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Expressions for the analytic energy gradients and the nonadiabatic derivative couplings are derived
for the effective valence shell Hamiltonian theofs variant of degenerate/quasidegenerate
many-body perturbation thedrysing the diagonal and off-diagonal Hellmann—Feynman formulas
and a generalized set of coupled perturbed Hartree—Fock equations to evaluate the derivatives of the
molecular orbitals. The method is designed for efficiently treating the energy derivatives and
nonadiabatic couplings for several states simultaneously. The generalized coupled perturbed
Hartree—Fock equations arise because the reference space orbitals are optimized for simultaneously
describing the ground and excited states, a feature lost with the traditional partitioning where the
virtual orbitals provide a poor choice for representing the low lying states. A simple correspondence
emerges between the new generalized coupled perturbed Hartree—Fock and the traditional
coupled-perturbed Hartree—Fock methods enabling the use of the former with straightforward
modifications. The derivatives of the second and higher order portions of the effective Hamiltonian
are readily obtained using a diagrammatic representation that will be described elsewhda@98©
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I. INTRODUCTION diagrams becomes a straightforward process, but the details

. . I . are fairly lengthy due to the large number of diagrams con-
The computation of analytic energy derivatives is essen: y ‘engihy 9 9

o S : S : tributing to HY even in the lowest nontrivial second order.
tial in optimizing molecular geometries, determining vibra- . : .

. . L : . _Thus, this portion of the theory is deferred to the next paper
tional frequencies, and finding reaction paths. The evaluation

. e ; in this series?
of these analytic derivatives becomes a more dauntin tasQ ) .
y ¢ Before proceeding to the theory for the MRPT analytic

both for highly open shell systems and near transition states

U 1 H 1 =
where multireference configurational treatments are neced!’ €nergy derivatives, we note that an important by-product

sary to describe the near degeneracy nondynamical correl§! this approach enables the computation of nonadiabatic
tion. The complexity of multiconfigurational methods for derivative coupling matrix element which describe the break-

