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Calculations of the ground and excited state potential energy curves of C2 using the third-order
effective valence HamiltoniansH3rd

v d method are benchmarked against full configuration interaction
and other correlated single-reference perturbative and nonperturbative theories. The large
nonparallelity errorssNPEsd exhibited even by state-of-art coupled cluster calculations through
perturbative triples indicate a serious deficiency of these single-reference theories. TheHv method,
on the other hand, produces a much reduced NPE, rendering it a viable approximate many-body
method for accurately determining global ground and excited state potential energy
curves/surfaces. ©2005 American Institute of Physics. fDOI: 10.1063/1.1879812g

I. INTRODUCTION

The most direct approach for assessing the accuracy and
reliability of approximate quantum chemical many-body
methods is by comparing predicted quantities against the ex-
act solution of the electronic Schrödinger equation in a given
basis set, i.e., by comparing with the full configuration inter-
action sFCId treatment in which all possible Slater determi-
nants of the appropriate symmetry and spin are generated
from the basis. Unfortunately, FCI calculations are usually
only feasible for small molecules with modest basis sets as
the number of Slater determinants grows factorially with the
number of basis functions and/or electrons. Although the FCI
method is generally impractical as a general computational
scheme, it provides the best benchmark for assessing the
reliability and deficiencies of theoretical methods. Moreover,
the information gained from comparisons with FCI calcula-
tions can be utilized to design and improve reliable many-
body methods for treating difficult systems, such as those
involving bond breaking reactions and/or open-shell excited
states.

Abrams and Sherrill1 have recently tested the accuracy
of single-reference perturbative and nonperturbative methods
in treating the C2 bond breaking reaction using FCI calcula-
tions for a 6-31G* basis set. These benchmark tests compare
FCI potential curves for theX 1Sg

+, B 1Dg
+, andB8 1Sg

+ states
of the C2 molecule with those predicted by coupled cluster
sCCd methods2–5 and its variants.6–10Their benchmark calcu-
lations for this very nontrivial system demonstrate that even
state-of-art CC methods with perturbative triplessusing an
unrestricted Hartree–Fock reference functiond are incapable
of providing accurate potential curves for C2. Abrams and
Sherrill also show that almost all correlated many-body
methods that are based on a restricted Hartree–FocksRHFd
reference exhibit large nonparallelity errorssNPEd even for

the groundX 1Sg
+ state because the single-reference theories

are not designed for bond breaking reactions. The unre-
stricted Hartree–FocksUHFd reference CC calculations yield
qualitatively correct potential energy curves but suffer from
the usual quantitative NPE inaccuracies.

In this article, we compare the three potential energy
curves of C2 generated by the effective valence shell Hamil-
toniansHvd theory with those from the FCI and other corre-
lated treatments. Extensive theoretical studies11–20 document
the Hv formalism, its conceptual advantages, the computa-
tional algorithms for evaluating atomic and molecular prop-
erties, and the higher-order convergence behavior of the
method.21 The present work demonstrates that theHv method
produces highly reliable and uniformly accurate potential
curves of C2, whereas virtually all single-reference correlated
theories fail near the dissociative regions. The calculations
once again underscore the greater suitability of multirefer-
ence theories, such as theHv method, for modeling bond-
breaking reactions, even in doubly excited electronic states.

As the details of theHv are extensively discussed in
some of our earlier communications, we only outline the
essential features of this method in the next section, with the
calculations described in the following section.

II. THEORETICAL APPROACH

The effective Hamiltonian methodsHvd belongs to the
“perturb then diagonalize” variety of multireference many-
body perturbation theoriessMR-MBPTd. Hv theory also dif-
fers from MR-MBPT methods that are based on Möller–
PlessetsMPd-type partitionings in the choice of unoccupied
valence orbitals and their energies. In theHv theory, the un-
occupied valence orbitals and their energies are determined
as improved virtual orbitals from aVN−1 Fock operator to
more appropriately describe low lying excited states in firstadElectronic mail: rkchaudh@kff1.uchicago.edu
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order and thereby to minimize the residual left for the per-
turbation expansion. The zeroth-order HamiltonianHs0d is
defined as

Hs0d = o
c

ufcleckfcu + o
v

ufvlēvkfvu + o
e

ufeleekfeu,

s2.1d

in terms of the corescd, valencesvd, and excitedsed orbitals
energiesec, ev, andee, respectively. The occupied orbitals in
the groundX 1Sg

+ RHF approximation are used as the core
and “occupied” valence orbitals, while the remaining “unoc-
cupied” valence orbitals are improved virtual orbitals. The
two core orbitals are doubly occupied inP space, while eight
valence orbitals form the complete active spacesCASd de-
fining the rest of theP space as described below.

