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A critical analysis of the ground and excited electronic states of transition
metal nitrides using the relativistic effective Hamiltonian method
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Multireference many-body perturbative schemes~IVO–CASCI andHv
3rd), which are applicable to

the direct calculation of excitation energies, ionization potentials, and spectroscopic properties, are
presented and applied to compute the transition energies, ionization potentials, and spectroscopic
constants of TiN and VN. Highly satisfactory results are obtained for the excitation energies, triple
bond dissociation energy, dipole moments, oscillator strengths, and vibrational frequencies. The
ground and excited properties of interest are also computed using Hartree–Fock and two-component
Dirac–Hartree–Fock molecular orbitals to assess the importance of relativistic effects. We also
report the ionization potentials of TiN1 and VN1 which are by-products of this method with ‘‘no
extra’’ computational cost and which have not been studied previously. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1600432#
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I. INTRODUCTION

The study of physical and chemical processes in ato
and molecular systems containing heavy elements is of g
importance both experimentally and theoretically. Asi
from their obvious relevance to understanding the chemi
of compounds containing heavy atoms, these studies can
vide a quantitative estimate of relativistic contributions,
nematic effects, and a probe for physics that departs from
predictions of thestandard model. The twin facts that heavy
atom compounds contain many electrons and that the be
ior of these electrons must be treated relativistically int
duce severe impediments to accurate theoretical treatm
~i.e., to the inclusion of sufficient electron correlation! of
polyatomic systems containing heavy atoms. Rigorous r
tivistic electronic structure methods begin by foregoing
Schrödinger equation in favor of the Dirac equation, resu
ing in the replacement of nonrelativistic orbitals with fo
component relativistic spinors. The concomitant size of
matrices to be manipulated and the number of two-elec
integrals to be evaluated in the four component Dirac eq
tion have forced the introduction of various approxima
method to describe the electronic structure of polyatom
containing heavy atoms by either restricting the number
electrons to be treated explicitly or by converting the relat
istic problem into a combination of a nonrelativistic ma
electron problem, a perturbative treatment of the relativis
corrections, and/or both.

The most widely used approximate relativistic sche
for describing heavy atom systems is theeffective core po-
tential ~ECP! method, where the core electrons are rep
sented by suitable functions and where only the valence e
trons are treated explicitly. Since the core chang

insignificantly with the chemical environment, the ECP
scheme provides quite good results at reduced computation
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cost compared to all-electron calculations. The two wid
used classes of ECP schemes are the pseudopotentia
model potential methods. The pseudopotential method is
rived from the Phillips–Kleinman~PK! equations,1 where
the valence orbitals are replaced by a set of nodeless pse
orbitals. The valence orbitals of the pseudopotential sche
are designed to behave correctly only in the outer regi
Because theab initio model potential~AIMP! method2 de-
scribes the correct behavior for the inner nodal structure
the orbitals and because the relativistic operators act in
near vicinity of the nucleus, the AIMP orbitals emerge
more suitable than the pseudopotential orbitals.

Recently, Motegiet al. have proposed a somewhat le
approximate relativistic scheme~RESC!3 for generating rela-
tivistic spinors. The RESC method proceeds by eliminat
the small component portion of the relativistic Hamiltonia
from the four-component Dirac equation through a suita
transformation. The RESC scheme is variationally stable
avoids the Coulomb singularity. Moreover, the formalis
can be incorporated directly into any nonrelativistic ele
tronic structure method since the implementation of the sp
free RESC Hamiltonian inab initio programs merely re-
quires only minor modification of the one-electron integra
We compute and compare to prior nonrelativistic calcu
tions the transition energies, oscillator strengths, and rele
spectroscopic constants of TiN and VN as obtained fr
separate calculations with nonrelativistic and with RES
molecular orbitals to estimate the magnitudes of the rela
istic corrections. The Ti and V atoms are chosen as sim
test cases because these atoms are not too heavy and, in
lie on the border line where relativistic effects just begin
contribute. In addition, the TiN and VN systems provide
al
application involving the nontrivial problem of describing
the correct dissociation for a triple bond.