highly correlatedab initio computations has until very re- down of the Born—Oppenheim¢BO) approximation when
cently precluded the development of analytical gradient apthere exists a degeneracy or near degeneracy of the elec-
proaches in conjunction with the multireference configuraironic states along the potential energy surface. In such re-
tional perturbational (MRPT) methods whose several gions of space, interconversion of electronic and nuclear en-
formulationg~® have been quite successful in treating highlyergy occurs, and nonadiabatic transitions may proceed
correlated open shell systems. between different adiabatic potential energy surfaces. These
We develop analytical energy derivative methods for thetransitions are responsible for phenomena like photodissocia-
effective valence shell HamiltoniaH), a complete active tion, predissociation, and the quenching of electronically ex-
space MRPT approach of the “perturb then diagonalize”cited states, etc. The interpretation of these radiationless tran-
variety. Thisab initio analytic energy derivative MRPT for- sitions requires computation of th@onadiabatic coupling
mulation is facilitated by two special features of th& matrix elements between the nearly degenerate electronic
method. The use of complete active space implies that thstates as represented either in an diabatic or adiabatic repre-
HY computations proceed by diagonalizing an effective vasentation.
lence shell HamiltoniarH”, and, therefore, the analytical Within an adiabatic formalism, the breakdown of the BO
derivatives may be represented through Hfe Hellmann—  approximation originates, in part, from nonvanishing deriva-
Feynman theorefnin terms of matrix elements of the ana- tive coupling integrals of the forrdW'|(9/dR,)¥?’), and
Iytical derivatives ofH". The latter, in turn, may be ex- <\];I||§2/(9Ri\1f‘]>e, WhereRa is an appropriate nuclear degree
pressed in diagrammatic form as derivatives of individualof freedom, the expectation valg, denotes an integration
MRPT many-body Feynman diagrams fdf. Once a suit- gyer electronic coordinatefr), and ¥'=¥'(r;R) is an
arble' diagrammatic represgntation is introduceq fqr the degjgenfunction of the BO Hamiltonian. The coupling
rivatives of the Feynman diagrams, the determination of th?‘P'|(a/(9Ra)\PJ)e is of prime importance in describing
nonadiabatic phenomena. The diabatic representation for-
dpresent address: Indian Institute of Astrophysics, Bangalore 560034, Indianally incorporates a portion of the nonadiabatic derivative
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couplings by implementing one of several diabatizationpotential energy surfaces require the evaluation of the nona-
schemeX 12 which transform the adiabatic BO potential en- diabatic derivative couplings between the excited states.
ergy surfaces to a basis where a dominant portion of the Essential to the calculation of the nonadiabatic couplings
nuclear derivative coupling are removEdThe derivative and energy gradient is the computation of the orbital deriva-
couplings between the diabatic states are then treated by thiges with respect to the nuclear displacements. While the
evaluation of the configuration interactid€l) matrix ele- orbital derivatives are generally obtained from the solutions
ments coupling the states. Unfortunately, diabatization canef coupled-perturbed Hartree—Fo®PHP equation®** or
not completely remove the derivative couplings, and there i€ouple-perturbed multiconfiguration self-consistent field
poor understanding concerning the influence of the residuglCP-MCSCH equationg?~** acquiring orbital derivatives
derivative  couplings within  various diabatization for theH” method presents a more complicated task because
schemed! 13 this approach introduces a set of orbitals designed to mini-
The direct computatiofthrough numerical or finite dif- mize the perturbative corrections for the low lying electronic
ference techniqué$d of the derivative couplinggor en-  excited states. The first ordel’ computation corresponds to
ergy gradientsrequires differentiation of the electronic wave a complete active space Cl treatment, which, in principle,
functions with respect to the nuclear coordinates, a very exprovides upper bounds to all state energies, but which, in
pensive and cumbersome procedure for molecules with mongractice, can be expected to be reasonable accurate only for
than two atoms where separate numerical derivatives anhe lower lying states. The traditional choice of some active
needed for each degree of freedom. Alternatively, theserbitals as virtual orbitals from a ground state SCF compu-
nonadiabatic coupling terms can be evaluated directlyation introduces low lying virtual orbitals that are, at best,
through the use of the Hellmann—Feynman theorem or theuited for describing the negative ion and not the low lying
Sidis formulal® provided the wave functions are exact. Re-excited states of interest. Thus, those active orbitals not oc-
cent advances in analytic gradient methods for differentiatingupied in the ground state SCF approximation should be cho-
energy functionals have enabled the direct evaluation of theen as more representative of orbitals suitable for these ex-
nonadiabatic derivative coupling matrix elements for poly-cited states. One possible choice emerges from restricted
atomic moleculed’~?2 The analytic evaluation of energy single excitation Cl computations where excitations are only
gradients and nonadiabatic derivative couplings involves th@ermitted from the highest occupied ground state offital
direct computation of derivatives of the molecular orbitals(HOMO), but a simpler and often equivalent approach in-
and of the CI wave functions with respect to the nuclearvolves using improved virtual orbitalgvOs) in the H” va-
degrees of freedom. Considerable effort has enabled evallence space. These IVOs are generated by single orbital SCF
ating these derivatives for various self-consistent fi8léh, optimizations in which the Fock operator is defined by pro-
Cl, and single reference perturbatit®RPT methods-"?>=26  moting an electron from the HOMO into the orbital being
Typically energy gradient calculations are performed for theoptimized, while all previously determined orbitals are kept
ground electronic state, but these calculations can, in prinfrozen. Hence, the resulting IVOs are eigenfunctions of a set
ciple, be performed for the excited states as well. The evaluef Fock operators which all differ from the ground state Fock
ation of nonadiabatic derivative couplings emerges as an exaperator. Since the IVOs and the ground state occupied
tension of the energy gradient methods. However, MRPTHartree—Fock orbitals appearing in the8 calculations
treatments have not been available for the evaluation of an@merge as eigenfunctions of different Fock operators, the
lytic energy gradient and nonadiabatic derivative couplingsanalytical derivatives of these orbitals can, in principle, be
in part, because of the complexity of all MRPT methods andbbtained by an extension of the single Fock operator based
of the prior widespread mistaken belief that the “diagonal-traditional CPHF approaches. This extension actually re-
ize, then perturb” methods are unsuitable for computing glo-quires far more theoretical analysis than the evaluation of
bal potential energy surfaces. analytical derivatives of théd” energy diagrams, so the
The present work provides the first formal treatment ofpresent paper focuses on this portion of the theory.
analytic energy gradients and nonadiabatic derivative cou- Section Il briefly outlines required elements of thi&
plings using a “perturb, then diagonalize” multirefereratl®  theory. Section Il describes the treatment of the energy gra-
initio approach, the effective valence shell Hamiltoni&ff)  dients and the nonadiabatic derivative coupling matrix ele-
method. TheH” method formulation of multireference per- ments within theH" formulation. Because the exaét®
turbation theory has been demonstrated to be accurate fgields exact eigenvalues of the full Hamiltonian, the deriva-
calculating atomic spectrd, ?° diatomic potential energy tive formulation should, in principle, approach the exact de-
curves®®3! and the electronic spectra of conjugated  rivatives as the perturbative order increases long as the
electronic spectra at their equilibrium geometri&s* Re-  series convergé%*). More practically, however, thel® is
cent calculations for global potential energy surfaces ofdesigned to produce accurate energies at low orders of
CH5SH,*® H,S,*6 CaOH®" and GH™ (Ref. 38 demonstrate truncatioff®*” where accurate derivatives and nonadiabatic
the ability of the method to generate the ground and excitedouplings should likewise emerge. Section IV describes the
potential energy surfaces simultaneously from a single commultiple Fock operator based coupled-perturbed Hartree—
putation for quite nontrivial molecular systems. The calcula-Fock method that is necessary for evaluating the energy gra-
tions for CHSH and HS vyield insight into experiments dients and nonadiabatic couplings within th® method.
probing the nonadiabatic photodissociation dynarfiidsyut  Similar methods may be used to deal with the orbital deriva-
fully ab initio quantum scattering calculations upain initio  tives for methods which introduce more complicated defini-
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tions of orbitals and zeroth order Hamiltonians, and the so#l. HY APPROACH FOR THE DIRECT COMPUTATION

