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The ab initio effective valence shell HamiltoniarH() method is used to compute the excitation
energies and oscillator strengths for resonance transitions in Mg-like ions, as well as their lowest
ionization potentials. The computed excitation energies and oscillator strengths frétt inethod

are in excellent agreement with experiment and with the best values from other high level correlated
computations, where available. Several previous discrepancies between theory and experiment are
now removed. The present work also investigates the dependence of the calelilaisdillator
strengths on the nature and choice of the valence orbitals and provides a comprehensive study of the
convergence oH? calculations with respect to the enlargement of the valence spacd998
American Institute of Physic§S0021-96068)03006-72

I. INTRODUCTION also one essential ingredient for obtaining the desired accu-
racy for excited state properties. The stringent requirements
Electronic structure theory plays a unique role in under-on the unoccupied orbitals necessitate the use of a suitable
standing atomic and molecular processes and spectroscopigsis set, and this is generally accomplished, in part, by in-
observations of astrophysical interest. For instance, an accdreasing the basis set size through the addition of several
rate knowledge of excitation energies and oscillator strengthgolarization and diffuse functions.
may be used to infer the molecular abundances, tempera- While problems due to basis set inadequacy can be re-
tures, etc., in celestial objects. The laboratory preparation amoved partially by enlarging the basis for small and moder-
creation of highly reactive astrophysically important speciesate sized atomic and molecular systems, the proper treatment
such as free radicals or highly stripped ions, is often ex-of electron correlation requires rigorous size-extensive theo-
tremely difficult, and so too is the study of their important ries. The maintenance of size-extensiVity now considered
atomic and molecular processes. In these circumstances) be crucial in computing energy differences and potential
electronic structure calculations provide essential data for thenergy surfaces, especially near regions of bond breaking or
interpretation of astrophysical observations. Even when thevoided (or rea) crossings between potential energy sur-
species can be replicated in the laboratory, theory often prafaces. Effectively, the size-extensivity requirement translates
vides crucial, otherwise experimentally inaccessible, addiinto a need for properly treating the differential correlation
tional information concerning the system. energies of the interactingr initial and fina) zeroth order
Comparisons between theoretical predictions and experstates, such that the state energies rigorously scale linearly
ment continue to provide a strong driving force toward de-with the number of electrons. The size-extensivity condition
veloping improved electronic structure theories which areis violated by many popular excited state electronic structure
now at a stage where explanations and accurate predictiotiseories, such as configuration interaction with only single
are possible for many critical physical phenomena. AlthougHCIS), single and doubléCISD), etc., excitations.
these theories have matured considerably, the accurate esti- Widely used electronic structure theories for excited
mation of excited state properti¢isoth atomic and molecu- state computations can be classified broadly into two catego-
lar) and transition dipole moments, oscillator strengths, etc.ries: (a) transition based methods which provide energy dif-
remains a major challenge. The present limitations on théerences directly, andb) state-based methods which yield
accuracy of excited state computations arise mainly due tondividual state energies. The first category includes ap-
(1) the use of inadequate basis sets that often fail in properlproaches, such as the random phase approxim&RemW)?
describing the character of the excited states @dén un- and coupled-cluster based linear response theory
balanced treatment of dynamical correlation and polarizatiorﬁCCLR'Df‘8 whereas the self-consistent fie{@CBH, con-
effects. The accuracy of the computed excitation energy deiguration interactionCl), many-body perturbatiofMBPT)
pends largely upon the quality of the unoccupied valencgheories’ 2 or the Tamm—Dancoff approximatiofT DA),
orbitals into which the excitation occurs. Therefore, an ap-are state-based approaches. The RPA scheme has been found
propriate description of these unoccupied valence orbitals i be quite useful for many atomic and molecular systems,

