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Evaluation of analytic molecular orbital derivatives and gradients using
the effective valence shell Hamiltonian method
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Expressions for the analytic energy gradients and the nonadiabatic derivative couplings are derived
for the effective valence shell Hamiltonian theory~a variant of degenerate/quasidegenerate
many-body perturbation theory! using the diagonal and off-diagonal Hellmann–Feynman formulas
and a generalized set of coupled perturbed Hartree–Fock equations to evaluate the derivatives of the
molecular orbitals. The method is designed for efficiently treating the energy derivatives and
nonadiabatic couplings for several states simultaneously. The generalized coupled perturbed
Hartree–Fock equations arise because the reference space orbitals are optimized for simultaneously
describing the ground and excited states, a feature lost with the traditional partitioning where the
virtual orbitals provide a poor choice for representing the low lying states. A simple correspondence
emerges between the new generalized coupled perturbed Hartree–Fock and the traditional
coupled-perturbed Hartree–Fock methods enabling the use of the former with straightforward
modifications. The derivatives of the second and higher order portions of the effective Hamiltonian
are readily obtained using a diagrammatic representation that will be described elsewhere. ©1998
American Institute of Physics.@S0021-9606~98!30546-2#
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I. INTRODUCTION

The computation of analytic energy derivatives is ess
tial in optimizing molecular geometries, determining vibr
tional frequencies, and finding reaction paths. The evalua
of these analytic derivatives becomes a more daunting
both for highly open shell systems and near transition st
where multireference configurational treatments are ne
sary to describe the near degeneracy nondynamical cor
tion. The complexity of multiconfigurational methods fo
highly correlatedab initio computations has until very re
cently precluded the development of analytical gradient
proaches in conjunction with the multireference configu
tional perturbational ~MRPT! methods whose severa
formulations1–8 have been quite successful in treating high
correlated open shell systems.

We develop analytical energy derivative methods for
effective valence shell Hamiltonian (Hv), a complete active
space MRPT approach of the ‘‘perturb then diagonaliz
variety. Thisab initio analytic energy derivative MRPT for
mulation is facilitated by two special features of theHv

method. The use of complete active space implies that
Hv computations proceed by diagonalizing an effective
lence shell HamiltonianHv, and, therefore, the analytica
derivatives may be represented through theHv Hellmann–
Feynman theorem9 in terms of matrix elements of the ana
lytical derivatives ofHv. The latter, in turn, may be ex
pressed in diagrammatic form as derivatives of individ
MRPT many-body Feynman diagrams forHv. Once a suit-
able diagrammatic representation is introduced for the
rivatives of the Feynman diagrams, the determination of
a!Present address: Indian Institute of Astrophysics, Bangalore 560034, Ind
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diagrams becomes a straightforward process, but the de
are fairly lengthy due to the large number of diagrams c
tributing to Hv even in the lowest nontrivial second orde
Thus, this portion of the theory is deferred to the next pa
in this series.10

Before proceeding to the theory for the MRPT analy
Hv energy derivatives, we note that an important by-prod
of this approach enables the computation of nonadiab
derivative coupling matrix element which describe the bre
down of the Born–Oppenheimer~BO! approximation when
there exists a degeneracy or near degeneracy of the
tronic states along the potential energy surface. In such
gions of space, interconversion of electronic and nuclear
ergy occurs, and nonadiabatic transitions may proc
between different adiabatic potential energy surfaces. Th
transitions are responsible for phenomena like photodisso
tion, predissociation, and the quenching of electronically
cited states, etc. The interpretation of these radiationless t
sitions requires computation of thenonadiabatic coupling
matrix elements between the nearly degenerate electr
states as represented either in an diabatic or adiabatic re
sentation.

Within an adiabatic formalism, the breakdown of the B
approximation originates, in part, from nonvanishing deriv
tive coupling integrals of the form̂C I u(]/]Ra)CJ&e and
^C I u]2/]Ra

2CJ&e , whereRa is an appropriate nuclear degre
of freedom, the expectation value^u&e denotes an integration
over electronic coordinates~r !, and C I[C I(r;R ) is an
eigenfunction of the BO Hamiltonian. The couplin
^C I u(]/]Ra)CJ&e is of prime importance in describing
nonadiabatic phenomena. The diabatic representation

mally incorporates a portion of the nonadiabatic derivativeia.

5 © 1998 American Institute of Physics
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couplings by implementing one of several diabatizat
schemes11,12 which transform the adiabatic BO potential e
ergy surfaces to a basis where a dominant portion of
nuclear derivative coupling are removed.13 The derivative
couplings between the diabatic states are then treated b
evaluation of the configuration interaction~CI! matrix ele-
ments coupling the states. Unfortunately, diabatization c
not completely remove the derivative couplings, and ther
poor understanding concerning the influence of the resid
derivative couplings within various diabatizatio
schemes.11–13

