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ABSTRACT

Using the data on sunspot groups during the period 1879–2004, we have found that the solar equatorial rotation
rate during the odd-numbered sunspot cycles is well correlated with the equatorial rotation rate of the preceding
even-numbered sunspot cycles, which is similar to the well-known Gnevyshev & Ohl rule (G-O rule) in sunspot
activity. This indicates that a 22 yr cycle in the equatorial rotation rate begins in an even-numbered cycle and ends in
the following odd-numbered cycle, the same as a solar magnetic cycle (Hale cycle), as inferred from the G-O rule.
On the other hand, the latitudinal gradient of the solar rotation during the even-numbered cycles is found to be well
correlated with that of the preceding odd-numbered cycles. This result indicates that a 22 yr cycle in the latitudinal
gradient begins in an odd-numbered cycle and ends in the following even-numbered cycle. That is, the phase of the
beginning of a 22 yr cycle in the latitudinal gradient is different by about 180

�
relative to the beginning of a 22 yr

magnetic cycle.

Subject headinggs: Sun: activity — Sun: magnetic fields — Sun: rotation — sunspots

1. INTRODUCTION

Hale & Nicholson (1925) discovered the change of magnetic
polarity of the bipolar sunspot groups at the beginning of each
11 yr sunspot cycle. This proved the existence of the 22 yr solar
magnetic cycle (Hale’s cycle). Gnevyshev&Ohl (1948) found an
empirical relation between the sums of the sunspots in Waldmeir
odd-numbered sunspot cycles and even-numbered cycles. The
well-known Gnevyshev-Ohl rule, or G-O rule, states that the sum
of sunspot numbers over an odd-numbered cycle exceeds that
of its preceding even-numbered cycle. These authors also found
that an even-numbered cycle and its following odd-numbered
cycle are highly correlated (91%) and that the correlation be-
tween an odd-numbered cycle and its following even-numbered
cycle is weak (50%). They interpreted the aforesaid correlations
as the following: each 22 yr magnetic cycle (Hale cycle) begins
with the beginning of an even-numbered cycle and ends with
the end of the following odd-numbered cycle. Subsequently,
many authors have confirmed this empirical relation from sev-
eral solar indices and have claimed that the true physical cycle
of the Sun is a 22 yr magnetic cycle that consists of an even-
numbered activity cycle and the next odd-numbered activity cycle
(see Obridko 1995; Komitov & Bonev 2001 and references
therein). However, the physics behind the G-O rule is not yet
fully understood. Durney (2000) proposed that the G-O rule may
be a consequence of nonlinear interactions of velocity and mag-
netic field that provide the stabilizing mechanism.

Arguments have been advanced by Gough & McIntyre (1998)
that the Sun’s radiative interior must be stabilized against differ-
ential rotation by the presence of a primordial poloidal magnetic
field. While there are serious timescale concerns discussed by
Gilman (2000) about how such a magnetic field could influence
the solar cycle, Gough (2000) points out that a reversing dy-
namo field could be produced by the effects of motions in the
solar tachocline even though the source of the field starts with

the nonvarying primordial field. One would reasonably expect
that a solar cycle produced in this way would retain a signature
of the polar orientation of the deep primordial field; perhaps
each 11 yr half-cycle would be stronger or weaker, depending
on whether the surface poloidal field is aligned with or opposed
to the primordial interior field. This potential cause of the G-O
rule adds impetus to our desire to better understand this rule’s
statistical significance.

It is generally agreed that the Sun’s differential rotation drives
the solar dynamo for generating all solar activity (Babcock 1961);
however, the role of the differential rotation as a participant in
the cycle of magnetic activity variation is not yet clear. Hence,
the study of variations in the solar differential rotation is im-
portant for understanding the Sun’s internal dynamics and the
variations in the solar magnetic activity, as well as for finding
the cause of the variations in the differential rotation. Many such
experiments have been made by a number of scientists using
different data and different methods (see Javaraiah & Komm
2002; Komm & Javaraiah 2002; Antia 2002).

