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Hybrid approach to relativistic Gaussian basis functions: Theory and applications

Rajat K. Chaudhuri,* Prafulla K. Panda,† and B. P. Das‡

Non-Accelerator Particle Physics Group, Indian Institute of Astrophysics, Bangalore 500034, India
~Received 28 August 1998!

We present a hybrid method to solve the relativistic Hartree-Fock-Roothan equations where the one- and
two-electron radial integrals are evaluated numerically by defining the basis functions on a grid. This procedure
reduces the computational costs in the evaluation of two-electron radial integrals. The orbitals generated by this
method are employed to compute the ionization potentials, excitation energies, and oscillator strengths of
alkali-metal atoms and elements of group IIIA through second-order many-body perturbation theory. The
computed properties are in excellent agreement with the experiment and other correlated theories.
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I. INTRODUCTION

The two most critical choices in the application of man
body perturbation theory~MBPT! @1–3# ~relativistic as well
as nonrelativistic! to atomic and molecular systems involv
the appropriate selection of basis functions and the partit
ing of the full HamiltonianH into a zeroth-order Hamil-
tonianH0 and a perturbationV @4–6#. These choices becom
extremely important when highly accurate estimates of v
ous properties are demanded from low-order perturba
computations. Intensive research has focused on develo
appropriate basis sets and methods@5–8# to minimize the
error between the theoretically computed properties and
experimental value. The strong dependence of the con
gence of MBPT on the choice ofH0 was first demonstrated
by Kelly @4# in his pioneering work on the beryllium atom
Using aVN21 instead of the traditionalVN potential for the
excited orbitals, Kelly obtained a vast improvement in t
perturbative convergence for that atom. He also dem
strated that more rapid convergence can be achieved fro
shifted denominator that corresponds to the summation
certain class of diagrams to all order.

It is well known that a theoretical treatment of heavy
oms must incorporate certain special features that are
essential for light atoms. This is largely due to the fact t
the relativistic effects are so large for heavy atoms that i
imperative to treat them by using the relativistic Dirac equ
tion. Despite its enormous computational complexity a
cost, tremendous progress has been made over the pa
cade and a half in solving the four-component Dirac eq
tions for many-electron systems using numerical Dirac-F
~DF! and the finite basis set expansion~FBSE! method
@9–21#. The numerical atomic DF self-consistent-field calc
lation is more compact and accurate, but its extension
molecular systems~multicenter many-electron systems! is
cumbersome. Moreover, the generation of a virtual orbita
tedious and frequently encounters convergence difficult
The FBSE method, on the other hand, is rather simple,
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its extension to molecules is straightforward. Also, the g
eration of occupied and virtual orbitals do not require se
rate computations.

The success of the relativistic FBSE method lies in
proper imposition of kinetic-balance condition@22# between
the large and small component spinor which in essence
be regarded as a proper boundary condition upon the b
set. Several papers by Grant and co-workers@13# and Parpia
@23#, among others, document the success of the relativ
FBSE method. However, in their finite basis set calculat
for light to heavy atoms (Z52 – 50 and 80!, Grant and co-
workers @13# employed kinetically balanced Slater-type o
bitals ~STO’s! which have the correct functional behavio
but are particularly unsuitable for analytical self-consiste
field ~SCF! molecular calculations. Gaussian-type orbita
~GTO’s! or contracted Gaussian-type orbitals~CGTO’s!, on
the other hand, are suitable in the evaluation of multicen
integrals in molecules. It was shown by Ishikawa, Baret
and Binning@24# that GTO’s can give rise to a natural de
scription of the relativistic wave functions within a finit
nucleus.

The most important feature of the FBSE method in t
STO @exp(2zr)# or GTO @exp(2zr2)# framework is to deter-
mine the appropriate exponential parameterz, because the
quality of the wave function largely depends upon this p
rameter, and in recent years there has been an increase
terest in finding out the appropriate exponential parame
and contraction coefficients~for CGTO’s! that can provide
correct functional behavior of the relativistic wave-functio
at the nucleus@15,25–28#. For instance, Matsuoka and co
workers @26# have reported accurate configuration avera
DF energies for various atoms through the FBSE meth
using a kinetically balanced well-tempered basis set in
framework of the finite nuclear size approximation. Wh
Matsuoka and co-workers@26# used a well-tempered Gaus
ian basis set in computing DF energies, Clementi and Co
ngio @15# employed a kinetically balanced geometric-ty
exponent for the Gaussian primitives, and obtained DF en
gies for various atoms that are comparable to the numer
DF value@29#. Later Malli and Styszynski@28# reported all-
electronab initio fully relativistic DF and DF Breit calcula-
tions for polyatomic systems using a relativistic univers
Gaussian basis set, and recently Pernpointer, Schwerdtf
1187 ©1999 The American Physical Society
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and Hess@27# employed a relativistic CGTO basis set
their relativistic coupled cluster calculation for the nucle
quadrupole moment of CsF. Though the slater~STO! and
Gaussian~GTO! types of basis functions are most wide
used in atomic many-body calculations, this choice is,
principle, arbitrary. Since it is beyond the scope of th
present work to discuss this aspect at length, we refer
review articles by Grant@30# and Sapirstein@31# for details.

