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E�ets of partial triple exitations in atomi oupledluster alulationsChiranjib SurDepartment of Astronomy, Ohio State University, Columbus, Ohio, 43210, USARajat K ChaudhuriIndian Institute of Astrophysis, Koramangala, Bangalore, 560 034, IndiaRef : Chem. Phys. Lett., vol 442, 150 (2007)AbstratIn this artile we study the e�ets of higher body exitations in the relativisti CC alulations foratoms and ions with one valene eletron using Fok-spae CCSD, CCSD(T) and its unitary variants.The present study demonstrates that CCSD(T) estimates the ionization potentials (IPs) and the valeneeletron removal energies quite aurately for alkali atoms and singly ionized alkaline earth ions, butyields unphysial energy levels for atoms and/or ions with partially �lled sub-shell like C II. We furtherdemonstrate that the higher body exitation e�ets an be inorporated more e�etively through theunitary oupled luster theory (UCC) ompared to the CCSD(T) method.PACS numbers : 31.15.Ar, 31.15.Dv1 IntrodutionThe relativisti oupled luster (CC) method has emerged as one of the most powerful and e�etive toolfor aurate treatment of eletron orrelation and relativisti e�ets in many-eletron systems [1℄. The CCis an all-order non-perturbative sheme, and therefore, the higher order eletron orrelation e�ets an beinorporated more e�iently than using the order-by-order diagrammati many-body perturbation theory(MBPT) [2℄. The method is also size-extensive [3℄, a property whih has been found to be ruial foraurate determination of state energies of atoms and related spetrosopi onstants. The inorporation ofthe singly and doubly exited luster operators (SD) within the single referene (SR) CC framework providesa reasonably aurate and reliable desription of the eletron orrelation for non-degenerate states, and isone of the most extensively used lass of CC approahes.The CCSD sheme often fails to provide results of su�ient auray and even breaks down for highlyorrelated systems [4℄. In reent years, onsiderable progress has been made in pushing the boundaries of itsappliability through the inlusion of higher order lusters in CC methodology both in the singles [5℄ as wellas in the multi-referene formulations [6, 7, 8℄. In this regard, the non-iterative approahes like CCSD(T)[9℄ o�er substantial time savings ompared to their full CC ounterparts, namely, CCSDT (CC with singles,doubles and triples) [10℄ and CCSDTQ (CC with singles, doubles, triples and quadruples) [11℄. In this letter,we demonstrate that a unitary form of the wave operator for the losed shell omponent of the CC-ansatzan inorporate the e�ets of partial triples more e�iently than the non-iterative perturbative onnetedtriples orretions, CCSD(T).To illustrate our �ndings we ompute the ionization potentials (IPs) and valene eletron removal en-ergies of C II and Rb I using the Fok-spae multi-referene oupled luster (FSMRCC) method for oneeletron attahment proess (M+n+e→M+(n−1) + ∆E). The ground state eletroni on�gurations of thesetwo systems reveal that C II has an un�lled L-shell whereas Rb I has a ompletely �lled N-shell followedby one eletron (5s) in the O shell. In this artile we demonstrate that partial triple exitation a�ets thedetermination of the ionization potential (IP), the valene eletron removal energies and therefore the exi-tation energies (EEs) of the exited states depending on the vaanies in the prinipal shell. The behavior1
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of partial triple exitations through CCSD(T) and UCCSD (UCC with singles and doubles exitations) forthese kind of systems is also addressed. To our knowledge, this work is the �rst attempt to establish thee�ets of partial triple exitations through the ore and valene exitations for determining the state energiesfor single valene atoms having a �lled or un�lled sub-shell.The struture of this artile is as follows : Setion 2 provides a brief outline of the Fok-spae CC theoryfollowed by the higher body e�ets in setion 3. Subsetions 3.1 and 3.2 presents the unitary oupled lustertheory and the results are disussed in the subsequent setion.2 Fok-spae multi-referene oupled luster theory for one-eletronattahment proessRelativisti extension of oupled luster (CC) theory is based on the no-virtual-pair approximation (NVPA)along with appropriate modi�ation of orbital form and potential terms [12℄. Relativisti CC theory beginswith Dira-Coulomb Hamiltonian (H) for an N eletron atom whih is expressed asH =

