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Abstract. Huang and Valtonen (1987) obtained an analytic expression for the energy
transfer in a parabolic encounter of a single star with a circular binary keeping terms
of the first order in a/q where a is the radius of the circular orbit and q is the distance
of closest approach of the single star with respect to the centre of mass of the binary.
They also obtained numerically the energy transfer and change in eccentricity of the
single star for the case of mass of the binary equal to the mass of the single star. We
extend their analytic treatment to obtain angular momentum transfer and change in
eccentricity up to first order a/q and compare the change in eccentricity obtained by
us with theirs. We find that our first order analysis is reasonable for Q=qg/a > 2.5 for
direct orbit and Q > 1.125 for retrograde orbit.

1. Introduction

The study of the effects of stellar encounter on a binary star has been a subject of extensive
study (Hut(1984), Heggie (1988) and Valtonen (1988)). An important recent work, Heggie and
Rasio (1996), studies the effect of stellar encounters on the eccentricity of binaries.

In this paper we study the special case of a parabolic encounter of a star with a circular
binary. An approximate solution to the energy change in this case was obtained by Huang and
Valtonen (1987). We extend their work to obtain an analytic expression for the changes in
angular momentum and eccentricity of the binary.

2. Theory

The masses m; and m, move in a circular orbit about their common centre of mass. A third
body of mass m; moves in a parabolic orbit in plane inclined at an angle i to the orbital plane
of the binary. The node line is used as the direction of reference. The angle subtended by the
line joining m; and m, with the node line is denoted by € and the pericentre direction of m,
is denoted by . )

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2000BASI...28..315H

DBASI - Z.2Z8. Z315H

I'2'_

316 S.N. Hasan et al.

We reckon time from the instant mj; is at the pericentre. At t = 0, om, is taken as the OX-axis.
d L. . .

Further, let  and R denote the position vectors of m, relative m; and of m; relative to the

centre of mass of the binary, respectively. ‘

The expression for the change in energy E has been obtained by Huang and Valtonen
(1987). We proceed in the same manner to obtain the expression for the change in angular
momentum. Taking K =-%, the relation between K and Q is given by :

, iR
Ko [ 2(m, + n?z)Q' ] | 1)

(m, + m, + m,)

The expressions for change in energy obtained by Huang and Valtonen is given by :

AE 3m, £(K) ‘
= - - sin2d 2)
Eo (m, + m, + m,) K
‘ where -
- Il 12
f,(K) = (—2— + e I) (3)
P : 1 1-o2)? .
I, =4 jcos[—ﬁ— (o+— 0] {-oy do 4
—o n, 3 (1+o?* '
o n 1 o? '
I, = 16 jcos[ — (0+ —0 )] ———do (5)
: - on 3 (1+02)* _
P 1 o(1-0*)?
I, =8 [sinf— (o+ — 0] ——— do (6)
) = ony 3 (1+o%*
and 0 = tan £,/2 | %)

We obtain for the change in angular momentum for the direct case i-0° :

Ah 3m [f,(K) + cosQd+(K))] ..

\
ho (m, + m, + m,) K ®)
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where
f5(K) = (2 + (I;) and f5(K) —- (21, + I5)

and

< 1 1-02)?

I, =4 fsin[i (o+— 0] ( ) do
- n, 3 (I+o0?)*
T on 1 2

I.= 16 [sin[ — (o+ — 0] do

' Zoo n, 3 (1+o?)?*
N 1 1-0?)

1 =16 jcosz[ -z (o+ — oY) u do
oo n, 3 (1+0%*
T 1 1-o?

=16 fsinz[i {o+ — 0%)] ___o( ) do
oo n 3 (1+0?)?

