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Application of the effective valence shell Hamiltonian method
to accurate estimation of oscillator strengths and excitation energies
of Mg-like ions
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The ab initio effective valence shell Hamiltonian (Hy) method is used to compute the excitation
energies and oscillator strengths for resonance transitions in Mg-like ions, as well as their lowest
ionization potentials. The computed excitation energies and oscillator strengths from theHy method
are in excellent agreement with experiment and with the best values from other high level correlated
computations, where available. Several previous discrepancies between theory and experiment are
now removed. The present work also investigates the dependence of the calculatedHy oscillator
strengths on the nature and choice of the valence orbitals and provides a comprehensive study of the
convergence ofHy calculations with respect to the enlargement of the valence space. ©1998
American Institute of Physics.@S0021-9606~98!03006-2#
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I. INTRODUCTION

Electronic structure theory plays a unique role in und
standing atomic and molecular processes and spectrosc
observations of astrophysical interest. For instance, an a
rate knowledge of excitation energies and oscillator streng
may be used to infer the molecular abundances, temp
tures, etc., in celestial objects. The laboratory preparatio
creation of highly reactive astrophysically important speci
such as free radicals or highly stripped ions, is often
tremely difficult, and so too is the study of their importa
atomic and molecular processes. In these circumstan
electronic structure calculations provide essential data for
interpretation of astrophysical observations. Even when
species can be replicated in the laboratory, theory often
vides crucial, otherwise experimentally inaccessible, ad
tional information concerning the system.

Comparisons between theoretical predictions and exp
ment continue to provide a strong driving force toward d
veloping improved electronic structure theories which
now at a stage where explanations and accurate predic
are possible for many critical physical phenomena. Althou
these theories have matured considerably, the accurate
mation of excited state properties~both atomic and molecu
lar! and transition dipole moments, oscillator strengths, e
remains a major challenge. The present limitations on
accuracy of excited state computations arise mainly du
~1! the use of inadequate basis sets that often fail in prop
describing the character of the excited states and~2! an un-
balanced treatment of dynamical correlation and polariza
effects. The accuracy of the computed excitation energy
pends largely upon the quality of the unoccupied vale
orbitals into which the excitation occurs. Therefore, an

propriate description of these unoccupied valence orbitals
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also one essential ingredient for obtaining the desired ac
racy for excited state properties. The stringent requireme
on the unoccupied orbitals necessitate the use of a suit
basis set, and this is generally accomplished, in part, by
creasing the basis set size through the addition of sev
polarization and diffuse functions.

While problems due to basis set inadequacy can be
moved partially by enlarging the basis for small and mod
ate sized atomic and molecular systems, the proper treatm
of electron correlation requires rigorous size-extensive th
ries. The maintenance of size-extensivity1 is now considered
to be crucial in computing energy differences and poten
energy surfaces, especially near regions of bond breakin
avoided ~or real! crossings between potential energy su
faces. Effectively, the size-extensivity requirement transla
into a need for properly treating the differential correlati
energies of the interacting~or initial and final! zeroth order
states, such that the state energies rigorously scale line
with the number of electrons. The size-extensivity conditi
is violated by many popular excited state electronic struct
theories, such as configuration interaction with only sin
~CIS!, single and double~CISD!, etc., excitations.

Widely used electronic structure theories for excit
state computations can be classified broadly into two cate
ries: ~a! transition based methods which provide energy d
ferences directly, and~b! state-based methods which yie
individual state energies. The first category includes
proaches, such as the random phase approximation~RPA!2

and coupled-cluster based linear response the
~CCLRT!,3–8 whereas the self-consistent field~SCF!, con-
figuration interaction~CI!, many-body perturbation~MBPT!
theories,9–23 or the Tamm–Dancoff approximation~TDA!,
are state-based approaches. The RPA scheme has been

