
EFFECT OF NEWTONIAN COOLING ON WAVES IN A MAGNETIZED
ISOTHERMAL ATMOSPHERE

DIPANKAR BANERJEE and S. S. HASAN
Indian Institute of Astrophysics, Sarjapur Road, Bangalore 560034, India

J. CHRISTENSEN-DALSGAARD
Teoretisk Astrofysik Center, Danmarks Grundforskningsfond, and

Institut for Fysik og Astronomi, Aarhus Universitet, DK-8000 Aarhus C, Denmark

(Received 15 July 1996; in revised form 17 December 1996)

Abstract. We examine the influence of nonadiabatic effects on the modes of an isothermal stratified
magnetic atmosphere. The present investigation is a continuation of earlier work by Hasan and
Christensen-Dalsgaard (1992) and Banerjee, Hasan, and Christensen-Dalsgaard (1995, 1996), where
the interaction of various elementary modes in a stratified magnetized atmosphere was studied in
the purely adiabatic limit. The inclusion of radiative dissipation based on Newton’s law of cooling
demonstrates the importance of this effect in the study of magnetoatmospheric waves. We analyze
the physical nature of magnetoacoustic gravity (or MAG) oscillations in the presence of Newtonian
cooling and find that the eigenfrequency curves in the diagnostic diagram, as in the previous analysis,
undergo avoided crossings. However, the qualitative nature of the mode interaction is strongly
influenced by radiative dissipation, which leads to strong mode damping in the avoided-crossing
regions. We demonstrate this effect for the interaction between the Lamb mode and a magnetic mode.
Our results could be important in the analysis of waves in flux tubes on the Sun.

1. Introduction

Observations of oscillations in the solar atmosphere provide a powerful diagnostic
tool to study the nature of magnetic structures. It is well known that the solar
photosphere is permeated with vertical magnetic fields, usually in the form of flux
tubes with different scales. Observation of oscillations in these magnetic structures
have been widely reported. The high-resolution imaging observations (Berger and
Title, 1996) suggest that the strong component of the magnetic field outside of
sunspots and pores is concentrated in isolated flux tubes of about 200 km in diameter
with kilogauss field strength. There is further evidence of weak-field components
at the center of supergranular cells (Zirin, 1987). Estimate of the strength of this
field component vary between 100–500 G (Keller et al., 1994). Apart from well-
known umbral oscillations, recent simulations (Steiner et al., 1994) predict that
the effect of granular convection is to induce oscillations of the flux tubes with
a characteristic time scale of about 5 min. Hence it is natural to investigate the
theoretical nature of the various wave modes that can be present in these magnetic
structures. The purpose of this short contribution is to provide some further insight
into the properties of magnetoatmospheric oscillations.

The present investigation is a continuation of earlier work by Hasan and
Christensen-Dalsgaard (1992, Paper I) and Banerjee, Hasan, and Christensen-
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Dalsgaard (1995 (Paper II), 1996), where the interaction of various elementary
modes in a stratified magnetized atmosphere was studied in the purely adiabatic
limit. A detailed study of the general case of radiation hydrodynamics was provided
by Mihalas and Mihalas (1984), while Bogdan and Knölker (1989) considered
compressive waves in a homogeneous radiating magnetized fluid. We consider the
slightly more complex problem of an isothermal, stratified atmosphere but simplify
the treatment of radiative effects, approximating them by Newton’s law of cooling
(e.g., Spiegel, 1957; Mihalas and Mihalas, 1984). It was pointed out by Bünte and
Bogdan (1994) that Newtonian cooling can be incorporated in the solution of any
isothermal magneto-atmospheric wave problem by replacing , the ratio of specific
heats, by a complex frequency-dependent quantity. This procedure permits one to
generalize easily the previous calculations to include radiative dissipation. Bünte
and Bogdan treated a planar, isothermal and stratified atmosphere in the presence of
a horizontal magnetic field, whereas in this paper we consider a vertical magnetic
field.

2. The Wave Equation with Newtonian Cooling

We shall confine our attention to an isothermal atmosphere with a vertical magnetic
field which is unbounded in the horizontal direction. We assume the Lagrangian
displacement � to vary as � � ei(!t�kx), where ! is the angular frequency and k

is the horizontal wave number. Assuming Newton’s law of cooling, and taking the
vertical dimension of the perturbation to be small compared with the local scale
height, the relation between the Lagrangian perturbations in pressurep and density
� is approximately given by �p=p ' ���=�, where


�(!) =

1 + i!�R

1 + i!�R
; (1)

here
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16��T 3 (2)

is the radiative relaxation time, � being the mean linear absorption coefficient per
unit length, T the temperature, cv the specific heat per unit volume, and � the
Stefan-Boltzmann constant. For simplicity, we assume that �R is constant over the
atmosphere. With these assumptions, the linearized equations for MAG waves are
given by a system of two differential equations,"
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where �z and �x are the amplitudes of the vertical and horizontal displacement,
g is the acceleration due to gravity, and ~ is a dimensionless parameter given by
~ = �=. The adiabatic sound speed and Alfvén speed are given, respectively, by

cS =

r
p

�
and vA =

Bp
4��

: (5)

Equations (3) and (4) have the same structure as the linearized wave equation for
adiabatic perturbations (see Paper I), apart from the appearance of the parameter
~, which incorporates Newtonian cooling. In the limit �R ! 1 i.e. in the limit
of adiabatic perturbations, � =  and ~ = 1. Letting ~ = 1 in Equations (3)
and (4) we recover the linearized equations given in Paper I. In the limit �R ! 0,
corresponding to isothermal perturbations, � = 1.

