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Magnetic dipole hyperfine interactions in 137Ba¿ and the accuracies of the neutral weak
interaction matrix elements
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The relativistic coupled-cluster method is applied to calculate the magnetic dipole hyperfine constant ‘‘A’’ of
the 6s1/2, 6p1/2, 6p3/2, and 5d3/2 states of singly ionized barium. After the inclusion of two-body correlation
effects into the computation of the hyperfine matrix elements, the accuracy of the obtained values was signifi-
cantly increased compared to earlier computations. Based on these numbers and earlier calculations of the
electric dipole transitions and excitation energies, an estimate for the accuracy of theu@5p6#6s1/2&
→u@5p6#5d3/2& parity-nonconserving electric dipole transition amplitude is carried out. The results suggest that
for the first time, to our knowledge, a precision of better than 1% is feasible for this transition amplitude.
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An experiment to observe parity nonconservation~PNC!
in a single trapped and laser cooled ion was proposed
Fortson about a decade ago@1#. Initial steps towards the
realization of such an experiment on Ba1 have been taken
and the results were reported recently@2#.

Relativistic many-body calculations have been perform
for the parity-nonconserving electric dipole amplitude for t
u@5p6#6s1/2&→u@5p6#5d3/2& transition in 137Ba1 @3,4#.
However, it is not clear how accurate these calculations
as the uncertainties of the matrix elements of the par
nonconserving neutral weak interactions have not been
mated. It is not possible to determine the accuracies of th
matrix elements by comparing directly with experimen
data, but it is indeed possible to estimate them by compa
the results of the relativistic many-body calculations of t
magnetic dipole hyperfine constant~A! with those of experi-
ments. Although the origins of the neutral weak and hyp
fine interactions are fundamentally very different, the mat
elements of both these interactions depend on the overla
single-particle wave functions in or close to the nuclear
gion.

In this Rapid Communication, we present the results
our relativistic coupled-cluster calculations ofA for the
ground and excited states of137Ba1 that are relevant in es
timating the accuracies of the neutral weak interaction ma
elements associated with theu@5p6#6s1/2&→u@5p6#5d3/2&
parity-nonconserving transition in that ion. These quantit
have not been calculated earlier except for the ground s

The relativistic hyperfine Hamiltonian is given by

Hh f s5(
k

M (k)
•T(k), ~1!

whereM (k) andT(k) are spherical tensor operators of rankk,
representing the nuclear and electronic parts, respectivel
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the case of the magnetic dipole hyperfine constantk51, the
magnetic dipole hyperfine interaction constant@5# is defined
as

^Hh f s&5A^I•J&. ~2!

Explicitly given by

A5mNFm I

I G ^JuuT(1)uuJ&

AJ~J11!~2J11!
, ~3!

whereI ,mN ,m I , andJ are the nuclear spin, nuclear magne
moment, nuclear-spin magnetic moment, and total ang
momentum of the electrons, respectively. The expression
T(1) is given by

T(1)5( tq
(1)5(

j
2 ieA8p/3r j

2a jY1q
(0) . ~4!

The single-particle reduced matrix element can be written

^kuutq
(1)uuk8&52^2kuuCq

(1)uuk8&~k1k8!

3E dr
~PkQk81QkPk8!

r 2
.

Pk andQk8 are the large and small radial components of
Dirac-Fock single particle wave functions and

^kuuCq
(1)uuk8&

5~21!( j 11/2)Aj 11/2Aj 811/2S j 1 j 8

1/2 0 21/2D .

~5!
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The Dirac-Coulomb Hamiltonian for an atomic system
given by

H5(
i 51

N

@ca i pi1~b i21!mc21Vnuc#1(
i . j

1

r i j
, ~6!

where atomic units~a.u.! have been used in the above e
pression.

We have not considered the Breit interaction as its con
bution to the properties~particularly for the @5p6#5d3/2
state!, we are interested in the present work, is well bel
1%. This is evident from the work of Derevianko and othe
@6–9#.