isto be quite useful for many atomic and molecular systems,

6 © 1998 American Institute of Physics
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but the method often suffers from numerical instabilities,
evidenced by the emergence of imaginary excitat
energies.24 The linear response approach is a very powe
correlated method that is closely related to state-based
tireference coupled-cluster~MRCC! methods ~see Refs.
25–28 for a comprehensive review!. Provided the coupled
cluster ~CC! equations are stable for the ground state,
matrix eigenvalue nature of the coupled-cluster based lin
response~CCLRT! method eliminates the numerical instab
ity problems introduced by the so-calledintruder states,29,30

which are virtual space states that become degenerate
reference space states for complex values of a perturba
parameter~within the unit circle!, thereby spoiling the per
turbative convergence of the wave operator equations.31–33

Therefore, the accuracy of excitation energies available fr
this CCLRT method directly depends upon the success of
CC computations for the ground electronic state. In additi
the calculation of excitation energies and transition mome
with the linear response theory involves the diagonalizat
of a large~nonsymmetric! matrix whose dimension is eithe
equal~for singlet states! or greater~for triplet states! than the
dimension of the CC equations necessary for accura
treating the ground state~at the CCSD level!. Thus, the ap-
proach is numerically efficient only for small to moderate
sized atomic and molecular systems.

The effective valence shell Hamiltonian metho
(Hy)34–48 does not suffer from many of the above limit
tions, although this scheme may encounter a converge
problem due to the presence of intruder states. However
intruder state problems can often be removed or, at le
strongly mitigated by applying several physically and ma
ematically motivated methodological techniques.31–33,45

Some conceptual advantages of the effective valence s
Hamiltonian method are the following:~i! A common set of
orbitals is used to describe all the states of interest. T
choice cancels common correlation energy contributions
all the states and enables the inclusion of all correlation
polarization contributions to the transition moments.~ii ! The
method provides a very balanced description of all the st
in a one-shot procedure.~iii ! The Hy approach manifestly
maintains the size-extensivity of the computed state ener
~the roots of the effective Hamiltonian.! ~iv! A single com-
putation of the effective Hamiltonian provides all the ioniz
tion potentials, electron affinities, and excitation energies.~v!
The method is not burdened by the large matrix dimensi
ality problem because the effective Hamiltonian opera
only on the reference space states~generated by allocating
valence electrons among the valence orbitals in all poss
ways!, whose number is usually quite small, involving n
more than several hundred states.

While the original motivation for developing the effec
tive valence shell Hamiltonian theory has been to underst
the underlying approximations of semiempirical electro
structure methods and to devise improvedab initio semi-
empirical electronic structure procedures, it is now wide
appreciated that the method is capable of generating reli
potential energy surface for the ground and excited sta
excitation energies, ionization energies, and bond cleav

energies, as well as molecular properties such transition d
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pole moments and oscillator strengths.40,43,46–48Several pa-
pers document theHy formalism, the computational algo
rithms for evaluating atomic and molecular properties, a
the convergence behavior.31–33 Despite the recent tremen
dous successes of theHy method for accurately assigning th
electronic spectrum of complex molecular systems, such
conjugated polyenes and inorganic molecules, only rat
older, small basis set applications have been made for ato
systems.35–37

The present work considers four astrophysically imp
tant atomic systems, the isoelectronic series Mg, Al1, Si12,
and P13. Extensive theoretical49–56 and experimental57–61

studies of the excitation energies and oscillator strengths
these four atomic systems are available employing a w
variety of techniques. Nevertheless, considerable discre
cies continue to exist between the theoretically compu
oscillator strengths~and excitation energies! and experiment,
and the magnitude of the discrepancies grows with incre
ing nuclear charge. For example, earlier large discrepan
in Hartree–Fock50 computations for the oscillator strength
of the Mg resonant transition have been shown by Fisch51

to arise mainly from the omission of intervalence correlati
effects in the Hartree–Fock procedure. In fact, Fische
multiconfiguration Hartree–Fock~MCHF! calculations for
Mg are quite close to experiment and to other nonrelativis
methods.49,56 However, similar disagreements for the excit
tion energies and oscillator strengths also persist for the A1,
Si12, and P13 systems.62–69