Recently, Javaraiah (2000, 2001, 2003a) found the existence
of significant differences in the differential rotation during even-
numbered cycles (12, 14, 16, 18, 20, and 22) and odd-numbered
cycles (13, 15, 17, 19, and 21), using sunspot data during the
period 1879–2002. In addition, Kirov et al. (2002) and Georgieva
et al. (2005) found significant differences in the differential rota-
tion during positive and negative polarity cycles (intervals be-
tween the changes in the polar magnetic field). Therefore, it is
worthwhile to check whether the inference drawn by Gnevyshev
& Ohl (1948) from amplitudes of sunspot cycles can also be
drawn from the differences in the differential rotation during
even- and odd-numbered cycles. If this is possible, then it may
be very useful for understanding the physics behind the G-O
rule and the 22 yr magnetic cycle. In view of this, we have
revisited the cycle-to-cycle modulations in the equatorial ro-
tation rate and the rotational latitudinal gradient determined by
Javaraiah (2003a) and studied these modulations in detail.

The determination of solar rotation using sunspots is made
difficult by several factors of solar and instrumental origin. The
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measured rotation rate depends verymuch on the characteristics
of the sunspots or sunspot groups used (for a recent review, see
Javaraiah & Komm [2002]). Instrumental effects such as local
distortion of the image scale due to atmospheric seeing or tele-
scopic aberration, inaccuracy of positioning the solar axis on
solar images, etc., cause data sets from one observatory to be
hard to compare with observations from other observatories (e.g.,
Howard et al. 1999). We compare the aforesaid cycle-to-cycle
modulations deduced from Greenwich data with correspond-
ing modulations deduced using the sunspot positions mea-
sured fromKodaikanal Observatory,MountWilsonObservatory,
Kanzelhöhe Solar Observatory, and the National Astronomical
Observatory of Japan (NAOJ). The discrepancies between the
results found from Greenwich data and the other data sets are
discussed.

2. DATA AND ANALYSIS

The solar differential rotation can be determined accurately
from the heliographic positions and the epochs of the observa-
tions of large number of sunspots or sunspot groups using the
standard form: ! (�) ¼ Aþ B sin2�, where ! (�) is the solar
sidereal angular velocity at latitude � and the coefficients A and
B represent the equatorial rotation rate and the latitudinal gra-
dient of the rotation, respectively. We have used Greenwich
data on sunspot groups during the period 1879 January 1–1976
December 31 and spot group data from the Solar Optical Observ-
ing Network (SOON) during the period 1977 January 1–2004
August 10. Details on the data reduction and determinations of
the values of the differential rotation coefficients A and B, listed
in Table 1, were described by Javaraiah (2003a). Cycle 23 is
included in the present analysis, since more than 75% of it is
completed, and we expect that the values of A and B will not
change significantly with the addition of the data from the re-
mainder of the cycle. Figure 1 shows the cycle-to-cycle modu-
lations of A and B as deduced from the whole solar disk. Figure 2
shows the cycle-to-cycle modulations of A and B in the northern
and the southern hemispheres. To get information on the reliabil-
ity of these variations in Figure 1, we also show the cycle-to-cycle
modulations of A and B determined from the measurements of
Kodaikanal Observatory,MountWilsonObservatory, Kanzelhöhe
Solar Observatory, and NAOJ. We analyzed the daily data of sun-
spots and sunspot groups measured at Kodaikanal Observatory

TABLE 1

Sidereal Differential Rotation Coefficients

Whole Disk Southern Disk Northern Disk

Cycle A B A B A B

12 (1879–1889) ................ 2.943 � 0.003 �0.540 � 0.036 2.935 � 0.004 �0.442 � 0.048 2.953 � 0.005 �0.669 � 0.056

13 (1890–1901) ................ 2.945 � 0.003 �0.502 � 0.031 2.941 � 0.004 �0.504 � 0.040 2.949 � 0.004 �0.492 � 0.048

14 (1902–1912) ................ 2.928 � 0.003 �0.458 � 0.043 2.933 � 0.005 �0.462 � 0.060 2.924 � 0.004 �0.465 � 0.063

15 (1913–1922) ................ 2.932 � 0.003 �0.537 � 0.031 2.937 � 0.004 �0.507 � 0.046 2.929 � 0.004 �0.589 � 0.043

16 (1923–1933) ................ 2.930 � 0.003 �0.493 � 0.027 2.929 � 0.004 �0.476 � 0.042 2.931 � 0.004 �0.504 � 0.036

17 (1934–1943) ................ 2.934 � 0.002 �0.594 � 0.022 2.938 � 0.003 �0.613 � 0.030 2.930 � 0.003 �0.574 � 0.033

18 (1944–1953) ................ 2.926 � 0.002 �0.520 � 0.021 2.927 � 0.003 �0.497 � 0.028 2.926 � 0.003 �0.555 � 0.032