We assume the Dirac-Fock state (uF0&) as our reference
state for the closed-shell atomic system (Ba21 in the present
case!. The exact atomic state of a single-valence system
the framework of coupled-cluster theory can be expres
@10# as

uC&5eT$11Sv%uFv&

5eT$11Sv%av
†uF0&, ~7!

whereT- and Sv- are the closed- and open-shell excitati
operators, respectively. In the present work, we have con
ered only single and double excitations; keeping in mind
computational cost involved in coupled-cluster calculat
and the rather small contributions of the higher-order exc
tions. Therefore, we can write

T5T11T2 and Sv5S1v1S2v .

In the second quantized notation they can be represente

T15(
a,p

ap
†aata

p , T25
1

2 (
ab,pq

ap
†aq

†abaatab
pq

and

S1v5 (
pÞv

ap
†avsv

p , S2v5
1

2 (
a,pq

ap
†aq

†aaavsva
pq .

The method employed in the computation of the cluster a
plitudesta

p , tab
pq , sv

p , andsva
pq has been described in some

our group’s earlier papers@11,12#. If ‘‘ O’’ is a general single-
particle physical operator, then the expectation value of
operator in coupled-cluster theory can be expressed as

^O&5
^CvuOuCv&

^CvuCv&

5
^Fvu$11Sv

†%eT†
OeT$11Sv%uFv&

^Fvu$11Sv
†%eT†

eT$11Sv%uFv&
. ~8!

We defineŌ5eT†
OeT and using Wick’s theorem we carr

out the following expression:

Ō5~eT†
OeT! f c1~eT†

OeT!ob1~eT†
OeT! tb1•••
04050
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up to five-body terms. We have used the abbreviation fc,
and tb for fully contracted, one body, and two body, resp
tively. The truncatedŌ used in our calculations contains th
dominant terms given by

Ō5O1T†O1OT1T†OT. ~9!

The contributions from the three-body and higher-ord
terms for the property calculation are negligible and hen
they are not considered in the present work. The largest c
tribution comes from the one-body terms. We have a
taken into account the two-body terms which are most
portant. They possess the following structure:

~eT†
OeT! two-body5OT11T1

†O1OT21T2
†O. ~10!

Finally, all these operators are connected with at most onS-
and/or oneS† operator for the calculation of the expectatio
value of the hyperfine interaction operator. A similar a
proach has been followed to evaluate the normalization c
stant. A detailed account of the computational approach
given by Gopakumaret al. @12#. The single-particle orbitals
used in our calculations are partly numerical and partly a
lytical. Such an approach has been explained in detail
Majumderet al. @16#. The analytical orbitals are Gaussia
type orbitals~GTOs! having the form

Gi ,k~r !5r kie2a i r
2
, ~11!

wherek50,1, . . . fors,p, . . . functions. We have used th
even tempering condition, i.e., differenta i for orbitals of
different symmetries. The large and small components of
GTOs satisfy the kinetic balance condition@17#.

In this calculation we have used 17s, 17p, 15d, and 5f
orbitals out of which sevens, five p, and threed orbitals are
numerical and the rest are analytical. The magnetic dip
hyperfine constantsA for different low-lying states for Ba1

are given in Table I. Table II contains a breakup into con
butions from one-body terms~part I!, two-body terms~part
II !, and one-body terms without core correlations~part III!. It
is evident from Table II that the dominant contribution
electron correlation comes from theOS1 andOS2 with their
adjoints which are shown in Figs. 1 and 2, respectively. I

TABLE I. Hyperfine constant for different states of Ba1.

States Present Geethaa Others Expt.
~MHz! ~MHz! ~MHz! ~MHz!

@5p6#6s1/2 4072.83 4193.02 4208 200b 4018c

@5p6#6p1/2 736.98 783.335 742.04c

@5p6#6p3/2 130.94 134.079 125.9c

@5p6#5d3/2 188.76 198.759 191.2~6! d

aReference@4#.
bReference@13#.
cReference@14#.
dReference@15#.
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TABLE II. Contributions from some of the important terms of the present calculation in MHz.

