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Application to 137Ba+
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We report the result of our ab initio calculation of the 6s2S1/2 → 5d2D3/2 parity nonconserving

electric dipole transition amplitude in 137Ba+ based on relativistic coupled-cluster theory. Consid-
ering single, double and partial triple excitations, we have achieved an accuracy of less than one
percent. If the accuracy of our calculation can be matched by the proposed parity nonconservation
experiment in Ba+ for the above transition, then the combination of the two results would provide
an independent non accelerator test of the Standard Model of particle physics.

Parity nonconservation (PNC) in atoms arising from
neutral weak currents has the potential to test the Stan-
dard Model (SM) of particle physics [1, 2]. By combining
the results of high precision measurements and calcula-
tions of atomic PNC observables, it is possible to ex-
tract the nuclear weak charge [2] and compare with its
corresponding value in the SM. A discrepancy between
these two values could reveal the possible existence of
new physics beyond the SM. The most accurate data on
atomic PNC currently comes from the 6s2S1/2 → 7s2S1/2

transition in cesium (Cs), where the claimed experimen-
tal [3] and theoretical [4] accuracies are 0.35% and 0.5%
respectively and the deviation from the SM is about 1σ
[4]. It would indeed be desirable to consider other can-
didates which could yield accurate values of the nuclear
weak charge. In this context an experiment to observe
PNC in the 6s2S1/2 → 5d2D3/2 transition in Ba+ using
the techniques of ion trapping and laser cooling proposed
by Fortson is of special importance [5, 6].

This Letter is concerned with a high precision calcu-
lation of the amplitude of the above mentioned parity
nonconserving electric dipole (E1PNC) transition in Ba+

using relativistic coupled-cluster (RCC) theory, which is
equivalent to all order relativistic many-body perturba-
tion theory [7]. It is the first application of this the-
ory to atomic PNC. Blundell et al had used this theory
in the linear approximation to calculate E1PNC for the
6s2S1/2 → 7s2S1/2 transition in Cs [8]. Dzuba et al [9]
and Geetha [10] have calculated this PNC amplitude for
the 6s2S1/2 → 5d2D3/2 transition in Ba+ as discussed
later.

The parity nonconserving nuclear spin independent
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(NSI) interaction arises from the nucleon-electron neu-
tral weak interaction and its Hamiltonian is given by

HNSI
PNC =

GF

2
√

2
Qwγ5ρN(r) (0.1)

where GF is the Fermi constant, Qw is the nuclear weak
charge which is equal to [(2Z+N)c1u+(2N +Z)c1d] with
c1u and c1d representing electron-up-quark and electron-
down-quark coupling constants respectively, ρN (r) is the
nuclear density function and γ5(= iγ0γ1γ2γ3), which is a
pseudo-scalar, is the product of the four Dirac matrices.

HNSI
PNC is responsible for mixing atomic states of oppo-

site parities but with the same angular momentum. Its
strength is sufficiently weak for it to be considered as a
first-order perturbation. It is therefore possible to write
the n’th state atomic wavefunction as

|Ψn〉 = |Ψ(0)
n 〉 + GF |Ψ(1)

n 〉. (0.2)

In RCC, the atomic wavefunction |Ψ(0)
v 〉 for a single va-

lence (v) open-shell system is given by [7, 11]

|Ψ(0)
v 〉 = eT (0){1 + S(0)

v }|Φv〉 (0.3)

where we define |Φv〉 = a†
v|Φ0〉, with |Φ0〉 as the Dirac-

Fock (DF) state for closed-shell system.
In the singles and doubles approximation we have

T (0) = T
(0)
1 + T

(0)
2 ,

S(0)
v = S

(0)
1v + S

(0)
2v (0.4)

where T
(0)
1 and T

(0)
2 are the single and double particle-

hole excitation operators for core electrons and S
(0)
1v and

S
(0)
2v are the single and double excitation operators for

the valence electron respectively. The amplitudes corre-
sponding to these operators can be determined by solving
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the relativistic coupled-cluster singles and doubles equa-
tions. A subset of important triple excitations have been
considered in the determination of the open shell ampli-

tudes S
(0)
1v and S

(0)
2v which is described in [12, 13].