5 © 2003 American Institute of Physics
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We employ the highly correlated effective valence sh
Hamiltonian (Hv) method through third order along with ou
recently developed, more approximate IVO–CASCI a
proach to generate the ground and excited potential en
curves and to compare the transition energies and spe
scopic constants with experiment and with other nonrela
istic correlated treatments. Besides providing the first co
lated molecular application of the RESC Hamiltonian, w
present computations for oscillator strengths and for sev
excited and ion states not previously treated. The study of
electronic structure of transition metal atoms and their co
pounds is nontrivial because the ground and the exc
states of these systems are highly open-shell in nature
because a large number of electrons must be correlate
describe the ground and exited electronic states accura
Moreover, the excited state spectrum of these systems
erally contains states of qualitatively different spatial char
ter, such as Rydberg and valence states and ionic and c
lent states, thereby, introducing additional complexity
computations for the electronic states of these systems
mentioned above, transition metal elements in the first se
are border line elements where relativistic effect may
small but non-negligible. They also contain few enough el
trons to enable treatment with correlatedab initio all-
electron methods. Thus, these systems provide a useful
test for the use of relativistic methods to improve the d
scription of their electronic states and their compounds. T
treatment of compounds containing second row transi
metal elements and lanthanides is more complicated bec
of the presence of more electrons and larger relativistic
fects.

The ground state of TiN has2S1 symmetry and consist
of a triple bond and one unpaired electron occupying as
orbital located primarily on Ti. Combining the electron
states of the atoms and a population analysis leads to
suggestion that the adiabatic formation of the TiN grou
state proceeds via

Ti~3F !1N~4S!→TiN~2S1!.

As the Ti atom approaches the nitrogen atom, the atomiF
state of Ti splits into states ofS2, P, D, andF symmetry,
and theS2 state component of the polarized metal ato
combines with the ground state of N to form the TiN (2S1)
ground state. A triple bond is formed from three sing
coupled electron pairs, leaving one of the high-spin N el
trons unpaired. Thus, the three bonding orbitals and the
gly occupied nonbonding orbital of TiN are formed from th
union of five electrons from the high-spin nitrogen ato
ground state and two electrons from the Ti atom with
remaining singlet coupled 4s electron pair. This transforma
tion between the asymptotic atomic states and the molec
ground state is quite nontrivial because the interaction
tween the Ti and N atoms must excite a metal 4s electron to
the metal 4ps orbital and transfer electron density to th
nitrogen 2ps orbital in order to reduce the Pauli repulsio

2

5996 J. Chem. Phys., Vol. 119, No. 12, 22 September 2003
between the Ti 4s and nitrogen 2ps orbitals. The formation
of the triple bond in the VN (3D) ground state from the
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separated V(4F) and N(4S) atoms is similar to that of TiN
except that the additional electron goes into a V(3ds) or-
bital.

Section II briefly reviews the RESC method, some e
sential features of theHv method, and the procedure fo
generating the improved virtual orbitals~IVOs!. Computa-
tional details and results follow in the subsequent section
our knowledge, no prior computations are available for
cillator strengths and for the electronic structures of TiN1

and VN1. Since correlated calculations for the low lying io
states emerge as simple by-products of theHv computations
for the neutral molecule and since TiN1 and VN1 are likely
candidate to exist in stellar atmospheres, we include a
scription of the electronic structure of low lying TiN1 and
VN1 electronic states.

II. THEORY

A. The RESC method

Because the details of the RESC scheme are avail
elsewhere,3 we only outline the essential content of th
method here. The RESC Hamiltonian can be decompo
into spin-free~sf! and spin-dependent~sd! components as

HRESC5HRESC
sf 1HRESC

sd , ~2.1!

where

HRESC
sf 5(

j
Tj1OjQjpj .V~ j !pjQjOj

21

12mcOjQj
1/2V~ j !Qj

1/2Oj
21 , ~2.2!

and

HRESC
sd 5 i(

j
OjQjs.~pjV~ j !3pjQjOj

21 , ~2.3!

in which s represents the 232 Pauli matrix andpj is the
momentum operator. The operatorsOj , Qj , andTj are given
by

Oj5
1

Ej1mc2 F11
pj

2c2

~Ej1mc2!2G1/2

, ~2.4!