We have developed a numerical procedure to solve
atomic relativistic DF-SCF equations using the FBS
method. This approach is basically a hybrid of numerical a
analytical DF ~FBSE! methods. Here, the large and sm
component radial functions are expanded in terms of Ga
ian primitives on a grid using appropriate constraints on
small component radial basis to impose the kinetic-bala
condition. While the large- and small-component parts of
radial functions are generated~on a grid! through the FBSE
procedure, the one- and two-electron radial integrals
evaluated numerically to avoid the complicated analyti
expressions for the two-electron direct and exchange ra
integrals~the analytical evaluation of one-electron radial i
tegral is rather straight forward!. This is the part which dif-
fers from the conventional FBSE method for solving D
SCF or Hartree-Fock-SCF equations. This proced
~numerical computation of two-electron integrals! also pro-
vides an easy way to reduces theN(N11)/2 operations to
Nc operations (N andNc correspond to the number of bas
set and occupied orbitals, respectively! in DF-SCF computa-
tion, and, thereby, reduces the computational time of rela
istic self-consistent-field calculations for heavy atoms. In
perturbative computations of ground- and excited-state p
erties, the two-electron radial integrals are also directly co
puted~numerically! wherever they appear to avoid the tw
electron integral storage problem. In this paper, we pres
some pilot calculations of the ionization potentials and ex
tation energies of alkali-metal and elements of group II
computed through second order MBPT using relativis
wave functions obtained from the hybrid DF-SCF approa

In Sec. II, we describe the hybrid DF-SCF method th
has been used to generate the relativistic single-par
atomic orbitals for post-Dirac-Fock computations. Section
briefly reviews the background of the MBPT approach
computing ionization potentials, electron affinities, and ex
tation energies. The numerical results are presented in
IV and compared with other perturbative calculations, wh
available. We make some concluding remarks in Sec. V

II. HYBRID RELATIVISTIC HARTREE-FOCK-ROOTHAN
EQUATION

The Dirac-Coulomb Hamiltonian for a many-electron sy
tem can be conveniently written as

H5(
i 51

N

@caW i•pW i1~b i21!mc21Vnuc~r i !#1
1

2(iÞ j

e2

urW i2rW j u
,

~2.1!

in which the Dirac operatorsaW andb are expressed by th
matrices
r
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aW 5S 0 sW

sW 0
D , b5S I 0

0 2I D , ~2.2!

wheres̄ stands for the Pauli matrices, andI is the 232 unit
matrix.

In the central field approximation, the SCF equations
determined by minimizing the energy functionalE with re-
spect toF, whereE is given by

E5^Fu(
i 51

N

@caW i•pW i1~b i21!mc21Vnuc~r i !#

1
1

2 (
iÞ j

e2

urW i2rW j u
uF&, ~2.3!

and the determinantal wave function~antisymmetric! u is
built from single-particle orbitals

u~r ,u,f!5S r 21Pnk~r !xkm~u,f!

ir 21Qnk~r !x2km~u,f!
D , ~2.4!

where r 21Pnk(r ) and r 21Qnk(r ) are the large and sma
component radial wave functions, respectively, that sat
the orthonormality condition

E
0

`

dr@Pnk~r !Pn8k~r !1Qnk~r !Qn8k~r !#5dnn8 . ~2.5!

Here, the quantum numberk classifies the orbital accordin
to their symmetry, and is given by

k522~ j 2 l !~ j 1 1
2 !, ~2.6!

where l is the orbital quantum number andj 5 l 6 1
2 is the

total angular quantum number. Here the spinorsxkm(u,f)
are given as

xkm5 (
s61/2

C~ l 1
2 j ;m2s,s!Yl ,m2s~u,f!hs , ~2.7!

where C( l 1
2 j ;m2s,s) and Yl ,m2s(u,f) represent the

Clebsch-Gordon coefficients and the normalized spher
harmonics, respectively, andhs stands for the two-
component spinors.

With these definitions, it can be easily shown that t
application of the variation principle to Eq.~2.3! leads to a
coupled integrodifferential equations inPnk(r ) andQnk(r ).
Therefore, to obtain the numerical wave functions, we ha
to solve these two coupled integrodifferential equations@32#.
Alternatively, a pseudoeigenvalue equation~Hartree-Fock-
Roothan! @33# can be obtained by using an analyt
expansion-type wave function and minimizing the ener
functionalsE with respect to the expansion coefficients.