N
∑

i=1

[

c ~αi · ~pi + βmc2 + VNuc(ri)
]

+

N
∑

i<j

e2

rij
(1)with all the standard notations often used. The normal ordered form of the above Hamiltonian is given by

H = H− 〈Φ|H|Φ〉 = H− EDF =
∑

ij

〈i|f |j〉
{

a†
iaj

}

+
1

4

∑

i,j,k,l

〈ij||kl〉
{

a†
ia

†
jalak

}

. (2)where
〈ij||kl〉 = 〈ij|

1

r12
|kl〉 − 〈ij|

1

r12
|lk〉. (3)Here EDF is the Dira-Fok energy, f is the one-eletron Fok operator, ai(a

†
i ) is the annihilation (reation)operator (with respet to the Dira-Fok state as the vauum) for the ith eletron and {· · ·} denotes thenormal ordering of the reation/annihilation operators.Sine the FSMRCC theory has been desribed elsewhere [6, 7, 13℄, we provide a brief review of this method.The FSMRCC theory is based on the onept of ommon vauum for both the N and N±m eletron systems,whih allows us to formulate a diret method for energy di�erenes. In this method the holes and partilesare de�ned with respet to the ommon vauum for both the N and N±m eletron systems. Model spae ofa (m,n) Fok-spae ontains determinants with m holes and n partiles distributed within a set of what aretermed as ative orbitals. For example, in this present artile, we are dealing with (0,1) Fok-spae whih isa omplete model spae (CMS) by onstrution and is given by

|Ψ(0,1)
µ 〉 =

∑

i

Ciµ|Φ
(0,1)
i 〉 (4)where Ciµ's are the oe�ients of Ψ

(0,1)
µ and Φ

(0,1)
i 's are the model spae on�gurations. The dynamialeletron orrelation e�ets are introdued through the valene-universal wave-operator Ω [6, 7℄

Ω = {exp(S̃)} (5)where S̃ =
m

∑

k=0

n
∑

l=0

S(k,l) = S(0,0) + S(0,1) + S(1,0) + · · · (6)At this junture, it is onvenient to single out the ore-luster amplitudes S(0,0) and all them T. The restof the luster amplitudes will heneforth be alled S. Sine Ω is in normal order, we an rewrite Eq.(5) as
Ω = exp(T){exp(S)} (7)2