19 (1954–1964) ................ 2.926 � 0.002 �0.541 � 0.016 2.930 � 0.003 �0.572 � 0.027 2.924 � 0.003 �0.524 � 0.020

20 (1965–1975) ................ 2.928 � 0.002 �0.479 � 0.023 2.929 � 0.003 �0.464 � 0.037 2.926 � 0.003 �0.483 � 0.030

21 (1976–1986) ................ 2.926 � 0.003 �0.420 � 0.022 2.928 � 0.004 �0.454 � 0.031 2.923 � 0.004 �0.382 � 0.032

22 (1987–1996) ................ 2.910 � 0.003 �0.416 � 0.024 2.907 � 0.004 �0.428 � 0.033 2.913 � 0.004 �0.406 � 0.034

23 (1997–2004)a............... 2.922 � 0.004 �0.509 � 0.030 2.918 � 0.005 �0.477 � 0.042 2.925 � 0.005 �0.535 � 0.044

Notes.—The values for the coefficients have been obtained from the formula! (�) ¼ Aþ B sin2� deduced using sunspot group data of individual sunspot cycles (see
Javaraiah 2003a), where � is the latitude and the values of A and B are in units of �rad s�1.

a Cycle 23 is currently incomplete.

Fig. 1.—Cycle-to-cycle variations of A and B (whole-disk data; note that
cycle 23 is not yet complete), determined using the following databases:
Greenwich and SOON ( filled circles and solid curve), Kodaikanal Observatory
(open circles and dotted curve), Mount Wilson Observatory (from groups:
crosses and short-dashed curve; from spots, in panel b: small squares and short-
dashed curve), Kanzelhöhe Solar Observatory (triangles and triple-dot–dashed
curve), and NAOJ (large squares and long-dashed curve).
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(1906–1987) and at Mount Wilson Observatory (1917–1985)
by taking them from the Web site of the National Geophysical
Data Center (NGDC).2We have used the values ofA and B deter-
mined byHanslmeier & Lustig (1986) andKambry&Nishikawa
(1990) from the sunspot drawings of Kanzelhöhe Solar Obser-
vatory (for cycles 18–21) and NAOJ (for cycles 19–21), re-
spectively. The modulations of both A and B derived from the
Kodaikanal sunspot data are found to be similar to those derived
from the spot group data shown in Figures 1a and 1b. In the case
of theMountWilson data, the modulation of A derived from sun-
spot data is also found to be similar to that derived from the spot
group data, but we find considerable differences between themod-
ulations of B derived from the sunspot data and the spot group
data, as shown in Figure 1b.

The modulation of B deduced from Greenwich and SOON
data shown in Figure 1b indicates that, without the data point of
cycle 12, the absolute value of B during an even-numbered
cycle is somewhat less than that of its preceding odd cycle. This
systematic behavior suggests the existence of a �22 yr cycle
in B (see also Javaraiah & Gokhale 1995; Javaraiah & Komm
1999; Javaraiah 2000, 2001, 2003a). A similar systematic be-
havior can also be seen in Figure 1a for values of A deduced
from Greenwich and SOON data, but it is not as well defined

as that of B (see also Javaraiah 2000, 2001, 2003a; Georgieva
et al. 2005). From Figure 2 it can be seen that the aforesaid
long-term variations of A and B exist in each hemisphere. How-
ever, there are some notable differences in the amplitudes of the
variations of A and B in the northern and the southern hemi-
spheres (Javaraiah 2003a).

Figure 1 shows that there are considerable differences in the
modulations of A and B derived from Greenwich data and those
from the other data sets. The variations of A determined from
the data other than the Greenwich data are substantially larger
than those from Greenwich data. This is particularly evident
around cycle 19. The moderate drop in A from cycle 17 to cycle
18, whichwas found from the Greenwich data (Javaraiah 2003a),
seems to be extended to cycle 19, and the drop is also larger in
all the other data sets. In the case of B, the Mount Wilson sun-
spot data and theGreenwich data resemble each other, butMount
Wilson spot group data differ from all the other data sets. From
cycle 19 to cycle 21 the modulation of B determined from the
NAOJ data is similar to that of the Greenwich data, but those de-
termined fromMountWilson, Kodaikanal, and Kanzelhöhe spot
group data are considerably different from that determined from
the Greenwich data.