Qj5
1

Ej1mc2 , ~2.5!

Tj5Apj
2c21m2c42mc2, ~2.6!

and

Ej5Apj
2c21m2c4. ~2.7!

In the RESC scheme, the Hamiltonian elements are ev
ated in the space spanned by the eigenfunction ofp2 ~square
of the momentum! as suggested by Buenkeret al.4 The
atomic RESC–AIMP Hamiltonian forn valence electron is
written as

HRESC–AIMP5(
i 51

n

h~ i !1(
i ,

1

r i j
, ~2.8!

R. K. Chaudhuri and K. F. Freed
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h~ i !5Ti1OjQjpj .V~ j !pjQjOj
21

12mcOjQj
1/2V~ j !Qj

1/2Oj
211U~ i !1P~ i !. ~2.9!

Here, the first and second terms of Eq.~2.9! are taken from
the HRESC

sf operator. The composite operatorU( i ) is defined
as

U~ i !5VCoul~ i !1Vexch~ i !1
Zcore

r i
, ~2.10!

whereVCoul( i ) and Vexch( i ) represent the Coulomb and e
change interactions between the valence andZcore core elec-
trons. In this formalism, the nodal structures of the valen
orbitals are realized through the projection operatorP( i ),
which is obtained from the core–valence orthogonality c
dition and is expressed as

P~ i !52(
c

core

2ecufc&^fcu, ~2.11!

where fc and ec denote the core orbitals and core orbi
energies, respectively. The derivations and computatio
techniques are provided in more detail by Nakajimaet al.5

B. The Hv method

As in conventional many-body perturbation theory, t
Hv method6 begins with the decomposition of the exa
HamiltonianH into the zeroth order HamiltonianH0 and the
perturbationV,

H5H01V, ~2.12!

where H0 is constructed as the sum of one-electron Fo
operators described below. The full many-electron Hilb
space is then partitioned into an active~also called valence!
space with projectorP and its orthogonal complement wit
projectorQ512P. The active space spans the space of
distinct configuration state functions involving a filled co
and the remaining electrons distributed among the vale
orbitals in all possible manners to ensure what is term
‘‘completeness’’ of the active space. Hence, the orthogo
complementQ space contains all N-electron basis functio
with at least one vacancy in a core orbital and/or at least
electron in an excited orbital. Thus, we classify the orbit
as either ‘‘core,’’ ‘‘valence,’’ or ‘‘excited,’’ where the doubly
filled orbitals in P space are denoted as core, the partia
filled orbitals ofP space are valence, and the orbitals that
unoccupied in all activeP-space functions are the excite
orbitals. With the aid of the projectorsP and Q, the Hv

method transforms the full Schro¨dinger equation,7,8

HC i5EiC i , ~2.13!

into theP-space ‘‘effective valence shell’’ Schro¨dinger equa-
tion,

HvC i
v5EiC i

v , ~2.14!

where the effective operatorHv through third order is given
by

J. Chem. Phys., Vol. 119, No. 12, 22 September 2003
Hv5PHP1 1
2 @Veff

(2)1Veff
(3)1h.c.#, ~2.15!
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in which h.c. designates the Hermitian conjugate of the p
ceding terms in square brackets andE0

P is the zeroth order
energy~see below! of the P-space state. Here, the operato
Veff

(2) andVeff
(3) are defined as

Veff
(2)5PVQ~E0

P2QH0Q!21VP, ~2.16!

Veff
(3)5PVQ@~E0

P2QH0Q!21VQ~E0
P2QH0Q!21

2~E0
P2QH0Q!22P#VP. ~2.17!