This paper describes large scaleHy computations that
eliminate these prior discrepancies between theory and
periment. The present work again demonstrates that theHy

scheme not only produces highly accurate excitation ener
but also a precise estimation of the oscillator strengths
accord with our excellent representation of the low-lying e
cited states, the accuracy of our computed high-lying exc
state energies~not described by the otherab initio works! is
also uniform. We further document the importance of va
ous types of electron correlation in the computation of ex
tation energies and transition moments.

Section II begins with a brief review of theHy method
for computing the energy and other properties, such as
dipole and transition moments. The computed results
discussion are presented in Secs. III and IV, respectively

II. THEORY

Perturbation theory decomposes the molecular electro
HamiltonianH into a zeroth order partH0 and a perturbation
V,

H5H01V, ~2.1!

whereH0 is constructed as a sum of one-electron Fock
erators. The full many-electron Hilbert space is then pa
tioned into a primary space~also called the model or refer
ence space! with projectorP and its orthogonal complemen
with projector Q512P. The P space spans the valenc
space of all distinct configuration state functions involving
filled core, and the remaining electrons are distributed am
the valence orbitals in all possible ways to ensure compl

i-ness of theP-space. Hence, theQ-space contains all basis
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functions with at least one core hole and/or one occup
excited orbital. TheHy method transforms the full Schro¨-
dinger equation,

HC i5EC i , ~2.2!

into the P-space effective valence-shell Schro¨dinger equa-
tion,

HyC i
y5EC i

y , ~2.3!

where the valence space eigenfunctionsC i
y5PC i are the

projections of the exact eigenfunctions and the energieE
are the corresponding exact eigenvalues of the full Sch¨-
dinger equation. TheHy method provides the unique secon
order approximation,

Hy5PHP1 1
2 (
L,L8

@P~L!VQ~EL2H0!21QVP~L8!

1h.c.#, ~2.4!

whereh.c. designates the Hermitian conjugate of the prec
ing term andP(L) designates the projector onto the valen
space basis functionuL&.

In order to compute the diagonal and off-diagonal mat
elements of an operatorA between the normalized full spac
wave functionsC i within Hy theory, the matrix element
^C i uAuC i8& are transformed into an effective valence-sh
operatorAy between the orthonormal valence space eig
functionsC i

y , i.e.,

^C i uAuC i8&5^C i
yuAyuC i8

y&. ~2.5!

The effective operatorAy can likewise be expanded as

Ay5PAP1 1
2 (
L,L8

@P~L!VQ~EL2H0!21QAP~L8!

1h.c#. ~2.6!

Thus, the expectation values and off-diagonal couplings m
be determined by first solving Eq.~2.3! and then by taking
the corresponding matrix elements on the right-hand sid
Eq. ~2.5!. OnceAy is evaluated, it furnishes all diagonal an
off-diagonal matrix elements within theP-space states.

Many-body theory techniques can be applied to red
Eq. ~2.6! and express the matrix elements ofAy directly in
the valence orbital basis. The resulting equations are av
able elsewhere35 in terms of core-, one-, two-, . . . electron
valence shell operatorsAc

y , Ai
y , Ai j

y , . . ., respectively, in the
operator representation,

Ay5Ac
y1(

i
Ai

y1 1
2(

i , j
Ai j

y 1•••, ~2.7!

whereAc
y is the constant core contribution, andAi

y is a one-
electron effective operator with matrix elements (vuAi

yuv8) in
the valence orbital basis. WhenA is the dipole operator, the
effective dipole operatorAy acts only on theP-space, i.e.,
valence space. Although the dipole operator is a one-elec
operator, two-electron effective operatorsAi j

y appear in the
lowest order nontrivial correction from the perturbation e
pansion in Eq.~2.6!. This nonclassical two-electron term

necessary to provide accurate dipole and transition momen
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In actual computations, the effective HamiltonianHy is first
diagonalized to obtain desired eigenvalues and eigenfu
tions C i

y . The latter are then employed along with Eq.~2.5!
to compute expectation values and transition moments of
operatorA by use of the effective valence-shell operatorAy.