lution of the generalized coupled-perturbed Hartree—FoclOF (W'[(d/ IR W)

equations may be represented as a sum to all orders of pak- gasic formalism

ticular classes of diagrams in ordinary MBPT similar to the

description for the traditional caé® Although computations Let ¥'(R) be the eigenfunctions of the nonrelativistic

solely involving geometry optimizations might be treated €ffective valence shell Born—Oppenheimer Hamiltonian

more efficiently usingZ-matrix technique& the coupled- (H®) in the space of zeroth order reference functions

perturbed Hartree—Fock approach used here is simpler for ®k(r:R), k=1, M, i.e.,

first implementation and checking of the theory, and this HY(R)|¥'(r;R))=E'(R)|¥'(r;R)). 3.1)

method is also used because our main interest lies in excited o

state systems whose fub initio dynamics requires compu- Here W'(r;R) is given by

tation of the nonadiabatic couplings. While this manuscript M

was in preparation, a paper appeﬁ?qntoviding analytical Y'(r:R)= 2 CL(R)Qk(r;R), (3.2

gradients in the “diagonalize, then perturb” formulation of k=1

Hirao. Their approach is quite different from the present ongyhered,(r;R) are the symmetry adapted configuration state

and does not use CPHF methods to obtain the orbital derivgynctions (CSFg and C(R) are their corresponding coeffi-

tives. cients(Cl coefficien}. Therefore, the CS®,(r;R) can be
expressed in terms of Slater determinants containing ortho-
normal molecular orbitalg,(r;R),

Il. THEORY

D (r;R

1
_ k _—
=2 m
N!

x; (—1)PP{1(1) $2(2)--- P (N)},

Perturbation theory begins with the decomposition of the
molecular electronic HamiltoniaH into a zeroth order part
Ho and a perturbatioV,

H=Hy+V, (2.2

(3.3
whereH, is constructed as a sum of one-electron Fock op-

erators. The full many-electron Hilbert space is then parti-Wherep IS & permutation operator amnf; areR-independent

. ; . Clebsch—Gordan-type coupling constants. Further, the mo-
tioned into a primary spacalso called model or reference lecular orbitals can be written as a linear combination of
spacé with projectorP and its orthogonal complement with : ) )

projectorQ=1—P. The P space spans the valence space Otatom centered basis functios(r;R),

all distinct configuration state functions involving a filled a

core and the remaining electrons distributed among the va- ¢a(r;R):2| F(R)x(r;R), 3.4
lence orbitals in all possible way to ensure completeness of

the P-space. Hence, ﬂ’@_space contains all basis functions Whel’et‘l?1 are the molecular orbital expansion coefficients.
with at least one core-hole and/or one occupied-excited or- Because the eigenfunctiods’(r;R) are obtained by di-

bitals. TheH” method transforms the full Schrodinger equa-agonalizing the effective Hamiltoniaid”, the diagonal and
tion, off-diagonal Hellmann—Feynman theorems may be used to
represent energy gradients and the derivative coupling matrix
H¥Y, =EV,, (2.2 elements, respectively. Hence, differentiating E3j1) with
. ) ] respect to the nuclear coordind®and then projecting the
into the P-space effective valence shell Schrodinger equagerivative onto®’(r;R) yields the desired expressions for

tion, the nonadiabatic coupling matrix elements,

HUWP=EWY, 2.3 ; I
P(r;R) ﬁllf (r;R)
where the valence space projectiob$=PW¥; are the pro-

jections of the exact eigenfunctions and the energiese =[E’(R)—E'(R)]*?
the corresponding exact eigenvalues of the full Schrodinger JHY(R
equation. TheH” method provides the unique second order X(WI(r;R)| (R) |W'(r;R)), 1#J, (3.5
approximation, IR
1 and the energy gradients,
H'=PHP+ > > [P(A)VQ(E,—Ho) QVP(A') JE'(R) | H'(R)
A,A’ — . 7 .
= (VR —=— [V'(riR)). (3.6
+h.c], (2.9