Perturbative convergence21 is enhanced by evaluating
the forced degeneracy valence orbital energyēv from the
original set of valence orbital energiesev by the democratic
averaging,

ēv =
ovev

Nv
, s2.2d

with Nv representing the number of valence orbitals in the
CAS spanned by the set of valence orbitalsfv. sFor further
details, see Ref. 11d.

Calculations indicate that near the ground-state equilib-
rium internuclear separationsRCC=1.25 Åd, the ground-state
wave function of C2 is dominated by the
uscored2sg

22su
21px

21py
2l and uscored2sg

21px
21py

23sg
2l configu-

ration state functionssCSFsd. At the same geometry, the
B 1Dg state is dominated by uscored2sg

22su
21px

23sg
2l

− uscored2sg
22su

21py
23su

2l CSF, while theB8 1Sg
+ state has

these same two CSFs but with the same sign. Note that both
the B 1Dg andB8 1Sg

+ states are doubly excited with respect
to the groundX 1Sg

+ state, thereby posing added computa-
tional difficulties for many correlated methods.

The choice of reference space plays a central role in all
MR-MBPT methods. This choice is also the most difficult
portion of all multireference perturbative methods as it can
affect the accuracy of both spectroscopic constants and glo-
bal potential energy surfacessor curves for diatomic mol-
eculesd. While the choice of reference space is fairly straight-
forward near the Franck–Condon bonding region, matters
become more complex as the system approaches the disso-
ciative region where the reference space must properly de-
scribe the bond fragmentation. TheHv approach overcomes
these difficulties in a relatively straightforward fashion by
constructing a reference space that satisfies both sets of con-
ditions.

Because the carbon atom 2s and 2p orbitals become
quasidegenerate upon dissociation, the 2s and 2p orbitals of
each carbon atom should be included in the CAS to describe
the bond fragmentation process in C2. sNote that theC1s

orbital is kept frozen in the FCIsRef. 1d and all other calcu-
lations.d Figure 1 presents ground-state RHF orbital energies
for the four occupieds2sg,2su,1pud and four low-lying un-
occupieds3sg,3su,1pgd, orbitals of C2 as a function of the
C–C internuclear distance. Figure 1 shows that near the

Franck–Condon regions,1.25 Åd, the occupied 1pu and
2su orbitals are quasidegenerate, while as the system ap-
proaches the dissociative region,e2ss

−e2su
→0, making

these two orbitals degenerate. The unoccupied orbitals 3sg,
1pg, and 3su also exhibit similar trends. Based on these
arguments, all eight orbitals must be clearly included in the
CAS to model the bond breaking reactions of C2.

Figure 2 compares the groundX 1Sg
+ state potential curve

of C2 as computed using the third-orderHv sH3rd
v d method

FIG. 1. RHF orbital energiessin a.u.d of C2 vs. RC–C sin Åd.

FIG. 2. X 1Sg
+ state energysin a.u.d of C2 vs. RC–C sin Åd.
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with the FCI and with single-reference based CC calcula-
tions. The potential curve evaluated from the CC singles and
doubles with perturbative triplesfCCSDsTdg fails badly upon
dissociation. The CCSDsTd ground-state energy is not only
nonphysically large but also falls below the FCI. However,
this type of behavior of the CCSDsTd potential curves near
the bond-breaking region is commonly observed and appears
even in the bond fragmentation of the BH and HF
molecules.22 The CCSD and its completely renormalized ver-
sion fCR-CCSDsTdg7,8 yield a ground-state potential-energy
curve which is qualitatively but not quantitatively correct.

The errors in all these approximate methods may be ex-
amined more critically in Fig. 3 which presents the deviation
Etheory−EFCI of the computed ground-state energies from the
FCI sRef. 1d as a function of internuclear distance. In addi-
tion, Table I displays the NPEs for various approximate
methods as a global measure of their accuracy, where the
NPEs are defined as the difference between the maximum
deviation and the minimum deviation from the FCI estimate
over the entire potential-energy curve/surface. Figure 3
clearly demonstrates that theH3rd

v error curve is by far the
flattest. sAn ideal method produces a completely flat error
curve.d Table I further indicates that theH3rd

v method yields
smaller errors than all variants of single-reference CC theo-
ries and the venerable CI with singles, doubles, triples, and
quadruplesCISDTQd excitations.