In an isothermal atmosphere � has the following height dependence

� = �0e�z=H ; (6)

where H is the scale height of the atmosphere. It is convenient to work in terms of
dimensionless wave number and frequency parameters defined by

K = kH ; and 
 =
!H

cS
; (7)

and the dimensionless vertical coordinate

� =
!H

vA
=

cS

vA;0

 e�z=(2H)

; (8)

where vA;0 is the Alfvén speed at z = 0. Using the definition of dimensionless
frequency the complex gamma can be written as


� =

1 + i
~�R

1 + i
~�R
; (9)

where the dimensionless relaxation time scale is given by ~�R = (cS=H)�R. In
terms of the variables defined by Equations (7) – (9), Equations (3) and (4) can be
combined into a fourth-order differential equation for �x whose general solution
can be expressed in terms of Meijer functions (Zhugzhda, 1979).

3. Solutions for K ! 0

For physical reasons and also for the purpose of mode classification it is instructive
to consider first the limiting case K ! 0. From Equations (3) and (4), we find that
in the limit K = 0, �x and �z become decoupled. It is fairly straightforward to see
that as K ! 0, there are two sets of solutions (Paper I):

sola7029.tex; 17/06/1997; 7:36; v.7; p.3



56 DIPANKAR BANERJEE ET AL.

�x = c1J0(2�) + c2Y0(2�) ; �z = 0 ; (10)

�z = c3�
�1+i� + c4�

�1�i�
; �x = 0 ; (11)

where � = (4
2=~ � 1)1=2 ; ci (i = 1; 2; : : :) are constants, and J0 and Y0 are
the Bessel functions. The asymptotic limit of Equation (10) corresponds to the
slow MHD waves for arbitrary field strength and this solution is the same as in the
case of purely adiabatic propagation. Thus in this limit the radiative diffusion does
not affect the slow MHD waves discussed in Papers I and II. On the other hand,
Equation (11) represents a vertically propagating wave when, approximately, j
j
exceeds the cut-off frequency 
c (which in dimensionless units is

p
j~j=2). In the

limit �R ! 1, 
c reduces to the adiabatic acoustic cut-off frequency 
a and the
solutions of Equation (11) represent adiabatic acoustic modes in an unmagnetized
plasma. In the general case of finite cooling time, the solutions of Equation (11)
have been affected by the radiation field compared with the purely adiabatic case.

4. K � 
 Diagram for Weak Field

The normal modes of a stratified atmosphere with a weak magnetic field in the
purely adiabatic limit were extensively studied in Papers I and II. We present here
the numerical results for the nonadiabatic case. As before we consider a cavity of
thickness d, which permits standing-wave solutions. The behaviour of the MAG
waves is reflected in their properties in the K � 
 diagram. We focus on zero-
displacement boundary conditions at both ends of the cavity:

�x = �z = 0 at z = 0 and z = d : (12)

Figures 1(a) and (b) show respectively the variation of the real and imaginary part
of the complex frequency with horizontal wave number K , for ~�R = 0:05. The
solutions were obtained by solving the Equations (3) and (4) numerically, using a
complex version of the Newton–Raphson–Kantorovich scheme (Cash and Moore,
1980) with the above boundary conditions. The atmosphere is characterized by
D = 1; � = 0:01, and  = 5=3, where D = d=H is the dimensionless height and
� = vA;0=cS is a measure of magnetic field strength. The figures depict a region of
theK�
 diagram where the magnetic modes are strongly influenced by the Lamb
mode, shown by the dashed curve in Figure 1(a) in the purely adiabatic limit.