Since the exadd? in Eq. (3.1) yields the exact energids,
where h.c. designates the Hermitian conjugate of the preced-appears that the exakt’ and its eigenvectors produce the
ing term andP(A) designates the projector onto the valenceexact derivative couplings and gradients in E@s5 and
space basis functioa). (3.6), respectively. However, the high quality of low order
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HY computations of energies, dipole moments, and transitio | J
dipole moments lends confidence that low order derivative C'(R)| —=— C(R)

should display similar high order accuracy. Indeed, the first

order treatment corresponds to a CASCI computation, and _ JH

the second ordeH" provides both dynamical and nondy- =[E'R)-E(R)] (CR)| aRa)|C|(R)>CSF'
namical correlation corrections. The general formulas pre- (3.12
sented in Eqs3.5—(3.6) and below involve derivatives with  The second term on the right-hand side of E3j12 can be
respect to nuclear positions, but, more generally, these d%’ecomposed further into two parts,

rivatives may be taken with respect to any parameter in the

original Hamiltonian, including derivatives with respect to c(R) dH*(R) c'(R)
an external field. iR,

CSF
=(CAR)[H**+H"U(a)|C'(R))csr, 3.13

where H“ is the derivative with respect tR, of the HY
Hamiltonian matrix in the CSF basis and the second term
represents the contribution from the orbital derivatives part

Given the definitions of thél” eigenfunctions?'(r;R)  which enters through the matrld(«) defined below in Eq.
from Eq. (3.1), the evaluation of the nonadiabatic coupling (3.15).

matrix and energy gradient elements requires the computa-  Since theH" matrix is represented as a perturbation ex-
tion of the derivatives of these eigenfunctions, pansion,

B. Formal structure of the nonadiabatic coupling and
energy gradient matrix elements

HY=HvO 4 ’r]HU(l)+%7]2HU(2)+"‘ ,

derivatives must be taken of each individk#l matrix ele-
ment in order to apply Eq3.13. Because the matrix ele-
7 P >) (3.7)  ments contained i ?©@+HU@) are just matrix elements of
R, ') ' the original HamiltoniarH in the valence space, each matrix
element ofH*(®+ H*() can be represented in terms of one-
electron f;;) and two-electron djj) integrals in the mo-

9 lecular orbital(MO) basis and of the CSF expansion coeffi-
<\IfJ(r;R) ﬁ\lf'(r;R)> cientsmk. These one- and two-electron molecular orbital

“ integrals are essentially constructed by transforming the one-
= < (o

\&ia ‘I"(r;R)>=Z (aiRa c:)|q>|>
+EI C,'(

The corresponding matrix elements decompose as

d and two-electron atomic orbital derivative integrals into the
R P (3.8 molecular orbital basis. Because the matix®+H*™@) is
a e

J
| JI
&Rac> +% ckc,<c1>k

CSF simply a complete CI for the valence space, the representa-
which is written in more compact notation as tion of the derivatives 4/JR,) (H"®+H"®),; in terms of
the atomic orbital integral derivatives is already well
<\PJ(r_R) i \If'(r'R)> knowr?°’51§1nd.need not be repeateq here. The'representation
' IR, ' of the derivatives of the perturbation corrections, such as

g cer (9l9R,)(HY®@),,, is considerably more complicated and
=D¥(J,1,a)+D~"J,1,a), (3.9 will be the subject of a subsequent paper. Suffice it to say
whereDCY(J,1,a) andDCSJ, 1, a) represent the Cl and or- that the diagrammatic representation (%) enables us to

bital derivative contributions to the nonadiabatic coupnngie("’_"i‘(?z)‘; d'agtfcammatlc method for determining th&R,)
. . . 13 .
fr?)ﬁéc\)/(se;?r?;;tz,yrzstﬂﬁglie\l]y’ and where the energy gradient JThe first tfarm on the right-hand side. of E¢B.13
Use of Eg. (3.3 simplifies the evaluation of [{C (R_)|H”“|aC (R)>C§F] may be expressed in terms of the
DCSRJ,1,a) which can be expressed as derivatives {jj and Gijii » respectlvely_ of the one-electron
(hij) and two-electron integralsy(j,) in the molecular or-
bital basis, i.e.,

DCSRI 1L, a)= W bld,|d), 3.1

( @) ; 7k|<¢k| |¢|> (3.10 (CJ(R)|H”“|C'(R)>CSF

where yﬂ]' is the one-particle transition density matrix and _ Ilna Il

the operatod,, is defined as _.EJ: Y hi +2i,j§,I;,l D Gijua | 319

P where the contributions frorh*® andH*™ yield y}' and
da(D] (1)) = 22— [ilri)- (31D 1}y as the one- and two-particle transition density matrix
“ elements while the additional terms arising from derivatives