The direct computation~through numerical or finite dif-
ference techniques14,15! of the derivative couplings~or en-
ergy gradients! requires differentiation of the electronic wav
functions with respect to the nuclear coordinates, a very
pensive and cumbersome procedure for molecules with m
than two atoms where separate numerical derivatives
needed for each degree of freedom. Alternatively, th
nonadiabatic coupling terms can be evaluated dire
through the use of the Hellmann–Feynman theorem or
Sidis formula,16 provided the wave functions are exact. R
cent advances in analytic gradient methods for differentia
energy functionals have enabled the direct evaluation of
nonadiabatic derivative coupling matrix elements for po
atomic molecules.17–22 The analytic evaluation of energ
gradients and nonadiabatic derivative couplings involves
direct computation of derivatives of the molecular orbita
and of the CI wave functions with respect to the nucle
degrees of freedom. Considerable effort has enabled ev
ating these derivatives for various self-consistent field~SCF!,
CI, and single reference perturbative~SRPT! methods.17,23–26

Typically energy gradient calculations are performed for
ground electronic state, but these calculations can, in p
ciple, be performed for the excited states as well. The ev
ation of nonadiabatic derivative couplings emerges as an
tension of the energy gradient methods. However, MR
treatments have not been available for the evaluation of a
lytic energy gradient and nonadiabatic derivative couplin
in part, because of the complexity of all MRPT methods a
of the prior widespread mistaken belief that the ‘‘diagon
ize, then perturb’’ methods are unsuitable for computing g
bal potential energy surfaces.

The present work provides the first formal treatment
analytic energy gradients and nonadiabatic derivative c
plings using a ‘‘perturb, then diagonalize’’ multireferenceab
initio approach, the effective valence shell Hamiltonian (Hv)
method. TheHv method formulation of multireference pe
turbation theory has been demonstrated to be accurate
calculating atomic spectra,27–29 diatomic potential energy
curves,30,31 and the electronic spectra of conjugatedp-
electronic spectra at their equilibrium geometries.32–34 Re-
cent calculations for global potential energy surfaces
CH3SH,35 H2S,36 CaOH,37 and C2H

1 ~Ref. 38! demonstrate
the ability of the method to generate the ground and exc
potential energy surfaces simultaneously from a single c
putation for quite nontrivial molecular systems. The calcu
tions for CH3SH and H2S yield insight into experiments
probing the nonadiabatic photodissociation dynamics,39 but

fully ab initio quantum scattering calculations uponab initio
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potential energy surfaces require the evaluation of the no
diabatic derivative couplings between the excited states.

Essential to the calculation of the nonadiabatic couplin
and energy gradient is the computation of the orbital deri
tives with respect to the nuclear displacements. While
orbital derivatives are generally obtained from the solutio
of coupled-perturbed Hartree–Fock~CPHF! equations40,41or
couple-perturbed multiconfiguration self-consistent fie
~CP-MCSCF! equations,42–44 acquiring orbital derivatives
for theHv method presents a more complicated task beca
this approach introduces a set of orbitals designed to m
mize the perturbative corrections for the low lying electron
excited states. The first orderHv computation corresponds t
a complete active space CI treatment, which, in princip
provides upper bounds to all state energies, but which
practice, can be expected to be reasonable accurate onl
the lower lying states. The traditional choice of some act
orbitals as virtual orbitals from a ground state SCF com
tation introduces low lying virtual orbitals that are, at be
suited for describing the negative ion and not the low lyi
excited states of interest. Thus, those active orbitals not
cupied in the ground state SCF approximation should be c
sen as more representative of orbitals suitable for these
cited states. One possible choice emerges from restri
single excitation CI computations where excitations are o
permitted from the highest occupied ground state orbita45

~HOMO!, but a simpler and often equivalent approach
volves using improved virtual orbitals~IVOs! in the Hv va-
lence space. These IVOs are generated by single orbital
optimizations in which the Fock operator is defined by p
moting an electron from the HOMO into the orbital bein
optimized, while all previously determined orbitals are ke
frozen. Hence, the resulting IVOs are eigenfunctions of a
of Fock operators which all differ from the ground state Fo
operator. Since the IVOs and the ground state occup
Hartree–Fock orbitals appearing in theHv calculations
emerge as eigenfunctions of different Fock operators,
analytical derivatives of these orbitals can, in principle,
obtained by an extension of the single Fock operator ba
traditional CPHF approaches. This extension actually
quires far more theoretical analysis than the evaluation
analytical derivatives of theHv energy diagrams, so th
present paper focuses on this portion of the theory.

Section II briefly outlines required elements of theHv

theory. Section III describes the treatment of the energy g
dients and the nonadiabatic derivative coupling matrix e
ments within theHv formulation. Because the exactHv

yields exact eigenvalues of the full Hamiltonian, the deriv
tive formulation should, in principle, approach the exact d
rivatives as the perturbative order increases~so long as the
series converges46,47!. More practically, however, theHv is
designed to produce accurate energies at low orders
truncation46,47 where accurate derivatives and nonadiaba
couplings should likewise emerge. Section IV describes
multiple Fock operator based coupled-perturbed Hartre
Fock method that is necessary for evaluating the energy
dients and nonadiabatic couplings within theHv method.
Similar methods may be used to deal with the orbital deri

tives for methods which introduce more complicated defini-
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tions of orbitals and zeroth order Hamiltonians, and the
lution of the generalized coupled-perturbed Hartree–F
equations may be represented as a sum to all orders of
ticular classes of diagrams in ordinary MBPT similar to t
description for the traditional case.48 Although computations
solely involving geometry optimizations might be treat
more efficiently usingZ-matrix techniques,20 the coupled-
perturbed Hartree–Fock approach used here is simpler f
first implementation and checking of the theory, and t
method is also used because our main interest lies in exc
state systems whose fullab initio dynamics requires compu
tation of the nonadiabatic couplings. While this manuscr
was in preparation, a paper appeared49 providing analytical
gradients in the ‘‘diagonalize, then perturb’’ formulation
Hirao. Their approach is quite different from the present o
and does not use CPHF methods to obtain the orbital der
tives.

