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ABSTRACT
The linear response of a thin vertical magnetic Ñux tube to bu†eting by p-modes in the ambient atmo-

sphere is examined with the aim of understanding the interaction of acoustic modes with sausage tube
waves. The idealized case of an isothermal atmosphere is considered, which has the mathematical advan-
tage that the di†erential equation for the vertical component of the Lagrangian displacement in the tube
can be solved analytically. A lower boundary condition is employed that permits the tube wave to leak
out through this boundary. This has the important consequence that the p-mode interaction with Ñux
tubes does not exhibit a resonant behavior. The detailed behavior of the vertical displacement in the
tube and its dependence on various parameters are examined. An equation for the wave energy in a thin
Ñux tube is derived along with analytic expressions for the wave energy density and vertical energy Ñux.
The variation of the tube response $ (deÐned as the ratio of the total wave energy, integrated over the
length of the tube, to the p-mode energy in the external atmosphere) is investigated for di†erent values of
the dimensionless external horizontal wavenumber mode order n, and b, where b is the ratio of theK

x
,

gas to magnetic pressure in the tube that, by assumption, is constant with depth. It is found that when n
is small, the response of the tube increases gradually with until reaching a maximum, and thereafterK

xit drops very sharply. As n increases, the maximum shifts to lower values of For Ðxed values ofK
x
. K

xand b, $ increases with n and then falls o† after reaching a maximum. A similar dependence of $ on b is
found. Line widths of p-modes are also calculated, and their dependence on and frequency is studied.K

xFinally, an application of the results to the solar atmosphere is discussed, and the limitations of the
model are pointed out.
Subject headings : MHD È Sun: magnetic Ðelds È Sun: oscillations

1. INTRODUCTION

Small-scale magnetic Ñux tubes in the solar atmosphere occur preferentially at the boundaries of supergranulation cells,
outlined by the chromospheric Ca network, and in plage regions. They are important features of the solar atmosphere and
have a signiÐcant inÑuence on the structure and dynamics of the chromosphere and corona, as well as the solar wind. Their
Ðeld strength is known empirically to be in the kilogauss range, and typically their diameters in the photosphere are believed
to be in the range of 100È300 km.

In the photosphere, these vertical Ñux tubes are surrounded by a Ðeld-free medium. It is well known that this medium
contains acoustic waves or p-modes, with typical periods in the 5 minute range. The purpose of this investigation is to
consider some consequences arising from the bu†eting action of the p-modes on Ñux tubes. Several years ago, Cram,Thomas,
& Nye recognized the importance of 5 minute oscillations for probing the sunspot atmosphere. In recent years,(1982)
observations have demonstrated that sunspots can absorb a large fraction (up to 50%) of the power in p-modes (Braun,
Duvall, & Labonte et al. & Braun Moreover, observations show that active regions1987, 1988a ; Bogdan 1993 ; Bogdan 1995).
exhibit absorption of p-modes also Labonte, & Duvall & Duvall Thus, observations suggest(Braun, 1988b ; Braun 1990).
clearly that there is a signiÐcant interaction between acoustic waves and magnetic Ñux tubes.

The interaction of p-modes with Ñux tubes has been investigated very extensively (for a recent review see & BraunBogdan
and references therein). Earlier work treated this interaction as a problem in classical scattering theory in order to model1995

the shift in p-mode frequencies as a result of scattering o† Ñux tubes (e.g., & Zweibel & BogdanBogdan 1985 ; Zweibel 1986 ;
see the reviews by Bogdan and references therein). The details of the interaction are contained in the T matrix (for1992, 1994
a deÐnition of the T matrix see & Feshbach chap. 11). For an unstratiÐed Ñux tube embedded in a homogeneousMorse 1953,
medium, the poles of the T matrix describe scattering resonances, which occur when the frequency of the incident acoustic
wave equals one of the natural tube frequencies. Resonant interactions of compact tubes (i.e., when the tube diameter is
typically much less than the wavelength of the incident wave) have been studied with varying degrees of complexity by several
authors (e.g., & Ryutova This interactionRyutov 1976 ; Defouw 1976 ; Wilson 1980 ; Spruit 1982 ; Cally 1985 ; Bogdan 1989).
results in a transfer of acoustic energy into Ñux-tube oscillations by a process that is akin to inverse Landau damping

& Priest For thick Ñux tubes such as sunspots, p-modes can be absorbed in a resonant critical layer when the(Ryutova 1993).
incident frequency equals the local cusp speed or Alfve� n speed on a Ðeld line & Yang This process has been(Hollweg 1988).
treated in considerable detail by numerous authors (e.g., Goossens, & Hollweg & PoedtsLou 1990 ; Sakurai, 1991 ; Goossens