0021-9606/98/108(6)/2556/7/$15.00 2556 © 1998 American Institute of Physics



J. Chem. Phys., Vol. 108, No. 6, 8 February 1998 Chaudhuri, Das, and Freed 2557

but the method often suffers from numerical instabilities, aspole moments and oscillator strengfAg346-*8Several pa-
evidenced by the emergence of imaginary excitationpers document thél” formalism, the computational algo-
energie$” The linear response approach is a very powerfurithms for evaluating atomic and molecular properties, and
correlated method that is closely related to state-based mulhe convergence behavidr.3® Despite the recent tremen-
tireference coupled-clustefMRCC) methods (see Refs. dous successes of thE method for accurately assigning the
25-28 for a comprehensive revigwProvided the coupled- electronic spectrum of complex molecular systems, such as
cluster (CC) equations are stable for the ground state, theconjugated polyenes and inorganic molecules, only rather
matrix eigenvalue nature of the coupled-cluster based lineavlder, small basis set applications have been made for atomic
responséCCLRT) method eliminates the numerical instabil- systems>—%

ity problems introduced by the so-call@wtruder stateg®>° The present work considers four astrophysically impor-
which are virtual space states that become degenerate witBnt atomic systems, the isoelectronic series Md,, 8i*?,
reference space states for complex values of a perturbaticind P3. Extensive theoreticd™® and experimentaf~®*
parameterwithin the unit circlg, thereby spoiling the per- studies of the excitation energies and oscillator strengths for
turbative convergence of the wave operator equafibns. these four atomic systems are available employing a wide
Therefore, the accuracy of excitation energies available fronvariety of techniques. Nevertheless, considerable discrepan-
this CCLRT method directly depends upon the success of theies continue to exist between the theoretically computed
CC computations for the ground electronic state. In additionoscillator strengthgand excitation energigand experiment,

the calculation of excitation energies and transition moment&nd the magnitude of the discrepancies grows with increas-
with the linear response theory involves the diagonalizatioing nuclear charge. For example, earlier large discrepancies
of a large(nonsymmetrig matrix whose dimension is either in Hartree—Foc¥® computations for the oscillator strengths
equal(for singlet statesor greater(for triplet statesthan the  of the Mg resonant transition have been shown by Fis¢her
dimension of the CC equations necessary for accuratelp arise mainly from the omission of intervalence correlation
treating the ground stat@t the CCSD level Thus, the ap- effects in the Hartree—Fock procedure. In fact, Fischer's

proach is numerically efficient only for small to moderately multiconfiguration Hartree—FockMCHF) calculations for
sized atomic and molecular systems. Mg are quite close to experiment and to other nonrelativistic

The effective valence shell Hamiltonian method methods'®%® However, similar disagreements for the excita-
(HY)3**8 does not suffer from many of the above limita- tion energies and oscillator strengths also persist for the Al
tions, although this scheme may encounter a convergenc%ﬁz, and P3 system$?*~%
problem due to the presence of intruder states. However, the This paper describes large sca# computations that
intruder state problems can often be removed or, at leasgliminate these prior discrepancies between theory and ex-
strongly mitigated by applying several physically and math-Periment. The present work again demonstrates thaHthe
ematically motivated methodological techniqd&s®4° scheme not only produ_ces highly accurate excitation energies
Some conceptual advantages of the effective valence shdlut also a precise estimation of the.oscnlator strengths. In
Hamiltonian method are the following) A common set of accord with our excellent representation of the low-lying ex-
orbitals is used to describe all the states of interest. Thi§ited states, the accuracy of our computed high-lying excited
choice cancels common correlation energy contributions foptate energiegot described by the otheib initio works) is
all the states and enables the inclusion of all correlation an@!S0 uniform. We further document the importance of vari-
polarization contributions to the transition momergty. The ~ OUS types of electron correlation in the computation of exci-
method provides a very balanced description of all the statg@tion energies and transition moments.
in a one-shot procedurdiii) The H” approach manifestly Sectlon_ Il begins with a brief review of thd“ method
maintains the size-extensivity of the computed state energid8’ computing the energy and other properties, such as the
(the roots of the effective Hamiltonian(iv) A single com-  diPole and transition moments. The computed results and
putation of the effective Hamiltonian provides all the ioniza- discussion are presented in Secs. Il and IV, respectively.
tion potentials, electron affinities, and excitation energies.