It has been found that the numerical wave functions h
more accurate asymptotic behavior than the analytical o
though both provide total energies of comparable accura
The accuracy of the total energy and wave function obtai
through the Dirac-Fock-Roothan equation~the FBSE
method! can in principle be enhanced to any degree by i
creasing the number of basis functions, butin reality only a
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finite number of basis can be used because the computat
time increases very rapidly with the increasing number
basis functions. Moreover, the use of large basis functi
severely impedes the efficiency of the post-Dirac-Fock co
putations.

In the present paper, we introduce a hybrid scheme
solve the DF equation through the pseudoeigenvalue
proach where basis functions are defined on a grid and
and two-electron radial integrals are evaluated numeric
as opposed to the conventional relativistic Hartree-Fo
Roothan equations. Since the basis functions are defined
grid and the matrix elements appearing in the relativis
Hartree-Fock-Roothan equations are evaluated numeric
this scheme can be regarded as a combination of nume
and analytical approaches to the solution of DF-SCF eq
tion. Here, like the traditional analytical basis set expans
approach, the large and small components of the radial w
functions are expressed as linear combination of basis fu
tions, i.e.,

Pnk~r !5(
p

Ckp
L gkp

L ~r ! ~2.8!

and

Qnk~r !5(
p

Ckp
S gkp

S ~r !, ~2.9!

where the summation indexp runs over the number of bas
functionsN, gkp

L (r ), andgkp
S (r ) are basis functions belong

ing to the large and small components, respectively, andCkp
L

and Ckp
S are the corresponding expansion coefficien

Though, any basis functions can be used, we have ch
GTO’s that has the following form for the large compone

gkp
L ~r !5N p

Lr nke2apr 2
, ~2.10!

with

ap5a0bp21, ~2.11!

wherea0 ,b are user-defined constants,nk specifies the or-
bital symmetry~1 for s, 2 for p, etc.!, andN p

L is the normal-
ization factor for the large component. The small compon
part of the basis function is obtained by imposing the kine
balance and has the form

gkp
S ~r !5N p

SS d

dr
1

k

r Dgkp
L ~r !, ~2.12!

where

N p
S5A ap

2nk21
@4~k21k1nk!21#. ~2.13!

Using the above definitions, the Dirac-Fock-Roothan eq
tion for a closed-shell system can be cast into a pseudoei
value equation of the form

FC5SCe, ~2.14!
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where F is the Fock matrix, andS, C, and e are overlap,
eigenvector, and eigenvalue matrices, respectively. T
pseudoeigenvalue equation is first transformed into an eig
value equationF8C85C8e, which on diagonalization pro-
duces the desired eigenvalues (e) and eigenvectors (C
5S21/2C8). Since the detailed derivation of the relativist
Hartree-Fock-Roothan equation and its matrix eleme
~analytical as well as numerical form! has been discussed i
detail by several authors@9,13#, we conclude this section by
reiterating that the DF matrix elements appearing in the
brid relativistic Hartree-Fock-Roothan equations are eva
ated numerically to avoid the evaluation of a complicat
analytical expression of two-electron matrix elements, and
improve the accuracy of the orbital properties. The pres
procedure also provides an easy route to implementNc (Nc
specifies the number of occupied orbitals! operations instead
of N2 (N denotes the number of basis functions! for the
evaluation of the two-electron radial integrals that appea
the DF-SCF equation. A brief outline of the scheme is t
following.

In the SCF procedure, the integrals and matrices
evaluated over the members of the basis set$fm% rather than
over the members of the set of solutions$c i% because the
atomic or molecular orbitals~solutions of SCF equations! are
not known until the calculation is complete. Since these t
sets of functions are related by

c i5 (
m51

N

Cm ifm , ~2.15!

the two-electron matrix element ofF ~the Hartree-Fock po-
tential term! in the $f% basis can be written as

Ui j 5(
c

^f iccu
1

r 12
uf jcc&

[(
c

(
m

(
n

Cmc* Cnc^f ifmu
1

r 12
uf jfn&, ~2.16!

which involves a two-index tranformation. However, th
two-index transformation process can be easily avoided
evaluating theUi j matrix elements in a mixed basis, i.e., in
$f,c% basis. This is trivial, because the occupied orbitals c
be updated~like density matrix! during the SCF iteration
and, therefore, the two-electron matrix eleme
^f iccu1/r 12uf jcc& can be directly computed at each iteratio
without invoking two two-index transformation.