Bogdan, & Goossens It is of some interest to ask whether the resonant behavior persists when the1992 ; Keppens, 1994).
e†ects of gravitational stratiÐcation are taken into account. Recent calculations by et al. and & BogdanBogdan (1996) Hasan

suggest that the resonances are eliminated e†ectively for thin Ñux tubes, when the tube is characterized by a continuous(1996)
mode spectrum. This point will be discussed in further detail in ° 7.
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The object of this investigation is to analyze the response of a stratiÐed thin Ñux tube when it is bu†eted by p-modes from
the ambient medium. The primary motivation is to understand the conditions under which a signiÐcant transfer of energy
occurs from p-modes into Ñux-tube oscillations. In the most general case, this is best formulated as an initial-value problem,
so that one can examine the buildup of energy in tube oscillations and also Ðnd out whether these oscillations last sufficiently
long to play a signiÐcant role in heating the upper atmosphere. Clearly, the problem is rather complex and is best approached
by making simplifying assumptions, which reveal the basic nature of the process. As a Ðrst step, let us work within the
framework of linear theory and examine the asymptotic (in time) response of a Ñux tube when a p-mode is incident on it. For
mathematical tractability, we assume that the atmosphere in the Ñux tube as well as in the ambient medium is isothermal. This
approximation has the advantage that the di†erential equation for the vertical displacement in the tube can be solved
analytically, thereby enabling us to understand the details of the interaction in a fairly straightforward way. The model that
we examine is very similar to the one studied by et al. who considered a polytropic stratiÐcation, which is aBogdan (1996),
reasonable approximation for the atmosphere in the convection zone. However, their analysis is fairly involved from a
mathematical point of view, although it may be more realistic. The present work sacriÐces the latter advantage in favor of a
more tractable mathematical treatment. Preliminary results using an isothermal model can be found in & BogdanHasan

In this paper, a more comprehensive investigation is undertaken of the interaction of an isothermal Ñux tube with(1996).
external p-modes, and it is demonstrated that the response of the tube is not uniform but increases with the horizontal
wavenumber (for a Ðxed order) of the incident p-mode up to a maximum, followed by a sharp drop. This is related to the fact
that for a large response, the eigenfunctions of the p-mode and of the excited tube wave need to remain in phase over a
sufficient length of the tube.

The model that we adopt for p-mode absorption of energy is based on the mechanism proposed by (see alsoSpruit (1991)
& Bogdan and the review by in which incident p-modes couple to internal tube waves. The latter canSpruit 1992 Spruit 1996),

Ñow down unimpeded along the vertical magnetic Ðeld lines and thereby constitute a process by which p-mode energy is lost.
This mechanism draws on the earlier work by et al. and & Soward on oscillations of magneticBiront (1982) Roberts (1983)
stars. Recently, it has been applied to sunspot Ðelds by Bogdan, & Zweibel and to thin Ñux tubes by et al.Cally, (1994) Bogdan
(1996).

The plan of the paper is as follows : the mathematical analysis begins in with the well-known linear equation for the° 2,
interaction of a p-mode with a sausage wave in a thin Ñux tube, followed by on the p-mode solutions in the external° 3
atmosphere. The analytic solution for sausage waves in terms of the vertical displacement in the tube and its dependence on
various parameters is given in In an equation for the wave energy in a thin Ñux tube is determined, along with° 4. ° 5,
expressions for the time-averaged energy density, Ñux, response, and p-mode line width. Results showing the dependence of
the response, wave energy, and line width on di†erent parameters are presented in and discussed in The main° 6 ° 7.
conclusions of the investigation are summarized in ° 8.

2. LINEAR EQUATIONS

Let us consider a vertical Ñux tube surrounded by a Ðeld-free atmosphere. For simplicity, let us assume a uniform
temperature everywhere. Furthermore, we adopt the thin Ñux-tube approximation & Webb(Defouw 1976 ; Roberts 1978).
Stated brieÑy, this approximation consists of expanding all quantities about the axis. Assuming that the radial variation is
small compared with, say, the pressure scale height, the MHD equations for an inviscid and inÐnitely conducting medium can
be derived easily in the thin tube approximation. On linearizing these equations and assuming a time dependence of the form
e~iut, the interaction of a thin Ñux tube with the external medium for the sausage mode is described by the following equation
(Roberts 1983) :
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where z is the height in the atmosphere (positive upward), c is the ratio of speciÐc heats, g is the acceleration due to gravity,
is the vertical component of the Lagrangian displacement in the tube, is the pressure scale height, isb \ 8np0/B02, m

z
H0 c

S,0the sound speed, u is the angular frequency of the perturbation, is the Brunt-Va� isa� la� frequency, isuBV\ g(c [ 1)1@2/c
S,0 p0the internal gas pressure on the tube axis, is the magnitude, on the tube axis, of the vertical component of the magnetic ÐeldB0(assumed constant in the horizontal direction), is the external pressure, and is the (Eulerian) perturbation in thep

e,0 %
eexternal pressure. The subscript 0 (which will hereafter be dropped) refers to quantities in the unperturbed atmosphere. We

have assumed that b is independent of z, which follows from the assumption that the internal and external temperatures are
the same.

can be put in canonical form by making the transformation which yieldsEquation (1) Q\ m
z
e~z@4H, (Roberts 1983)
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and is the tube speed (sometimes also referred to as the cusp speed), deÐned asc
T

c
T
2 \ c

S
2

(1 ] cb/2)
. (4)

We have assumed implicitly that the Ñux tube and external atmospheres are isothermal with the same temperature. The
equilibrium pressure and magnetic Ðeld for an isothermal atmosphere are given, respectively, by

p(z) \ p0 e~z@H , (5)

B(z) \ B0 e~z@2H , (6)

where and Assuming that magnetic Ñux is conserved, then the cross section area of the tube A is given byp04 p(0) B04 B(0).

A(z) \B0A0
B(z)

\ A0 ez@2H , (7)

where The above equation implies that the area of the Ñux tube increases with z with a scale height of 2H. ThisA0 4A(0).
means that the upper boundary must be chosen judiciously, so that the radius of the Ñux tube does not become larger than H,
which would lead to a breakdown of the thin tube approximation.