The method is not burdened by the large matrix dimension!!- THEORY
ality problem because the effective Hamiltonian operates Perturbation theory decomposes the molecular electronic
only on the reference space statgenerated by allocating HamiltonianH into a zeroth order pati, and a perturbation
valence electrons among the valence orbitals in all possiblg,
ways, whose number is usually quite small, involving no
more than several hundred states. H=Ho+V, 2.1

While the original motivation for developing the effec- whereH, is constructed as a sum of one-electron Fock op-
tive valence shell Hamiltonian theory has been to understandrators. The full many-electron Hilbert space is then parti-
the underlying approximations of semiempirical electronictioned into a primary spac@lso called the model or refer-
structure methods and to devise improvad initio semi-  ence spagewith projectorP and its orthogonal complement
empirical electronic structure procedures, it is now widelywith projector Q=1—P. The P space spans the valence
appreciated that the method is capable of generating reliablpace of all distinct configuration state functions involving a
potential energy surface for the ground and excited statedilled core, and the remaining electrons are distributed among
excitation energies, ionization energies, and bond cleavaghe valence orbitals in all possible ways to ensure complete-
energies, as well as molecular properties such transition diness of theP-space. Hence, th@-space contains all basis
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functions with at least one core hole and/or one occupiedn actual computations, the effective Hamiltonildr is first
excited orbital. TheH” method transforms the full Schro diagonalized to obtain desired eigenvalues and eigenfunc-
dinger equation, tionsW¥/. The latter are then employed along with E2.5
to compute expectation values and transition moments of the

HW=E¥;, (22 operatorA by use of the effective valence-shell operaddr
into the P-space effective valence-shell Sctiimger equa-
tion,
IIl. RESULTS AND DISCUSSION
H"W/=EWV/, (2.3

) ) We employ the uncontracted 42p Gaussian basis of
where the valence space eigenfunctions=PW¥; are the  pynning and Hay, augmented by thrédunctions(four for
projections of the exact eigenfunctions and the energies P3*) and ones and twop diffuse functions for Mg, Af,

are the corresponding exact eigenvalues of the full Schrog+ and B*. The total number of basis functions used for

dinger equation. Thel” method provides the unique second {he Hv computations ranges from 5For Mg) to 63 (for

order approximation, P3%). Three sets of reference spadéso for P°*) are em-
ployed to investigate the dependence of the compiitéd

HY=PHP+3 > [P(A)VQ(E,—Ho) *QVP(A") oscillator strengths and excitation energies on the choice of
AA valence space. The valence orbitals are selected based on
+h.c.], (2.9 their orbital energieto avoid or minimize near degeneracies

: - . between the reference and virtual space stagad on their
whereh.c. designates the Hermitian conjugate of the preced-

. : g relative importance in properly describing the excited states
ing term andP(A) designates the projector onto the valenceof interest, i.e., in providing a high quality first order ap-
space basis functio).

i i _ proximation from thePHP term in Eq.(2.4) to minimize the
In order to compute the diagonal and off-_dlagonal matrlXrequired perturbative corrections. The reference space obvi-
elements Of, an operqt@r bet\lveen the ”Ofma"z?d full space ously must include the 8(highest occupied orbitaband the
wave functions¥; within H .theory, the matrlx elements 3p (lowest unoccupied orbitafor describing the (8) 1S,
(W;|A|P/) are transformed into an effective valence-shell

) NSl (3s3p) 1P, transition. Thus, our smallest reference space
operatorA” between the orthonormal valence space €igenz,ntains only the 8 and 3 orbitals with two active elec-
functionsW¥?, i.e

i = trons (called the &/ reference spage Since a minimal

(ViAW )y= (WY AW/, (2.5  {3s,3p} reference space is not adequate for providing a
. o highly accurate description of the singlet excited st&teke
The effective operatoA” can likewise be expanded as addition of 3 and 4s orbitals provides the second reference
space(called the 1¥ reference spageThe anticipated im-
A'=PAP+3 2 [P(A)VQ(Ey—Ho) 'QAP(A’) portance of the 8 orbitals stems not only from their
AL quasidegeneracy with thep3rbitals but also from their non-
+h.c]. (2.6) negligible contribution to théP; excited states. In addition,

_ _ _ the |(core)l%3d?) reference space configuration state func-
Thus, the expectation values and off-diagonal couplings may . (CSP mixes with the zeroth order ground state