The �valene-universal� wave-operator Ω in Eq.(7) is parametrized in suh a way that the states generatedby its ation on the referene spae satisfy the Fok-spae Bloh equationHΩP(k,l) = ΩP(k,l)He�P(k,l) (8)where He� = P(k,l)HΩP(k,l). (9)Eq.(8) is valid for all (k,l) starting from k=l=0, the ore problem to some desired parent model spae, withk=m, l=n, say. In this present alulation, we trunate Eq.(6) at m = 0 and n = 1. The operator P(k,l) inEqs. (8) and (9) is the model spae projetor for k-hole and l-partile model spae whih satis�esP(k,l)ΩP(k,l) = P(k,l). (10)To formulate the theory for diret energy di�erenes, we pre-multiply Eq.(8) by exp(-T) (i.e., Ω−1
c ) and getHΩvP(k,l) = ΩvP(k,l)He�P(k,l) ∀(k, l) 6= (0, 0) (11)where H=e-T H eT. Sine H an be partitioned into a onneted operator H̃ and Eref/gr (N-eletron losed-shell referene or ground state energy), we likewise de�ne H̃e� asHe� = H̃e� + Eref/gr. (12)Substituting Eq.(12) in Eq.(11) we obtain the Fok-spae Bloh equation for energy di�erenes:H̃ΩvP(k,l) = ΩvP(k,l)H̃e�P(k,l). (13)Eqs. (8) and (13) are solved by Bloh projetion method, involving the left projetion of the equation withP(k,l) and its orthogonal omplement Q(k,l) to obtain the e�etive Hamiltonian and the luster amplitudes,respetively. At this junture, we reall that the luster amplitudes in FSMRCC are generated hierarhiallythrough the subsystem embedding ondition (SEC) [13, 14℄ whih is equivalent to the valene universalityondition used by Lindgren[6℄ in his formulation. For example, in the present appliation, we �rst solvethe Fok-spae CC for k=l=0 to obtain the ore-luster amplitudes T. The operator H̃ and H̃e� are thenonstruted from this ore-luster amplitudes T to solve the Eq. (13) for k=0, l=1 to determine S(0,1)amplitudes. The e�etive Hamiltonian onstruted from H, T, and S(0,1) is then diagonalized within themodel spae to obtained the desired eigenvalues and eigenvetorsH̃e�C(0,1) = C(0,1)E. (14)3 Higher order exitationsIt is now widely reognized that the e�ets of higher body lusters must be inluded in CC alulationsto improve the auray of the predited/omputed quantities. Here by the term `higher body e�ets', wemean e�ets from triple, quadruple exitations et. In this letter, we shall restrit ourselves only to tripleexitations for the time being and will omment on other higher exitations later. The most straightforwardapproah is to inlude the full three body exitation operators T3 and S3 in the CC ansatz via T=T1+T2+T3and S=S1+S2+S3. This diret approah, known as CCSDT, is omputationally very expensive.In this artile we have used the unitary ansatz to simulate the e�ets of triples and some other higherbody exitations, e.g., quadruples et. in the ore setor. In addition, we have also onsidered the e�ets ofpartial triple exitations in a perturbative way for the (0,1) valene setor known as CCSD(T). These aredisussed in the next two subsetions.
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3.1 Higher body exitations through unitary ansatzUnitary oupled-luster (UCC) theory was �rst proposed by Kutzelnigg [15℄. In this theory, the e�etiveHamiltonian is Hermitian by onstrution and the energy whih is the expetation value of this operator inthe referene state is an upper bound to the ground state energy [16℄.The normal ordered dressed Hamiltonian is expressed by the Baker-Hausdor�-Campbell expansion in CCtheory as
H = e-THeT

= H + [H,T] +
1

2!
[[H,T],T]

+
1

3!
[[[H,T],T],T] +

1

4!
[[[[H,T],T],T],T]. (15)In UCC, the operator T is replaed by σc = T − T† in the above equation. As a result, H is expressed interms of a non-terminating series of ommutators. For pratial reasons, one trunates the series after some�nite order. Trunation at the n-th order ommutator leads to the nomenlature UCC(n).Using UCC(3 ) approximation and without modifying the last term of the above expression, one an showthat the dressed Hamiltonian takes the form

H = H + HT+
1

2!
(HTT+ 2T†HT) +

1

3!
(HTTT+ 3T†T†HT+ 3T†HTT) +

1

4!
HTTTT (16)Here `overline' denotes the ontration between two sets of operators. For example, the term HT orrespondsto the ontration between the operators H and T. A typial ontribution to the term HT2T2 is given by

Bpq
ab =

1

2

∑

dgrs

Vdgrst
pr
adt

sq
gb. (17)Here Vdgrs is the two-eletron Coulomb integral and tpr

ad is the luster amplitude orresponding to a simulta-neous exitation of two eletrons from orbital a → p and d → r, respetively. This term is ommon both toCCSD and UCCSD whereas the latter ontains some higher order terms ontaining T† whih are not presentin the CCSD expansion ofH [17℄. Diagrammati tehniques are used to obtain all the terms whih ontributeto this spei� ontribution. Fig. 1 shows two typial diagrams arises from UCC(3) whih orrespond to asubset of e�etive triple (1a) and quadruple exitation (1b) e�ets respetively.
T 2

T 1

VN

+

(b)