Apart from the reference (P) space, the only variability in all
MR–MBPT methods lies in the choice of orbitals, orbit
energies, and the definition of the zeroth order Hamilton
H0 since the perturbation approximation is completely det
mined by these choices. Generally, the zeroth order Ha
tonian is prescribed as a sum of one-electron operators,

H0~ i !5(
c

ufc&ec^fcu1(
v

ufv&

3ev^fvu1(
e

ufe&ee^feu, ~2.18!

in terms of the core (c), valence (v), and excited (e) orbit-
als and their corresponding orbital energies. At this point,
emphasize that unlike traditional MR–MBPT, theHv method
and its first order approximation based on thePHP term,
called the IVO–CASCI method, usemultipleFock operators
to define the valence orbitals.9–11 In this scheme, all the va
lence orbitals and orbital energies are obtained fromV(N21)

potentials and, therefore, are on an equal footing as oppo
to the unbalanced use of a mixture of HF occupied and
tual orbitals for the valence space. Moreover, in this meth
the zeroth order HamiltonianH0 is defined as

H0~ i !5(
c

ufc&ec^fcu1(
v

ufv&

3 ēv^fvu1(
e

ufe&ee^feu, ~2.19!

to improve the perturbative convergence.12–16 The average
valence orbital energyēv is obtained from the original set o
valence orbital energies by the democratic averaging,

ēv5
( i

Nve i

Nv
, ~2.20!

with Nv the number of valence orbitals spanning the co
plete activeP space~CAS!. Prior applications of the IVO–
CASCI method demonstrate that it produces comparable
curacy to CASSCF treatments with the same choice
valence space~of course, using different valence orbitals! but
with considerably reduced computer time since no iterati
are necessary beyond an initial ordinary SCF calculation.17,18

Since the IVOs play a key role in our scheme~men-
tioned above!, we briefly outline their generation. More de
tailed discussion is presented elsewhere.17,18 In the IVO–
CASCI procedure, the HF MOs~both occupied and

5997Transition metal nitrides
unoccupied! are first determined by diagonalizing the refer-
ence state Fock matrix1Flm ,
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TABLE I. IVO–CASCI andH3rd
v vertical excitation energies~in eV! and the ground and excited states dipo

moments~m! and oscillator strengths (f ) of TiN with the @9s10s11s1d4p#1 CAS. In this and all subsequen
tables, the heading HF indicates the use of nonrelativistic orbitals.~The top entry for each state is obtained fro
the TZV basis, and the bottom is from Watcher’s basis.!

Properties State

IVO–CASCI H3rd
v

HF RESC HF RESC Experiment

Energy X 2S1 0.0 0.0 0.0 0.0 0.0
B 2P 1.975 2.039 2.013 2.014 2.013a

2.046 2.107 1.962 1.986
m ~Debye! X 2S1 3.026 3.090 3.534 3.544 3.56b

2.898 2.972 3.521 3.479
B 2P 3.760 3.756 3.760 3.756 4.6b

3.584 3.590 3.590 3.584
f (X→B) 0.250 0.257 0.251 0.255

0.268 0.263 0.250 0.248

Phys., Vol. 119, No. 12, 22 September 2003 R. K. Chaudh
r-
-

e

aReference 24.
1Flm5^f l uh1 (
k51

occ

~2Jk2Kk!ufm&5d lme l , ~2.21!

where l and m designate any~occupied or unoccupied! HF
MOs ande l is the HF orbital energy. The IVOs are dete
mined variationally by minimizing the low lying singly ex
cited Ca→m ~a is the highest occupied MO! state energies
with respect to a new set of MOs$x%. However, to ensure the
orthogonality and applicability of Brillouin’s theorem, th
$x% are expressed in terms of$f% as

xa5(
i 51

occ

aa if i , xm5 (
u51

unocc

cmufu . ~2.22!

bReference 25.
that setting$xa%5$fa% ~i.e., aa i5da i) to
orbitals of the reference SCF configuratio

Reference 27.
cReference 28.

v 2008 to 220.227.207.32. Redistribution subject to AI
Then, the coefficientscmu in Eq. ~2.22! can be determined
directly from the matrix eigenvalue equationF8C5CG,
where

Fvw8 51Fvw1Avw
a , ~2.23!