The internal and external gas pressures are related to each other from the equation of horizontal pressure balance, which
for a thin tube is

p ] B2
8n

\ p
e

. (8)

Dividing both sides in by p and using the deÐnition of b, we Ðndequation (8)

p \ b
b ] 1

p
e

. (9)

Since b is a constant, the internal pressure at each depth is lowered with respect to the ambient pressure at the same depth by
a Ðxed factor.

When yields the dispersion relation%
e
\ 0, equation (2)

u2\ k
z
2 c

T
2 ]u

V
2 , (10)

where denotes the vertical wavenumber inside the tube. is the dispersion relation for a sausage wave in ank
z

Equation (10)
isothermal Ñux tube. It may be noted that the wave is evanescent for thus represents the cuto† frequency insideu\u

V
; u

Vthe tube.

3. WAVES IN THE EXTERNAL MEDIUM

Let us now consider the solution of the linear wave equation in the external medium. We assume that we are dealing with a
single p-mode with frequency u, horizontal wavenumber and conÐned to a vertical cavity between z\ 0 and z\ [D,k

x,e,where D is the depth of the lower boundary. Clearly, for an isothermal atmosphere, there is no cavity. We assume this in order
to mimic a situation where the upper reÑection occurs because of a sudden increase in the acoustic cuto† frequency. The lower
boundary is chosen below the Lamb depth, i.e., at a level where the p-mode is reÑected by the increase in sound speed. This is
idealized as a sudden increase in at z\ [D. Assuming that the vertical component of the displacement vanishes at thec

Sboundaries, it can be shown that has the formm
z,e

m
z,e \ Cez@2H sin (k

z,e z)ei(kx,ex~ut) , (11)

where x denotes the distance along the horizontal direction, C is a constant, and denotes the vertical wavenumber in thek
z,eexternal atmosphere, which is related to by the dispersion relationk
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where is the acoustic cuto† frequency in the external atmosphere. Using it is straightforward touac \ cg/2c
S

equation (11),
show that the external pressure perturbation is given by
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The horizontal component of the external displacement is related to as follows :m
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4. SAUSAGE WAVES IN THE TUBE

Once is known, it is fairly straightforward to solve along with appropriate boundary conditions. For the%
e

equation (1)
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lower boundary, we follow & Bogdan and et al. and demand that the solutions at large depthsCally (1993) Bogdan (1996)
match onto downward propagating waves, so that as z] [O. For the upper boundary condition, it ism

z
D e~i(ut`kzz)

convenient to choose that vanishes at z\ 0. This boundary condition is chosen mainly for mathematical convenience sincem
zit ensures that the analysis remains tractable. Choosing a di†erent boundary condition, such as the vanishing of the

Lagrangian perturbation in pressure, could also be considered, although the analysis becomes somewhat more involved.
However, the essential point is that the main Ðndings of the investigation remain the same.

Our main aim is to develop the particular solution of subject to the above boundary conditions. We start withequation (1),
the canonical form of this equation, namely, The solution of this equation can be obtained conveniently in termsequation (2).
of the solutions of the homogeneous which are These homogenous solutions correspond to sausage wavesequation (2), eBikzz.
in a thin tube obeying the dispersion relation given by From the homogeneous solutions, the particular solutionequation (10).
of can be calculated using standard techniques and is given by (omitting the time dependence of the form e~iut,equation (1)
which is hereafter implied)
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where and a 4 1/4H.k
e
4 k

z,e, k 4 k
z
,

In the limit z] [O, we Ðnd that
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where K
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x,eH.
Thus, at large depths, g is a measure of the amplitude of We shall now examine in some detail the behavior of g. Them

z
.

general form of g with ) given by is rather complicated and not easily comprehensible. However, the expressionequation (21)
for g becomes more amenable to analysis in the limit
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g \ 240(1 ] b)K
e
[1 ] 100(K

x
2] K

e
2)]

(1 ] 100K
e
2)[(6] b)2] 100b2K

e
2)]] 40(6 ] 5b)(6] b ] 100bK

e
2)K

x
2] 400(6] 5b)2K

x
4 , (24)

where we have assumed that c\ 5/3.
The approximate relation for g given by turns out to be very useful in understanding the response of the Ñuxequation (24)

tube to external p-modes.

4.1. Variation of g with K
x

It is convenient Ðrst to consider the asymptotic behavior of g in the limits and Let us Ðrst examine theK
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former limit, when reduces toequation (24)
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Thus, to leading order, g is constant with as The lowest order correction to g varies asK
x

K
x
] 0. K

x
2.

In the opposite limit, corresponding to yieldsK
x
] O, equation (24)
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Thus, as g varies as which shows that the response becomes vanishingly small at large values of FromK
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equations and it would thus appear that g should have a maximum for some value of assuming that the other(25) (26), K
x
,

parameters remain Ðxed. It should be pointed out that the limit is not incompatible with and henceK
x
] O equation (22)

This is because only one of the two inequalities in needs to be satisÐed, which for largeequation (24). equation (22) K
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It turns out that to calculate, with reasonable accuracy, the value of at which g is maximum, we need to use equationsK
xand This is because the maximum of g occurs at nonzero values of only for low mode orders, for which the(17) (21). K

xapproximation is not strictly appropriate. We omit the algebra, which is messy, and instead present the results of theK
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4.2. Variation of g with K
e

We now investigate the variation of g with when and b is Ðxed. From we Ðnd that for small valuesK
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The above expressions are clearly not valid when b \ 0. In the latter limit, yields which shows thatequation (25) g \ 20/3K
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4.3. Variation of g with b
Finally, let us consider the variation of g with b when and is Ðxed. Using once again, we Ðnd that asK

x
] 0 K

e
equation (25)

b ] 0, g is constant to leading order. The Ðrst-order correction scales linearly with b. On the other hand, for very large values
of b, g D 1/b.