II. THEORY

Perturbation theory begins with the decomposition of
molecular electronic HamiltonianH into a zeroth order par
H0 and a perturbationV,

H5H01V, ~2.1!

whereH0 is constructed as a sum of one-electron Fock
erators. The full many-electron Hilbert space is then pa
tioned into a primary space~also called model or referenc
space! with projectorP and its orthogonal complement wit
projectorQ512P. TheP space spans the valence space
all distinct configuration state functions involving a fille
core and the remaining electrons distributed among the
lence orbitals in all possible way to ensure completenes
the P-space. Hence, theQ-space contains all basis function
with at least one core-hole and/or one occupied-excited
bitals. TheHv method transforms the full Schrodinger equ
tion,

HC i5EC i , ~2.2!

into the P-space effective valence shell Schrodinger eq
tion,

HvC i
v5EC i

v , ~2.3!

where the valence space projectionsC i
v5PC i are the pro-

jections of the exact eigenfunctions and the energiesE are
the corresponding exact eigenvalues of the full Schrodin
equation. TheHv method provides the unique second ord
approximation,

Hv5PHP1
1

2 (
L,L8

@P~L!VQ~EL2H0!21QVP~L8!

1h.c.#, ~2.4!

where h.c. designates the Hermitian conjugate of the pre
ing term andP(L) designates the projector onto the valen

space basis functionuL&.
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III. Hv APPROACH FOR THE DIRECT COMPUTATION
OF ŠC Iz„­/­RaCJ

‹

A. Basic formalism

Let C I(R) be the eigenfunctions of the nonrelativist
effective valence shell Born–Oppenheimer Hamiltoni
(Hv) in the space of zeroth order reference functio
Fk(r :R), k51, M, i.e.,

Hv~R!uC I~r ;R!&5EI~R!uC I~r ;R!&. ~3.1!

HereC I(r ;R) is given by

C I~r ;R!5 (
k51

M

Ck
I ~R!Fk~r ;R!, ~3.2!

whereFk(r ;R) are the symmetry adapted configuration st
functions~CSFs! and Ck

l (R) are their corresponding coeffi
cients~CI coefficient!. Therefore, the CSFFk(r ;R) can be
expressed in terms of Slater determinants containing or
normal molecular orbitalsfa(r ;R),

Fk~r ;R!5(
l

ml
k 1

AN!

3(
P

N!

~21!pP$f1~1!f2~2!¯fk~N!%,

~3.3!

whereP is a permutation operator andml
k areR-independent

Clebsch–Gordan-type coupling constants. Further, the
lecular orbitals can be written as a linear combination
atom centered basis functionsx l(r ;R),

fa~r ;R!5(
I

t l
a~R!x l~r ;R!, ~3.4!

wheret j
a are the molecular orbital expansion coefficients.

Because the eigenfunctionsCJ(r ;R) are obtained by di-
agonalizing the effective HamiltonianHv, the diagonal and
off-diagonal Hellmann–Feynman theorems may be used
represent energy gradients and the derivative coupling ma
elements, respectively. Hence, differentiating Eq.~3.1! with
respect to the nuclear coordinateR and then projecting the
derivative ontoCJ(r ;R) yields the desired expressions fo
the nonadiabatic coupling matrix elements,

K CJ~r ;R!U ]

]R
C I~r ;R!L

5@EJ~R!2EI~R!#21

3^CJ~r ;R!u
]Hv~R!

]R
uC I~r ;R!&, IÞJ, ~3.5!

and the energy gradients,

]EI~R!

]R
5^C I~r ;R!u

]Hv~R!

]R
uC I~r ;R!&. ~3.6!

Since the exactHv in Eq. ~3.1! yields the exact energiesEI ,
it appears that the exactHv and its eigenvectors produce th
exact derivative couplings and gradients in Eqs.~3.5! and

~3.6!, respectively. However, the high quality of low order
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Hv computations of energies, dipole moments, and transi
dipole moments lends confidence that low order derivati
should display similar high order accuracy. Indeed, the fi
order treatment corresponds to a CASCI computation,
the second orderHv provides both dynamical and nondy
namical correlation corrections. The general formulas p
sented in Eqs.~3.5!–~3.6! and below involve derivatives with
respect to nuclear positions, but, more generally, these
rivatives may be taken with respect to any parameter in
original Hamiltonian, including derivatives with respect
an external field.

B. Formal structure of the nonadiabatic coupling and
energy gradient matrix elements

Given the definitions of theHv eigenfunctionsC I(r ;R)
from Eq. ~3.1!, the evaluation of the nonadiabatic couplin
matrix and energy gradient elements requires the comp
tion of the derivatives of these eigenfunctions,

U ]

]Ra
C I~r ;R!L 5(

l
S ]

]Ra
Cl

I D uF l&

1(
l

Cl
I S U ]

]Ra
F l L D . ~3.7!