We now consider theB 1Dg
+ andB8 1Sg

+ excited states of
C2. Under theD2h subgroup, both states belong to1Ag sym-
metry. The excitedB8 1Sg

+ and B 1Dg
+ state energies of C2

computed using theH3rd
v method are compared with the FCI

sRef. 1d and with equation-of-motionsEOMd CC treatments
in Figs. 4 and 5, respectively. The NPEs for these two states
are compared with those from EOM-CC calculations in
Table I. The EOM-CC potential curves for theB8 1Sg

+ and

B 1Dg
+ states lie much higher than the FCI curve as antici-

pated because the EOM-CC is known to provide a poor de-
scription for doubly excited states. The excited state potential
energy curves produced by theH3rd

v method, on the other

FIG. 3. Etheory−EFCI for X 1Sg
+ state of C2 vs. RC–C sin Åd.

TABLE I. Maximum, minimum, and nonparallelity errorssin kcal/mold with
respect to the FCI for theX 1Sg

+, B 1Dg
+, andB8 1Sg

+ states of C2. The values
in parentheses indicate the corresponding bond distance in angstroms.

State Method Max. error Min. error NPE

X 1Sg
+

RHFa 339.3s3.00d 206.4s0.90d 132.9
MP2a 33.8 s2.00d −47.5 s3.00d 81.3

CISDa 109.6s3.00d −37.0 s0.90d 72.6
CCSDsTda 14.7 s1.90d −46.6 s3.00d 61.3

CISDTa 79.7 s3.00d 24.9 s0.90d 54.8
UHFa 142.4s1.30d 93.7 s3.00d 48.7

UMP2a 61.4 s1.80d 20.7 s0.90d 40.7
CCSDTa 17.3 s2.00d −14.2 s3.00d 31.5

CR-CCSDsTd 26.6 s2.00d 4.9 s3.00d 21.7
UCCSDa 31.0 s1.80d 4.0 s3.00d 27.0

CCSDa 41.4 s2.00d 17.2 s0.95d 24.3
UCCSDsTda 24.4 s1.90d 2.8 s3.00d 21.6

CISDTQa 18.9 s2.40d 2.3 s0.90d 16.6
H3rd

v 14.5 s0.90d 1.9 s3.00d 12.6
f1,0g Padé 5.9s0.90d 1.9 s3.00d 4.0

B8 1Sg
+

EOM-CCSD 80.9s3.00d 35.3 s0.90d 45.6
H3rd

v 14.2 s0.90d 1.7 s3.00d 12.5
f1,0gPadé 7.3s0.90d 1.7 s3.00d 5.6

B 1Dg
+

EOM-CCSD 95.2s2.80d 63.9 s1.15d 31.3
H3rd

v 14.6 s0.90d 1.9 s3.00d 12.7
f1,0gPadé 7.8s0.90d 1.9 s3.00d 5.9

aTaken from Ref. 1.

FIG. 4. B 1Sg
+ state energysin a.u.d of C2 vs. RC–C sin Åd.
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hand, are not only close to FCI but are also quite accurate.
sTheH3rd

v NPEs for these two excited states are indeed quite
small.d

Table II compares the spectroscopic constants for the
groundX 1Dg

+ and excitedB 1Dg
+ andB8 1Sg

+ states of C2 com-
puted using theH3rd

v method with those from the FCI, CCSD,

and EOM-CCSD methods. The CC treatment produces an
excellent ground state equilibrium internuclear separation,
while the EOM-CC equilibrium bond lengths for the excited
state deviate from the FCI by 0.02 Å. The EOM-CC adia-
batic sTed and vertical excitation energiessVEEsd and vibra-
tion frequenciessved deviate considerablysby ,2 eV,
,2 eV, and 38–141 cm−1, respectivelyd from the FCI.
Though the CC calculations overestimate the dissociation en-
ergiessDed by 0.2–1.0 eV, the results are not as poor as the
treatment of theTe and VEEs.

In contrast, theH3rd
v offers uniformly accurate estimates

for theTe and VEEs. More specifically, theH3rd
v errors in the

equilibrium internuclear separation of,0.01 Å are compa-
rable to those of the EOM-CC, while the minuscule errors in
Te of ,0.01 eV are perhaps a bit fortuitous given the larger
VEE errors of,0.1 eV. TheH3rd

v errors inDe, on the other
hand, are,−0.4 eV, indicating that the bonding region is
more correlated than the fragmentation region. This feature
is probably also responsible for the errors inve of
,−53 cm−1. Nevertheless, the performance of theH3rd

v cal-
culations forDe andve outshines the CC treatment.