The maximum value of g occurs for
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Thus, as increases, decreases. In the limit we Ðnd from that As increases,K
e

b' K
e
] 0, equation (29) b'] 4. K

e
b'decreases. For thus, lies in the range 0È4.K

e
] O, b'] 0 ; b'Having obtained the linear displacement in the tube and its asymptotic form at large depths in terms of g, let us now go on

to discuss the form of the energy density and energy Ñux associated with the tube oscillations. However, before doing that, we
require an energy equation for waves in a thin Ñux tube.

5. WAVE ENERGY IN A THIN FLUX TUBE

The equation for the wave energy in a stratiÐed atmosphere with a uniform magnetic Ðeld is well known and can be found,
for instance, in the monograph by & Loughhead (1974, chap. The generalization of this equation for a thin Ñux tube,Bray 6).
in which the magnetic Ðeld varies in the vertical direction, does not appear to have been discussed earlier. Let us now consider
such an equation for a sausage wave in a thin Ñux tube when the latter is bu†eted by a p-mode from the external medium.
Starting from the thin Ñux-tube equations given by & Webb and following the procedure adopted in &Roberts (1978), Bray
Loughhead it can be shown that the wave energy density in a thin Ñux tube satisÐes the following equation :(1974),
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where E is the total wave energy density, is the vertical wave energy Ñux, A is the unperturbed area of the tube, and dA isF
zthe area perturbation. The right-hand side term is a source term driving the tube oscillations and represents the work done by

the external p-mode in compressing the tube. The wave energy density E and vertical energy Ñux for a sausage wave are,F
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where o is the internal gas density, dp is the pressure perturbation, is the perturbation in the vertical component of thedB
zmagnetic Ðeld, and is the vertical velocity perturbation. In the above equations, the horizontal components of the velocitydv

zand magnetic Ðeld do not enter since they are assumed to be much smaller than their vertical counterparts, within the
framework of the thin Ñux-tube approximation. In the Ðrst term corresponds to the kinetic energy, the secondequation (31),
to the internal energy, the third to the magnetic energy, and the last to the gravitational energy. It should be pointed out that

expresses the conservation of wave energy and should be distinguished from the nonlinear equation for the totalequation (30)
energy density in a thin Ñux tube, such as the one derived by Spruit (1979).

5.1. T ime-averaged Wave Energy Density and Response
Let us now consider the time-averaged total energy density SET of the oscillations excited in the tube through the bu†eting

action of the external p-modes. Noting that the perturbed quantities are complex, it can be easily shown that SET can be
expressed as
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It is convenient to recast in the following form:equation (33)
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In the kinetic and gravitational energies have been put together, since they have the same functionalequation (36),
dependence and di†er only by a constant factor (the Brunt-Va� isa� la� frequency). It is instructive to consider the asymptotic
form of the tube energy at large depths, for which is given by The contribution due to the external pressurem

z
equation (16).

perturbation in equations and can be neglected as whereas m D ez@4H. Thus, as z] [O, is very(34) (35) %/p
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Substituting equations and into we Ðnd that the asymptotic form for the total energy density is given by(37) (38) equation (36),
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(2 ] cb)2 [(5c[ 8)2] 16c2K2]

H
. (39)

The Ðrst term in is the sum of the kinetic and gravitational energies, the second term is the internal energy, andequation (39)
the last term is the magnetic energy associated with the wave in the Ñux tube. Substituting the value of K from equation (18)
and taking c\ 5/3, simpliÐes toequation (39)

SET ]
p
e

192
ez@2H b

b ] 1
C2
H2 g2

C
10)2[ 1

12
b

(1 ] 5b/6)
D

. (40)

In the second term in brackets involving b is very much smaller than the Ðrst term for p-mode frequencies andequation (40),
can be neglected for all practical purposes. If v denotes the time-averaged total energy per unit length of the tube, deÐned as
v\ SETA, then v tends to a constant value at large depths since AD ez@2H and Furthermore, for large depths, it isp

e
D e~z@H.

easy to see from that the magnetic and internal energies are comparable (for b D 1). The ratio of the kineticequation (39)
energy to the internal energy is

A
1 ] 5

6
b
B )2

)2 [)BV2
]
A
1 ] 5

6
b
B

for )? )BV . (41)

We now consider the response of the tube when it is bu†eted by a p-mode in the external atmosphere. Let us deÐne the
response $ as follows :

$\ / dz v
/ dz(SE

e
TA

e
)
, (42)

where denotes the area in the horizontal plane in the external medium, and is the time-averaged energy densityA
e

SE
e
T

associated with the p-modes. For simplicity, we assume that does not vary in the vertical direction. The time-averagedA
eexternal energy density is given by

SE
e
T \ p

e
4
G c
c
S
2 [u2(m

z,e m
z,e* ] m

x,e mx,e* ) ] uBV2 m
z,e m

z,e* ]] 1
c

%
e

p
e

%
e
*

p
e

H
. (43)