The CI contributionD(J,1,&) may be determined directly of H*() will be provided elsewhere. The derivativie§ and
by differentiating the perturbative expansion of tih& Jiji of the molecular orbital one- and two-electron integrals
Hamiltonian with respect to the nuclear coordinaesand are obtained as in prior derivative treatments by transforming
then by evaluating the scalar product in the CSF space, i.ethe derivatives from an atomic orbital basis as described in
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the next subsection. The second term on the right-hand side 000 0 :
of Eq. (3.13 involves the orbital derivative matri;; () Hy'=Fn'+Vy :az:') (alF*”[b){azap}
which is given by '

1
(CURIHU()|C'(R)es=23 LUy (@), (319 2, g (abllcd{aalaal,

where (3.19

. N . whereF(?) and V{?) are the unperturbed Fock operator and
Ly :Ej: Yij hri+2j§k‘1 Ui ek 316  the antisymmetrized two-electron repulsion operator in the
N _ _ unperturbed molecular orbital basié®’=|a). The operators
and where the transition density matrix elemenfs and  (ala,1 and{alajaga,} are normal-ordered second quantized
[j again appear. The orbital derivative matti;(a) sat-  gperators written in terms of creatiom) and annihilation
isfies the equation (a,) operators. The notation for the molecular orbitals is as

J follows:
a?)l)(k(am’ (@ The indicesa,b,c,d,r,s,t,usigni it-
@ ,b,c,d,r,s,t,usignify any molecular orbit
(3.17 als.
The indicesi,j,k,| indicate occupied orbitals in the
ground state reference configuration.
¢) The indicese, B, y denote improved virtual orbitals

d .
IR, | #1(@)= 2 [U(a)¢(0)+ i

where Eq.(3.4) has been used to express the orbital deriva-(b)
tive on the right-hand side in terms of atomic orbital deriva-
tives. The matrixU;;(«) is, therefore, determined from a
generalized set of coupled perturbed Hartree—RG&E&PHA (IVO_S)' _ ) i

equations. This generalization involves the use of multiple(d) The |nd|cesr1j,ndfanote orb|talls wh|ch are not IVQS'
Fock operators because the unoccupied valence orbitals (€ P andq specify virtual or excited orbital, respectively.
are chosen to represent low lying excited states and, conse- The atomic orbital basis functions are designated by the
quently, are not eigenfunction of a Fock operator with aindicesu, v, 8, 7.

single potential. This appearance of multiple Fock operators  The first order Hamiltoniam () ,

represents one unique aspect of the theory that differs from

the standard CPHF formalism for analytical derivatives. AHN(N)

Thus, the next subsection briefly outlines the multiple Fock fojl): an

operator GCPHF scheme that has been implemented in the A=0
computation of the molecular orbital derivatives contributing .

to the energy gradients and the nonadiabatic coupling matrix = ;} (al F| dp) {a}an}
elements. ’

1
+achd 7 (Badl| bcda) {azalasar  (3.20

C. CPHF equations for multiple Fock operators

One approach in obtaining the molecular orbital deriva-.qntains  the  derivatives F(lb):<¢ |F|¢b>(l) and
. . . . a
tive integrals, necessary for the analytical evaluation of en< badyl| b of integrals in tr?e molecular orbital basis.

ergy gradients and the nonadiabatic coupling matrix eleExpansion of the molecular orbital,(\) in the atomic or-
ments, using thed” method (as discussed in the previous piia| pasis ()
“

section requires the computation of the various derivative
matrices as in the methods developed by Gerrat and Mills
and by Popleet al}” in their studies of energy derivatives in da(N)= 2 Cua(M)xu(N) (3.21)
Hartree—Fock and Mer—Plesset theories. We begin this #
subsection following the general approach of Gerrat and , ] .
Mills for deriving the appropriate set of CPHF equations forcléom\/;irtf rthe flrstt tdetrr:vatlvigb:boiith: Forcl:nr&a.trr:;( element
single configurational problems in order to derive some nec- ab espect 1o the perturbation parametanto

essary relations, particularly relating derivatives of the mo-

lecular orbital integrals to atomic orbital derivatives. FO= V>

The normal-ordered Hamiltonian for a system in pres- 2

of
MZ/ CZaCyb{<M| 5N V>+<ﬁ‘f
ence of a perturbation is represented as the expansion
HyN)=H—(0[H|0)=HP + AH{ + ]N2H@ +- -

v aC*,
Houlfl= )+ =2
(3.18
where\ is the perturbation parameter af@ is the single X{ ulflv)
configurational reference space function. When the perturba-
tion \ is taken to correspond to a shift in molecular geom-

etry, the derivativeH (Nl) is related to the quantity of interest. while the first derivative of the antisymmetrized two-electron
The unperturbed HamiltonialAd (No) is given by repulsion integral becomes