be determined by first solving E2.3) and then by taking | ¢ore)19352) CSF and thereby stabilizes the ground state
the corresponding matrix elements on the right-hand side Oé(nergy. Therefore, energetic considerations appear to render
Eq. (2.5). OnceA“_|s evaluated, .It f_urnlshes all diagonal and the {3s,3p,3d,4s) reference space as optimal. However, the
off-diagonal matrix elements_ within thie-space s_tates. (core)%3s4p) virtual space CSF is more important for de-
Many-body theory techniques can be applied to reducgciping the 1P, state than the reference space
Eqg. (2.6) and express the matrix elementsAf directly in (core)°3p3d) CSF (for the {3s,3p,3d} valence orbital
the valence orbiFaI basis. The resulting equations are avainaCe3 because thé(core)l®3p3d) CSF is doubly excited
able elsewher® in ternls 01; coze-, one-, two.?.. elegtron and, hence, weakly coupled to tt(e:ore)1°383p) CSF(the
valence shell OPefat‘?’*c’ Ay Ajj, - .., respectively, in the dominant CSF for théP; excited statg Therefore, inclu-
Operator representation, sion of the|(core)®3s4p) CSF into the reference space
might be expected to improve the first order approximation
AV=AL+ D AV+ED, Al (2.7 and hence the perturbative convergence of tifemethod.

' " Although the|(core)!®3p3d) CSF is less important for the
whereA? is the constant core contribution, aAd is a one- P, state, its presence in the reference space is useful to help
electron effective operator with matrix element$4;|v’) in avoid “intruder state” type numerical instabilities in th¢”
the valence orbital basis. Wheis the dipole operator, the perturbative expansion§Since the|(core)'®3p3d) CSF is
effective dipole operatoA” acts only on theP-space, i.e., energetically lower than thg core)'°3s4p) CSF (in zeroth
valence space. Although the dipole operator is a one-electroorden, the |(core)®3p3d) CSF would act as an intruder
operator, two-electron effective operatak§ appear in the state unless it is included in the reference spdatke above
lowest order nontrivial correction from the perturbation ex-arguments also apply to thes4rbital and, hence, it is also
pansion in Eq{(2.6). This nonclassical two-electron term is included in the largest valence orbital space. Gener&lly,
necessary to provide accurate dipole and transition momentsomputations avoid the use of very large non-
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TABLE |. Excitation energiegin cm™?) for resonant transitions in Mg-like

ions.

Dominant

Hv

State configuration

Y

ov

13v

Experiment
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tradeoff between the desire for accurate first order approxi-
mations(from large reference spagesnd the requirements
of quasidegeneracfprovided by small reference spates
Tables | and Il compare thEl” excitation energies of
Mg-like ions with experimerdf and with other theoretical

Mg calculations. Apart from a few exceptions, our estimated ex-
°P, 3s3p 21102.46 2146089 21057.52 21911.14 citation energies are reasonably close to experimsae
Pi 33 3533369 33758.99 34898.95 35051.36 Typle | and are more accurate than those from previous
S, 3s4s 42 471.33 41840.89 41197.37 , L i . Ea
s, 3sds 4398199 4403092 4350300 c_o_nf|_gurat|on interactioCl) calculatloné and_ RRPA(rela-
p, 3s3d 47009.20 46298.23 46403.14 livistic random phase approxmatﬂ)computatlons?.z On av-
3D, 3s3d 48763.60 48045.09 47957.04 erage, theH? results are as good as the MC-RRPAulti-
AlT . configuration RRPA calculations of Chotet al. (see Table
IEi gzgg 23 g?g:;i gg gggig gg 323:38 2; gzgzi’g I1). (The MC-RRPA calculations without core excitfations
1p, 3p? 8506044 8552162 8547900 are, however, less accurate than Hheresults) The excited
35, 3sds 89350.12 89786.70 91271.20 Singlet states are more accurately treated byHFenethod
s, 3s4s 93317.32 93897.88 95348.20 than the excited triplet states, but the discrepancy decreases
st . with diminishing size of the reference space, a feature which
£ S o S SIS S901900 has aiso been found and explained n our previiizom:
1p, 3p? 12111272 121 601.48 121 946.00 Putations form-electron system® Energetic considerations
is, 3p2 153 253.05 153359.29 153443.00 are given above to motivate the choice of th&/d@ference
Pt space {3s,3p,3d,4s}) as appropriate, and, hence, this refer-
jEz gzgp 1‘(3); gg-gg 1%%?1%73%9 1%?361%;2% ence space is e>.<pected to provide an accurate estimate of the
1Di 3533 : 158 32217 158 138 20 excitation energies. Allthough t.he 10 orbital M)Oreference
1p, 3p2 16830175 163880.76 166 144.00 SPace computations yield a fairly accurate description of the
3p, 3s3d 198484.15 189389.00 €Xcited states, the results deviate more from experiment than
sy 3p? 197 830.10 195836.70 19458850 the 4- and 13- orbital valence reference space computations
j:i 2232 ;g‘l‘ ggg-éé ;gg ggg-gg (from the {3s,3p} and {3s,3p,3d,4s,4p} reference spaces,
: : respectively. A plausible explanation for the lower accuracy
aSee Ref. 70. of the 10/ space calculations is the following: Addition of