It should be noted here that the aforesaid different data sets
have considerable differences in the observations, measurements,
definitions of spot groups, treatment of the data in the analysis,
etc., which can cause considerable discrepancies in the derived
results (Howard et al. 1984, 1999; Hanslmeier & Lustig 1986;
Balthasar & Fangmeier 1988; Kambry &Nishikawa 1990). The
Greenwich data have been compiled from the majority of the
white-light photographs thatwere secured at the RoyalGreenwich
Observatory and at the Royal Observatory at the Cape of Good
Hope. The gaps in their observations were filledwith photographs
from other observatories, viz., Kodaikanal Observatory (India),
the Hale Observatory (California), and the Heliophysical Obser-
vatory (Debrecen, Hungary), etc. The SOON data were compiled
in a similar way to that of the Greenwich data (Hathaway et al.
2003). The measurements from Mount Wilson Observatory
(1917–1985) and Kodaikanal Observatory (1906–1987) were
made using the same technique (Howard et al. 1999). The main
difference between the Mount Wilson and Kodaikanal and the
Greenwich spot group data is that the former consist of mea-
surements of individual umbrae of sunspots and the positions
of sunspot groups are area weighted, while the latter is a col-
lection of measurements of total areas (umbrae and penumbrae)
of groups of sunspots and the positions are geometric positions
of centers of groups. Lustig & Wöhl (1995) showed the exis-
tence of a relatively larger latitude dependence in the evolution
of sunspot groups from Mount Wilson data compared to those
from the Greenwich data. This may have a role in the aforesaid
different behavior of variations in B determined from Mount
Wilson data. Yoshimura & Kambry (1993) analyzed corrected
NAOJ data and found a monotonic increase in A from cycle 18
to cycle 20 and a drop from cycle 20 to cycle 21. In addition, the
increase in the values of A from cycle 19 to cycle 20 is small in
the Kanzelhöhe data. Thus, the big jump in the value of A from
cycle 19 to cycle 20 determined from the Mount Wilson and
Kodaikanal data may also be not real. On the other hand, the
value of the synodic rotation period during cycle 19, as deter-
mined by Obridko & Shelting (2001) from the solar global
magnetic field data, is less than the value during cycle 18 (this
behavior is similar to the behavior of A, as determined from
Greenwich data). In view of all these results, we believe that the
variations in A and B determined from Greenwich and SOON
data are reasonably reliable.

Fig. 2.—Cycle-to-cycle variations of A and B in the northern (dotted curve)
and southern (solid curve) hemispheres, determined using the Greenwich and
SOON data.

2 Daily sunspot data available at ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/
SUNSPOT_REGIONS/SUNSPOT_REGION_TILT.
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3. ANALYSIS OF THE DIFFERENCES IN A AND B
DURING ODD AND EVEN CYCLES

Table 1 provides sequences of A and B coefficients that span
12 solar cycles. From this table one can extract different time
series and study in particular the differences in A and B during
odd and even cycles. From a statistical point of view, any two
time series extracted from Table 1 define a bivariate population
(xi, yi). Because we are mainly interested in studying the pos-
sibility of a linear relationship between the two variables of the
bivariate population, we use Pearson’s linear correlation coef-
ficient r to measure the strength of the observed correlation,
defined as follows:

r ¼
P

i (xi � x̄)( yi � ȳ)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i (xi � x̄)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i ( yi � ȳ)2

q ;

where x̄ and ȳ are the means of the xi and yi, respectively. It is
well known that the correlation coefficient is in general a
rather poor statistic for deciding whether an observed corre-
lation is statistically significant. The reason is that the indi-
vidual distributions of x and y are ignored in the calculation of
r, so there is no unique way to compute its distribution in the
case of the null hypothesis. However, if the null hypothesis is
that x and y are uncorrelated (r ¼ 0), it can be shown that
under some generally acceptable assumptions the statistic

t ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

1� r2

r

is distributed like a Student’s t-test with � ¼ N � 2 degrees of
freedom (e.g., Alder 1977). In order to decide whether a given
correlation coefficient indicates a linear relationship for a sam-
ple of size N, we test the hypothesis that the sample is chosen
from a population for which r ¼ 0 and, therefore, determine the
probability that from such a population a sample of size N is
taken for which the correlation coefficient equals or exceeds
the absolute value of r calculated for the given sample. Here
we use a two-tailed test of significance. If the probability p is
less than 5%, we reject the hypothesis that the sample is taken
from a population in which there is no linear relationship. Here-
after, the even-numbered cycle time series, the preceding odd-
numbered cycle time series, and the following odd-numbered
cycle time series of A and B are denoted by A and B with sub-
scripts 2n, 2n� 1, and 2nþ 1, respectively.