Given the non-negligible deviation of theH3rd
v calcula-

tions forDe andve from the FCI, we consider whether these
may be improved by the use off1,0gPadé resummations.
Table I indicates thatf1,0gPadé reduces the NPE by at least a
factor of 2. sThe NPE decreases from 12.6 to 4.0 kcal/mol
for the ground, from 12.5 to 5.6 kcal/mol for theB8 1Sg

+,
and from 12.7 to 5.9 kcal/mol forB 1Dg state of C2.d The
f1,0gPadé improves the description ofRe slightly, correctsve

by 30–50 cm−1, improvesDe by ,0.2 eV and the VEEs by
,0.1 eV, while the accuracy ofTe is degraded to a perhaps
more realistic error of,0.05 eV.

The errorEH3rd
v −EFCI in Fig. 3 for the ground state de-

creases asRC–C increases. A similar trend also emerges for
the B 1Dg and B8 1Sg

+ excited states. The NPEs computed
from H3rd

v potential curves reflect the same trend. This behav-
ior may be explained with the aid of Eq.s2.1d and Fig. 1. The
quasidegeneracy among the CAS orbitalsssee Fig. 1d in-
creases as the system approaches the bond dissociative re-
gion. It follows that the perturbationev− ē, which contributes
to the H3rd

v energy, also decreases asRC–C increases. Thus,
the magnitude of the perturbation diminishes, andEH3rd

v

−EFCI decreases asRC–C increases. This feature is also ap-
parent from the NPE, which is maximum atR=0.90 Å and
minimum atR=3.00 Å. It may be possible to obtain an even
smoother potential-energy curve with a reduced NPE by the
use of different CASs in the Franck–Condon and bonding
regions,19 but this technically difficult problem is beyond the
scope of the present straightforward test of standard ap-
proaches.

III. CONCLUDING REMARKS

We benchmark the ground and two low-lying singlet ex-
cited states of1Ag symmetrysunder theD2h subgroupd for C2

against the FCI and single-reference based CC methods and
its variants. Most single-reference based calculations, includ-
ing the CC treatments, yield quantitatively incorrect results,
especially near the bond dissociation region as anticipated.

FIG. 5. B 1D state energysin a.u.d of C2 vs. RC–C sin Åd.

TABLE II. Spectroscopic constants and vertical excitation energiessVEEsd
of C2. Spectroscopic constants are estimated by fitting the potential energies
to Morse potential.sExtra points generated nearRe for H3rd

v and EOM-
CCSD methods.d

Spectroscopic
constants Method X 1Sg

+ B8 1Sg
+ B 1Dg

+

Re sin Åd FCI 1.254 1.381 1.398
CCSD/EOM-CCSD 1.254a 1.361 1.375

H3rd
v 1.260 1.392 1.409

f1,0gPadé 1.255 1.386 1.402
De sin eVd FCI 5.880 3.943 4.134

CCSD/EOM-CCSD 6.140 4.504 5.267
H3rd

v 5.482 3.542 3.727
f1,0gPadé 5.731 3.739 3.942

ve sin cm−1d FCI 1800 1361 1393
CCSD/EOM-CCSD 1930b 1399 1534

H3rd
v 1742 1309 1343

f1,0gPadé 1792 1336 1372
Te sin eVd FCI 0.0 2.043 1.744

CCSD/EOM-CCSD 0.0 4.168 3.840
H3rd

v 0.0 2.038 1.753
f1,0gPadé 0.0 2.090 1.787

VEE sin eVd FCI 0.0 2.642 2.425
CCSD/EOM-CCSD 0.0 4.581 4.407

H3rd
v 0.0 2.552 2.343

f1,0gPadé 0.0 2.678 2.457

aFrom numerical CCSD optimization.
bve=1906 cm−1 sfrom numerical CCSD optimizationd.
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The computed error curve and the large NPE produced by
single-reference based calculations indicate that bond break-
ing reactions cannot be modeled even by state-of-art single-
reference based coupled cluster methods. The present work
once again demonstrates that multireference approaches,
such as theHv method, are capable of producing highly re-
liable and uniformly accurate results even for such challeng-
ing systems as C2, and, therefore, can be used to model the
most difficult bond breaking/making reactions in both
ground and excited states. While multireference methods are
often criticized as scaling poorly with an increase in the size
of the reference space, the present comparisons demonstrate
once again15–17,19,20that modest sized reference spaces suf-
fice. Indeed, for “simpler” cases, such as two-dimensional
potential surfaces for methyl mercaptan nonadiabatic
photodissociation17 and three-dimensional surfaces for H2S
photodissociation,19 five orbital reference spaces appear
quite suitable. Thus, the required size of the reference space
does not scale with the size of the system but depends more
on the complexity of its nondynamical correlation.
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