Avw
a 5^xvu2Ja1Ka6Kauxw&, ~2.24!

and the minus~plus! sign applies forCa→m a triplet~singlet!
state.

III. RESULTS AND DISCUSSIONS

A. TiN
n.
The TiN molecule has C̀v symmetry with RTiN

52.99 Å and with thez axis is defined as lying along TiN

from

TABLE II. Comparison ofH3rd

v vertical excitation energies~in eV! of TiN obtained from@8s3p9s1d4p#7

CAS calculations.~The top entry for each state is obtained from the TZV basis, and the bottom is
Watcher’s basis. Entrees in parentheses are oscillator strengths for transitions form the ground state.!

State

H3rd
v

HF RESC JFHa CBb SMc Experiment

X 2S1 0.000 0.000 0.000 0.000 0.00
0.000 0.000

A 2D 1.234 1.345 0.946 0.793 1.04 0.934d

0.952 1.066
B 2P 1.998~0.027! 2.082~0.030! 2.010 2.010 1.95 2.013e

2.051~0.038! 2.149~0.042!
4D 2.742 2.736 1.850

2.693 2.687
B 2S1 2.832 2.746 2.923f

2.713 2.740
1 4P 2.585 2.629

2.390 2.369
2 2P 2.884~0.0036! 2.840~0.011!

2.665~0.0001! 2.605~0.001!
3 2P 3.054~0.031! 3.052~0.028!

2.850~0.017! 2.743~0.018!
2 2S1 3.098 3.097

3.232 3.123

aReference 26. dReference 29.
b c
Reference 24.

fReference 30.

P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE III. Experimental and computed ground and excited state dipole moment~in Debye! of TiN.

State

IVO–CASCI H3rd
v

HF RESC HF RESC JFHa CBb SMc Experimentd

X 2S1 3.47 3.55 3.64 3.45 3.25 3.05 3.65 3.56
A 2D 4.49 4.44 4.95 4.81 7.84 7.86 6.83
B 2P 4.04 4.07 4.58 4.56 4.43 4.48 4.30 4.63

aReference 26.
bReference 27.
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cReference 28.
dReference 25.
bond. Two sets of basis functions are employed to comp
the excitation energies, ionization potentials and related
lecular properties of TiN. The MOs that are used to comp
the transition energies and molecular properties are obta
by solving the Hartree–Fock and two-component Dira
Hartree–Fock~DHF! equations to estimate the relativist
contribution to the transition energies and related molec
properties, such as the equilibrium bond lengths (Re), disso-
ciation energies (De), etc. The first atomic basis is chosen
(14s,11p,6d)/@10s,8p,3d# and (10s,6p)/@5s,3p# contrac-
tions centered on the Ti and N atoms, respectively. This c
traction scheme yields 66 contracted Gaussian-type orb
~CGTOs! with the total HF and DHF energie
2902.718 765 4778 a.u. and2907.034 141 580 a.u., re
spectively. For the larger Watcher’s basis, we emp
(14s11p6d3 f )/@8s6s4d1 f # contractions19 for Ti and an
aug-cc-pVTZ basis20 for the N atom. The computed HF
and two-component HF energies with this basis~comprised
of 115 CG–TOs! are 2902.731 043 4962 a.u. an
2907.067 296 1501 a.u., respectively. The ground state c
figuration of TiN (X 2S) is @core#22 8s23p49s. Since
ground state of TiN is open-shell with one-electron w
separated from the inner core, we choose the closed-s
positive ion ground state configuration@core#22 8s23p4 as
the vacuum~reference! state for convenience. In accord wit
numerousHv calculations, tests for TiN demonstrate that t
third order description is almost identical to that followin
from the use of the neutral ground state approximation as
reference state.