On the basis of the above criterion, we found that A2nþ1 is
well correlated with A2n (r ¼ 0:896, t ¼ 4:032, and p ¼ 1:6%).
This is shown in Figure 3a. The correlation between A2n�1 and
A2n is found to be statistically insignificant (r ¼ 0:450, t ¼
0:874, and p ¼ 44:7%). It is interesting to note that these corre-
lations between the A time series are consistent with the corre-
lations between the corresponding time series of sunspot activity
found by Gnevyshev & Ohl (1948). As shown in Figure 3b, the
B-coefficient time series have an opposite behavior, since B2n is
found to be well correlated with B2n�1 (r ¼ 0:986, t ¼ 10:284,
and p ¼ 0:2%), while the correlation between B2n and B2nþ1 is
found to be negligible (r ¼ 0:096, t ¼ 0:193, and p ¼ 85:7%).

Once the correlation has been established, the next step is to
determine the coefficients of the linear regression. Themeasure-
ment errors in both the xi and yi variables makes our case con-
siderably harder than that of the classical technique, which fits
a straight-line model to the data using the linear least-squares
method. In this paper we used the approach described in Jefferys

(1980, 1981), which provides a more general method for fitting
models to observed data by least squares without most of the
assumptions required by the standard method.
We obtained the following linear regression fits (Fig. 3, solid

lines) between A2nþ1 and A2n and between B2n and B2n�1:

A2nþ1 ¼ (0:84 � 0:18)A2n þ (0:48 � 0:54) �rad s�1; ð1Þ

B2n ¼ (0:60 � 0:21)B2n�1 � (0:16 � 0:11) �rad s�1; ð2Þ

where the uncertainties in the coefficients are the formal 1 �
errors from the fit. The goodness of fit was calculated by com-
paring the value of the �2 merit function to the �2 probability
distribution for N � 2 degrees of freedom. This test shows
that both relationships are well described by a linear model, in
agreement with the results of our analysis on r. In the case in-
volving the A coefficients, it must be pointed out that most of
the regression is dominated by the two outlying points (12, 13)
and (22, 23), which makes the argument for A slightly weaker.
However, the positions of the data points are consistent with
the long-term variations in A described by Javaraiah (2003a),
and the position of the data point of the cycle pair (24, 25) is
expected to be near the position of the data point of the cycle

Fig. 3.—Plots of the correlations (a) between A2nþ1 and A2n, where sub-
scripts representWaldmeir cycle numbers with 5 < n � 11, and (b) between B2n

and B2n�1, where 6 < n < 12. The solid lines represent the linear relationships
between A2nþ1 and A2n (eq. [1]) and B2n and B2n�1 (eq. [2]). The value of the
correlation coefficient (r) is also given. Near each data point, the corresponding
pair of odd and even cycles is shown.
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pair (22, 23) (Javaraiah 2003b). These relations can be used to
predict the amplitude of A during an odd-numbered cycle from
the known amplitude of A during the preceding even-numbered
cycle and the amplitude of B during an even-numbered cycle
from the known amplitude of B during the preceding odd-
numbered cycle.

In each hemisphere the correlations between the even- and
odd-numbered cycle time series of A and also between the cor-
responding time series of B are found to be similar to the cor-
relations between the corresponding time series for the whole
disk found above. In the southern hemisphere, the correlations
between A2nþ1 and A2n and between B2n and B2n�1 are found to
be weaker than the correlations between the corresponding time
series of A, and between those of B in the northern hemisphere.
(In the southern hemisphere, the correlation between A2n�1 and
A2n is found to be almost the same as the correlation between the
A2nþ1 and A2n.)

4. SUMMARY, DISCUSSION, AND CONCLUSION

The differences in the solar differential rotation during the even-
and odd-numbered sunspot cycles deduced from Greenwich and
SOON data on sunspot groups during the period 1879–2004 sug-
gest the following:

1. The equatorial rotation rate during odd-numbered sunspot
cycles seems to be well correlated with that of the preceding
even ones but not with that of the following ones.