III. THEORY

A. Overview of multireference MBPT method

Multireference many-body perturbation theory~MBPT!
may be regarded as a reformulation of the exact Schro¨dinger
equation into a small reference space that is a subspace o
full Hilbert space. This reduction is achieved by first sep
rating the atomic or molecular orbitals into three sets—
core $c%, valence$v%, and excited orbitals$e%—and then
introducing projection operatorsP for the reference spac
~also called valence or model space! andQ for its orthogonal
complement or virtual space:
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P5(
i 51

d

ua&^au ~3.1!

and

Q512P5 (
m5d11

`

um&^mu, ~3.2!

where the sets$a% and $m% are, respectively, reference an
complementary space functions, andd is the dimensionality
of the reference space. With the aid of these two project
the exactN-electron time-independent Schro¨dinger equation
can be transformed into the equation

HeffuCl
0&5EuCl

0& ~3.3!

involving the effective HamiltonianHeff ,

Heff5PHP1PHQ~E2QHQ!21QHP, ~3.4!

whereH is the exact Hamiltonian, andHeff acts only on the
reference space spanned by$a% and produces the exact e
genvaluesE for the selected states as given by the full-spa
Schrödinger equation.

Certain approximations are necessary to solve Eq.~3.4!,
since the right-hand side involves the unknown eigenvaluE
andQ space states, which, in principle are of infinite dime
sion. The expansion of the denominator about the zer
order eigenvalue transforms the Brillouin-Wigner typeHeff
@Eq. ~3.4!# to the Rayleigh-Schro¨dinger-type effective
Hamiltonian (Heff)

Heff5PHP1PHQ~E02H0!21QHP1•••. ~3.5!

The exact HamiltonianH is partitioned intoH0 ~the
zeroth-order Hamiltonian! and V ~the perturbation!, where
the zeroth-order Hamiltonian is taken to be diagonal inP and
Q subspaces, and may be written as a sum of diagonal
electron operatorsh0 defined by

h05(
i

e i u i &^ i u, ~3.6!

wherei runs over all orbitals, ande i is thei th orbital energy.
The partitioning of the orbitals must ensure a well-defin
separation of the orbital energies between core, valence,
excited orbitals. Failure to meet this requirement introdu
numerical instabilities into the perturbative computatio
Although, in the above, we have chosen the zeroth-or
energy to be the ‘‘sum over orbitals,’’ this choice is,in prin-
ciple, at our disposal, andin practice it strongly affects the
convergence properties of the perturbative expansions. T
are two general categories known as the generalized Mo¨ller-
Plesset~MP! @34# and the generalized Epstein-Nesbet~EN!
partitioning schemes@35#. The generalized MP partitioning
utilizes a ‘‘sum over orbitals’’ treatment, whereas the gen
alized EN pursues a ‘‘sum over states’’ formulation in co
structing the zeroth-order HamiltonianH0 . Different poten-
tials may also be invoked to constructH0 , and a wide range
of potentials have been chosen@4,5# with varying degrees of
success. The Hartree-Fock potential is the most widely u
potential for MBPT computations, because many terms
s,

e

-
h-

e-

d
nd
s
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er
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-
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ed
u-

tomatically vanish for this particular choice. The prese
second-order MBPT computation employs MP partitionin
where the zeroth-order energy is constructed from
Hartree-Fock potential.

B. Relativistic many-body perturbation theory

The relativistic Dirac-Coulomb Hamiltonian~presented in
Sec. II! for a many-electron system may also be partition
into H5H01V, where

H05(
i 51

N

@caW i•pW i1~b i21!mc2#2(
i 51

N
Z~r i !e

r i
1(

i 51

N

U~r i !

~3.7!

which subsequently redefines the perturbationV,

V5
1

2 (
iÞ j

e2

urW i2rW j u
2(

i 51

N

U~r i !, ~3.8!

where the single-particle operatorU(r i) is introduced to ac-
count the effective~or average! potential experienced by a
electron due to the presence of other electrons, and is kn
as the Hartree-Fock potential. The Schro¨dinger equation of
the zeroth-order HamiltonianH0 provides a set of orbitals
that are first partitioned into core, valence, and excited or
als and then two projectorsP andQ are introduced to cast th
N-electron Schro¨dinger equation into an effective Hami
tonian equation@Eq. ~3.5!#. Finally, the effective Hamil-
tonian matrix is diagonalized to obtain the desired posit
and negative eigenvalues.@Note that while carrying out rela
tivistic MBPT calculations, negative energy states are
cluded from sum over intermediate states (um&) to avoid
continuum dissolution.#

The theoretical ionization process is usually described
M→M 11e. However, the ionization process may also
represented asM 11e→M . That is to say, the ionization
potential~IP! can be computed either by estimating the e
ergy required to remove an electron from the neutral ato
or molecular system or evaluating the energy released du
the electron attachment~EA! process to its positively
charged counterpart. Though in principle the computed en
gies will be the same, in practice the theoretical treatmen
these two processess are not equally convenient. For al
metal atoms or systems with one electron in the outerm
shell, it is convenient to estimate the ionization potential
computing the energy released due to the addition of an e
tron to its positively charged species~a closed-shell core!. It
is to be emphasized that although, theoretically, the ab
two processes should provide identical numbers, for a tr
cated many-body calculation they need not be the same
cause the orbitals and their corresponding energies are
identical in these two situations. In the first case the core
virtual orbitals experience the potential due to the valen
electron ~singly occupied orbital!, but this potential is not
present in the second case.