Substituting the value of from into the above equation, we Ðndm
x,e equation (14)

SE
e
T \ p

e
4
C
c()2] )BV2 ) o m

z,e o2] 1
c
A
1 ] K

x
2

)2
B K %

e
p
e

K2D
. (44)

We see from equations and that is independent of z.(11) (13) SE
e
T

5.2. Energy Flux and p-Mode L ine W idth
Using it can be shown that the time-averaged vertical energy Ñux in a thin Ñux tube is given byequation (32),

SF
z
T \ 14(dp dv

z
* ] dp* dv

z
) . (45)

Noting that and using we Ðnd thatdv
z
\ [ium

z
equation (34),

SF
z
T \ b

(b ] 1)(2] cb)
iup

e
4
C
c(b ] 1)

%
e

p
e
[ 2c

dm
z

dz
] cg

c
S
2 (2 [ c)m

z

D
m
z
* ] cc , (46)

where cc stands for the complex conjugate of the Ðrst expression.
In the Ðrst term in brackets, which represents the contribution due to the external pressure perturbation, canequation (46),

be neglected compared with the other terms at large depths, since whereas Thus, as z] [O,%
e
/p

e
D ez@2H, m

z
D ez@4H. %

e
/p

e
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is very much smaller than In this limit, we Ðnd thatm
z
.

SF
z
T ] [ 1

32
C2
H2

cb
(b ] 1)

g2)
S()2[ )

V
2)

(1 ] cb/2)
p
e
ez@2H . (47)

From it is evident that the average power going down the tube tends to a constant value, independent ofequation (47), SF
z
TA

depth.
Following et al. the average power going down the tube is related to the p-mode line width ! through theBogdan (1996),

relation

!\ [ 1
2n

SF
z
TA

SE
e
TA

e
. (48)

6. RESULTS

In the previous sections, expressions have been derived for various quantities, such as the time-averaged wave energy
density and Ñux, in terms of the vertical displacement in the tube. Let us now consider the results of calculations that illustrate
in greater detail the dependence on various parameters of the total energy density and vertical energy Ñux associated with
sausage tube waves. The solid curves in shows $/f, where denotes the magnetic Ðlling factor, as a functionFigure 2 f \A0/Aeof the dimensionless horizontal wavenumber in the external atmosphere for p-modes of di†erent order,K

x
(K

x
4 k

x,eH)
assuming b \ 0.5 and D\ 40H, where D is the depth of the lower boundary. Without loss of generality, we choose C\ H.
Hereafter, unless speciÐed otherwise, these will be the default parameters. The dotted curves denote the frequencies (with
reference to the right axis) of the p-modes in the external medium. These modes have a discrete spectrum because of the
assumption that the vertical displacement vanishes at the top and bottom boundaries. Clearly, the p-modes have frequencies
above the acoustic cuto† frequency, which, in our dimensionless units, is 0.5.

For a Ðxed order, corresponding to a speciÐc value of the dimensionless vertical wavenumber we Ðnd thatK
e
(K

e
4 k

z,e),the response is almost Ñat for For low orders, $/f shows a gradual increase with until it reaches a maximum, andK
x
> 1. K

xthereafter it decreases. This maximum value increases with n, whereas the value of at which the maximum occurs decreasesK
xas n increases. For large enough n, the maximum of $/f is at Furthermore, whereas the response $/f for smallK

x
\ 0. K

xincreases with mode order, the asymptotic value of $/f (other than for n \ 1) appears to be independent of n. We shall now
attempt to understand these features based upon the analysis in the preceding sections.

Let us Ðrst examine the response for small values of In order to understand its behavior, it is instructive to examine theK
x
.

depth variation in the tube of the total energy density and its various constituents, in order to see which one dominates the
energy budget at various depths for small values of shows the variation with z/H of (solid curve) forK

x
. Figure 3 v/A0 p0and b \ 0.5, when the tube is bu†eted by a mode from the external atmosphere. The curve has been normalizedK

x
\ 0.1 p3with respect to the maximum value of over the interval. The dashed curves denote the depth variation of the di†erentv/A0 p0components, which we use to label the curves. Let us Ðrst consider the solid curve corresponding to the total energy density.

FIG. 2.ÈDependence of the response $/f (solid curves) on the p-mode dimensionless horizontal wavenumber for di†erent mode orders n, which labelK
xthe curves, assuming D\ 40H and b \ 0.5 (hereafter the default parameters). The dotted curves denote the variation of the p-mode dimensionless frequency

) with for di†erent values of n.K
x
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FIG. 3.ÈVariation with z/H of the dimensionless total energy density (solid curve) in sausage waves at each depth on the tube axis, for a modev/A0 p0 p3with The other curves denote the various constituents of the wave energy density. All curves have been normalized with respect to the maximum ofK
x
\ 0.1.
in the interval.v/A0 p0

We Ðnd that in the upper layers of the tube, the amplitude variation essentially reÑects the driving action of the mode in thep3ambient medium. As z increases, the amplitude decreases while the wavelength increases. At very large depths, v/A0 p0approaches a constant value, and the amplitude modulation is barely noticeable. Let us now consider the form of the kinetic
and gravitational energy per unit length. As mentioned in the two di†er by a constant factor and have the° 5.1, ()2[ )BV2 )
same z-dependence. We Ðnd that other than in the layers close to the upper boundary, the contribution of the internal and
magnetic energy to the total energy is very small. Since the main contribution to the integrated energy density in the tube
comes from the deep layers of the tube, we can use the expression for SET at large depths to examine the response when isK

xsmall. Using we Ðnd thatequation (40),

vD g2)2 , (49)

and from (assumingequation (44) )?)BV),

SE
e
TD)2] O(K

x
)2 as K

x
] 0 . (50)

Substituting equations and in and recalling from that we Ðnd that(49) (50) equation (42), equation (25) g D constant] O(K
x
2),

$/f D constant as K
x
] 0 . (51)

The constant in is proportional to or n2. Actually, this is only true as long as is sufficiently small. We deferequation (51) K
e
2 K

ea further discussion of this aspect until later. The decrease in the value of at which $ has a maximum with increasing n isK
xdue to reasons similar to those discussed in ° 4.1.