Ip

, (3.22

A=0




9690 J. Chem. Phys., Vol. 109, No. 22, 8 December 1998 Chaudhuri, Stevens, and Freed

o wv||57) where theC,,;(0) are the MO expansion coefficients at the
(abllcd)V=| > C*.C5C,iCs — undisplaced geometry, i.e., at=0. Substituting Eq(3.27)
g0 into Eq.(3.26 and comparing with E¢(3.28 shows that the
9(C%aCC aCosc) determination of the derivatives of the, (\) matrix per-
+ Y (vl 6m) : mits the computation of the derivatives of thedependent
A=0 basis function expansion coefficieris,,(\) through the re-
(3.23 lation
where u, v, etc., are atomic orbital basis functions and the
{C} are the molecular orbitalMO) expansion coefficients. Cua()\)zzv: CLn(0)U a(N). (3.29

The first term on the right-hand side of E®.22 contains

the derivative of the Fock operatér the second and third We, therefore, evaluate the derivatives of theg,(A) matrix
arise from the derivatives of the atomic orbital basis func-employing a method similar to solving the CPHF equations.
tions; and remaining two terms contain the derivative of thelhis method also avoids the direct evaluation of the MO
MO coefficients. Similarly, the first term on the right-hand coefficient derivatives. The evaluation of,,(\) is accom-
side of Eq.(3.23 involves the derivative of the two-electron Plished by deriving a set of CPHF equations that is particular
matrix element in the atomic orbital basis, while the second© the orbitals used in thel” formalism.

term emerges from the derivatives of the MO coefficients. As  Although the IVOs are determined from different Fock
noted above the derivatives of the one and two-electro@perators, the set of Fock operators used to generate all or-
atomic orbital integrals are readily available from previousbitals may be combined formally into a single Fock operator

works32-%4 by using projection operators. This singledependent Fock
The molecular orbital derivative required for evaluating Operator describes all the improved virtual orbitaésmoving
Egs.(3.14 and(3.15 is of the general form, under the influencef an excited state potential identical to
that used in their generation, while the remaining orbitals
<¢a(7\) a¢b(k)> (3.24  ©xperiencahe typical ground state Fock operator. Our deri-
on |’ vation of the GCPHRgeneralized CPHFequations closely

where ¢, and ¢, are any twok-dependent molecular orbit- follows the notation of Popleet al™*’ For this purposej

als. The expansion E¢3.21) enables Eq(3.24) to be repre- represents the nuclear coordinate, a0 is the molecular

sented likewise in terms of atomic orbital derivatives and the9€ometry at which the orbital derivatives are to be evaluated.
MO coefficient derivatives as We reiterate for emphasis that the core, excited, and oc-

cupied valence orbitals are defined as the eigenfunctions of a

\ dp(N) _S ot c v ground state Fock operatdr+GN, where h is the one-
$a(M) IN | & TmaTb N electron part of the Hamiltonian an@" contains all the
Coulomb and exchange interactions. The IV@alence or-
« 9Cup bitals not occupied in the ground state configuratiane

+> Cr, 8- (3.29 ; . N_T :
R I\ * eigenfunctions of other Fock operatohst G as dis-

cussed in the Introduction. The use of projection operators
enables the construction of a singledependent Fock opera-
tor whose eigenvectors provide all the molecular orbitals
rom

While the evaluation of the derivatives of the primitive
atomic orbital basis functionfthe first term on the right-
hand side of Eq(3.25] is trivial,'® the direct evaluation of
the derivative of the MO coefficient€ ,,(\) [the second
term in Eq.(3.25] is rather cumbersome. Hence, it is con-  f(A\)=h(\)+P,;GN(A\)P;+Q,GN1(M)Qy, (3.30
venient for evaluating the latter derivative to expand the per-

turbed molecular orbitalg, in the basis of unperturbed mo- where the prOJector_onto_ thr—iIVOs Ql. while that onto all
. (0) other molecular orbitals i®,=1—-Qq, i.e.,
lecular orbitalsey ™,

60=3 U ne0=S U ey, (3.2 P1=2 [$n(M)(dm(M] Q=2 [4,00) (&M,
. # (3.30

thereby returning to the computation of the matlx ,(\)

. : ) and the potentials are written as
introduced in Eq(3.13. Expanding the unperturbed molecu-

lar orbitals ¢{*) in a basis of the perturbed-dependent N
atomic orbital basis GN:Z (di(M)|v] di(N));
_ (3.32
$'=2 CLi(0)x,(N), (3.27 <
w GN 1= 3 (0ol 4i00),

the perturbed molecular orbitab,(\) can be expressed in

the perturbed atomic orbital basis as where the second sum omits one electron from the highest
occupied molecular orbital in the ground state reference con-
_ figuration. Equatior{3.30 containsh as the one-electron op-
N)=2, C,a(\ N, 3.2 _ ;
$a(M) % na(MX(N) (328 erator, the operatop=ry,’(1—P;,) represents the differ-
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ence between the direct and exchange potentialsRyitlthe

permutation operator for electron coordinates 1 and 2.
Using the resolution of identity K;+Q,=1), Eq.