Using eqn. (0.2), the explicit form of E1PNC , is given
by

E1PNC =
〈Ψf |D|Ψi〉

√

〈Ψf |Ψf 〉〈Ψi|Ψi〉

=
〈Ψ(0)

f |D|Ψ(1)
i 〉 + 〈Ψ(1)

f |D|Ψ(0)
i 〉

√

〈Ψ(0)
f |Ψ(0)

f 〉〈Ψ(0)
i |Ψ(0)

i 〉
(0.5)

where D is the electric dipole (E1) operator, i and f
subscripts are used for initial and final valence electrons
respectively. Using the explicit expression for the first
order perturbed wavefunction, we get

E1PNC =
∑

I 6=i

〈Ψ(0)
f |D|Ψ(0)

I 〉〈Ψ(0)
I |HNSI

PNC|Ψ
(0)
i 〉

Ei − EI

+
∑

I 6=f

〈Ψ(0)
f |HNSI

PNC|Ψ
(0)
I 〉〈Ψ(0)

I |D|Ψ(0)
i 〉

Ef − EI
(0.6)

where I represent intermediate states.
It is obvious from the above equation that, the accu-

racy of the calculation of E1PNC depends on the exci-
tation energies of the different intermediate states, the
matrix elements of HNSI

PNC and D. Blundell et al have
used the above equation to determine E1PNC for the
6s2S1/2 → 7s2S1/2 transition in Cs by considering the
most important intermediate states [8]. The drawback of
this approach is that the summation can be performed
only over a finite set of intermediate states which limits
the accuracy of the calculation. The method we have
used in the present work circumvents this problem by

solving the first order perturbed equation

(H(0) − E(0))|Ψ(1)
v 〉 = (E(1) − HNSI

PNC)|Ψ(0)
v 〉. (0.7)

where E(1) vanishes for first order correction.
The perturbed cluster operators can be written as

T = T (0) + GF T (1),

Sv = S(0)
v + GF S(1)

v (0.8)

where T (1) and S
(1)
v are the first order GF corrections to

the cluster operators T (0) and S(0) respectively. The am-
plitudes of these operators are solved, keeping up to liner
in PNC perturbed amplitudes, by the following equations

〈Φp
a|H

(0)
N T (1) + HNSI

PNC|Φ0〉 = 0,

〈Φpq
ab|H

(0)
N T (1) + HNSI

PNC|Φ0〉 = 0, (0.9)

and

〈Φp
v|H

(0)
N S(1)

v + (H
(0)
N T (1) + HNSI

PNC){1 + S(0)
v }|Φv〉

= −〈Φp
v|S(1)

v |Φv〉IP,

〈Φpq
vb |H

(0)
N S(1)

v + (H
(0)
N T (1) + HNSI

PNC){1 + S(0)
v }|Φv〉

= −〈Φpq
vb|S(1)

v |Φv〉IP,(0.10)

where H(0) is the Dirac-Coulomb (DC) Hamiltonian and

H is defined as e−T (0)

HeT (0)

which is computed after
determining T (0), IP is the ionization potential energy
corresponding to the valence electron ’v’ and the sub-
script N denotes normal form of an operator. We have
used a, b.. and p, q.. etc. to represent holes and particles
respectively. |Φp

v〉 and |Φpq
vb〉 are the single and double

excited states respectively with respect to |Φv〉. Using
Eqns. (0.3), (0.5), (0.8) and only keeping terms linear in
GF , the expression for E1PNC can be written as

E1PNC =
< Φf |{1 + S

(1)†

f + T (1)†S
(0)†

f + T (1)†}eT (0)†

DeT (0){1 + T (1) + T (1)S
(0)
i + S

(1)
i }|Φi >

√

(1 + N
(0)
f )(1 + N

(0)
i )

=
< Φf |S(1)†

f D(0)(1 + S
(0)
i ) + (1 + S

(0)†

f )D(0)S
(1)
i + S

(0)†

f (T (1)†D(0) + D(0)T (1))S
(0)
i + (T (1)†D(0) + D(0)T (1))S

(0)
i |Φi >

√

(1 + N
(0)
f )(1 + N

(0)
i )

.(0.11)

In the above expression we define D(0) = eT (0)†

DeT (0)

and N
(0)
v = S

(0)†

v eT (0)†

eT (0)

S
(0)
v for the valence electron ’v’ and

each term is connected. The above matrix element is evaluated by a method similar to that used in our earlier works
of Ba+ [14, 15].