The second quantized representation of electron atta
ment process to a closed-shell core is

uCl
0&5av

†uF0&5av
†~Pc51

N ac
†!u0&. ~3.9!
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Here u0& and uF0& represent the true and closed-sh
vacuum states, respectively. Operatorsav

† andac
† denote the

valence and core creation operators, respectively. For a
like system, the core orbitals are 1s1/2,2s1/2,2p1/2, and
2p3/2, and the valence orbitals will be 3s1/2,3p1/2, and
3p3/2. For convenience, we introduce the notati
a,b,g, . . . for core orbitals,p,q,r , . . . for excited orbitals,
u,v,w, . . . for valence orbitals, andm and n for valence
and/or excited orbitals.

The second quantized representation of the zeroth-o
HamiltonianH0 and the perturbationV are

H05(
i , j

hi j ai
†aj1Ui j ai

†aj ~3.10!

and

V5 1
2 (

i jkl
gi jkl ai

†aj
†alak2Ui j ai

†aj , ~3.11!

where

hi j 5E d3r c i~rW !†FcaW i•pW i1~b i21!mc22
Z~r i !e

r i
Gc j~rW !,

~3.12!

Ui j 5E d3rc i~rW !†U~rW !c j~rW !, ~3.13!

and

gi jkl 5e2E E d3r 1d3r 2

urW12rW2u
c i~rW1!†c j~rW2!†ck~rW1!c l~rW2!.

~3.14!

Using these definitions, the second-order effective Ham
tonian matrix@Eq. ~3.5!# for electron attachment~EA! and
detachment~IP! processes can be expressed in terms
single particle orbital~for the Hartree-Fock potential! as

EA~2!5ev1 (
a,m,n

gavmnḡmnav

ev1ea2em2en
2 (

a,b,m

gabvmḡvmab

ea1eb2ev2em

~3.15!

and

IP ~2!52ea2 (
bg,p

gbgapḡapbg

eb1eg2ea2ep

1 (
b,p,q

gbapqḡpqba

ea1eb2ep2eq
, ~3.16!

where e ’s are the single-particle orbital energies, andḡi jkl
represents

ḡi jkl 5gi jkl 2gi j lk . ~3.17!

While the first term of Eqs.~3.15! and~3.16! accounts for the
PHP of Eq.~3.5!, the second and third terms of Eqs.~3.15!
and ~3.16! represents the second term of Eq.~3.5!. The first
terms of Eqs.~3.15! and ~3.16! are generally called the
l

a-

er

l-

f

Koopmans’ EA/IP value. The second and third terms of E
~3.15! and~3.16! are the correlation and relaxation contrib
tion to the second order EA/IP, respectively.

The problems of continuum dissolution first occurs at s
ond order because of the appearance of the energy den
nator. Unless the restriction of the summation over o
positive energy states is in place, this could lead to a van
ing energy denominator.

IV. RESULTS

A. Ionization potentials of neutral alkali-metal atoms
and group-IIIA elements

We present the ionization potentials of alkali-metal ato
computed through second-order MBPT in Table I, and co
pare with experiments@36# and with the second-order pertu
bative calculations of Johnson and co-workers@19#. The only
difference between these two theoretical calculations lie
the choice of basis functions~apart from the dimension o
the basis function!. While Johnson and co-workers generat
the basis through theB-spline method, we employ geometr
Gaussian function~with a050.0052 andb52.75) to con-
struct the atomic orbital basis. The entire computation is p
formed with a basis that ranges from 20s15p15d15f ~for
lithium! to 28s24p20d16f 10g ~for francium!.

Table I clearly demonstrates that the accuracy in the i
ization potential estimated through Koopmans’ theorem@37#
of alkali-metal atoms decreases with increasing atomic nu
ber. For instance, the Koopman ionization potential for
s1/2 state starts off with an accuracy of 1% for 2s1/2 state of
lithium, and finally ends up with 12% for the 7s1/2 state of
francium. We also observe similar trends forp1/2 and p3/2
states, where separation betweenp1/2 and p3/2 states in-
creases~degenerate in lithium! with increasing atomic num-
ber.