Comparison of Figure 1(a) with Figure 7 of Paper I (purely adiabatic case)
enables us to identify the elementary wave modes and discern the effect of radiative
heat exchange on the general properties of the modes. Firstly, the real parts of the
magnetic-mode frequencies are essentially unaffected by the inclusion of radiative
losses, as already indicated by Equation (10). However, the avoided crossings have
shifted because the pure Lamb mode has been modified. Another interesting feature,
shown in Figure 1(b), is that we have a substantial increase in the imaginary part
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Figure 1. Part of the diagnostic diagram showing the interaction between the magnetic modes with
Lamb mode, for a dimensionless radiative relaxation time ~�R = 0:05. Variation with K of the (a)
real (solid lines) and (b) imaginary (dotted lines) parts of the frequency. In panel (a) the dashed line
marks the location of the adiabatic Lamb mode.

of the frequency in that portion of the K � 
 diagram where there is an avoided
crossing between the modified Lamb mode and the magnetic modes. It appears that
damping is enhanced in those parts of the K � 
 plane where the modes behave
predominantly as the Lamb mode. The alternation between narrow and broad
avoided crossings of the real part of 
 in Figure 1(a) gives rise to an asymmetry in
the behaviour of the imaginary part of 
 as a given mode changes between being
predominantly of a m-mode and a Lamb-mode nature. This is closely analogous
to the results of the asymptotic analysis of Paper I, concerning the behaviour in
the vicinity of nearly degenerate modes: in the present case of nonadiabatic wave
propagation, we again find that ‘even’ crossings are typically much narrower than
the ‘odd’ crossings.
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A striking difference, compared with the adiabatic case, is the lack of an upturn
in
 as a function ofK for them1 mode at the highestK considered (compare with
Figure 5 of Paper I). As discussed in Paper I, this upturn probably arises because of
interaction with the lowest-order g mode; otherwise, the low-frequency g modes,
with frequencies below the m1 mode, appear to be eliminated. With Newtonian
cooling, the effective Brunt-Väisälä frequency, given by ~
2

BV = (� � 1)=� (in
dimensionless units), decreases with decreasing �R and is zero for �R = 0. The
same is therefore true of the frequencies of pure (i.e., non-magnetic) g modes.
Indeed, in the case of a non-magnetic atmosphere it was shown (Mihalas and
Mihalas, 1984; Bünte and Bogdan, 1994) that if cooling occurs on a sufficiently
short time scale gravity waves cannot exist. Physically, this is not surprising: the
buoyancy force that drives gravity waves arises solely from horizontal temperature
fluctuations, which vanish when �R ! 0. This explains the lack of effect of the g-
mode interaction in Figure 1(a); indeed, we note that the real part of ~
BV, evaluated
at 
 = 0:5, is about 0.072 for this value of ~�R. We conjecture, however, that the
comparatively rapid increase with K of the imaginary part of the frequency of the
m1 mode might be related to a beginning influence of the low-frequency g modes
for larger values of K .

The interaction between the magnetic mode and the modified Lamb-mode is
illustrated in Figure 2(a) for different values of ~�R. As ~�R increases, i.e., as we
approach the adiabatic limit, the avoided crossing shifts towards the left and the
modified magnetic mode approaches the dashed line (behaves more as a pure
adiabatic Lamb mode). Hence the general effect of a finite cooling time is the shift
of the avoided intersection point.

It is instructive to consider a single mode, which we choose as the first magnetic
modem1 and to follow its behaviour as it interacts with the Lamb mode. Figure 2(b)
depicts the variation with K of the imaginary part of the complex frequency, for
different values of ~�R. The figure clearly reveals that for ~�R > 5 and ~�R < 0:1
the imaginary part of 
 approaches zero, which further indicates that in these
limits there is no dissipation. However, for intermediate values of ~�R there is mode
damping. As seen above, the damping is largest where the modes take on the nature
of a Lamb mode in the avoided-crossing regions. Another interesting feature is that
in the range 0:1 < ~�R < 5 we have a considerable increase in the imaginary part of

 for large values of K; as before, this might indicate a growing coupling between
g modes and the m modes which allows the modes to decay faster.

5. Conclusions

We have presented new solutions for magnetoatmospheric waves in an isothermal
atmosphere with a vertical magnetic field in the presence of radiative heat exchange
based on Newton’s law of cooling. This radiative heat exchange gives rise to
a temporal decay of oscillations with a characteristic dimensionless decay time
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Figure 2. Region of interaction between m- and Lamb-type solutions for different values of ~�R as
labeled. Variation of (a) real part and (b) imaginary part of the frequencies with K. The dashed line
in (a) shows the adiabatic Lamb mode.

~�D = 1= 
I, where 
I is the imaginary part of 
. Depending on the value of the
radiative relaxation time ~�R, the modes are effectively damped by the radiative
dissipation in as short a time as two oscillation period; however, in the limits of
very large or very small ~�R, corresponding to nearly adiabatic or nearly isothermal
oscillations, the modes are essentially undamped. The existence of mode damping
in the presence of radiative exchange is hardly surprising; however, a new feature
of our analysis is that the damping is significantly enhanced by the mode coupling
in the regions of avoided crossing. For small-scale magnetic structures on the Sun
such mechanisms might be very important for wave leakage.

We expect this study to contribute to the investigation of heating in active
regions. The present analysis allows us to understand qualitatively the behaviour of
the normal modes in the presence of radiative heat exchange. A more comprehensive
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treatment based on an asymptotic analysis similar to the one in Paper I is needed,
however, to shed further light on details of the spectrum and interaction of the
modes. This will be attempted in a subsequent investigation.
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