Terms 6s1/2 6p1/2 6p3/2 5d3/2

~I! Contribution from one-body terms

Ō 2860.75 488.52 72.09 134.53

S1v
† Ō1ŌS1v

650.24 125.63 17.68 9.21

S2v
† Ō1ŌS2v

553.004 112.31 34.32 37.47

S1v
† ŌS1v

36.93 8.09 1.08 0.16

S1v
† ŌS2v1S2v

† ŌS1v
44.63 9.42 2.75 1.01

S2v
† ŌS2v

73.27 7.24 3.63 9.09

Norm. 271.94 29.05 0.18 22.39
~II ! Contribution from two-body terms

S2v
† OT11T1

†OS2v 23.46 20.38 20.052 20.32
S2v

† OT21T2
†OS2v 257.89 25.14 20.87 0.67

S1v
† T2

†OS2v1S2v
† OT2S1v 26.55 20.13 20.027 0.00
~IA ! Important contributions from the one-body part in the individual form

Dirac-Fock 2929.41 492.74 71.84 128.17
S1v

† O1OS1v 663.20 126.53 17.65 8.92
S2v

† O1OS2v 465.91 98.98 28.64 25.23
S1v

† OS1v 93.84 212.24 1.63 20.078
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interesting to note that the former is larger than the latter
6s and 6p1/2 states, but this trend is reversed for the 6p3/2

and 5d3/2 states. This can be explained by probing carefu
the interplay of the hyperfine and the residual electr
electron interaction. To be specific,OS1 involves the hyper-
fine interaction of a valence electron, which is highly sign
cant fors andp1/2 electrons, because these electrons have
overlap with the nuclear region where the hyperfine opera
is active. On the other hand, theOS2 term represents the
hyperfine interaction of a polarized core electron, and h
no preference is given to any specific orbital.

We now turn to the estimation of the error for the neut
weak interaction matrix elements. The parity-nonconserv
electric dipole transition amplitude foru@5p6#6s1/2&
→u@5p6#5d3/2& in Ba1 is given by

v

v

p

v

O

S1v

v

p

v

O

S1v

FIG. 1. OS1v andS1v
† O diagrams.
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A~E1!PNC5 (
IÞ6s1/2

^5d3/2uDuI &^I uHPNCu6s1/2&
E6s1/2

2EI

1 (
IÞ5d3/2

^6s1/2uDuI &^I uHPNCu5d3/2&
E5d3/2

2EI
,

~12!

where I stands for the intermediate states. It has been
cently shown that the largest contribution to the above
pression comes from the intermediate states@5p6#6p1/2
~90%! and @5p6#6p3/2 ~8%! @4#. The accuracies of the elec
tric dipole matrix elements and the excitation energies co
sponding to these intermediate states have been determ
earlier and found to be better than 1%@11,12#. However,
the accuracies of the two involved weak interacti
matrix elements ^@5p6#6p3/2uHPNCu@5p6#5d3/2& and
^@5p6#6p1/2uHPNCu@5p6#6s1/2& cannot be determined b
comparison with the experimental data. Instead, it has b

O

S
2v

v

p
a

v

S2v

v

v
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O

FIG. 2. OS2v andS2v
† O diagrams.
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proposed to estimate the errors with the help of the app
priate magnetic dipole hyperfine constants@18#. The reason
for this is related to the fact that both, the weak interact
and the magnetic dipole hyperfine matrix elements, dep
critically on the behavior of the wave functions in th

TABLE III. Square root of the products of relevant hyperfin
dipole matrix elements in calculation and experiment and their
viation.

Present work Experiment Deviation~in %!

AA6s1/2
A6p1/2

1732.5 1726.7 0.3

AA6p3/2
A5d3/2

157.2 155.2 1.3
r-

02

va

tt

ja
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nuclear region. As a consequence, the errors in the w
interaction matrix elements are estimated from the errors
AA6p3/2

A5d3/2
andAA6s1/2

A6p1/2
, for which experimental val-

ues are available. Table III compares our computed res
for these quantities with the corresponding experimental v
ues. When transferring the accuracies to the weak interac
matrix elements, the results are very encouraging. If we t
into account the different relative weights of the intermedi
states contributing to theA(E1)PNC matrix elements, the
overall estimated error is about 0.4%. It therefore appe
that A(E1)PNC for the transition of experimental interest i
Ba1 can be calculated to an accuracy of better than 1%.

We are grateful to Professor Norval Fortson for use
discussions. This work was carried out at IIA using the E4
Sun Ultra SPARC machine.
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