III. RESULTS AND DISCUSSION

We employ the uncontracted 11s7p Gaussian basis o
Dunning and Hay, augmented by threed-functions~four for
P31! and ones and twop diffuse functions for Mg, Al1,
Si21, and P31. The total number of basis functions used f
the Hy computations ranges from 57~for Mg! to 63 ~for
P31!. Three sets of reference spaces~two for P31! are em-
ployed to investigate the dependence of the computedHy

oscillator strengths and excitation energies on the choice
valence space. The valence orbitals are selected base
their orbital energies~to avoid or minimize near degeneracie
between the reference and virtual space states! and on their
relative importance in properly describing the excited sta
of interest, i.e., in providing a high quality first order a
proximation from thePHP term in Eq.~2.4! to minimize the
required perturbative corrections. The reference space o
ously must include the 3s ~highest occupied orbital! and the
3p ~lowest unoccupied orbital! for describing the (3s) 1S0

→(3s3p) 1P1 transition. Thus, our smallest reference spa
contains only the 3s and 3p orbitals with two active elec-
trons ~called the 4V reference space!. Since a minimal
$3s,3p% reference space is not adequate for providing
highly accurate description of the singlet excited states,48 the
addition of 3d and 4s orbitals provides the second referen
space~called the 10V reference space!. The anticipated im-
portance of the 3d orbitals stems not only from thei
quasidegeneracy with the 3p orbitals but also from their non
negligible contribution to the1P1 excited states. In addition
the u(core)103d2& reference space configuration state fun
tion ~CSF! mixes with the zeroth order ground sta
u(core)103s2& CSF and thereby stabilizes the ground st
energy. Therefore, energetic considerations appear to re
the $3s,3p,3d,4s% reference space as optimal. However, t
u(core)103s4p& virtual space CSF is more important for d
scribing the 1P1 state than the reference spa
u(core)103p3d& CSF ~for the $3s,3p,3d% valence orbital
space! because theu(core)103p3d& CSF is doubly excited
and, hence, weakly coupled to theu(core)103s3p& CSF ~the
dominant CSF for the1P1 excited state!. Therefore, inclu-
sion of the u(core)103s4p& CSF into the reference spac
might be expected to improve the first order approximat
and hence the perturbative convergence of theHy method.
Although theu(core)103p3d& CSF is less important for the
1P1 state, its presence in the reference space is useful to
avoid ‘‘intruder state’’ type numerical instabilities in theHy

perturbative expansions.@Since theu(core)103p3d& CSF is
energetically lower than theu(core)103s4p& CSF ~in zeroth
order!, the u(core)103p3d& CSF would act as an intrude
state unless it is included in the reference space.# The above
arguments also apply to the 4s orbital and, hence, it is also
included in the largest valence orbital space. Generally,Hy
ts.computations avoid the use of very large non-
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quasidegenerate reference spaces~a! because an enlarge
non-quasidegenerate reference space introduces a huge
onal perturbation~arising due to the imposition of degen
eracy upon the zeroth order reference space! which can de-
stroy the perturbative convergence, and~b! because an
extended reference space greatly increases the computa
labor due to the presence of a large number of valence o
als in the reference space. However, the addition of thep
orbitals to the second set of reference spa
($3s,3p,3d,4s%) provides an improved first order descriptio
of the 1P1 excited state because both 3d and 4p orbitals
yield important contributions. Thus, our consideration of t

TABLE I. Excitation energies~in cm21! for resonant transitions in Mg-like
ions.