T 2T

VN

2

T 1
+

(a)Figure 1: Typial e�etive triples and quadruples diagrams arising from UCC(3 ). VN represents the Coulombvertex.3.2 Higher order exitations in the valene setorTriple exitations are inluded in the open shell CC amplitude whih orrespond to the orrelation to thevalene orbitals, by an approximation that is similar in spirit to CCSD(T) [9℄. The approximate valenetriple exitation amplitude is given bySpqr
abk =

{VT2}
pqr
abk + {V S2}

pqr
abk

εa + εb + εk − εp − εq − εr
, (18)where Spqr

abk are the amplitudes orresponding to the simultaneous exitation of orbitals a, b, k to p, q, r,respetively; VT2 and V S2 are the orrelated omposites involving V and T, and V and S respetively4
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Figure 2: Some typial important diagrams whih arise due to the inlusion of triple exitations throughEq.(21). In this diagram V denotes the Coulomb vertex.where V is the two eletron Coulomb integral and ε's are the orbital energies. The above amplitudes (somerepresentative diagrams are given in Fig. 2) are added appropriately to the singles and doubles S amplitudedetermining equations and these equations are then solved iteratively.4 Results - CC alulations for atoms with single valene eletronIn this artile we have onsidered two systems C II and Rb I. C II is the singly ionized C atom and theground state has an atomi struture like Boron (B I) : 1s22s22p1/2 where as the eletroni struture of RbI ground state is [Kr]5s i.e. 1s22s22p63s23p63d104s24p65s. As beause the ground state of C II and Rb Iis an open-shell doublet, we begin with C III and Rb II whih de�nes the (0h,0p) valene setor. We thenemploy the open-shell Fok spae CC theory for one eletron attahment proess to ompute the ionizationpotentials (IPs) of the ground state and exitation energies (EEs) of the the �rst few exited states of C IIand Rb I, whih are given in tables 2 and 3 respetively. We have also alulated those quantities taking intoaount the e�et of partial triple exitations for the valene eletron and are listed as CCSD(T)/UCCSD(T)in the orresponding tables.The Dira-Fok equations are �rst solved for losed shell ions (C III and Rb II), whih de�nes the (0,0)setor of the Fok spae. The ion is then orrelated using the losed shell CCSD/UCCSD, after whihone-eletron is added following the Fok-spae strategy:
M+n(0, 0) + e −→ M+(n−1)(0, 1). (19)Both the DF and relativisti CC programs utilize the angular momentum deomposition of the wave-funtions and CC equations. Using the Juys- Levinson-Vanagas (JLV) theorem [18℄, the Goldstone diagramsare expressed as a produts of angular momentum diagrams and redued matrix element. This proeduresimpli�es the omputational omplexity of the DF and CC equations. We use the kineti balane onditionto avoid the �variational ollapse� [19℄.In the atual omputation, the DF ground state and exited state properties are omputed using the�nite basis set expansion method (FBSE) [20℄ with a large basis set of Gaussian type funtions (GFs) of theform

Fi,k(r) = rk · e−αir
2 (20)with k = 0, 1, . . . for s, p, . . . type funtions, respetively. For the exponents, the even tempering ondition

αi = α0β
i−1 (21)is applied. The nuleus has a �nite struture and is desribed by the two parameter Fermi nulear distribution

ρ =
ρ0

1 + exp((r − c)/a)
, (22)5



Table 1: Total number of the basis funtions and the even tempering parameters (α0 and β ) used in thealulations. GTOs stand for the Gaussian type orbitals used to generate the DF wave-funtions. `Ativeorbitals' refer to the number of orbitals used in the CC/UCC alulations. The parameters α0 and β forC II (Rb I) are 0.005 (0.00523) and 2.25 (2.09) respetively whih are used in Eq. (21) to generate the DForbitals.
s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2 g7/2 g9/2C IINo. of GTOs 35 32 32 25 25 25 25 20 20Ative orbitals 14 13 13 11 11 9 9 6 6Rb INo. of GTOs 38 35 35 25 25 25 25 20 20Ative orbitals 14 12 12 10 10 9 9 6 6Table 2: Ionization potential (IP) and the exitation energies (EEs) (in cm−1) for C II. The olumn `Koop-man' ontains the Dira-Fok energies and the olumns designated as (T) ontain the e�ets of partial tripleexitations in the valene setor. Observed values of IP and EEs are taken from the NIST table [21℄ unlessmentioned otherwise.State Koopman CCSD CCSD(T) UCCSD UCCSD(T) ObservedIP 2p 2P1/2 189794.81 196575.36 197825.00 196739.57 197988.30 196592.44 [22℄EE 2p 2P3/2 73.28 73.44 -17.22 45.37 44.67 63.42