2. The latitudinal gradient during the even-numbered cycles
is found to be well correlated with that of the preceding odd
ones but not with that of the following ones.

The above results indicate that the sunspot cycles are not
independent and are connected by long-term variations in the
equatorial rotation rate and the latitudinal gradient. In particu-
lar, result 1 suggests that a 22 yr cycle in the equatorial rotation
rate begins during an even-numbered cycle and ends during the
following odd-numbered cycle; i.e., the epochs of the begin-
ning and the ending of a 22 yr cycle in the equatorial rotation
rate seem to be similar to the corresponding epochs of a solar
magnetic cycle, as inferred by Gnevyshev &Ohl (1948). On the
other hand, result 2 indicates that a 22 yr cycle in the latitudinal
gradient begins during an odd-numbered cycle and ends during
the following even-numbered cycle.

The above interpretations essentially mean that the phases of
the 22 yr cycles in the equatorial rotation rate and the latitude
gradient measured relative to the beginning of a solar magnetic
cycle may be approximately 0

�
and 180

�
, respectively. To ex-

amine this further, we calculated the cross-correlations between
A, B, and the amount of sunspot activity (S ). We have taken the
values of S, i.e., the sum of monthly sunspot numbers over a
sunspot cycle, for sunspot cycles 12–21 from Wilson (1988).
The monthly sunspot numbers for cycle 22 were also taken
from the NGDCWeb site.3 Figure 4 shows the cross-correlation
functions (CCFs) of the pairs (A, B), (A, S ), and (B, S ). A posi-
tive value of lag indicates that the first time series leads the
second one. In this figure CCF(A, B) and CCF(A, S ) have max-
imum negative correlation values at lag ¼ 0, whereas the max-
imum (positive) correlation between B and S is at lag ¼ �3.
These results are consistent with the interpretation of the results
and the phase relationships discussed above. A possible reason
for the hemispheric differences in the correlations between the

time series of A and between the time series of B (x 3) may be
considerable hemispheric differences in the periodicities of A
and B (Georgieva & Kirov 2003; Georgieva et al. 2005).

The reliability of the results obtained in this paper critically
depends on the length and homogeneity of the time series in-
vestigated. We have used the longest set of rotational data
available today, the Greenwich and SOON measurements, and
the correlations we derived are statistically significant. Differ-
ent data sets, however, have been shown to provide different
conclusions about the variation of the solar rotation. For ex-
ample, Obridko & Shelting (2001) showed considerable vari-
ation in the rotation period determined from the solar global
magnetic field. On the other hand, no significant variations are
found in the equatorial rotation rate deduced from solar surface
Doppler velocity measurements (Ulrich & Bertello 1996) and
from the variation of the Sun’s mean magnetic field (Haneychuk
et al. 2003). In addition, as discussed in x 2, there are some incon-
sistencies among the rotational results obtained from the sunspot
data measured at different observatories that need to be further
investigated.

The interpretation drawn by Javaraiah (2003a) from the
correlations found between the ratios of B and the amount of
sunspot activity and the one drawn in this paper from the cor-
relations found between the time series of B alone contradict
each other. The relatively short lengths of the time series used in
that paper may be the reason for the discrepancy.

Our results provide a strong support to the idea that the Sun’s
basic physical cycle is the 22 yr magnetic cycle rather than the
11 yr activity cycle. In particular, the results support the idea

Fig. 4.—CCFs of the pairs (A, B), (A, S ), and (B, S ). A positive value of lag
indicates that the first time series leads the second one.

3 Monthly sunspot data available at ftp://ftp.ngdc.noaa.gov/STP/SOLAR_

DATA/SUNSPOT_NUMBERS/MONTHLY.PLT.
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that the 22 yr magnetic cycle may be a torsional magnetohy-
drodynamic oscillation, first considered by Walén (1944) as a
mechanism for the solar cycle (see also Layzer et al. 1979;
Gokhale & Javaraiah 1995; Hiremath & Gokhale 1995).
However, the source of perturbations needed for such oscil-
lations and details about the Sun’s internal magnetic field are
not yet known.

We thank the anonymous referee for the detailed study of the
earlier manuscripts and for his elaborate comments and useful
suggestions, which helped us to improve the presentation
considerably. J. J. also thanks Katya Georgieva and Boncho
Bonev for comments and useful suggestions. J. J. is presently
working for the Mount Wilson Solar Archive Digitization
Project at UCLA, funded by NSF grant ATM-0236682.
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