(3.30 can be converted to the more convenient form,

f\)=h(\)+GNN) = QNN - GN(MQ,

+Q,GN(M)Q;+Q,GN (M) Q;. (3.33

Expansion of the projection operat@; in terms of unper-
turbed MOs using Eq(3.31) transforms Eq(3.33 into the
explicit representation,

fN)=h(\)+GNN) =2 U MUZ(M)]e)(c|GNN)
—CE U MUZ MGV [e)(c|
+CdE , UcaMUZ(MUgg(MUZN)] )

X(ClGNMld)(l+ 2 UeaMUZN)

X Ugg(MUgg(M)]e)(c|GNH\)[d)(d]. (3.333

The projected Fock operaté(i\) acts upon core, excited, and
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fabm):hab(x)w?b(x)—gc [Uaa(MUE(NGE(N)
+ G (MU(MUE, (V)]
+ BEcd Uaa(MUE MGV

+Ggg "(M)1UggMUggN), (3.363

where the ground state potential is

N all

oM =2, 2, [(acllbi)Ug(n) +(ail[be)Uci(h)]

N all
=§l ;l [(ac|[bi)+(ail[bc)]Ug(N),  (3.37

while the VN1 potential for the IVOs is

N—-1 all

Gay M= 2, 2, (ad[bHUG(\) +(aillbe)Uci(M)]

N—-1 all

=21

. [(acllbi)-+(aillbe)1Ue(n).

(3.3

ground state occupied valence orbitals with what is formally .
an N-electron potential. However, a direct and exchange in-The notatl_or‘(cd||rs):<cr|ds_)—<cr|s.d> represents the an-
tegral cancel when acting on any of the ground state occutisymmetrized two-electron integral in the unperturbed MO

pied orbitals, leaving, in effect, amN( 1)-electron potential.

basis with the two-electron integrétd|rs) given as usual

The operatoff(\) is constructed to act on the IVOs with an by

(N—1)-electron potential in which an electron has been re-

moved from the highest occupied molecular orbitdODMO)

of the ground state(The latter is equivalent to using an

1
_ (0)(1) (0 ©
(Cd|f5>—f f de (L) (2) - ¢q (1)

N-electron potential that is formed by placing the removed X ¢ (1)dr(1)dr(2) (3.39
S . .

electron into the IVO to be optimizedThus, our task is to

derive analytical orbital derivative formulas for the eigen-

Now differentiating the Fock operatdEg. (3.36) or its

functions off(\). Note that the general practice of averagingexpanded from given in Eq3.363] with respect to the

valence orbital energies in thé" calculations is relevant to

obtain these orbital derivative formulas.

Several key equations from Popé¢all’ also apply for
the projected Fock operator of E¢3.30. Assuming, for
convenience, that thd(\) are real, Eq(37) of Popleet al.
allows us to write

USH+ULY + S =0, (3.39

where Uglb) is the derivative[ (d/dN)U p(N) ] =0 We seek,
while S is the derivative] (a/d\){ a(N)| dp(N))Tx—o OF

nuclear coordinata and substituting it in Eq(3.35 yields
three sets of CPHF equations among which there is only one
independent set of GCPHF equations that couple the VO
(¢o)—non-IVO (¢,,) blocks of orbitals(the latter includes
occupied and excited orbitaland two linearly dependent
sets of equations that couple the IV@{)-IVO (¢4) and
non-IVO (¢.,)—non-IVO (¢,) blocks of orbitals, respec-
tively. The GCPHF equations coupling the non-IVO
(¢m)—non-IVO (¢,) orbital blocks implicitly contain two
additional sets of linearly dependent GCPHF equations

the molecular orbital overlap matrix. Another useful Which connect the occupied—occupied and excited—excited

relation” used here is
(1) _ g1 _(0)
(1>:m (3.39
ab 6;0)_EE)0) ' '
Consider now the general matrix element

fan(N) =(dL[F(N) | pLY) (3.39

block of non-IVO orbitals.

Case (1):The orbital ) is not an IVO(i.e., #)) but
$ is an IVO (i.e., (V). In this case, differentiation of
fap(N) [EQ. (3.36)] with respect to the nuclear coordinate
yields

a
) =— fy (M) =+ > [UMGY T+ GN, ST

my_a)\ ma> ay maSay

of the projected Fock operator between any two unperturbed
molecular orbitals. The matrix element then can be written _; G%nuﬁly)- (3.40

explicitly with the aid of Eq.(3.33 as
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Substituting Eq.(3.40 in Eg. (3.39 produces the desired determined, the evaluation of the{y’, U{" (occupied-
equation for the block o)) coupling the IVO-non-IVO  occupied andU(” (excited—excitefiblocks from Eq(3.43
orbitals as is trivial.
(9= 0 U =1 B O (3.41) _ Case (3):The orbital¢{” and ¢(” are both IVOs.
Differentiating the Fock matrix elements with respect to the
Equation(3.41) represents a set of linear equations whichnuclear coordinata [i.e., (9/d\)f,,(N\)] produces
may be solved for th&J{) block. ThisU{;) block then may

be used to find theJ(}) block from Eg. (3.34. Since the fl)= h<1>2 (UGN T +GN tulH]

solutions for theu(li block does not require knowledge Of

from any other blocklVO—-IVO or non-IVO-non-IVQ, the N-1

equations forU ;) are linearly independent. +> [ULGY T +GN U1+ 2 (ail| gV
Case (2):Orbitals ¢{?) and () are not IVOs. a

