

�dE

d�
�

�=0
= � �E

��
�

�=0
+ �

k
� �E

��k
�

�k=�0

� �d�k

d�
�

�=0
,

�2.6�

where ��0 is the set of parameters in the optimization of
unperturbed wave function �. It immediately follows from
the above equation that in order to compute the non-
Hellmann-Feynmann terms in Eq. �2.4�, we have to evaluate
�E /��k and d�k /d�. In the actual calculation, this is accom-
plished by the Z-vector method �10–12�.

Since the basic formalism of the Z-vector method is avail-
able elsewhere �10,11�, we briefly review this scheme. For
convenience, we restrict our discussion on the evaluation of
analytic energy derivative involving the electric field pertur-
bation for the CI wave function. Let us consider the follow-
ing first-order perturbed Hamiltonian operator H;

H = H0 + �aHa� + � fHf�, �2.7�

where H0 is the unperturbed Hamiltonian and Ha� is the first-
order change in the Hamiltonian due to nuclear perturbation,
and Hf� is the first-order change due to electric field. The
parameters �a and � f in Eq. �2.7� are the nuclear coordinate
and electric field perturbations, respectively. Since the
atomic orbital basis set depends only on the nuclear coordi-
nate, Ha� affects the one-electron, two-electron, and overlap
integrals. On the other hand, Hf� only affects the one-electron
integrals. The electric dipole moment is defined by

� f = −
�Etotal

�F
= −

�Enuc

�F
−

�Eelec

�F
= � f

nuc + � f
elec, �2.8�

where F stands for the electric field along the f axis. Now,
the first derivative of the electronic energy for the CI wave
function with respect to the electric field perturbation can be
written as �11�

�Eelec

�F
= − �

ij

M

Qijhij
f − 2�

ij

M

Uij
f Xij , �2.9�

where Q is the one-electron density matrix �15� and hij
f is the

dipole moment matrix. The Lagrangian matrix for the CI
wave function X is given by

X = �
ij

M

Qijhij + �
ijkl

M

Gijkl�ij�kl� �2.10�

in which hij and �ij �kl� are the one- and two-electron matrix
elements and G is the two-electron density matrix �15�. The
Uij

f matrices, which are related to the first derivative of mo-
lecular orbital �M� coefficients with respect to the electric
field are obtained by solving the coupled perturbed Hartree-
Fock �CPHF� equations in the following matrix form:

AU f = B f . �2.11�

For a closed-shell SCF wave function matrices A and B can
be written as

Aij,kl = �ij�kl�	 j − 	i� − �4�ij�kl� − �ik�jl� − �il�jk��
�2.12�

and

Bij = hij
f , �2.13�

respectively, where 	’s are single particle orbital energies.
The one- and two-electron integrals appearing in Eqs. �2.12�
and �2.13� are defined in terms molecular orbitals as

hij =� 

i
*�1�h�1�
 j�1�d�1, �2.14�

�ij�kl� =� � 

i
*�1�


j
*�1�

1

r12

k�2�
l�2�d�1d�2.

�2.15�

Now the second term of Eq. �2.9� may be written as �11�

2�
ij

M

Uij
f Xij = 2XTU f , �2.16�

where XT is the transpose of X matrix. Combining Eqs.
�2.11� and �2.16�, the second term of Eq. �2.9� can be written
as

2�
ij

M

Uij
f Xij = 2XTA−1B f = 2ZTB f , �2.17�

where the Z vector in this equation is defined by
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ZT = XTA−1, �2.18�

which in turn may be written as

ATZ = X . �2.19�

Once Z is known, the corrections due to first-order changes
of the M coefficients may be evaluated as

2�
ij

M

Uij
f Xij = 2�

ij

M

Bij
f Zij . �2.20�

The advantage of the Z vector is now obvious. In Eq. �2.11�
the simultaneous equations were to be solved for three de-
grees �x, y, and z� of freedom, while in Eq. �2.19� they are
solved only for one degree of freedom. It is worth noting that
the Z-vector method, in principle, is applicable whenever
equations of the form �2.19� and �2.20� are valid.

