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The astrophysically important electric quadrupole (E2) and magnetic dipole (M1) transi-

tions for the low-lying states of triply ionized titanium (Ti IV) are calculated very accurately

using a state-of-art all-order many-body theory called Coupled Cluster (CC) theory in the

relativistic frame-work. Different many-body correlations of the CC theory has been esti-

mated by studying the core and valence electron excitations to the unoccupied states. The

calculated excitation energies of different states are in very good agreement with the mea-

surements. Also we compare our calculated electric dipole (E1) transition amplitudes of few

transitions with recent many-body calculations by different groups. We have also carried

out the calculations for the lifetimes of the low-lying states of Ti IV. A long lifetime is found

for the first excited 3d2D5/2 state, which suggested that Ti IV may be one of the useful

candidates for many important studies. Most of the results reported here are not available

in the literature, to the best of our knowledge.

I. INTRODUCTION

With the advent of improved technologies in both observational instruments in astronomy and

laboratory instruments in plasma and atomic research, accurate transitions rates ve been possible

in high resolution spectrums. However, in many of the cases, especially for forbidden transitions

of stripped electronic systems experimental measurements are difficult. Whereas, those transi-

tions are very important in various fields of science and technology. Therefore, there are urgent

requirement for accurate theoretical estimations for these transitions rates to meet the demands.

The forbidden lines provide important clues in other areas of astrophysics, beacuse of the long

lifetime of the upper state against radiative decay. These lines are particularly sensitive to the
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collisional de-excitation and serve as indicators of electron density and temparature, Ne and Te,

in the emmision region. Determination of Ne and Te from the forbidden line intensities was dis-

cussed origanally for the general case by Seaton [1] and Seaton and Osterbrock [2]. A number of

such transitions have been observed in the ultraviolet spectrum of the solar corona. Forbidden

atomic emmision lines are commonly observed in quasars with an intensity often comparable to

accompanying ‘allowed transition’ [3]. Moreover, gaseous nebulae exhibit in their spectra forbid-

den transition lines of low excitation energy. Many astrophysical phenomena like coronal heating,

evolution of chemical composition in stellar envelopes, determination of the chemistry in the plan-

etary nebulae precursor’s envelope are believed to be explained largely by these forbidden lines. In

laboratory tokamak plasmas and in various astronomical objects, suitably chosen these forbidden

lines serve as a basis for reliable electron density and temperature diagnostics [4]. Titanium is

observed in a variety of stellar objects, like in the Sun where Ti figures in third place in terms of

number of lines [5]. Various ionization stages of Ti are present in stellar plasma, for instance in

the τ Sco spectrum [6]. Recently, the lines of triply ionized titanium (Ti IV) have been detected in

Wolf-Rayet Star [7]. Also, Ti IV in oxidized form used in dark and photo induced decomposition

of ozone in air has been studied [8]. Accurate estimation of forbidden transitions of this ionized

system are urgent to explain and quantify the band structure of the energy level of this system

doped in crystal material. Doping of Ti IV in crystal material is used to build optical and polymer

devices [9].

In this work, we employ the multi-reference (MR) Fock-space Coupled Cluster (FSCC) method

with single (S), double (D) and partial triple (T) excitation to compute forbidden transitions in

Ti IV using relativistic orbitals/ spinors. The coupled-cluster (CC) theory is non-perturbative in

nature and its relativistic extension has been successfully employed earlier in many sophisticated

problems [10, 11] to estimate various tiny effects precisely. In the present work, we investigate the

core and valence electrons correlation contributions obtained from the MR-FSCCSD(T) method

to the M1 and E2 transitions among the low-lying states in the considered system.

Because of its complexity and computational limitations, we have considered only the single,

double and partially triple excitations in the CC theory. However, due to its all-orderness and

also because the contributions from higher order excitations diminishes gradually, this is a quite

accurate calculation. Some of the detail applications in astrophysics and scattering physics of Ti IV

are discussed in recent paper by Kingston and Hibbert [12]. They have used non-relativistic config-

uration interaction method for electromagnetically allowed transitions and considered relativistic

effect with Breit-Pauli approximation. Length and velocity forms of the transition amplitudes are
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compared for few allowed transitions to check the accuracy of the numerical approaches used.

II. THEORY

Coupled Cluster (CC) theory for one electron attachment process

The CC theory in the relativistic framework can be extended open-shell theory based on the

no-virtual-pair approximation (NVPA) along with appropriate modification of orbital form and

potential terms [13]. Relativistic CC theory begins with Dirac-Coulomb Hamiltonian (H) for an

N electron atom. The Fock-space multireference CC (FSMRCC) approach used for any valence

orbitals is employed here.