The orbitals are constructed as linear combinations of
Gaussian type orbitals (GTOs) of the form [16]

Fi,k(r) = rke−αir
2

. (0.12)

where k = 0, 1, .. for s,p,.. type orbital symmetries re-

spectively. For the exponents, we have used

αi = α0β
i−1 (0.13)

We have considered 30s1/2, 25p1/2, 25p3/2, 25d3/2,
25d5/2, 20f5/2, 20f7/2, 20g7/2 and 20g9/2 GTOs for the
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TABLE I: Excitation energy (cm−1), E1 transition ampli-
tudes (a.u.) and magnetic dipole hyperfine structure constant
(MHz) for different low-lying states of Ba+.

Initial state 6s2S1/2 6s2S1/2 5d2D3/2 5d2D3/2

→Final state 6p2P1/2 6p2P3/2 6p2P1/2 6p2P3/2

Excitation
energy 20410 22104 15097 16795
Expt. [17] 20262 21952 15388 17079
E1 transition
amplitude 3.37 4.72 3.08 1.36
Expt. [18] 3.36(0.16) 4.67(0.08) 3.03(0.08) 1.36(0.04)

Atomic state 6s2S1/2 6p2P1/2 6p2P3/2 5d2D3/2

Hyperfine
constant (A) 4078.18 740.77 128.27 189.92
Expt. [19, 20, 21] 4018.871(2) 743.7(3) 127.2(2) 189.7288(6)

DF calculation and all occupied (active holes) orbitals
in the RCC calculations. We have chosen α0 as 0.00525
and β as 2.73 for all the symmetries. All orbitals are
generated on a grid using a two-parameter Fermi nuclear
distribution approximation given by

ρ =
ρ0

1 + e(r−c)/a
(0.14)

where ρ0 is the average nuclear density, ’c’ is the half-

charge radius, and ’a’ is related to the skin thickness.
Our earlier calculations of excitation energies [13], E1

transition amplitudes [14] and magnetic dipole hyper-
fine constants [15] for some of the low-lying states in
Ba+ based on RCC theory suggest that it is in princi-
ple possible to perform a calculation of E1PNC for the
6s2S1/2 → 5d2D3/2 transition in that ion to an accu-
racy of better than one percent. We have recalculated
these quantities using the same method but with a larger
basis and the results are given in table I. The agree-
ment with experiment of the most important excitation
energy (6p2P1/2) for the calculation of E1PNC is less
than one percent. This is also the case for the hyper-
fine constants of three of the states – 6p2P1/2, 6p2P3/2

and 5d2D3/2, while for the 6s2S1/2 state, the agreement
is a little over one percent. All the transition ampli-
tudes are within the experimental error bars. The result
of our calculation of the electric quadrupole (E2) ampli-
tude for the 6s2S1/2 → 5d2D3/2 transition is 12.61 in
a.u. It is in agreement with our earlier calculation [14]
and well within the experimental bounds [22]. In ta-
ble II, we present the values of the square root of the
product of the hyperfine constants. The accuracies of
these two quantities give an indication of the accuracies
of the PNC matrix elements between 6s2S1/2 and 6p2P1/2

states as well as 6p2P3/2 and 5d2D3/2 states. Both of
them are in excellent agreement with experiment, sug-
gesting that the two leading PNC matrix elements used
in the E1PNC calculation are very accurate. The contri-
butions from the different terms in E1PNC are presented
in table III. It is clear that the largest contribution comes

TABLE II: Square root of the magnetic dipole hyperfine con-
stants (MHz) and their deviations from experimental results.

Experiment This work Deviation (%)

√

A6s2S1/2
A6p2P1/2

1728.83 1738.1 0.5
√

A6p2P3/2
A5d2D3/2

155.35 156.08 0.5

TABLE III: Contributions to the E1PNC calculation in
×10−11iea0(−QW /N) using RCC calculation.