III. RESULTS AND DISCUSSIONS

The expression for the P ,T-odd interaction constant WS is
given in many articles �4–6,8�,

WS =
2

ks
�2�1/2�Hs�

2�1/2� , �3.1�

where ks is the electron-nucleus S-PS coupling constant. The
interaction Hamiltonian Hs is defined as

Hs = i
GF

�2
Zks�

e

�ee
5�N�re� , �3.2�

where � and 5 are the four-component Dirac matrices and
�N�re� is the nuclear charge density normalized to unity. GF
is the Fermi constant and ks is a dimensionless S-PS interac-
tion constant, which is defined as Zks= �Zks,p+Nks,n�, where
ks,p and ks,n are electron-proton and electron-neutron cou-
pling constants, respectively. The ground state wave func-
tions �2�1/2� for YbF and BaF molecules are obtained using
the second-order perturbation theory.

A. YbF molecule

The P ,T-odd interaction constant WS for the ground state
of YbF is calculated using the second-order MBPT with all-
electron Dirac-Fock orbitals. The basis set and geometry em-
ployed in these calculations can be found in Ref. �16�. The
result of WS estimated from the second-order MBPT is com-
pared with other theoretical calculations and with our earlier
RASCI calculation �4–6,8,17� in Table I. It can be seen from
Table I that our DF estimate is in accord with those reported
by Titov et al. �4� and UDF calculation of Parpia �5�, but
differs substantially from Quiney et al.’s value. This discrep-
ancy arises because Quiney and co-workers consider only a
single combination of symmetry type in their calculations.

We also notice that the correlation contribution to WS re-
ported by Quiney et al. differs from ours as well from Pari-
pa’s UDF estimate. According to Quiney et al., the correla-
tion contribution to WS is �90%, whereas the corresponding
UDF estimate of Parpia is �27%. The present calculation,
on the other hand, indicates that the correlation contribution

to WS is �8.5%. It is worth mentioning that our perturbative
calculation of WS is accomplished via the Z-vector method
which allows one to include all the terms correct upto second
order in an efficient way.

There are 39 doubly and one singly occupied orbitals in
YbF of which the 25th occupied orbital of YbF corresponds
to the 5s occupied spin orbitals of Yb. As the contribution of
the 5s, 5p, and 4f orbitals of Yb to WS is quite significant
�4,17,18�, these orbitals are kept active in perturbative treat-
ment. The occupied orbitals above the 25th are also kept
active from energy consideration. �Note that the 4f orbitals
of Yb and the 2p orbitals of F in YbF are energetically quite
close �see Table 12 of Ref. �5��.� Therefore, we have consid-
ered 31 active electrons and 96 active orbitals in this pertur-
bative calculation to analyze the convergence of WS. The
present calculation clearly demonstrates that our second-
order MBPT estimate of WS converges smoothly and quite
faster, which can be seen from Fig. 1. However, our earlier
RASCI calculations was exhibiting a slight fluctuation of
around �2% in the result of WS with respect to the variation
in the size of the active space and orbitals. In fact, the mag-
nitude of WS for YbF was reaching a maximum value of
41.2 kHz for active space containing 76 active orbitals and
with a further increase of active virtual orbitals, the magni-
tude of WS was decreasing by around �3.5% in our previous
RASCI calculations �8�. However, this kind of oscillating
behavior is not observed in the present calculation based on
second-order MBPT, but the value of WS is roughly �10%
less in magnitude than the RASCI result.

B. BaF molecule

For the ground state of the BaF molecule also, the
P ,T-odd constant WS is calculated using the second-order
MBPT with all-electron Dirac-Fock orbitals at the experi-
mental geometry Re=2.16 Å �19�. Here also we have used
the uncontracted Gaussian basis set and the details can be
found in Ref. �20�. Similarly, the active space employed for
the BaF molecule in this perturbative calculation of WS is
composed of 17 active electrons and 96 active orbitals to
analyze the convergence.