The corresponding matrix elements decompose as

K CJ~r ;R!U ]

]Ra
C I~r ;R!L

5 K CJU ]

]Ra
CI L

CSF

1(
k,l

Ck
JCl

I K FkU ]

]Ra
F l L

e

~3.8!

which is written in more compact notation as

K CJ~r ;R!U ]

]Ra
C I~r ;R!L

5DCI~J,I ,a!1DCSF~J,I ,a!, ~3.9!

whereDCI(J,I ,a) andDCSF(J,I ,a) represent the CI and or
bital derivative contributions to the nonadiabatic coupli
matrix elements, respectively, and where the energy grad
follows simply by settingI 5J.

Use of Eq. ~3.3! simplifies the evaluation o
DCSF(J,I ,a) which can be expressed as

DCSF~J,I ,a!5(
k,l

gkl
J,I^fkudauf l&, ~3.10!

wheregkl
J,I is the one-particle transition density matrix an

the operatorda is defined as

da~ i !ufk~r i !&5
]

]Ra
ufk~r i !&. ~3.11!

The CI contributionDCI(J,I ,a) may be determined directly
by differentiating the perturbative expansion of theHv

Hamiltonian with respect to the nuclear coordinatesRa and

then by evaluating the scalar product in the CSF space, i.e
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K CJ~R!U ]

]Ra
CI~R!L

5@EI~R!2EJ~R!#21^CJ~R!uS ]Hv

]Ra
D uCI~R!&CSF.

~3.12!

The second term on the right-hand side of Eq.~3.12! can be
decomposed further into two parts,

K CJ~R!U ]Hv~R!

]Ra
UCI~R!L

CSF

5^CJ~R!uHva1HvU~a!uCI~R!&CSF, ~3.13!

where Hva is the derivative with respect toRa of the Hv

Hamiltonian matrix in the CSF basis and the second te
represents the contribution from the orbital derivatives p
which enters through the matrixU(a) defined below in Eq.
~3.15!.

Since theHv matrix is represented as a perturbation e
pansion,

Hv5Hv~0!1hHv~1!1 1
2h

2Hv~2!1¯ ,

derivatives must be taken of each individualHv matrix ele-
ment in order to apply Eq.~3.13!. Because the matrix ele
ments contained inHv(0)1Hv(1) are just matrix elements o
the original HamiltonianH in the valence space, each matr
element ofHv(0)1Hv(1) can be represented in terms of on
electron (hi j ) and two-electron (gi jkl ) integrals in the mo-
lecular orbital~MO! basis and of the CSF expansion coef
cients ma

k . These one- and two-electron molecular orbi
integrals are essentially constructed by transforming the o
and two-electron atomic orbital derivative integrals into t
molecular orbital basis. Because the matrixHv(0)1Hv(1) is
simply a complete CI for the valence space, the represe
tion of the derivatives (]/]Ra)(Hv(0)1Hv(1)) IJ in terms of
the atomic orbital integral derivatives is already we
known50,51and need not be repeated here. The representa
of the derivatives of the perturbation corrections, such
(]/]Ra)(Hv(2)) IJ , is considerably more complicated an
will be the subject of a subsequent paper. Suffice it to
that the diagrammatic representation forHv(2) enables us to
devise a diagrammatic method for determining the (]/]Ra)
3(Hv(2)) IJ , etc.

The first term on the right-hand side of Eq.~3.13!
@^CJ(R)uHvauCI(R)&CSF# may be expressed in terms of th
derivatives (hi j

a and gi jkl
a , respectively! of the one-electron

(hi j ) and two-electron integrals (gi jkl ) in the molecular or-
bital basis, i.e.,

^CJ~R!uHvauCI~R!&CSF

5(
i , j

Fg i j
J,Ihi j

a 12 (
i , j ,k,l

G i jkl
J,I gi jkl

a G , ~3.14!

where the contributions fromHv(0) andHv(1) yield g i j
J,I and

G i jkl
J,I as the one- and two-particle transition density mat

elements while the additional terms arising from derivativ
of Hv(2) will be provided elsewhere. The derivativeshi j

a and
gi jkl

a of the molecular orbital one- and two-electron integra
are obtained as in prior derivative treatments by transform

.,the derivatives from an atomic orbital basis as described in
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the next subsection. The second term on the right-hand
of Eq. ~3.13! involves the orbital derivative matrixUi j (a)
which is given by

^CJ~R!uHvUi j ~a!uCI~R!&CSF52(
i j

L i j
J,IUi j ~a!, ~3.15!

where

Lr ,i
J,I5(

j
g i j

J,Ihr j 12(
jkl

G i jkl
J,I gr jkl , ~3.16!

and where the transition density matrix elementsg i j
J,I and

G i jkl
J,I again appear. The orbital derivative matrixUi j (a) sat-

isfies the equation

]

]Ra
uf i~a!&5(

k
@Uki~a!ufk~0!&1tk

i S ]

]Ra
D uxk~a!&],

~3.17!

where Eq.~3.4! has been used to express the orbital deri
tive on the right-hand side in terms of atomic orbital deriv
tives. The matrixUi j (a) is, therefore, determined from
generalized set of coupled perturbed Hartree–Fock~GCPHF!
equations. This generalization involves the use of multi
Fock operators because theHv unoccupied valence orbital
are chosen to represent low lying excited states and, co
quently, are not eigenfunction of a Fock operator with
single potential. This appearance of multiple Fock opera
represents one unique aspect of the theory that differs f
the standard CPHF formalism for analytical derivative
Thus, the next subsection briefly outlines the multiple Fo
operator GCPHF scheme that has been implemented in
computation of the molecular orbital derivatives contributi
to the energy gradients and the nonadiabatic coupling ma
elements.