State
Dominant

configuration

Hy

Experimenta4V 10V 13V

Mg
3P2 3s3p 21 102.46 21 460.89 21 057.52 21 911.1
1P1 3s3p 35 333.69 33 758.99 34 898.95 35 051.3
3S1 3s4s 42 471.33 41 840.89 41 197.3
1S0 3s4s 43 981.99 44 030.92 43 503.0
1D2 3s3d 47 009.20 46 298.23 46 403.1
3D3 3s3d 48 763.60 48 045.09 47 957.0

Al1

3P2 3s3p 37 420.15 36 527.23 36 949.83 37 579.3
1P1 3s3p 60 075.94 59 550.49 59 913.70 59 849.7
1D2 3p2 85 060.44 85 521.62 85 479.0
3S1 3s4s 89 350.12 89 786.70 91 271.2
1S0 3s4s 93 317.32 93 897.88 95 348.2

Si21

3P2 3s3p 52 133.00 51 363.96 51 782.51 53 019.0
1P1 3s3p 83 217.49 83 041.35 83 245.45 82 885.0
1D2 3p2 121 112.72 121 601.48 121 946.0
1S0 3p2 153 253.05 153 359.29 153 443.0

P31

3P2 3s3p 67 170.08 66 661.71 68 607.4
1P1 3s3p 105 913.55 106 110.39 105 189.9
1D2 3s3d 158 322.17 158 138.20
1D2 3p2 168 301.75 163 880.76 166 144.0
3D3 3s3d 198 484.15 189 389.00
1S0 3p2 197 830.10 195 836.70 194 588.5
3S1 3s4s 224 393.11 226 888.60
1S0 3s4s 231 539.56 233 995.00

aSee Ref. 70.
three different reference spaces further investigates th ag-

See Ref. 62.
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tradeoff between the desire for accurate first order appr
mations~from large reference spaces! and the requirements
of quasidegeneracy~provided by small reference spaces!.

Tables I and II compare theHy excitation energies of
Mg-like ions with experiment70 and with other theoretica
calculations. Apart from a few exceptions, our estimated
citation energies are reasonably close to experiment~see
Table I! and are more accurate than those from previo
configuration interaction~CI! calculations53 and RRPA~rela-
tivistic random phase approximation! computations.52 On av-
erage, theHy results are as good as the MC-RRPA~multi-
configuration RRPA! calculations of Chouet al. ~see Table
II !. ~The MC-RRPA calculations without core excitation
are, however, less accurate than theHy results.! The excited
singlet states are more accurately treated by theHy method
than the excited triplet states, but the discrepancy decre
with diminishing size of the reference space, a feature wh
has also been found and explained in our previousHy com-
putations forp-electron systems.48 Energetic consideration
are given above to motivate the choice of the 10V-reference
space ($3s,3p,3d,4s%) as appropriate, and, hence, this refe
ence space is expected to provide an accurate estimate o
excitation energies. Although the 10 orbital (10V) reference
space computations yield a fairly accurate description of
excited states, the results deviate more from experiment
the 4- and 13- orbital valence reference space computat
~from the $3s,3p% and $3s,3p,3d,4s,4p% reference spaces
respectively!. A plausible explanation for the lower accurac
of the 10V space calculations is the following: Addition o
the 4s and 3d orbitals into the reference space improves t
first order description@from the PHP term in Eq.~2.4!# for
both the ground and excited states of the Mg-like ions, bu
also introduces a large diagonal perturbation upon imposi
of the valence orbital degeneracy condition. While a be
first order representation of the reference space st
~achieved via the inclusion of additional valence orbita!
contributes to an acceleration of the perturbative conv
gence, the large diagonal perturbation appears to exe
more negative influence on the perturbative convergen
This behavior reflects the tradeoff in theHy scheme between
desiring large reference spaces and requiring these spac
be quasidegenerate. The success of theHy method largely
depends upon balancing these two opposing factors. Tha
the Hy approach succeeds only when the effect of the di
6
.70
00
90
TABLE II. Comparison ofHy excitation energies~in cm21! and oscillator strengths for (3s2) 1S0→(3s3p) 1P1 transition in Mg-like ions with other
many-body methods.