While the first excited state (2P) of TiN arises from a
* 2
on~HOMO→LUMO!, the S excited state

9s excitation. Since the 8s and 3p orbit-

Reference 27.
cReference 28.
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als are quasidegenerate, we include both 8s and 3p orbitals
in the reference space along with the 9s, 1d, and 4p molecu-
lar orbitals. Thus, theHv reference space consists of sev
electrons and seven valence orbitals~8s,9s,1d,3p, and 4p!.
Clearly, this choice stems from the fact that the treatmen
potential curves for the dissociation of a triply bonded sp
cies naturally calls for the inclusion of the three bonding a
antibonding orbitals in the reference space. A second se
calculations is also performed where 8s and 3p are included
in the core for a quick estimation of the2P state vertical
excitation energy.

Table I reports the 9s→4p* vertical transition energy
and theX 2S1 andB 2P states dipole moment and oscillato
strengths forX→B transition of TiN obtained from the
IVO–CASCI and third orderHv methods using HF and
RESC molecular orbitals.~In Tables I–VI, the column
headed by HF is obtained using nonrelativistic orbitals.! The
IVO–CASCI andHv

3rd calculations for Table I have bee
performed with a seven orbital, one valence electron~9s!
reference space as a prelude to identify in a computation
inexpensive strategy the most appropriate sets of unoccu
valence orbitals for subsequent treatment of nondynam
correlation. While the single valence electron reference sp
IVO–CASCI and Hv

3rd calculations of Table I provide a
highly accurate estimate of theX 2S1→B 2P transition en-
ergy and the ground state dipole moment of TiN, they poo
describe the high-lying2S ~also 2D) excited states and en
ergies because unlike theB 2P state, the2S state is not
solely of 9s→10s parentage.

Table II compares the IVO–CASCI andH3rd vertical
v
excitation energies for TiN with experiment and with other
TABLE IV. Spectroscopic constants for theX 2S1 ground and2D first excited states of TiN.

State
Spectroscopic

constants IVO–CASCI JFHa CBb SMc Experiment

X 2S1 Re ~in a.u.! 3.0746 3.048 3.080 2.963 2.990d

De ~in eV! 4.24 4.19 3.76 4.9e

ve 1045 1024 1010 1139 1039f

A 2D Re ~in a.u.! 3.30 3.13 3.19 3.03
De ~in eV! 3.24 4.05
ve 820 931 1020 990

aReference 26. dReference 24.
b e
Reference 31.

fReference 32.
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TABLE V. H3rd
v vertical excitation energies~in eV! of VN.

State
Dominant

configuration

H3rd
v

HF RESC JFHa Experiment

X 3D 1d9s 0.0 0.0
1 1S 1d2 0.741 0.839 0.657
1 1D 1d9s 0.868 0.877
1 3P 1d4p 0.897 0.923
1 1P 3p9s 1.814 1.772 1.582 1.774
1 3S 9s10s 1.645 1.581
2 1S 9s10s 1.831 1.839
2 1P 1d4p 1.961 1.991 2.11 2.259

Phys., Vol. 119, No. 12, 22 September 2003 R. K. Chaudh
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theoretical calculations. Here, the IVO–CASCI andHv
3rd

transition energies and related properties are computed u
the much larger CAS for describing properly and simul
neously the ground and excited state of interest through
appropriate incorporation of core–core, core–valence,
valence–valence dynamical electron correlation. T
IVO–CASCI/Hv reference space is constructed by allocat
seven valence electrons~8s, 9s, and 3p occupied in the
ground state! into seven valence orbitals~8s, 9s, 1d, 3p, and
4p!. The present calculation shows that the inclusion of
8s and 3p doubly occupied orbitals in the reference spa
more greatly impacts the IVO–CASCI than theHv

3rd transi-
tion energies. For example, the inclusion of the 8s and 3p
doubly occupied orbitals in the reference space shifts
IVO–CASCI and third orderHv X 2S→B 2P transition en-
ergy by 0.538 eV and 0.015 eV for nonrelativistic orbita
~0.436 eV and 0.068 eV for relativistic orbitals!, respectively.
Because theHv

3rd method includes correlation contribution
from all singly and doubly excited configurations with r
spect to any configuration inP space, the five-orbital valenc
spaceHv