C. CPHF equations for multiple Fock operators

One approach in obtaining the molecular orbital deriv
tive integrals, necessary for the analytical evaluation of
ergy gradients and the nonadiabatic coupling matrix e
ments, using theHv method~as discussed in the previou
section! requires the computation of the various derivati
matrices as in the methods developed by Gerrat and Mi23

and by Popleet al.17 in their studies of energy derivatives i
Hartree–Fock and Mo” ller–Plesset theories. We begin th
subsection following the general approach of Gerrat a
Mills for deriving the appropriate set of CPHF equations
single configurational problems in order to derive some n
essary relations, particularly relating derivatives of the m
lecular orbital integrals to atomic orbital derivatives.

The normal-ordered Hamiltonian for a system in pre
ence of a perturbation is represented as the expansion

HN~l![H2^0uHu0&5HN
~0!1lHN

~1!1 1
2l

2HN
~2!1¯ ,

~3.18!

wherel is the perturbation parameter andu0& is the single
configurational reference space function. When the pertu
tion l is taken to correspond to a shift in molecular geo
etry, the derivativeHN

(1) is related to the quantity of interes
(0)
The unperturbed HamiltonianHN is given by
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HN
~0!5FN

~0!1VN
~0!5(

a,b
^auF ~0!ub&$aa

†ab%

1 (
a,b,c,d

1

4
^abuucd&~0!$aa

†ab
†adac%,

~3.19!

whereFN
(0) and VN

(0) are the unperturbed Fock operator a
the antisymmetrized two-electron repulsion operator in
unperturbed molecular orbital basisf (0)[ua&. The operators
$aa

†ab% and$aa
†ab

†adac% are normal-ordered second quantiz
operators written in terms of creation (aa

†) and annihilation
(aa) operators. The notation for the molecular orbitals is
follows:

~a! The indicesa,b,c,d,r,s,t,usignify any molecular orbit-
als.

~b! The indices i,j,k,l indicate occupied orbitals in the
ground state reference configuration.

~c! The indicesa, b, g denote improved virtual orbitals
~IVOs!.

~d! The indicesm,ndenote orbitals which are not IVOs.
~e! p andq specify virtual or excited orbital, respectively

The atomic orbital basis functions are designated by
indicesm, n, d, h.

The first order HamiltonianHN
(1) ,

HN
~1!5

]HN~l!

]l U
l50

5(
a,b

^fauFufb&
~1!$aa

†ab%

1 (
a,b,c,d

1

4
^fafbuufcfd&

~1!$aa
†ab

†adac% ~3.20!

contains the derivatives Fab
(1)5^fauFufb&

(1) and
^fafbuufcfd&

(1) of integrals in the molecular orbital basis
Expansion of the molecular orbitalfa(l) in the atomic or-
bital basis (xm(l))

fa~l!5(
m

Cma~l!xm~l! ~3.21!

converts the first derivativeFab
(1) of the Fock matrix elemen

Fab with respect to the perturbation parameterl into

Fab
~1!5F(

m,n
Cma* CnbH ^mu

]f

]l
un&1 K ]m

]lUfUn L
1 K mUfU]n

]l L J 1H ]Cma*

]l
Cnb1Cma*

]Cnb

]l J
3^mufun&GU

l50

, ~3.22!

while the first derivative of the antisymmetrized two-electr

repulsion integral becomes
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^abuucd&~1!5F (
m,n,d,h

Cma* Cnb* ChdCdc

]^mnuudh&
]l

1
]~Cma* Cnb* ChdCdc!

]l
^mnuudh&GU

l50

,

~3.23!

wherem, n, etc., are atomic orbital basis functions and t
$C% are the molecular orbital~MO! expansion coefficients
The first term on the right-hand side of Eq.~3.22! contains
the derivative of the Fock operatorf; the second and third
arise from the derivatives of the atomic orbital basis fun
tions; and remaining two terms contain the derivative of
MO coefficients. Similarly, the first term on the right-han
side of Eq.~3.23! involves the derivative of the two-electro
matrix element in the atomic orbital basis, while the seco
term emerges from the derivatives of the MO coefficients.
noted above the derivatives of the one and two-elect
atomic orbital integrals are readily available from previo
works.52–54

The molecular orbital derivative required for evaluati
Eqs.~3.14! and ~3.15! is of the general form,

K fa~l!U ]fb~l!