the 4s and 3 orbitals into the reference space improves the

first order descriptiorifrom the PHP term in Eq.(2.4)] for
quasidegenerate reference spat@sbecause an enlarged both the ground and excited states of the Mg-like ions, but it
non-quasidegenerate reference space introduces a huge diagso introduces a large diagonal perturbation upon imposition
onal perturbation(arising due to the imposition of degen- of the valence orbital degeneracy condition. While a better
eracy upon the zeroth order reference spadaich can de- first order representation of the reference space states
stroy the perturbative convergence, afl) because an (achieved via the inclusion of additional valence orbjtals
extended reference space greatly increases the computatiomaintributes to an acceleration of the perturbative conver-
labor due to the presence of a large number of valence orbigence, the large diagonal perturbation appears to exert a
als in the reference space. However, the addition of the 4 more negative influence on the perturbative convergence.
orbitals to the second set of reference space§his behavior reflects the tradeoff in thE scheme between
({3s,3p,3d,4s}) provides an improved first order description desiring large reference spaces and requiring these spaces to
of the 1P, excited state because bothl Zind 4o orbitals be quasidegenerate. The success ofHiiemethod largely
yield important contributions. Thus, our consideration of thedepends upon balancing these two opposing factors. That is,
three different reference spaces further investigates th#he H approach succeeds only when the effect of the diag-

TABLE Il. Comparison ofH" excitation energiegin cm %) and oscillator strengths for €3) 'S,— (3s3p) P, transition in Mg-like ions with other
many-body methods.

MC-RRPA! HY
cr RRPA MCHF® 1 nf 4v 10V 13V Experiment

Mg 32833 35292 35 333.69 33 758.99 34 898.95 35051.36
Al* 60 342.0 58 534 61 222 60 169 59 427 60 075.94 59 550.49 59 913.70 59 849.70
Szt 82 193 80 607 83 686 82 564 83 217.49 83 041.35 83 245.45 82 883.00
Pt 104 952 107 323 106 537 105124 105 913.55 106 110.39 105 189.90
Av. error 1115.49 1505.51 823.13 269.20 391.68 374.84

aSee Ref. 53. ®Without core excitations.

bCited in Ref. 55. 'With core excitations.

‘See Ref. 55. 9See Ref. 70.

dSee Ref. 62.
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TABLE lll. Oscillator strengths for resonance transition in Mg-like ions. TABLE IV. Transition moments for resonance transition in Mg-like ions.

MC-RRPA’ HY HY
MCHF* CI RRPA 19 1I® 4V 10V 13V Experiment av 0v 13v
Mg 171 2.18 1.97 2.00 1.81 Mg 2.603 2.533 2.505
Al* 187 185 183 1.78 1.95 1.78 1.82 #8.%F At 1.889 1.813 1.824
1.9+06 sigt 1.522 1.479 1.489
1.84+0.12 pat 1.291 1.270
Sizt 16¥9 173 170 165 176 1.66 1.68 0.4
1.6+0.2"
P 1.4¢ 159 157 152 161 156 ©1®.2"
1.6:0.16 core)'®3s4p) CSFs that contribute very little to the ener-
_ : Y _
See Ref. 50. hSee Ref. 64. gies but exert a stronger influence on dipole properties. The
bSee Ref. 52. iSee Ref. 65. 13-valence orbitaH" computations are the most consistent
ZSee Ref. 62. JkSee Ref. 66. and balanced among those from the three sets of valence
q%-'ﬁﬂc’“t core _etxi'tat'ons- |Ssee geff- gg- spaces. Further support for this conclusion stems from a
Ith core excitations. ee Rer. . . H . - . .
'See Ref. 53. mSee Ref. 69, comparison of the computed ionization potentials with ex-

“See Ref. 63. "See Ref. 58. periment in Table V.