CIa RRPAb MCHFc

MC-RRPAd Hy

ExperimentgIe II f 4V 10V 13V

Mg 32 833 35 292 35 333.69 33 758.99 34 898.95 35 051.3
Al1 60 342.0 58 534 61 222 60 169 59 427 60 075.94 59 550.49 59 913.70 59 849
Si21 82 193 80 607 83 686 82 564 83 217.49 83 041.35 83 245.45 82 883.
P31 104 952 107 323 106 537 105 124 105 913.55 106 110.39 105 189.
Av. error 1115.49 1505.51 823.13 269.20 391.68 374.84

aSee Ref. 53. eWithout core excitations.
bCited in Ref. 55. fWith core excitations.
cSee Ref. 55. gSee Ref. 70.
d
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onal perturbation is less important. In the 10V-reference
space computation, theu(core)103p3d& reference space CS
is a doubly excited state~with respect to the ground state!
which is weakly coupled to theu(core)103s3p& CSF ~the
most important reference space CSF for the excited1P1

state!. Therefore, this CSF provides a very small contributi
to 1P1 state. On the other hand, since the 3d orbital ~also the
4s! is rather high lying compared to the other valence orb
als, its inclusion into the reference space produces a la
diagonal perturbation, thereby introducing a stronger conv
gence retarding factor than the insignificant improvemen
produces in the first order description. The above mentio
opposing factors do not appear in the four-valence orb
($3s,3p%) reference spaceHy computations, which, there
fore, yield the anticipated good results. Continuing these
guments leads to the expectation that the 13 valence or
Hy computations would be even less accurate than the
valence orbitalHy computation. However, the 13 valenc
orbital ($3s,3p,3d,4s,4p%) reference space includes all th
dominant and the next level subdominant CSFs in the re
ence space, thereby successfully overcoming any imp
ment to convergence difficulties induced by the diagonal p
turbation. In fact, the 13 valence orbitalHy computation
provides a precise estimate of the excitation energy of
1P1 state in addition to that of other high-lying excite
states.

While the four-valence orbital reference spaceHy com-
putations successfully describe the excited state energie
interest, they yield relatively poor oscillator strengths~see
Table III!, a feature which is, of course, undesirable beca
a reliable theoretical method should treat both accurately
more detailed analysis indicates that the main error of
four-valence orbital reference space computation lies in
overestimation of the transition moment~see Table IV! and,
hence, the oscillator strength~which is proportional to the
square of the transition moment!. The inferior quality of the
oscillator strengths from the minimal reference space co
putations can be anticipated because the reference s

10

TABLE III. Oscillator strengths for resonance transition in Mg-like ions

MCHFa CI RRPAb

MC-RRPAc Hy

ExperimentId II e 4V 10V 13V

Mg 1.71 2.18 1.97 2.00 1.81j

Al1 1.87f 1.85 1.83 1.78 1.95 1.78 1.82 1.860.3k

1.960.6l

1.8460.12j

Si21 1.63g 1.73 1.70 1.65 1.76 1.66 1.68 1.760.4l

1.660.2m

P31 1.48h 1.59 1.57 1.52 1.61 1.56 1.860.2n

1.660.16i

aSee Ref. 50. hSee Ref. 64.
bSee Ref. 52. iSee Ref. 65.
cSee Ref. 62. jSee Ref. 66.
dWithout core excitations. kSee Ref. 67.
eWith core excitations. lSee Ref. 68.
fSee Ref. 53. mSee Ref. 69.
gSee Ref. 63. nSee Ref. 58.
lacks important configurations like theu(core) 3p3d& and
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u(core)103s4p& CSFs that contribute very little to the ene
gies but exert a stronger influence on dipole properties.
13-valence orbitalHy computations are the most consiste
and balanced among those from the three sets of vale
spaces. Further support for this conclusion stems from
comparison of the computed ionization potentials with e
periment in Table V.