Let us now examine the behavior of $/f as increases. The dependence of v on at large depths can be expressedK
x

K
xroughly using equations and as when is sufficiently large. On the other hand, it is not difficult to(26) (39) vD g2)2D K

x
~2 K

xsee from equations and that for large and consequently from we Ðnd that(13), (23), (44) K
x
, SE

e
T D )4D K

x
4, equation (42),

This dependence is valid as long as or Clearly, for small values of and the above$D K
x
~6. )?)BV K

x
? K

e
. K

x
K

e
,

assumptions are not satisÐed, which is the reason why, for instance, the curve corresponding to n \ 1 looks di†erent from the
others.

In order to understand why the asymptotic value of $/f is practically independent of or n, it is instructive to look at theK
evariation of the energy density with depth. shows the variation of as a function of z/H for n \ 3 and n \ 4,Figure 4 v/A0 p0assuming and b \ 0.5. The dashed and dot-dashed curves denote, respectively, the contributions due to the internalK

x
\ 1.0

and magnetic energy densities. The kinetic energy density (as well as the gravitational energy density) have not been plotted
since they are negligible for this case. We Ðnd that the main contribution to the integrated energy density comes from the top
layers of the Ñux tube. In these layers, the magnetic and internal energies dominate the energy budget. Furthermore, it is not
difficult to see that for zB 0, and Similarly, for sufficiently large, the external energy densitydp/p D %

e
/p

e
dB/p D %

e
/p

e
. K

xvaries roughly as so that from equations and we Ðnd that $/f is practically independent of n.o%
e
/p

e
o2, (40) (42),

shows the response as a function of b when the Ñux tube is bu†eted by p-modes of di†erent order n (used to labelFigure 5
the di†erent curves), for a Ðxed value of the horizontal wavenumber The results do not depend upon the preciseK

x
\ 0.1.

value of as long as it is sufficiently small, for reasons that have already been pointed out in the previous paragraphs. TheK
x
,
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FIG. 4.ÈVariation with z/H of the dimensionless total energy density (solid curve) in sausage waves at each depth on the tube axis, for andv/A0 p0 p3 p4modes with The dashed and dot-dashed curves denote the contributions due to the internal and magnetic energy, respectively.K
x
\ 1.0.

FIG. 5.ÈDependence of the response $/f on b for di†erent mode orders n, which label the curves, assumingK
x
\ 0.1

most evident feature from the Ðgure is that the response does not increase monotonically with b but has a maximum, as was
noted in which shifts to lower values of b as n increases. When yields° 4.3, K

x
] 0, equation (49)

$
f
D

b
b ] 1

g2 as K
x
] 0 , (52)

where g is given by It can be shown that the value of b for which $ has a maximum is given by the solution ofequation (25).
the following cubic equation :

2(1 ] 100K
e
2)b3] 3(1 ] 100K

e
2)b2[ 60b [ 36 \ 0 . (53)
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It turns out that the value of obtained from is somewhat larger than the one given byb' equation (53) equation (29).
predicts that the largest value of is 5.09, which occurs when in contrast to found fromEquation (53) b' K

e
\ 0, bmax\ 4

From we can easily verify that decreases as increases and that the values of agreeequation (29). equation (53), b' K
e

b'with those found from Figure 5.
We now consider the variation of $/f with for di†erent values of b when is small. This is shown in by theK

e
, K

x
Figure 6

solid curves, where the values of b are used to label the curves. The dotted curve shows the variation of the p-mode frequency.
We have assumed the default parameters and have chosen similar to the previous case. We Ðnd once again that theK

x
\ 0.1,

response does not increase monotonically but goes through a maximum, and thereafter it decreases with Also, theK
e
.

maximum value of the response maximum increases as b decreases. In order to understand this, let us recall that $D g2 for
with g given by Thus, the maximum of $ and g occurs at the same value of which is givenK

x
] 0 (eq. [52]), equation (25). K

e
,

by values of decrease as b increases and are in excellent agreement with those found fromequation (28).The K
e,' Figure 6.