]l L , ~3.24!

wherefa andfb are any twol-dependent molecular orbit
als. The expansion Eq.~3.21! enables Eq.~3.24! to be repre-
sented likewise in terms of atomic orbital derivatives and
MO coefficient derivatives as

K fa~l!U ]fb~l!

]l L 5(
m,n

Cma* CnbK mU ]n

]l L
1(

m,n
Cma*

]Cnb

]l
dm,n . ~3.25!

While the evaluation of the derivatives of the primitiv
atomic orbital basis functions@the first term on the right-
hand side of Eq.~3.25!# is trivial,15 the direct evaluation of
the derivative of the MO coefficientsCma(l) @the second
term in Eq.~3.25!# is rather cumbersome. Hence, it is co
venient for evaluating the latter derivative to expand the p
turbed molecular orbitalsfa in the basis of unperturbed mo
lecular orbitalsfa

(0) ,

fa~l!5(
m

Uma~l!fa
~0![(

m
Uma~l!ua&, ~3.26!

thereby returning to the computation of the matrixUma(l)
introduced in Eq.~3.13!. Expanding the unperturbed molec
lar orbitals fa

(0) in a basis of the perturbedl-dependent
atomic orbital basis

fa
~0!5(

m
Cm i~0!xm~l!, ~3.27!

the perturbed molecular orbitalfa(l) can be expressed i
the perturbed atomic orbital basis as

fa~l!5( Cma~l!xm~l!, ~3.28!

m
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where theCm i(0) are the MO expansion coefficients at th
undisplaced geometry, i.e., atl50. Substituting Eq.~3.27!
into Eq.~3.26! and comparing with Eq.~3.28! shows that the
determination of the derivatives of theUna(l) matrix per-
mits the computation of the derivatives of thel-dependent
basis function expansion coefficientsCma(l) through the re-
lation

Cma~l!5(
n

Cmn~0!Una~l!. ~3.29!

We, therefore, evaluate the derivatives of theUna(l) matrix
employing a method similar to solving the CPHF equatio
This method also avoids the direct evaluation of the M
coefficient derivatives. The evaluation ofUna(l) is accom-
plished by deriving a set of CPHF equations that is particu
to the orbitals used in theHv formalism.

Although the IVOs are determined from different Foc
operators, the set of Fock operators used to generate a
bitals may be combined formally into a single Fock opera
by using projection operators. This singlel-dependent Fock
operator describes all the improved virtual orbitalsas moving
under the influenceof an excited state potential identical t
that used in their generation, while the remaining orbit
experiencethe typical ground state Fock operator. Our de
vation of the GCPHF~generalized CPHF! equations closely
follows the notation of Popleet al.17 For this purpose,l
represents the nuclear coordinate, andl50 is the molecular
geometry at which the orbital derivatives are to be evalua

We reiterate for emphasis that the core, excited, and
cupied valence orbitals are defined as the eigenfunctions
ground state Fock operatorh1GN, where h is the one-
electron part of the Hamiltonian andGN contains all the
Coulomb and exchange interactions. The IVOs~valence or-
bitals not occupied in the ground state configuration! are
eigenfunctions of other Fock operatorsh1GN21 as dis-
cussed in the Introduction. The use of projection operat
enables the construction of a singlel-dependent Fock opera
tor whose eigenvectors provide all the molecular orbit
from

f~l!5h~l!1P1GN~l!P11Q1GN21~l!Q1 , ~3.30!

where the projector onto the IVOs isQ1 while that onto all
other molecular orbitals isP1512Q1 , i.e.,

P15(
m

ufm~l!&^fm~l!u; Q15(
g

ufg~l!&^fg~l!u,

~3.31!

and the potentials are written as

GN5(
i

N

^f i~l!uvuf i~l!&;

~3.32!

GN215 (
i

N21

^f i~l!uvuf i~l!&,

where the second sum omits one electron from the high
occupied molecular orbital in the ground state reference c
figuration. Equation~3.30! containsh as the one-electron op

21
erator, the operatorv[r 12 (12P12) represents the differ-
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ence between the direct and exchange potentials withP12 the
permutation operator for electron coordinates 1 and 2.

Using the resolution of identity (P11Q151), Eq.
~3.30! can be converted to the more convenient form,

f~l!5h~l!1GN~l!2Q1GN~l!2GN~l!Q1

1Q1GN~l!Q11Q1GN21~l!Q1 . ~3.33!

Expansion of the projection operatorQ1 in terms of unper-
turbed MOs using Eq.~3.31! transforms Eq.~3.33! into the
explicit representation,

f~l!5h~l!1GN~l!2(
c,a

Uca~l!Uca* ~l!uc&^cuGN~l!

2(
c,a

Uca~l!Uca* ~l!GN~l!uc&^cu

1 (
c,d,a,b

Uca~l!Uca* ~l!Udb~l!Udb* ~l!uc&

3^cuGN~l!ud&^du1 (
c,d,a,b

Uca~l!Uca* ~l!

3Udb~l!Udb* ~l!uc&^cuGN21~l!ud&^du. ~3.33a!