Since a wide variety of reference spaces are used in
present calculations, it is necessary to study the low or
convergence behavior of the different choices. The Mg at
provides a useful illustration of the general behavior for t
other cases. At this juncture, we note the trend that the
ond orderHy computations often overestimate/underestim
the state energies, and this eventually is counterbalance
the third orderHy contributions. Thus, the low order pertu
bative convergence of theHy method sometimes exhibits a
oscillatory pattern that mainly arises due to the valence
bital energy averaging procedure, especially when the ze
order orbital eigenspectrum is highly non-quasidegener
We first analyze the perturbative convergence of our sma
reference space (4V) calculations. The error in the compute
3s→3p resonant transition energy rapidly drops fro
25%→0.8% as the perturbation order increases from 1→3.
While the computed excitation energy for the resonant tr
sition displays a uniform convergence pattern, the pertur
tive convergence for the nonresonant transition is somew
oscillatory, where the error in the computed excitation e
ergy is only 0.6% at second order as compared to 5%
3.5% at first and third order, respectively. This type of co
vergence pattern is quite common and has also been fo
elsewhere48 where the triplet state is described more acc
rately than the singlet state with a minimal valence spaceHy

computation.
A systematic increase in the reference space significa

improves the low order perturbative convergence of theHy

scheme by introducing more nondynamical correlation c
tributions. For example, inclusion of the 3d orbitals in the
reference space~in addition to the 3s and 3p!, reduces the

TABLE IV. Transition moments for resonance transition in Mg-like ions

Hy

4V 10V 13V

Mg 2.603 2.533 2.505
Al1 1.889 1.813 1.824
Si21 1.522 1.479 1.489
P31 1.291 1.270

TABLE V. Ionization potentials~in eV! in Mg sequence.

Ions

Hy

Experimenta4V 10V 13V

Mg→Mg11e 7.539 7.637 7.555 7.645
Al1→Al211e 18.645 18.532 18.596 18.823
Si21→Si311e 33.248 33.135 33.220 33.460
P31→P411e 51.088 51.023 51.354

a
See Ref. 70.
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error in the computed third order excitation energy fro
3.5% to 1.8% at third order for the nonresonant transit
without sacrificing the accuracy of the second order nonre
nant transition energy~off by 0.8%!. Inclusion of the 3d
orbitals in the reference space also improves the low o
convergence for the resonant 3s→3p transition of the Mg
atom, where the accuracy of the first orderHy calculation
decreases from 5% to 1.8%. The quality of theHy computa-
tion further improves when the 4s and 4p orbitals are in-
cluded in the reference space. In this case, the resonant~non-
resonant! 3s→3p transition energies are off by 9.6%
~2.5%!, 2.4% ~3.5%!, and 0.4%~3.7%! from the first, sec-
ond, and third orderHy computations, respectively. A simila
trend is also exhibited for the high-lying excited states,
well as for calculations with smaller basis sets.@Three addi-
tional sets ofHy calculations have been performed for t
Mg atom with different numbers~33, 49, and 90! of basis
functions by deleting/addings, p, d, f , and g functions
from/to the original basis set~with 57 functions!. The pertur-
bative convergence of computed excitation energies for th
three sets of calculations behaves exactly as expected
particular, the accuracy generally increases with the siz
basis.# The above trends displayed by theHy computations
indicate that this method quite accurately includes the dif
ential interstate correlation energies.