3

The expression for the change in angular momentum for the retrograde case i

given by :
AR 3m, [E,K) + cosQOHO]
ho  (m, +m, +m,) K

where

f, (K) = 2l + Ip) and £(K) = @1, + ;)

_r_l_ (o _..1_ 0-3)](_1*_0-_-_); do

I, = jsin[ -
—~o N, 3 (1+0?)*

2

m, n 1
1,=4 [sin[— (6 -— oY)

n, 3 (1+0?)*
< n 1 o(l-o?)?
I,=16 fcosz[— (o+ — 0] —(—) do
o n, 3 (1+o0?)*
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9, (10)

(1)
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(13)

(14)

1807 is

(15)

(16), (17)
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¢ n 1 I-o?
g|=16jgnq-—-(a+——-o$]i§;__l.dg 21)

o n, 3 (1+o%)*

Using the relation between eccentricity, energy and angular momentum given in Goldstein
(1950). ;

2EP
e=A/1+ (22)
mk?
. Gm m, mm,
Cwith E = - = 1 =——=— [ GOm, + m,)a(1-¢) (23)
2a m, +m, -

the expression for change in eccentricity takes the form :

7 3 f (K f 20+f (K
Aeﬂ/? m_ K)oy OO ¢ cosOE N

(m, + m, + m,) K 2K

3. Results and discussion

Let m;=m,=0.5 and m;=1, radius of the binary be equal to 1 and G=1. In figure 1 we compare
the change in eccentricity obtained by us theoretically using equation (24) with the change in
eccentricity obtained by Huang and Valtonen numerically for the first order term. It may be
noted that the agreement is good for Q>2.5 in the case of direct orbit and Q>1.125 in the case
of retrograde orbit. We therefore conclude that the change in angular momentum due to the first
order term derived by us is also valid for the same range. For still lesser values of Q the second
order term neglected by us becomes important.

In figure 2 we plot change in energy, angular momentum and eccentricity against the phase
angle for direct and retrograde orbits for the valuc of Q=2.5, 3 and 4. It may be noted that the

phase dependence is nearly the same for all the three quantities. Positive values of o in the
. . . e i 0
graphs denote tidal capture of m; by the binary since its initial orbit is a parabola. In the range

AE
of Q studied,— is always less than unity. This implies that the disruption of the binary does

not occur for Qg2.5 in the case of direct orbit and for Q>1.125 in the case of retrograde orbit.
Also we note that the change in the case of direct orbit is an order of magnitude greater than
that for the retrograde orbit. This can be understood as due to the difference in interaction time
which is greater for the direct orbit.

© Astronomical Society of India * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2000BASI...28..315H

DBASI - Z.2Z8. Z315H

rz

Scattering in a parabolic encounter of single star with a circular binary 319

If for m;,m, and m; we put the masses of the Earth, the Moon and the Sun and let K=12,
we obtain the changes in energy and angular momentum for the hypothetical situation in which
the Sun encounters the Earth-Moon system in an orbit which is parabolic rather than circular
with the same angular velocity ratio at closest approach as that in the Sun, Earth Moon system.
It is of interest to compare the secular change in the semi-major axis in this case with the
periodic change predicted by an important perturbation term called the “variation” in lunar
theory given in Danby (1962).

For the variation term in the lunar theory, the first order perturbation term gives :

Aa 3
-_— = " = 0.011
max 2K (1—'"%

UK

For the parabolic motion of the Sun the first order term gives

a,

Aa AE 3f,(K)

= — =— =0.015
a E K

0 max 0 max

The value in the parabolic case is thus slightly larger than that for the circular case. This
is quite reasonable. It shows that the analytical expressions obtained can be used over a wide
range of masses m;,m, and m;.

....................................

Figure 1. Dependence of change m eccentncity on Q for i=0° and Q=72% and w=17°. Theoretical first order
represented as circles and Huang and Valtonen numerical values are represented as the continuous line.
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Figure 2. Dependence of change in energy, angular momentum and eccentricity on the phase
angle. In the graphs o indicate energy, #angular momentum and + eccentricity.
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