The projected Fock operatorf~l! acts upon core, excited, an
ground state occupied valence orbitals with what is forma
an N-electron potential. However, a direct and exchange
tegral cancel when acting on any of the ground state oc
pied orbitals, leaving, in effect, an (N21)-electron potential.
The operatorf~l! is constructed to act on the IVOs with a
(N21)-electron potential in which an electron has been
moved from the highest occupied molecular orbital~HOMO!
of the ground state.~The latter is equivalent to using a
N-electron potential that is formed by placing the remov
electron into the IVO to be optimized.! Thus, our task is to
derive analytical orbital derivative formulas for the eige
functions off~l!. Note that the general practice of averagi
valence orbital energies in theHv calculations is relevant to
obtain these orbital derivative formulas.

Several key equations from Popleet al.17 also apply for
the projected Fock operator of Eq.~3.30!. Assuming, for
convenience, that theU(l) are real, Eq.~37! of Popleet al.
allows us to write

Uab
~1!1Uba

~1!1Sab
~1!50, ~3.34!

where Uab
(1) is the derivative@(]/]l)Uab(l)#l50 we seek,

while Sab
(1) is the derivative@(]/]l)^fa(l)ufb(l)&#l50 of

the molecular orbital overlap matrix. Another usef
relation17 used here is

Uab
~1!5

Fab
~1!2Sab

~1!eb
~0!

ea
~0!2eb

~0! . ~3.35!

Consider now the general matrix element

fab~l!5^fa
~0!uf~l!ufb

~0!& ~3.36!

of the projected Fock operator between any two unpertur
molecular orbitals. The matrix element then can be writ

explicitly with the aid of Eq.~3.33! as
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fab~l!5hab~l!1Gab
N ~l!2(

a,c
@Uaa~l!Uca* ~l!Gcb

N ~l!

1Gac
N ~l!Uca~l!Uba* ~l!#

1 (
a,b,c,d

Uaa~l!Uca* ~l!@Gcd
N ~l!

1Gcd
N21~l!#Udb~l!Ubb* ~l!, ~3.36a!

where the ground state potential is

Gab
N ~l!5(

i 51

N

(
c51

all

@^acuubi&Uci* ~l!1^aiuubc&Uci~l!#

5(
i 51

N

(
c51

all

@^acuubi&1^aiuubc&#Uci~l!, ~3.37!

while theVN21 potential for the IVOs is

Gab
N21~l!5 (

i 51

N21

(
c51

all

^acuubi&Uci* ~l!1^aiuubc&Uci~l!]

5 (
i 51

N21

(
c51

all

@^acuubi&1^aiuubc&#Uci~l!.

~3.38!

The notation̂ cduurs&5^cruds&2^crusd& represents the an
tisymmetrized two-electron integral in the unperturbed M
basis with the two-electron integral^cdurs& given as usual
by

^cdurs&5E E fc
~0!~1!f r

~0!~2!
1

r 12
fd

~0!~1!

3fs
~0!~1!dr~1!dr~2!. ~3.39!

Now differentiating the Fock operator@Eq. ~3.36! or its
expanded from given in Eq.~3.36a!# with respect to the
nuclear coordinatel and substituting it in Eq.~3.35! yields
three sets of CPHF equations among which there is only
independent set of GCPHF equations that couple the I
(fa) –non-IVO (fm) blocks of orbitals~the latter includes
occupied and excited orbitals! and two linearly dependen
sets of equations that couple the IVO (f0) –IVO (fb) and
non-IVO (fm) –non-IVO (fn) blocks of orbitals, respec
tively. The GCPHF equations coupling the non-IV
(fm) –non-IVO (fn) orbital blocks implicitly contain two
additional sets of linearly dependent GCPHF equatio
which connect the occupied–occupied and excited–exc
block of non-IVO orbitals.

Case (1):The orbitalfa
(0) is not an IVO~i.e., fm

(0)! but
fb

(0) is an IVO ~i.e., fg
(0)!. In this case, differentiation o

fab(l) @Eq. ~3.36!# with respect to the nuclear coordinatel
yields

fmg
~1!5

]

]l
fmg~l!5hmg

~1!1(
a

@Uma
~1!Gag

N211Gma
N Sag

~1!#

2( Gmn
N Ung

~1! . ~3.40!

n
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Substituting Eq.~3.40! in Eq. ~3.35! produces the desire
equation for the block ofUmg

(1) coupling the IVO–non-IVO
orbitals as

~eg
~0!2em

~0!!Umg
~1!5fmg

~1!2Smg
~1!eg

~0! . ~3.41!

Equation ~3.41! represents a set of linear equations wh
may be solved for theUmg

(1) block. ThisUmg
(1) block then may

be used to find theUgm
(1) block from Eq. ~3.34!. Since the

solutions for theUmg
(1) block does not require knowledge ofU

from any other block~IVO–IVO or non-IVO–non-IVO!, the
equations forUmg

(1) are linearly independent.
Case (2):Orbitalsfa

(0) andfb
(0) are not IVOs.

Three subcases must be considered here;~a! fa
(0) is an occu-

pied orbital andfb
(0) is an unoccupied orbital;~b! fa

(0) and
fb

(0) are occupied orbitals; and~c! fa
(0) andfb

(0) are excited
orbitals.