3rd treatment includes dynamical correlation cont
butions from the 8s and 3p orbitals. Thus, the difference
between the IVO–CASCI andHv

3rd transition energies fur-
ther suggests that dynamical electron correlation due to
8s and 3p orbitals is more important than is their contrib
tion to nondynamical electron correlation. New calculatio
are provided for excitedP andS states that emerge from th
Hv calculations simultaneously with the lower2S and 2P
states and that have not been considered before. The pr
investigation also demonstrates that the inclusion of 8s and
1p occupied orbitals in the reference space dramatically
ters the oscillator strengths, a feature which is not unus

Reference 26.
experimental nor theoretical oscillato
ailable for this system, the accuracy of o

1 1P 8.826 8.999
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computed oscillator strengths~displayed in Tables I and II!
cannot be assessed apart from prior experience where
oscilator strengths are obtained.17,18,21–23

Table III compares the IVO–CASCI andHv
3rd dipole

moments~m! for the ground and excited states of TiN wit
experiment and with other theoretical estimates. The IV
CASCI and H3rd

v values reported in Table III are obtaine
using the @8s3p9s10s1d4p#7 CAS calculations with
Watcher’s basis set. The present calculation exhibits thX
andB state dipole moments obtained from the nonrelativis
and relativistic orbitals in favorable agreement with expe
ment and other correlated calculations.~Differences, how-
ever, are present for the2D state dipole moment which is no
available from experiment.! The above trends strongly sug
gests that the relativistic effects in TiN are negligible~as
anticipated! and, hence, this system can be studied nonr
tivistically. Though the single reference IVO–CASCI trea
ment provides a fairly accurate estimate of theX 2S
→B 2P transition energy, it poorly describes the correspon
ing dipole moments. The IVO–CASCI dipole moments a
off by 0.53 Debye~0.47 Debye for relativistic orbitals! and
by 0.87 Debye~0.874 Debye for relativistic orbitals! for the
X 2S and B 2P states, respectively. While the inclusion
dynamical electron correlation significantly reduces the e
mated error for theX 2S ~0.026 Debye for HF MOs and
0.016 Debye for RESC MOs!, the computed dipole momen
for the 2P state remains the same. Inclusion of the 8s and
1p occupied orbitals in the reference space significantly
proves the accuracy of theB 2P excited state for both the
IVO–CASCI andHv

3rd calculations. The present work dem
onstrates that electron correlation~dynamical as well as non
dynamical! plays a key role in computing the excited sta
r
ur
dipole moments.

Figure 1 depicts the computed IVO–CASCI potential
TABLE VI. H3rd
v vertical ionization energies~in eV! of TiN and VN.

Term

TiN

Term

VN

HF RESC HF RESC

1 1S 6.168 6.327 12S 9.04 8.99
1 3S 8.508 8.641 12P 9.93 9.82
3P 8.602 8.765 22S 10.14 10.09
2 1S 8.736 8.865 14P 10.35 10.11
22P 10.84 10.59
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energy curves of TiN for the ground (X 2S) and first excited
statesA 2D as a function bond length. The points provide t
computations, while the curves are fits of Morse potential
the data. The computed equilibrium bond length (Re), vibra-
tional frequency (ve), and dissociation energy (De) from
the two potential energy curves are compared with exp
ment and with other theoretical data in Table IV. The IVO
CASCI potential energy curves of TiN are computed w
Watcher’s basis and with 7-valence electron, 7-valence
bital CAS. The ground state of Ti is3F 3d24s2, and, there-
fore, it is unlikely that this configuration can lead to trip
bond formation. Rather, the next lowest excited state5F
3d34s1 can couple to produce the TiN ground state. T
experimental atomic splitting between the3F and5F atomic
states of Ti is 0.809 eV~averaged overmj values!. Since this
splitting is non-negligible, the computed dissociation ene
De should be determined by subtracting the3F –5F experi-
mental atomic splitting from the asymptotic largeR energy.
Our theoretically estimated spectroscopic constants ar
good agreement, except for the equilibrium bond length. T
inaccuracy in the estimated equilibrium bond length, in p
is due to the use of a first order IVO–CASCI approximati
and is consistent with the type of behavior expected
CASCI calculations. A similar overestimation ofRe appears
in our IVO–CASCI calculations for the ground state of t
HF molecule, a deficiency that is rectified by third orderHv

calculations.18 Since our focus here is mostly on vertical e
citation energies and ionization potentials, dipole mome
and the comparison between relativistic and nonrelativi

FIG. 1. Plot of groundX 2S ~dashed line! and excitedA 2D state~dotted
line! potential energy curve of TiN. Lines with cross represent the fit
~Morse! curve.