Substituting into we Ðnd that the response has the following b-dependence :equation (27) equation (40),

$'
f

D
1 ] b

b(6 ] b)2 as K
x
] 0 , (54)

where is the maximum value of the response. In view of the above, decreases as b increases. This situation is in$' $'contrast to the one discussed in the preceding paragraph, where we found that for sufficiently small values of the responseK
e
,

increases at Ðrst with b and subsequently decreases. We Ðnd, therefore, that the value of or the mode order, inÑuences theK
e
,

b-dependence of the response.
Finally, let us consider the dependence of the line width on and ). Let us recall from that ! is the ratio of theK

x
° 5.2

time-averaged power going down the tube (which approaches a constant at large depths) to the time-averaged p-mode energy
density in the external medium. shows !/) f as a function of for the n \ 2 mode for two values of b, which areFigure 7 K

xused to annotate the curves. The values of )2 corresponding to are given on the top horizontal axis. We Ðnd that theK
xgeneral behavior of the curves is very similar : a gradual increase of !/) f with at low values of the horizontal wavenumberK

xto a maximum and then a sharp fallo† with For small the line width increases with b. Let us Ðrst understand theK
x
. K

x
,

variation of the line width with by examining the time-averaged energy Ñux at large depths, given by ForK
x

equation (47).
(see and g is given by Thus, in this limit, is independent of UsingK

x
] 0, )] K

e
2] 14 eq. [23]), equation (25). SF

z
T K

x
.

it is easily veriÐed that for small For large it can also be shown thatequation (50), K
x
, !/) fD constant] O(K

x
2). K

x
,

!/) f DK
x
~7.

Let us now consider the e†ect of changing b on the line width. From we Ðnd that the b-dependence ofequation (47), SF
z
T

can be expressed as

SF
z
T D g2 b

(b ] 1) J1 ] cb/2
D (1] b)

b
J1 ] cb/2

, (55)

where we have considered the limit and used for g, assuming that b D 1. In this limit, and hence !K
x
] 0 equation (25) SF

z
T

FIG. 6.ÈVariation of the response $/f (solid curves) with for di†erent values of b (which label the curves), assuming The upper horizontal axisK
e

K
x
\ 0.1.

denotes the values of n corresponding to The dotted curve denotes the frequency variation of the p-mode when is Ðxed.K
e
. K

x
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FIG. 7.ÈDependence of the line width !/)f on the horizontal wavenumber and frequency )2 (upper horizontal axis) for di†erent values of b, whichK
xlabel the curves, assuming n \ 2.

increase with b. However, when b becomes sufficiently large, then g D 1/b, and it follows that SF
z
T D b~5@2.

7. DISCUSSION

We now discuss some of the main features of our calculations, keeping in mind the limitations of the equilibrium isothermal
atmosphere, which is at best reasonable for a few scale heights in the photosphere, but not in the convection zone. An
important Ðnding of the present investigation is that no resonance condition appears to exist that would lead to the tube
having an inÐnite or sharply peaked response for a certain choice of parameters. For the unstratiÐed case, a resonance can
occur when i.e., when the vertical wavenumbers in the tube and external medium are equal. This follows fromk

e
\ k, equation

in the limit a ] 0, so that(15)

m D (k
e
2[ k2)~1 . (56)

However, for a stratiÐed atmosphere, no such condition exists, as has been shown through a detailed analysis of the behavior
of The absence of a resonance condition was also noted by et al. and & Bogdanm

z
. Bogdan (1996) Hasan (1996).

Furthermore, it is found that for p-modes of Ðxed radial order, the response of a tube typically increases with the horizontal
wavenumber or mode degree up to a maximum, followed by a sharp decrease. As the radial order increases, the peak in the
response shifts to a lower degree. Physically, this behavior is a consequence of the fact that a large response requires that the
eigenfunctions of the forcing p-mode and the excited tube wave remain in phase over a signiÐcant extension of the tube. This
e†ect is buried mathematically in the functional form of given by As increases, the depth dependence ofm

z
equation (15). K

xthe external and internal wave eigenfunctions shows a decrease in phase correlation, so that the integrated e†ect over the
extension of the tube is negligibly small.

For modes of low degree, but di†erent orders, the response increases with or the radial order n up to a maximum andK
ethen decreases. The maximum value shifts to lower values of n as b increases. Also, for low degree modes of a Ðxed order, the

response exhibits a peak at a value of b that lies typically in the range 0È5.5.
Let us now consider the application of our results to intense Ñux tubes on the Sun. It is convenient to assume that the z\ 0

level is at the temperature minimum in the external solar atmosphere, so that the base of the photosphere is located
approximately at z\ [500 km. We choose a pressure scale height such that the acoustic cuto† frequency corresponds to the
frequency associated with 5 minute oscillations. This yields a scale height H \ 256 km and a sound speed of 10.7 km s~1. Our
lower boundary is at z\ [40H, which translates to a depth of about 104 km. This is the location of the lower turning point of
the acoustic cavity, where vanishes. We justify this assumption on the grounds that the temperature increases in them

zconvection zone, which in our model is idealized as a sudden jump in temperature at the lower boundary. According to the
model atmosphere of ProÐtt, & Thompson the sound speed at our lower boundary is roughlyChristensen-Dalsgaard, (1993),
37 km s~1 (for c\ 5/3). For p-modes in the 5 minute range, only modes with cm ~1 or with degreek

x
º 6.310~9 (K

x
º 0.16)

lº 439 will be reÑected at the lower boundary. This limits the applicability of our analysis to p-modes with degrees greater
than the above value.