Let us first considerfa
(0) andfb

(0) to be a general non
IVO, i.e., fa

(0) , fb
(0) can be both occupied or excited orbita

or only either of them may be occupied orbitals. For th
case, differentiatingfab(l) with respect to the nuclear coo
dinatel yields

fab
~1!5hab

~1!1(
i 51

N

(
c51

all

@^aiuubc&1^acuubi&#Uci
~1!

1(
i 51

N

~aiuubi !~1!2(
a

@Uaa
~1!Gab

N 1Gaa
N Uba

~1!#,

~3.42!

where the quantity (abuucd)(1) again denotes the derivativ
of the two-electron integral in an MO basis. Whena5p and
b5 i , i.e., fa

(0) is an excited orbital andfb
(0) is an occupied

orbital, then Eqs.~3.42! and ~3.35! produce

~e i
~0!2ep

~0!!Upi
~1!

5hpi
~1!2 (

k,l 51

N

Skl
~1!^pkuu i l &1 (

k51

N

(
a

@4^pau ik&

2^pauki&2^piuak&#Uak
~1!1 (

k51

N

(
q

@4^pqu ik&

2^pquki&2^piuqk&#Uqk
~1!1 (

k51

N

~pkuu ik !~1!

2(
a

@Upa
~1!Ga i

N 1Gpa
N Uia

~1!#2Spi
~1!e i

~0! , ~3.43!

where we have exploited the exchange symmetry of the t
electron integrals@^abucd&5^adubc&# to arrive at Eq.
~3.43!.

Equation~3.43! is a set of linear equations which may b
solved for the unknownsUpi

(1) provided theUak
(1) are known.

Thus, in order to solve the GCPHF equations for t
occupied-excited block, the GCPHF equations for IVO–no
IVO must be resolved first. Also, note that in the absence
unoccupied valence orbital, the GCPHF equations for
occupied-excited orbital block reduces to the standard CP
equations since that situation impliesUaa

(1)50 and the sum
(1)
over IVO orbital vanishes. Once the blockUpi has been
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determined, the evaluation of theUip
(1) , Ui j

(1) ~occupied–
occupied! andUpq

(1) ~excited–excited! blocks from Eq.~3.43!
is trivial.

Case (3):The orbitalfa
(0) andfb

(0) are both IVOs.
Differentiating the Fock matrix elements with respect to t
nuclear coordinatel @i.e., (]/]l)fab(l)] produces

fab
~1!5hab

~1!(
g

@Uag
~1!Ggb

N211Gag
N21Ubg

~1!#

1(
a

@Uaa
~1!Gab

N211Gaa
N21Uab

~1!#1 (
i

N21

~a i uub i !~1!

1 (
i

N21

(
a

all

@^aauub i &1^a i uuba&#Uai
~1! . ~3.44!

Note that in Eq.~3.44! for the derivativesfab
(1) , all the other

U (1) amplitudes except theUab
(1) block are available from the

prior two cases. Hence, substitution off ab from Eq. ~3.35!
into Eq.~3.44! provides the necessary equation for obtaini
the Uab

(1) amplitudes. Thus, to determine theUab
(1) block, it is

necessary to solve sequentially for the IVO–IVO, occupie
excited, occupied–occupied, and excited–excited blocks

IV. SUMMARY

The present work describes an efficient scheme for co
puting nonadiabatic coupling and energy gradients ma
elements within the ‘‘perturb, then diagonalize’’ multirefe
enceab initio Hv method. Unlike the SRPT approach, theHv

treatment is more stable near transition states or at disto
geometries and, hence, can treat the ground as well as
cited states more accurately near these regions of space
over the entire potential energy surface. Since the new
rivative procedure is based on analytic gradient methods,
numerically more efficient and superior to finite differen
approaches. The present method also describes an altern
route to compute the cumbersome CI-coefficient derivat
contribution to the energy gradient and nonadiabatic c
pling matrix elements. Here, the derivatives of the C
coefficients are represented through theHv Hellmann–
Feynman theorem in terms of matrix elements contain
analytic derivatives of theHv matrix. TheseHv derivative
matrix elements, in turn, can be represented through Fe
man diagrams. Once a diagramatic scheme is introduced
the derivatives of theHv matrix, the evaluation of diagrams
i.e., the matrix elements, is straightforward. The molecu
orbital derivatives which directly contribute both to the e
ergy gradients and to the nonadiabatic coupling matrix e
ments ~and which contribute indirectly through CI
coefficient derivatives! are evaluated from the solution o
general coupled-perturbed Hartree–Fock equations, a ge
alization necessary because the valence orbitals used inHv

method are not eigenfunctions of a single Fock opera
However, the evaluation of the molecular orbital derivativ
through the GCPHF equations is quite cost effective si
the number of unknown amplitudes (Uab

(1)) in the GCPHF
and CPHF formalisms are the same.

PreviousHv computations yield highly accurate energi
v
from the third orderH and, in many instances even at sec-
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ond order.10 Thus, an optimal use of the present derivati
scheme should employHv valence spaces that already pr
vide highly accurate second order energies for the state
interest in order to ensure that the derivative couplings
gradients are of comparable quality. While the present m
ods could be applied with the third orderHv, a large number
of additional diagrams are required, and the complication
to be avoided by making it unnecessary through the ap
priate choice of valence space and valence orbitals.
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