Apart from sodium, inclusion of the second-order MBP
terms ~relaxation and correlation contribution! significantly
improves the agreement with the experiment, especially
the heavy alkali metals. While the accuracy of our compu
ionization potential for lighter atoms is similar to that o
Johnson and co-workers@19#, the accuracy in the estimate
IP for heavy atoms~cesium and francium! is better than
theirs. In particular, our computed IP values for cesium
comparable to the CCSD~coupled cluster calculation with
singles and doubles! of Eliav et al. @20#. This small but non-
negligible difference in computed IP for cesium and fra
cium between our results and that of Johnsonet al. clearly is
a basis set effect. However, it should be noted that wh
pursuing higher-order MBPT calculations, the use of suc
large basis will be highly computer intensive unless so
deep-lying core and high-lying virtual orbitals are discard
from the calculations.

Table II compares the ionization potentials of group-III
elements computed through second-order MBPT with the
periments@36#. We found several interesting features for th
series. First of all, unlike the alkali-metal atoms, the Koo
mans’ IP values do not change appreciably down the se
Second, the second-order MBPT provides a less accurat
value for these elements compared to the alkali-metal ato
The deviation in computed IP values for these element
quite expected because the nondynamical correlation eff
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TABLE I. Second-order ionization potential~in a.u.! of alkali-metal atoms.

This work Othersa Experimentb

Atom Ionizing orbital KT D c Second order Abs. error~%!

Li 2s1/2 0.19631 0.00162 0.19793 0.11 0.19797 0.19814
2p1/2 0.12862 0.00134 0.12996 0.22 0.13001 0.13024
2p3/2 0.12862 0.00134 0.12996 0.22 0.13001 0.13024
3s1/2 0.07370 0.00034 0.07404 0.18 0.07415 0.07418

Na 3s1/2 0.18204 0.00558 0.18762 0.65 0.18790 0.18886
3p1/2 0.10947 0.00168 0.11115 0.40 0.11123 0.11160
3p3/2 0.10939 0.00167 0.11106 0.41 0.11119 0.11152
4s1/2 0.07003 0.00120 0.07123 0.49 0.07141 0.07158

K 4s1/2 0.14751 0.01181 0.15932 0.13 0.15994 0.15952
4p1/2 0.09568 0.00436 0.10004 0.31 0.10033 0.10035
4p3/2 0.09547 0.00430 0.09977 0.11 0.10005 0.10009
5s1/2 0.06095 0.00268 0.06363 0.13 0.06395 0.06371

Rb 5s1/2 0.13939 0.01393 0.15333 0.12 0.15430 0.15351
5p1/2 0.09078 0.00497 0.09575 0.48 0.09626 0.09619
5p3/2 0.08995 0.00474 0.09469 0.44 0.09518 0.09511
6s1/2 0.05861 0.00315 0.06176 0.00 0.06216 0.06177

Cs 6s1/2 0.12753 0.01519 0.14272 0.27 0.14511 0.14310
6p1/2 0.08556 0.00642 0.09198 0.15 0.09253 0.09212
6p3/2 0.08374 0.00567 0.08941 0.23 0.08996 0.08962
7s1/2 0.05515 0.00341 0.05856 0.19 0.05939 0.05867
7p1/2 0.04177 0.00219 0.04396 0.001 0.04393
7p3/2 0.04106 0.00202 0.04308 0.001 0.04310
8s1/2 0.00419 0.00962 0.01381

Fr 7s1/2 0.13184 0.01926 0.15110 0.96 0.15271 0.14967
7p1/2 0.08584 0.00788 0.09327 0.69 0.09431 0.09392
7p3/2 0.08041 0.00542 0.08583 0.46 0.08656 0.08623
8s1/2 0.05605 0.00411 0.06016 0.06074

aReference@31#.
bReference@36#.
cCorrelation and relaxation contribution to the ionization potential.
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are quite large for these elements due to the quasidegene
of the highest-lying occupied orbitals. For example, t
2s1/2,2p1/2, and 2p3/2 orbitals of Boron are quasidegenera
and hence, a multireference MBPT treatment is absolu
necessary for this system to improve the accuracy and l
order perturbative convergence rate.

Generally, the theoretical treatment of the electron atta
ment process is difficult because the correlation and re
ation effects tend to cancel each other~see Fig. 1!, and the
success of the theoretical treatment depends upon the rel
importance of these two effects. For alkali-metal atoms,
relaxation effect is small compared to the correlation eff
~especially for heavy alkali metals! and, hence, they do no
cancel each other. Figure 1 also illustrates that while
contribution from the relaxation part is small and roughly t
same for all the alkali metals beyond sodium, the correlat
contribution steadily increases with the increasing atom
number. This pattern, however, may change at higher-o
MBPT and, in fact, has also been observed by Johnson
acy

ly
-
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c
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nd

co-workers@19#. It is also evident from Table I that correla
tion and relaxation effects are important for inner orbita
which indicates that the contribution of correlation and
laxation term will be large for deep-lying core orbitals. Th
precise estimation of correlation and relaxation effects
the deep-lying~or inner! core, therefore, requires highe
order many-body effects and, hence, it is imperative t
high-order perturbative computations~like the coupled clus-
ter method! are necessary for the accurate estimation of c
ionization.