Although theHy method is primarily designed to pro
duce accurate differences in correlation energies~not neces-
sarily the individual state energies! as evidenced by a larg
number of previousHy calculations, it nevertheless is pert
nent to analyze the fraction of ground state correlation
ergy recovered with different basis sets and reference spa
The Gaussian basis sets employed here are not designe
optimal recovery of the full correlation energy of atoms u
less the basis is very large~complete! and appropriate.
Hence, we do not anticipate obtaining a large portion of
ground state correlation energy, but the computations sh
definitely approach the exact value with increasing size
the basis set. The present computation shows that the gr
state correlation energy~third order! increases from20.1618
to 20.2458 a.u. as the basis set increases from 33 to
functions. ~The nonrelativistic ground state correlation e
ergy is estimated by Clementi and Veillard71 as20.428 a.u.!
Inclusion of more basis functions or the use of Slater fu
tions should help to recover more of the correlation ener
However, as evidenced by computations with various ba
sets, the transition energies and oscillator strengths are
pected to be very slightly changed in this process, and
the accurate treatment of the transition energies and osc
tor strengths that forms the prime focus of resolving previo
discrepancies with experiment.

IV. CONCLUSION

Vertical excitation energies, ionization potentials, a
oscillator strengths of Mg-like ions are calculated using
effective valence shell Hamiltonian method. Both low-lyin
~and even some high-lying! excitation energies and oscillato
strengths are in good agreement with experiment and w
the most accurate highly correlated theoretical calculatio

The present calculations highlight a number of unique an
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desirable features of theHy method. For example, theHy

computations provide a more uniform accuracy for most
cited states than is obtained with some other schemes,
as the MCHF,55 CI,53 and RRPA52 methods.@Table II pro-
vides the average deviation between the calculated and
served (3s2) 1S0→(3s3p) 1P1 transition energies for the
Al1, Si21, andP31 ions.# The presentHy computations con-
cur with previous observations, indicating that while a lar
reference space is necessary for the accurate estimatio
excitation energies to the singlet excited states, a mini
reference space suffices for treating the triplet state. T
observation is readily understood based on the more diff
character of the low-lying excited singlet states than th
isoconfigurational triplet counterparts. Our use of individu
ized reference spaces for different groups of excited state
in accordance with the common usage of multiple refere
spaces in other many-body methods, a procedure that
comes advantageous because of the different nature of
relation in various classes of excited states. The greater
portance of polarization contributions to transition mome
than to excitation energies is reflected here in the need
larger reference spaces to provide transition moments
comparable quality to the excitation energies available fr
calculations with smaller reference spaces. This situa
complies with the larger basis set requirements for accu
dipole properties than energies.

It has been argued that large scaleHy computations are
highly vulnerable to numerical instabilities from the alle
edly always present serious intruder state problems. H
ever, our extensive studies on the convergence behavio
the Hy method dispels this assumption.31–33 The proper
choice of the valence orbitals and reference space pla
significant role in all multireference many-body theories, a
theHy method is no exception. It should be emphasized t
a large~complete! reference space invariably leads to situ
tions where the zeroth order eigenspectrum of theP space
states overlaps with that of theQ space states, i.e., larg
~complete! reference space MR-MBPT computations mu
ultimately become plagued by intruder states and, con
quently, frequently yield divergent perturbative expansio
However, when pursuing large scale perturbative compu
tions, we generally neither know nor care whether the se
actually converges, since this information is of little practic
value for computations truncated at low orders. Mathem
cal convergence depends upon the behavior of the ind
nitely high order terms which are generally unavailable
large scale computations. Moreover, if a truly converg
perturbative series fails to provide accurate low order pred
tions, the method has no practical value. On the contrar
formally divergent but asymptotic series is very useful if
reliably provides low order results as does theHy method.
The Hy approach uses a combination of physical and ma
ematical considerations to produce accurate results in t
order. The high accuracy of the present computations for
Mg sequence strongly supports these claims.
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