Regarding an appropriate choice of b, we appeal to semiempirical models and theoretical calculations that suggest a value
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FIG. 8.ÈVariation of the line width !/u with p-mode frequency (in mHz) for two values of n, which label the curves, assuming b \ 1.0 and f\ 0.01

of b in the range 0È1. The Ñux-tube models of & Kalkofen and the analysis of Hasan, & KalkofenHasan (1994) Kneer, (1995)
based on these models favor values of b between 0.5 and 1.0, since highly evacuated tubes with, say, b \ 0.1 are too hot. From

we Ðnd that the response has a maximum at for b \ 0.5, which corresponds to a radial order of n \ 19. OnFigure 5, K
e
B 1.5

the other hand, when b \ 1.0, we Ðnd that the maximum shifts down to n \ 10. It thus appears that for p-modes with
frequencies in the 5 minute range and with degrees of a few hundred or more, the response is appreciable for modes of
moderate order (say, n \ 20). The response of the tube to modes with high order or l larger than several hundred drops o†
very sharply. The values that we have given are rather crude, given the limitations of the model.

We now turn to a comparison of the line widths that we have calculated with observations. shows the variation ofFigure 8
!/u as a function of frequency, assuming b \ 1.0 and H \ 256 km, or an acoustic cuto† frequency of 3.3 mHz. The numbers
above each curve denote the mode order. Following et al. we choose a Ðlling factor f \ 0.01 that is appropriateBogdan (1996),
when b D 1. The curve for n \ 3 begins at a higher frequency, as is to be expected from or from the dottedequation (21),
curves in Let us compare our results with Figure 9 of et al. which shows theoretical (for a polytropeFigure 2. Bogdan (1996),
with an index of 1.5 and b \ 0.1) and observed (using the data of line widths. We Ðnd that our calculationsKorzenik 1990)
yield a line width that is typically between 10% and 20% of the observed values for the n \ 2 and n \ 3 modes, respectively.
However, as the frequency increases, we Ðnd that the line widths decrease, whereas the observations and also the results of

et al. suggest the opposite trend. We should point out that our calculations do not include the e†ect of the kinkBogdan (1996)
mode, which according to et al. becomes more important as b decreases. However, as pointed out by them,Bogdan (1996)
p-modes tend to excite mainly sausage modes in Ñux tubes with b B 1. Nevertheless, it would be interesting to see the trend of
the line widths when the kink mode is considered. This is presently under investigation.

8. CONCLUSIONS

The response of a Ñux tube to forcing by external p-modes has been examined. At the outset, it is important to emphasize
that the primary motivation of the present study is not to present results that can be applied directly to observations. Rather,
the aim of this investigation is to attempt an insight into the nature of the p-mode interaction with Ñux tubes. For
mathematical tractability, the idealized case of an isothermal atmosphere has been considered. Although this assumption is
not realistic for the atmosphere below the photosphere, it has the advantage that it enables us to solve the equations
analytically and thereby understand in detail the factors a†ecting the response of a tube to bu†eting by p-modes. This
calculation in some ways complements the work of et al. where a more realistic stratiÐcation was used, whichBogdan (1996),
enabled them to make a comparison with p-mode data. However, their analysis is less tractable mathematically and involves
complicated transcendental functions. The present analysis has the advantage that it puts the mathematical treatment in a
simple and transparent manner since the response can be examined using fairly simple analytic expressions.

Despite the limitations of assuming an isothermal stratiÐcation, it is tempting to attempt a comparison with observations of
p-mode line widths. For p-modes in the 5 minute range, the line widths cannot be explained solely by the loss of energy
through conversion into tube wavesÈthis result appears to hold even when the inÑuence of the f-mode on tube kink waves is
included et al. As pointed out by the latter authors, additional processes such as collective e†ects, energy(Bogdan 1996).
leakage at the upper boundary, and mode-mixing could lead to an increase of the line widths. However, although the e†ect on
line widths of p-mode absorption is probably at most 20%È30%, it may be an important mechanism for the excitation of
Ñux-tube oscillations. In future studies, we hope to consider the question of whether sufficient energy can be accumulated in
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these oscillations to be relevant for chromospheric heating. As a Ðrst step, one can work within the framework of the thin
Ñux-tube approximation, despite its limitations at chromospheric heights. Eventually, a two-dimensional calculation would
be required in order to properly treat the Ñaring geometry of the magnetic Ðeld and also to take into account the back-
reaction of the tube oscillations on the p-modes.

Another question for future work that will be considered in detail is a solution of the time-dependent equations, which
involve formulating the interaction as an initial-value problem. Some work has already been done in this respect (Hasan

but clearly more exhaustive calculations are needed, which we hope to take up in subsequent papers. Also, it is of some1995),
interest to assess the importance of nonlinear e†ects and compare the linear and nonlinear treatments. This is presently under
investigation.

Finally, we have neglected nonadiabatic e†ects involving radiative transport, which are known to be important in the
photospheric layers and above. Preliminary calculations, in which the nonlinear time-dependent MHD equations have been
solved with radiative and convective transport show that although these processes reduce the amplitude of the(Hasan 1995),
oscillations compared with the adiabatic case, they do not alter in a qualitative way the essential results stated above. This
problem is also currently under examination.

In conclusion, the present study is the beginning of a comprehensive investigation into the dynamical interaction of Ñux
tubes with p-modes. It was important to make simplifying assumptions in order to delineate the essential nature of this
process. At best, the analysis presented in this paper suggests a broad scenario for examining this interaction. It is hoped that
subsequent work will be able to reÐne the treatment and raise the sophistication of the model in order to enable a closer
contact with observations.

I am thankful to Tom Bogdan and Tim Brown for valuable discussions and helpful suggestions. Part of the work was
supported under the Visitor Program of the High Altitude Observatory. The National Center for Atmospheric Research is
sponsored by the National Science Foundation.
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