3s 2S1/2 110674.88 109729.32 108025.07 108203.18 105768.50 116537.65
3p 2P1/2 127422.46 131623.85 132703.83 131766.92 132838.66 131724.37
3p 2P3/2 127433.78 131636.80 132726.16 131780.30 132860.20 131735.52where the parameter c is the half harge radius and a is related to skin thikness, de�ned as the interval ofthe nulear thikness in whih the nulear harge density falls from near one to near zero. We have takena large basis set to hek the onvergene of the results on the number of basis funtions used. Exitationsfrom all the ore eletrons have been onsidered for all the ases. The details of the basis sets used in thealulations presented here are given in table 1.5 Analysis and disussionsTables 2 and 3 present the ionization potential (IP) for the ground state and the exitation energies (EEs)for the few low lying exited states for C II and Rb I, respetively. From the alulations and the tabulatedresults we have observed a nie feature about the usage of perturbative triple exitations often used in theTable 3: Ionization potential (IP) and the exitation energies (EEs) (in cm−1) for Rb I. Observed valuesgiven in the last olumn are taken from the NIST table [21℄.State Koopman CCSD CCSD(T) UCCSD UCCSD(T) ObservedIP 5s 2S1/2 30592.05 33690.23 33694.39 33691.16 33694.91 33690.57EE 5p 2P1/2 10660.57 12610.94 12594.57 12611.16 12594.81 12578.95