B. Excitation energies of neutral alkali-metal atoms
and elements of group IIIA

The direct computation of hole-particle excitation ener
involves the matrix elements (Hap

bq), which through second-
order MBPT can be written as

Hap
bq5^Fb

q uHeff
~2!uFa

p&5^F0uab
†aqHeff

~2!ap
†aauF0&. ~4.1!



PRA 59 1193HYBRID APPROACH TO RELATIVISTIC GAUSSIAN . . .
TABLE II. Second-order ionization potential~in a.u.! of group-IIIA elements.

This work Experimenta

Atom Ionizing orbital KT Db Second order Abs. error~%!

B 2p1/2 0.27587 0.02984 0.30571 0.25 0.30494
2p3/2 0.27579 0.02983 0.30562
3s1/2 0.11451 0.00596 0.12047
4s1/2 0.05172 0.00168 0.05340

Al 3 p1/2 0.19522 0.02444 0.21966 0.15 0.21998
3p3/2 0.19472 0.02439 0.21911
4s1/2 0.09709 0.00646 0.10355
5s1/2 0.04563 0.00224 0.04787

Ga 4p1/2 0.19609 0.02569 0.22178 0.59 0.22046
4p3/2 0.19275 0.02576 0.21851
5s1/2 0.09996 0.00697 0.10693
6s1/2 0.04670 0.00231 0.04901

In 5p1/2 0.18881 0.02666 0.21541 1.30 0.21263
5p3/2 0.17974 0.02544 0.20518
6s1/2 0.09383 0.00822 0.10205
7s1/2 0.04422 0.00307 0.04729

Tl 6p1/2 0.19863 0.02397 0.22260 0.80 0.22446
6p3/2 0.16602 0.02300 0.18902
7s1/2 0.09647 0.00789 0.10436
8s1/2 0.04526 0.00279 0.04805

aReference@36#.
bCorrelation and relaxation contribution to the ionization potential.
ent
orre-
o-al
FIG. 1. Variation of correlation~dotted line! and relaxation en-
ergy ~solid line! as a function of atomic number for alkali-met
atoms.
Appropriate expansion ofHeff
(2) yields

Hap
bq5F epdpq1 (

r ,s,g

gqgrsḡrspa

ep1eg2e r2es

2 (
r ,g,d

ggdprḡqrgd

ed1eg2e r2eq
Gdab

1F2eadab2 (
r ,g,d

ggdbr ḡragd

ed1eg2e r2ea

1 (
r ,s,g

gagrsḡrsabg

eb1eg2e r2es
Gdpq1ḡqabp

1(
r ,g

ḡagprḡqrbg

eb1eg2eq2e r
1(

r ,g

ḡqgbr ḡragp

ep1eg2e r2ea
.

~4.2!

Here the first two terms of the right-hand side of Eq.~4.2!
corresponds to the matrix elements for electron attachm
and detachment processes, and the next two terms c
sponds to two-body effective interaction for excitation pr
cess. In Eq.~4.2! the last sum excludesg5a and p5r .
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TABLE III. Second-order excitation energies~in cm21) and oscillator strengths of alkali-metal atoms

This work Experimenta

Atom Transition Energy Abs. error~%! Osc. str. Energy Osc. str.

Li 2s1/2→2p1/2 14915 0.08 0.770 14903 0.753
2s1/2→2p3/2 14916 0.08 14904
2s1/2→3s1/2 27188 0.07 27206

Na 3s1/2→3p1/2 16783 1.00 1.041 16956 0.982
3s1/2→3p3/2 16801 1.00 16973
3s1/2→4s1/2 25544 0.08 25739

K 4s1/2→4p1/2 13010 0.19 1.231 12985 1.02
4s1/2→4p3/2 13068 0.19 13043
4s1/2→5s1/2 21101 0.36 21026

Rb 5s1/2→5p1/2 12636 0.45 1.338 12579
5s1/2→5p3/2 12868 0.40 12817
5s1/2→6s1/2 20097 0.18 20134

Cs 6s1/2→6p1/2 11178 0.40 1.414 11134
6s1/2→6p3/2 11700 0.27 11732
6s1/2→7s1/2 18469 0.36 18535

Fr 7s1/2→7p1/2 12692
7s1/2→7p3/2 14324
7s1/2→8s1/2 19957

aReference@38#.
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However, the computation of excitation energies for alka
metal atoms involving the highest singly occupied~at the
Dirac-Fock level orbital! is rather simple, because the effe
tive two-body interactions do not appear. For example,
2s1/2→2p1/2 transition process for the lithium atom can b
expressed as

uF2p1/2
&5u1s22p1/2&5a2p1/2

† a2s1/2
u1s22s&

5a2p1/2

† a2s1/2
a2s1/2

† u1s2&[a2p1/2

† u1s2&. ~4.3!