Since a wide variety of reference spaces are used in the
present calculations, it is necessary to study the low order
convergence behavior of the different choices. The Mg atom

onal perturbation is less important. In the\kt@eference provides a useful illustration of the general behavior for the
space computation, tHécore)'°3p3d) reference space CSF other cases. At this juncture, we note the trend that the sec-
is a doubly excited statéwith respect to the ground state ond ordeH” computations often overestimate/underestimate
which is weakly coupled to thé(core)l3s3p) CSF (the the state energies, and this eventually is counterbalanced by
most important reference space CSF for the exchtBg the third ordeH" contributions. Thus, the low order pertur-
statg. Therefore, this CSF provides a very small contributionbative convergence of thd” method sometimes exhibits an
to 1P, state. On the other hand, since thi @&bital (also the  oscillatory pattern that mainly arises due to the valence or-
4s) is rather high lying compared to the other valence orbit-bital energy averaging procedure, especially when the zeroth
als, its inclusion into the reference space produces a largerder orbital eigenspectrum is highly non-quasidegenerate.
diagonal perturbation, thereby introducing a stronger converWe first analyze the perturbative convergence of our smallest
gence retarding factor than the insignificant improvement ireference space {4 calculations. The error in the computed
produces in the first order description. The above mentione@s—3p resonant transition energy rapidly drops from
opposing factors do not appear in the four-valence orbitaR5%—0.8% as the perturbation order increases from3l
({3s,3p}) reference spacél” computations, which, there- While the computed excitation energy for the resonant tran-
fore, yield the anticipated good results. Continuing these arsition displays a uniform convergence pattern, the perturba-
guments leads to the expectation that the 13 valence orbitéive convergence for the nonresonant transition is somewhat
HY computations would be even less accurate than the 10scillatory, where the error in the computed excitation en-
valence orbitalH” computation. However, the 13 valence ergy is only 0.6% at second order as compared to 5% and
orbital ({3s,3p,3d,4s,4p}) reference space includes all the 3.5% at first and third order, respectively. This type of con-
dominant and the next level subdominant CSFs in the refervergence pattern is quite common and has also been found
ence space, thereby successfully overcoming any impedelsewher® where the triplet state is described more accu-
ment to convergence difficulties induced by the diagonal perrately than the singlet state with a minimal valence sgéte
turbation. In fact, the 13 valence orbitél” computation computation.
provides a precise estimate of the excitation energy of the A systematic increase in the reference space significantly
1p, state in addition to that of other high-lying excited improves the low order perturbative convergence of kite
states. scheme by introducing more nondynamical correlation con-
While the four-valence orbital reference spatecom-  tributions. For example, inclusion of thed3orbitals in the
putations successfully describe the excited state energies tdference spacén addition to the 3 and 3), reduces the
interest, they yield relatively poor oscillator strengttsee
Table Ill), a feature which is, of course, undesirable because o o )
a reliable theoretical method should treat both accurately, AB-E V- lonization potentialin eV) in Mg sequence.
more detailed analysis indicates that the main error of the HY
four-valence orbital reference space computation lies in an

overestimation of the transition momefsee Table IV and, lons av 1oV 13v Experiment
hence, the oscillator strengtiwhich is proportional to the Mg—Mg*+e 7.539 7.637 7.555 7.645
square of the transition moménthe inferior quality of the 2';—%5':*9 12-245 ;8-532 1§-595 18.823

; . S 33.248 3.135 33.220 33.460
oscillator strengths from the minimal reference space COMZ, oo g =1.088 51023 51 354