Initial pert. 6s2S
(1)

1/2
→ Final pert. 6s2S

(0)

1/2
→

terms 5d2D
(0)

3/2
terms 5d2D

(1)

3/2

Dirac-Fock contribution
DHNSI

PNC 2.018 HNSI
PNCD -0.3 ×10−5

DT
(1)
1 0.0003 T (1)†D 0.418

D(0)S
(1)
1i 2.634 S

(1)†
1f D(0) -0.179

D(0)S
(1)
2i -0.242 S

(1)†
2f D(0) -0.166

S
(0)†
1f D(0)S

(1)
1i 0.149 S

(1)†
1f D(0)S

(0)
1i 0.003

S
(0)†
1f D(0)S

(1)
2i 0.007 S

(1)†
1f D(0)S

(0)
2i 0.008

S
(0)†
2f D(0)S

(1)
1i -0.116 S

(1)†
2f D(0)S

(0)
1i -0.009

S
(0)†
2f D(0)S

(1)
2i -0.001 S

(1)†
2f D(0)S

(0)
2i 0.001

Norm. -0.046 -0.001

Total 2.375 0.087

from DS
(1)
1 (diagram 1(iii)) which represents the DF term

and a certain sub class of core polarization as well as
pair correlation effects [10]. This is due to the relatively

large (6s1/2 − 6p1/2) S
(1)
1 cluster amplitude. Two dif-

ferent types of core polarization effects; DT
(1)
1 (diagram

1(i)) and DS
(1)
2 as well as its conjugate (diagrams 1(v)

and 1(vi)) also make significant contributions.The former
is mediated by the neutral weak interaction and involves
the 6s valence and core electrons. Correlation effects cor-
responding to S

(0)†
1 DS

(1)
1 and S

(0)†
2 DS

(1)
1 are non negli-

gible, but their signs are opposite. Contributions from
other terms are comparatively small.

The result of E1PNC for the 6s2S1/2 → 5d2D3/2 tran-

sition in our calculation is 2.46 × 10−11iea0(−QW /N).
It is larger in magnitude than those obtained by Dzuba
et al [9] and Geetha [10] as shown by table IV. The for-
mer work is based on a variant of all order many-body
perturbation theory, but it has some semi-empirical fea-
tures. It is carried out by using two different approaches.
One of them is similar to the sum-over-states approach
by Blundell et al [8] and the other is known as the mixed
approach where the PNC interaction explicitly mixes
states of opposite parities. However, both calculations
do not include contributions from certain correlation ef-
fects; i.e. structural radiation, weak correlation potential
and normalization of states [9] that are included in our
calculation. Their 6p2P1/2 → 5d2D3/2 E1 matrix ele-
ment which is important for the above mentioned PNC
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FIG. 1: Important Goldstone diagrams corresponding PNC
amplitudes.
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TABLE IV: Comparison of E1PNC results from different cal-
culations in ×10−11iea0(−QW /N).

Dzuba et al [9] Geetha [10] Present work
(mixed parity) (sum-over-states)

2.17 2.34 2.35 2.46 ± 0.02

transition amplitude is not as accurate as ours. Fur-
thermore, the accuracies of their PNC matrix elements
are not known as they have not performed calculations
of the hyperfine constants of the relevant states. The
reason for the discrepancy between our calculation and
Geetha’s is that our approach implicitly includes several
intermediate states; particularly doubly excited opposite
parity states which her sum-over-states approach omits.

The error accrued in our calculation of E1PNC can be
determined from the errors in the excitation energies, E1
transition amplitudes and hyperfine constants (see table
I). We have not estimated the errors in the calculated val-
ues of these quantities by comparing with measurements,
since the error bars in the E1 transition amplitudes are
rather large. Instead, we have taken the differences of our
RCC calculations with single, double and leading triple
excitations and just single and double excitations as the
errors. The error in E1PNC (0.02) has been obtained by
adding the errors for the different quantities it depends on
in quadrature for the leading intermediate states 6p2P1/2

and 6p2P3/2 and using a scale factor to estimate the er-
rors from other intermediate states that together make a
small contribution.

The contribution of the Breit interaction to E1PNC at
the DF level is 0.1% and the nuclear structure contri-
bution is 0.3%.The latter has been determined more ac-
curately than Blundell et al. [8] using relativistic mean
field theory.

In conclusion, we have performed a sub one percent cal-
culation of E1PNC for the 6s2S1/2 → 5d2D3/2 transition
in Ba+ using RCC. We have included single, double as
well as a leading class of triple excitations and highlighted
the importance of various many-body effects. Given the
promise that the Ba+ PNC experiment holds out, it does
indeed appear that in the future the result of that exper-
iment combined with our calculation would constitute a
new and an important probe of physics beyond the SM.

We acknowledge discussions with G. Gopakumar. We
would like to thank Prof. N. Fortson and J. Sherman for
useful communications. We are grateful to Prof. J. Kluge
for his critical reading of the paper. BKS thanks DAAD
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