Therefore, the 2s1/2→2p1/2 transition energy through secon
order MBPT reduces to

DE2s1/2→2p1/2
5^F2p1/2

uHeff
~2!uF2p1/2

&2^F2s1/2
uHeff

~2!uF2s1/2
&

[^1s2ua2p1/2
Heff

~2!a2p1/2

† u1s2&

2^1s2ua2s1/2
Heff

~2!a2s1/2

† u1s2&. ~4.4!

A careful analysis shows that the quantity on the right-ha
side of Eq.~4.4! is nothing but the difference in the ioniza
tion potential value~in terms of the neutral lithium atom!
orthe difference in the electron affinity value~in terms of the
positively charged lithium atom!. Therefore, once the va
lence ionization potentials are known for these alkali-me
atoms, the excitation energies involving the highest sin
occupied orbital~at the Dirac-Fock level! can be easily
evaluated by computing the difference in the ionization p
tential value.
-

e

d

l
y

-

Excitation energies and oscillator strengths compu
through second-order MBPT~using second-order energy an
an unperturbed dipole matrix element! for alkali-metal atoms
and group-IIIA elements are compared with the experim
@38# in Tables III and IV. These tables demonstrate that
second-order MBPT estimates thes1/2→p1/2 transition ener-
gies more accurately thans1/2→p3/2 for alkali-metal atoms.
Here we also find that the error in the estimation ofs1/2

→s1/2 transition energies is less~on an average! compared to
s1/2→p1/2 and s1/2→p3/2 for alkali-metal atoms. While the
second-order single-reference MBPT provides an accu
estimate for the excited states of alkali-metal atoms, it yie
somewhat inaccurate~compared to alkali-metal atoms!
excited-state energies for the group-IIIA elements. This
viation in the estimation of the excitation energies for e
ments of group IIIA is not unexpected, since the high
occupieds and p orbitals are fairly close lying for these
elements, configurations likens2np(J5 1

2 ) and np3(J5 1
2 )

interact strongly with each other@39#. Therefore, these two
configuration state functions~CSF’s! should be included in
the reference space for an accurate description of the gro
and excited states. In other words, a multireference MB
treatment is necessary for an accurate description of
ground and excited states for these elements. Since
second-order single reference space MBPT for the grou
and excited-state energy computations do not treat the
np3 as reference space states, these CSF’s act as intr
states@40#, and, thereby, affect the perturbative convergen
An extensive study of this problem is underway.
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TABLE IV. Second-order excitation energies~in cm21) of group-IIIA elements.

Atom Transition This work Abs. error~%! Othersa Experimentb

B 2p1/2→3s1/2 40656 1.54 40040
2p3/2→3s1/2 40635 1.53 40024
3s1/2→4s1/2 14720 1.66 14969

Al 3 p1/2→4s1/2 25483 0.51 25347
3p3/2→4s1/2 25362 0.51 25234
4s1/2→5s1/2 12220 0.99 12342

Ga 4p1/2→5s1/2 25207 1.69 24789
4p3/2→5s1/2 24489 2.20 23962
5s1/2→6s1/2 12712 0.66 12796

In 5p1/2→6s1/2 24880 2.08 24373
5p3/2→6s1/2 22634 2.14 22160
6s1/2→7s1/2 12018 0.75 11929

Tl 6p1/2→7s1/2 25951 1.99 27048 26478
6p3/2→7s1/2 18581 0.56 19196 18685
7s1/2→8s1/2 12359 0.70 12268

aReference@41#.
bReference@38#.
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V. CONCLUSION

We have presented valence ionization potentials, exc
tion energies, and oscillator strengths of alkali-metal ato
and group-IIIA elements computed through single-refere
second-order MBPT, where the single-particle orbitals
generated by solving the Dirac-Fock Hamiltonian in a fin
Gaussian basis. Since the present procedure compute
one- and two-electron radial integrals numerically by defi
ing the atomic orbitals on a grid, it is easy to implement t
'Nc dependence (Nc is the number of occupied orbitals! for
the number of operations needed to evaluate the two-elec
integrals that appears in the Dirac-Fock self-consistent fi
equation. The numerical accuracy achieved for sing
valence-electron atoms promises that this hybrid method
be accurate for other many-electron atomic systems a
s

a-
s
e
e

the
-
e

on
ld
-

ill
d,

with some modifications, can also be applied to molecu
systems.
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