putations can be anticipated because the reference space
lacks important configurations like tHécore)°3p3d) and  See Ref. 70.
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error in the computed third order excitation energy fromdesirable features of thel” method. For example, thel”
3.5% to 1.8% at third order for the nonresonant transitioncomputations provide a more uniform accuracy for most ex-
without sacrificing the accuracy of the second order nonresceited states than is obtained with some other schemes, such
nant transition energyoff by 0.8%). Inclusion of the &  as the MCHF® CI,°® and RRPA? methods[Table Il pro-
orbitals in the reference space also improves the low orderides the average deviation between the calculated and ob-
convergence for the resonans-3 3p transition of the Mg served (3?) 1S,—(3s3p) 1P, transition energies for the
atom, where the accuracy of the first ordét calculation Al*, SP*, andP3* ions] The presenH? computations con-
decreases from 5% to 1.8%. The quality of thécomputa-  cur with previous observations, indicating that while a large
tion further improves when thesdand 4p orbitals are in- reference space is necessary for the accurate estimation of
cluded in the reference space. In this case, the resénant  excitation energies to the singlet excited states, a minimal
resonant 3s—3p transition energies are off by 9.6% reference space suffices for treating the triplet state. This
(2.5%), 2.4% (3.5%), and 0.4%(3.7% from the first, sec- observation is readily understood based on the more diffuse
ond, and third ordelH ¥ computations, respectively. A similar character of the low-lying excited singlet states than their
trend is also exhibited for the high-lying excited states, adsoconfigurational triplet counterparts. Our use of individual-
well as for calculations with smaller basis sdfBhree addi- ized reference spaces for different groups of excited states is
tional sets ofH” calculations have been performed for thein accordance with the common usage of multiple reference
Mg atom with different number$33, 49, and 9Dof basis spaces in other many-body methods, a procedure that be-
functions by deleting/adding, p, d, f, andg functions comes advantageous because of the different nature of cor-
from/to the original basis sétvith 57 functions. The pertur-  relation in various classes of excited states. The greater im-
bative convergence of computed excitation energies for theggortance of polarization contributions to transition moments
three sets of calculations behaves exactly as expected. than to excitation energies is reflected here in the need for
particular, the accuracy generally increases with the size darger reference spaces to provide transition moments of
basis|] The above trends displayed by the computations comparable quality to the excitation energies available from
indicate that this method quite accurately includes the differcalculations with smaller reference spaces. This situation

ential interstate correlation energies. complies with the larger basis set requirements for accurate
Although theH” method is primarily designed to pro- dipole properties than energies.
duce accurate differences in correlation energied neces- It has been argued that large schl& computations are

sarily the individual state energijeas evidenced by a large highly vulnerable to numerical instabilities from the alleg-
number of previousd? calculations, it nevertheless is perti- edly always present serious intruder state problems. How-
nent to analyze the fraction of ground state correlation enever, our extensive studies on the convergence behavior of
ergy recovered with different basis sets and reference spacabe H” method dispels this assumptidh>® The proper
The Gaussian basis sets employed here are not designed fdroice of the valence orbitals and reference space plays a
optimal recovery of the full correlation energy of atoms un-significant role in all multireference many-body theories, and
less the basis is very largicomplet¢ and appropriate. the H” method is no exception. It should be emphasized that
Hence, we do not anticipate obtaining a large portion of thea large(complete reference space invariably leads to situa-
ground state correlation energy, but the computations shoultions where the zeroth order eigenspectrum of Bhepace
definitely approach the exact value with increasing size obtates overlaps with that of th® space states, i.e., large
the basis set. The present computation shows that the groutidomplete reference space MR-MBPT computations must
state correlation energghird orde) increases from-0.1618  ultimately become plagued by intruder states and, conse-
to —0.2458 a.u. as the basis set increases from 33 to 9quently, frequently yield divergent perturbative expansion.
functions. (The nonrelativistic ground state correlation en- However, when pursuing large scale perturbative computa-
ergy is estimated by Clementi and Veilldtéis —0.428 a.u.  tions, we generally neither know nor care whether the series
Inclusion of more basis functions or the use of Slater func-actually converges, since this information is of little practical
tions should help to recover more of the correlation energyvalue for computations truncated at low orders. Mathemati-
However, as evidenced by computations with various basisal convergence depends upon the behavior of the indefi-
sets, the transition energies and oscillator strengths are eritely high order terms which are generally unavailable for
pected to be very slightly changed in this process, and it i$arge scale computations. Moreover, if a truly convergent
the accurate treatment of the transition energies and oscillgerturbative series fails to provide accurate low order predic-
tor strengths that forms the prime focus of resolving previougions, the method has no practical value. On the contrary, a

discrepancies with experiment. formally divergent but asymptotic series is very useful if it
reliably provides low order results as does tH& method.
IV. CONCLUSION The H” approach uses a combination of physical and math-

dematic:al considerations to produce accurate results in third

Vertical excitation energies, ionization potentials, an der. The high fh ¢ i for th
oscillator strengths of Mg-like ions are calculated using the2rder. The high accuracy of the present computations for the

effective valence shell Hamiltonian method. Both low-lying Mg sequence strongly supports these claims.
(and even some high-lyingxcitation energies and oscillator
strengths are in good agreement with experiment and withA‘CKNOWLEDGMENT
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