J. Chem. Phys., Vol. 119, No. 12, 22 September 2003
orbitals, we have not carried out third order calculations fo
the full potential curves of TiN.
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To verify that our ground state potential curve for Ti
properly fragments into the appropriate Ti and N atom
states, we compute the IP and transition energy of TiN
large internuclear separationsR. If TiN dissociates properly,
then the above procedures should give the IP and excita
energies of the Ti atom.~The IP of the N atom is much
higher than that of the Ti atom.! The computed IP and the
5F –3F atomic splitting for Ti in TiN atR53Re are 6.31 eV
and 0.877 eV, respectively. The present overestimation
the 5F –3F atomic splitting of Ti by 0.072 eV is quite rea
sonable and suffices to establish the dissociation limit.

B. VN

The ground and excited state properties of VN are co
puted at the experimental ground state geometryRe

51.566 Å) with a ‘‘valence triple zeta’’ basis~66 CGTO!.
Because of quasidegeneracy between the high~low! lying
occupied ~unoccupied! orbitals, we include four occupied
~1d,3p,8s! and three unoccupied orbitals~9s,4p! in our ref-
erence space.~In accord with Harrison,26 the ‘‘1d ’’ orbital is
actually a nondegenerate orbital with primarilyd character.!

Table V compares the vertical transitions energies
tained fromHv

3rd theory with the experiment and with othe
theoretical calculations. In contrast to previous theoreti
investigation, the present calculations indicate the poss
existence of few low lying excited state ofS andP symme-
try that have not been considered previously. One comp
tion of the Hv trivially enables computations for low lying
states of all symmetries, whereas many widely used sche
such singles and doubles configuration interaction~SDCI!,
limited multiconfiguration SCF~MCSCF! methods, etc., re-
quire separate full scale calculations for each symmetry.
also interesting to note that the state energies computed
RESC orbitals are to some extent more accurate than th
obtained from the HF orbitals.

C. Positive ion states of TiN and VN

Table VI summarizes the calculatedHv
3rd vertical ioniza-

tion potentials~IPs! of TiN and VN. The IPs reported in
Table V are computed with Watcher’s basis at the experim
tal geometry. To our knowledge, neither the experimental
computed IPs of TiN and VN are available to assess accu
of the calculated IPs. However, since our computed tra
tion energies and spectroscopic constants are in accord
the experiment and with other theoretical estimates,
strongly believe our calculated IPs represent a very g
prediction, especially in view of prior accurate IPs from n
merous otherHv calculations.22,23

IV. CONCLUDING REMARKS

Multireference many-body perturbative schemes~IVO–
CASCI andHv

3rd), which are applicable to the direct calcu
lation of excitation energies~EE!, ionization potentials~IP!
and related properties, are applied to compute the trans
energies, ionization potentials, and spectroscopic const
of TiN. Highly satisfactory results are obtained for the ex

6001Transition metal nitrides
rtation energies and for the dissociation energy, dipole mo-
ments, oscillator strengths, and vibrational frequencies. Ver-
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Part
tical excitation energies and IPs are likewise computed
VN. The computations include several states that have
previously been studied. The ground and excited proper
are also computed with MOs obtained from two-compon
Dirac–Hartree–Fock equations to assess the importanc
~the expected small! relativistic effects as a prelude to trea
ing systems where the relativistic contributions are ant
pated to be more significant. Molecular calculations with
four-component Dirac–Hartree–Fock MOs are in progres
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