Three subcases must be considered }"(e)apgo) iS an occu- N-1 all

pied orbital andg{”’ is an unoccupied orbitalp) ¢{* and + >, > [(aa||Bi)+{ai||a)JUY. (3.44

¢ are occupied orbitals; and) ¢*) and () are excited Pooa

orbitals. Note that in Eq(3.44) for the derivatived}}, all the other

Let us first considersl” and ¢ to be a general non- U@ amplitudes except the ) block are available from the
IVO, i.e., 6, ¢ can be both occupied or excited orbitals prior two cases. Hence, substitution iof; from Eq. (3.35
or only either of them may be occupied orbitals. For thisinto Eq.(3.44 provides the necessary equation for obtaining
case, differentiatind,,(\) with respect to the nuclear coor- the U(l) amplitudes. Thus, to determine thé}) block, it is
dinate\ yields necessary to solve sequentially for the IVO— IVO occupied—
excited, occupied—occupied, and excited—excited blocks.

N all
fao=hip+ 2, 2 [(aillbc)+(acl|bi)]Ug

IV. SUMMARY
+2 (ai”bi)(l)_z [U(l GN +G U ] The present work describes an efficient scheme for com-
i=1 @ ab puting nonadiabatic coupling and energy gradients matrix

(3.42 elements within the “perturb, then diagonalize” multirefer-

' enceab initio H” method. Unlike the SRPT approach, tié
where the quantity&b||cd)(™) again denotes the derivative treatment is more stable near transition states or at distorted
of the two-electron integral in an MO basis. Wherp and  geometries and, hence, can treat the ground as well as ex-

b=i, i.e., ¢{”) is an excited orbital ang{” is an occupied cited states more accurately near these regions of space and
orb|tal, then Eqgs(3.42 and(3.39 produce over the entire potential energy surface. Since the new de-
(€i<o>_ e<0))U(1-) rivativg procedure is pgsed on analyti(_: gradiefn.t meyhods, itis
numerically more efficient and superior to finite difference
approaches. The present method also describes an alternative
=hi) - E S (pKllily+ 2 2 [4(palik) route to compute the cumbersome Cl-coefficient derivative
contribution to the energy gradient and nonadiabatic cou-

N pling matrix elements. Here, the derivatives of the CI-
—(palki)—(pi|ak) UL+ > > [4(pqlik) coefficients are represented through thé Hellmann—

k=14 Feynman theorem in terms of matrix elements containing

N analytic derivatives of thé1” matrix. TheseH" derivative
—(pq|ki)—(pi|qk>]qulk)+kE1 (pk||ik)® matrix elements, in turn, can be represented through Feyn-

man diagrams. Once a diagramatic scheme is introduced for
the derivatives of thél” matrix, the evaluation of diagrams,
E [UGGhi+Gp, Ui 1S e, (343 e, the matrix elements, is straightforward. The molecular
orbital derivatives which directly contribute both to the en-
where we have exploited the exchange symmetry of the twoergy gradients and to the nonadiabatic coupling matrix ele-
electron integrals[(ablcd)=(ad|bc)] to arrive at Eq. ments (and which contribute indirectly through CI-
(3.43. coefficient derivativesare evaluated from the solution of
Equation(3.43) is a set of linear equations which may be general coupled-perturbed Hartree—Fock equations, a gener-
solved for the unknownsl(}) provided theU(}} are known. alization necessary because the valence orbitals usef in
Thus, in order to solve the GCPHF equations for themethod are not eigenfunctions of a single Fock operator.
occupied-excited block, the GCPHF equations for IVO—nonHowever, the evaluation of the molecular orbital derivatives
IVO must be resolved first. Also, note that in the absence othrough the GCPHF equations is quite cost effective since
unoccupied valence orbital, the GCPHF equations for thehe number of unknown amplitudesJ§})) in the GCPHF
occupied-excited orbital block reduces to the standard CPH&nd CPHF formalisms are the same.
equations since that situation implieédla)zo and the sum PreviousHY computations yield highly accurate energies
over IVO orbital vanishes. Once the blo¢k§)1i) has been from the third ordeH" and, in many instances even at sec-
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