5p 2P3/2 10898.41 12850.35 12849.30 12850.59 12849.54 12816.54
4d 2D5/2 17494.13 19484.27 19444.28 19483.57 19430.27 19355.20
4d 2D3/2 17481.27 19482.91 19434.31 19482.19 19435.20 19355.656
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Figure 3: Relative error (in %) in estimation of EEs for di�erent states of C II. The aronyms for the di�erentmethods are disussed in the text and in the tables.CC alulations. From Table 2 we have observed that for singly ionized C I i.e. C II (an element in thegroup IV in the periodi table), CCSD method works reasonably well to estimate the IP of the ground stateand EE for the �rst exited state, whereas the UCCSD method performs better for estimating the EEsof the exited states like 3p 2P1/2 and 3p 2P3/2. When we onsider the e�et of perturbative partial tripleexitations for the valene eletron, namely CCSD(T), the method fails miserably to estimate the IP andthe EE's. Moreover CCSD(T) even fails to determine the ground state of C II. This is re�eted in the valueof the EE of the 2p 2P3/2 state whih has a negative sign. That indiates CCSD(T) determines 2p 2P3/2 tobe the ground state of C I instead of 2p 2P1/2. On the other hand, when we apply UCCSD(T) to estimate IPand EEs for C II it performs better than CCSD(T) but still is not good enough to alulate them auratelyas ompared to CCSD and UCCSD. Moreover UCCSD(T) is also apable of determining 2p 2P1/2 as theground state of C II.Table 3 ontains the IP of the ground state and EEs for the �rst few exited states of the alkali atomRb whih is positioned in the Gr-I in the periodi table. We have observed that both CCSD/UCCSDperform better to determine the IP of the ground state and the EE for the �rst exited states. Whereas, todetermine the EEs of the seond exited state and onwards, the partial triple exitations from the valenesetor ontribute quite signi�antly. If we do a lose omparison to the e�ets of partial triple exitationsin the CCSD and UCCSD level, denoted by CCSD(T) and UCCSD(T) respetively we an �nd out thatUCCSD(T) even performs better to determine the EE's of the high lying exited states.We have shown earlier [17℄ that unlike CCSD, UCCSD an ontains more e�ets from higher order exi-tations in the same level of exitation beause of the struture of the ore exitation operator. Considerationof higher order exitation is the key point to understand the improved performane of UCCSD for the highlying exited states. This has been disussed in setion 3.1. In CCSD(T) and UCCSD(T) we have onsideredthe e�et of partial triples denoted by (T) in the valene setor. If we take a lose look at the eletronistruture of the atoms onsidered in the alulations we will �nd that for C II, the ore is de�ned as 1s22s2and the L-shell (with prinipal quantum number 2) is not ompletely �lled. On the other hand for Rb I theore is de�ned as [Kr] whih has a ompletely �lled N-shell (prinipal quantum number 4). When we applyCCSD(T) or UCCSD(T) for C II, beause of the un�lled L-shell, the orrelation e�et, the most importantmany-body e�ets in multi-eletron atoms, between the valene eletron and the eletrons from the un�lledL-shell (in this ase the 2s eletrons) turns out to be very important. This is re�eted in the Koopmanenergies listed in the table. More expliitly, although the 2s sub-shell (L1 shell) is fully oupied in theground state of C II, but the vaany in the rest of the L shell makes the ase a little di�erent than Rb I.In �gure 3 and 4 we have graphially shown our �ndings. In �g 4 the �gure given in the inside box ontains7
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Figure 4: Relative error (in %) in estimation of EEs for di�erent states of Rb I. The �gure shown in theinside box is a magni�ation of the relative errors for di�erent CC methods.the relative errors (in %) in estimating the EEs of �rst few exited states using di�erent CC methods. Thisinner �gure helps us to see the relative errors for the di�erent CC methods in a proper saling.To generalize our �ndings we have also studied two more systems, Li I, the alkali atom with �lledK-shell but un�lled L-shell (Ground state of Li I : 1s22s) and Al I with the ground state on�gurations
1s22s22p63s23p (un�lled M shell). Both Li I and Al I have similarities with Rb I and C II respetively interms of the vaanies in the prinipal shell. Earlier we have reported the determination of the IP and EEsfor Al I using CCSD and UCCSD [23℄. For the alkali atoms like Li I and Rb I, the valene eletrons feelthe potential of a ore with a ompletely �lled prinipal shell (K and M shell respetively). On the otherhand for C II and Al I the ore do not have a ompletely �lled prinipal shell. For these two atoms theeletron orrelation between the eletrons in the un�lled prinipal shell play important roles in determiningthe state energies. In this study we have found the similar pattern of performane of CCSD/UCCSD andCCSD(T)/UCCSD(T) for systems with �lled/un�lled prinipal shell for the ore state.6 ConlusionIn onlusion, we want to fous on the �ndings of our work in the following way. The ontribution of partialtriples through CCSD(T)/UCCSD(T) method works well for atoms or ions with a �lled prinipal shell in theore. On the other hand if there is a vaany in the prinipal shell in the ore the oupled luster (CC) andthe unitary oupled luster (UCC) method with partial triple exitations in the valene setor fails miserably.In general CCSD method works well to determine the IP of the ground state and the EE of the �rst exitedstate. Whereas, the unitary ounterpart of CCSD, namely UCCSD performs better to determine the EEsfor the high lying exited states.To our knowledge this is the �rst attempt to analyze the e�ets of partial triple exitation in atomioupled luster alulations in this manner. One an generalize our �ndings to estimate the state energiesfor atoms/ions with an un�lled prinipal shell in their on�guration. The present study learly demonstratesthat CCSD(T) is, in general, not the best method for aurate determination of state energies for atoms witha single valene eletron. This is important beause CCSD(T) is used to estimate the error in the theoretialdetermination of state energies and atomi properties like transition probabilities and expetation values[24℄. Our �ndings in this work will fous on the issue to searh for a new method for estimating the error.Aknowledgment : These omputations are arried out in the Intel Xeon luster at the De-partment of Astronomy, OSU under the Cluster-Ohio initiative. This work was partially8
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