TABLE I. P, T-odd interaction constant WS for the ground 2�1/2
state of YbF molecule.

Methods WS �kHz�

Semiempirical �17� −43.0

CRECP and SCF �4� −33.0

GRECP and RASSCF �4� −33.0

DHF �6� −22.0

DHF+CP �6� −42.0

UDF �unpaired electron� �5� −34.6

UDF �all electrons� �5� −44.0

DF �8� −34.2

RASCI �8� −41.2

MBPT �this work� −37.1
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The P ,T-odd interaction constant WS for BaF estimated
from the second-order MBPT is compared with other calcu-
lations �7,8,21� in Table II. In the case of the BaF molecule
also, we observed the similar trend as in the case of YbF
molecule, i.e., the estimated result of WS using MBPT con-
verges smoothly and is quite stable with respect to the varia-
tion of the size of the active space, which was showing slight
fluctuation in our previous calculation using RASCI method
�8�, with the variation of WS was roughly �1.2%. Further-
more, we analyzed the result of WS with the inclusion of 35
electrons in the active space and found that the variation in
the result of WS is almost negligible in the present calcula-
tion. Therefore, we believe that the result of WS estimated
using second-order MBPT is quite stable as compared to our
earlier RASCI calculations �8�, with respect to the choice of
active space, and hence, seems to be quite reasonable. How-
ever, in the case of the BaF molecule also, the magnitude of
WS is around �13% less than the RASCI result.

IV. CONCLUSION

A fully relativistic second-order many-body perturbation
theory is employed to compute the P ,T-odd interaction con-
stant WS of the ground state of YbF and BaF, which yield the
results WS=−37.1 kHz and −8.4 kHz for YbF and BaF, re-

spectively, which seems to be quite reasonable, but is little
less in magnitude from earlier RASCI calculations �8�. To
our knowledge, this is the first calculation for the P ,T-odd
constant WS using a second-order MBPT. Since the nondy-
namical electron correlation effect can be incorporated more
effectively through RASCI method, one expects more reli-
able estimate of WS and other P ,T-odd constants from
RASCI approach. However, our previous calculations using
RASCI method shows that this method is quite sensitive to
the choice of active orbitals in the active space, where as
second-order MBPT is quite stable with respect to this
choice. Further, the result of WS obtained using second-order
MBPT converges smoothly and quite faster. Similar smooth
convergence as well as stability was also observed in our
previous calculation of the P-T-odd interaction constant Wd
using the second-order MBPT �9�. Thus, we believe that our
second-order estimate of WS should be quite reliable.

Finally, we emphasize that though the present calculation
agrees favorably with earlier theoretical results, more sophis-
ticated theoretical treatment is still necessary to improve the
accuracy of WS. State-of-the-art many-body methods such as
multireference many-body perturbation theory and/or
coupled cluster method may be used to access higher-order
dynamical and nondynamical electron correlation effects and
accuracy of the present estimate. These schemes are, how-
ever, technically difficult to implement and is beyond the
scope of the present work.
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TABLE II. P, T-odd interaction constant WS for the ground
2�1/2 state of BaF molecule.

Methods WS �kHz�

Semiempiricala �21� −11.0

SCF �7� −6.1

RASSCF �7� −5.9

DF �8� −7.7

RASCI �8� −9.7

MBPT �this work� −8.4

aSemiempirical results estimated from the experimental hyperfine
structure data of Knight et al. �22�

� � � � � � � � � 	 
 � � � � � �  �

�

�

�
�

�
�

�
�

�

� � �� �� �� �� �� �� �� �� �

 � � � �

 � � � �

 � � � �

 � � � �

 � � � �

 � �

 � � � �

 � � � �

FIG. 1. Plot of WS for YbF obtained from MBPT�2� vs the
number of active orbitals.
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