Since the FSMRCC theory has been described elsewhere [14, 15, 16, 17], we provide a brief

review of this method. The FSMRCC theory for single valence orbital is based on the concept

of the common vacuum for both the N and N+1 electron systems, which allows us to formulate

a direct method of excitation energies. In this method the holes and particles are defined with

respect to the common vacuum for both the N and N+1 electron systems. The model space of a

(m,n) Fock-space contains determinants with m holes and n particles distributed within a set of

what are termed as active orbitals. For example, in this present paper, we are dealing with a (0,1)

Fock space, which is a complete model space (CMS) by construction and is given by

|Ψ(0,1)
µ 〉 =

∑

i

Ciµ|Φ
(0,1)
i 〉, (2.1)

where Ciµ’s are the coefficients of Ψ
(0,1)
µ and Φ

(0,1)
i ’s are the model space configurations. The

dynamical electron correlation effects are introduced through the valence-universal wave-operator

Ω [15, 18]

Ω = {exp(S̃)}, (2.2)

where

S̃ =
m∑

k=0

n∑

l=0

S(k,l) = S(0,0) + S(0,1) + S(1,0) + · · · . (2.3)

Here {· · ·} stands for the normal odering of the creation and annihilation operators related with cor-

responding excitations operators, S. For example, the normal ordered form of the Dirac-Coulomb
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Hamiltonian used here is given by

H = H − 〈Φ|H|Φ〉 = H − EDF =
∑

ij

〈i|f |j〉
{

a
†
iaj

}

+
1

4

∑

i,j,k,l

〈ij||kl〉
{

a
†
ia

†
jalak

}

, (2.4)

where

〈ij||kl〉 = 〈ij|
1

r12
|kl〉 − 〈ij|

1

r12
|lk〉. (2.5)

Here EDF is the Dirac-Fock energy, f is the one-electron Fock operator, ai (a†i ) is the annihilation

(creation) operator (with respect to the Dirac-Fock state as the vacuum) for the ith electron.

At this juncture, it is convenient to single out the core-cluster amplitudes S(0,0) and call them

T . The rest of the cluster amplitudes will henceforth be called S. Since Ω corresponding to the

valence orbital v is in normal order, we can rewrite Eq.(2.2) as

Ω = exp(T ){exp(Sv)}. (2.6)

Now, if we define

Heff = P(k,l)HΩvP
(k,l). (2.7)

with the operator P (k,l) is the model space projector for k-hole and l-particle, which satisfying com-

plete model space condition. The “valence-universal” wave-operator Ω in Eq.(2.6) is parametrized

in such a way that the states generated by its action on the reference space satisfy the Fock-space

Bloch equation

HΩP(k,l) = ΩP(k,l).HeffP
(k,l) (2.8)

To formulate the theory for direct energy differences, we pre-multiply Eq.(2.8) by e−T and get

HΩvP
(k,l) = ΩvP

(k,l)HeffP
(k,l) ∀(k, l) 6= (0, 0), (2.9)

where H=e−T H eT . Since H can be partitioned into a connected operator H̃ and Eref/gr (N-electron

closed-shell reference or ground state energy), we likewise define H̃eff as

Heff = H̃eff + Eref/gr. (2.10)

Substituting Eq. (2.10) in Eq. (2.9) we obtain the Fock-space Bloch equation for energy differences:

H̃ΩvP
(k,l) = ΩvP

(k,l)H̃effP
(k,l). (2.11)
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Eqs. (2.8) and (2.11) are solved by Bloch projection method, involving the left projection of the

equation with P(k,l) and its orthogonal complement Q(k,l) to obtain the effective Hamiltonian and

the cluster amplitudes, respectively.

In this article, triple excitations are included in the open shell CC amplitude which correspond

to the correlation to the valence orbitals, by an approximation that is similar in spirit to CCSD(T)

[19]. The approximate valence triple excitation amplitude is given by

S(0,1)pqr

abk =
{
︷︸︸︷

V T2}
pqr
abk + {

︷ ︸︸ ︷

V S(0,1)
2}

pqr
abk

εa + εb + εk − εp − εq − εr
, (2.12)

where S(0,1)pqr
abk are the amplitudes corresponding to the simultaneous excitation of orbitals a, b, k to

p, q, r, respectively;
︷︸︸︷

V T2 and
︷ ︸︸ ︷

V S(0,1)
2 are the connected composites involving V and T , and V and

S(0,1), respectively, where V is the two electron Coulomb integral and ε’s are the orbital energies.

III. COMPUTATIONAL PROCEDURE

The transition matrix element due to any operator D is evaluated in the CC method by ex-

pressing it as

Dfi =
〈Ψf |D|Ψi〉

√

〈Ψf |Ψf 〉〈Ψi|Ψi〉

=
〈Φf |{1 + S

(0,1)
f

†
}eT †

DeT {1 + S
(0,1)
i }|Φi〉

√

〈Φf |{1 + S
(0,1)
f

†
}eT †

eT {1 + S
(0,1)
f }|Φf 〉〈Φi|{1 + S

(0,1)
i

†
}eT †

eT {1 + S
(0,1)
i }|Φi〉

. (3.1)

Here, only consideraion comes from single power of the S(0,1) operator with S
(0,1)
1 and S

(0,1)
2

representing single excitation operators from valence orbital and double excitations from core-

valence orbitals, respectively. Interesting correlation features of the transition operator D are

found in the contraction of D with S
(0,1)
1 and S

(0,1)
2 , which represent single excitation operators

from valence orbital and double excitations from core-valence orbitals, respectively. Since the

considered system is a single valence system, only one power of the S(0,1) operator will contribute

in this CCSD(T) calculation.

For computational simplicity, we express D as effective terms using the generalized Wick’s

theorem [14] as

D = (eT †

DeT )f.c. + (eT †

DeT )o.b. + (eT †

DeT )t.b. + ...., (3.2)
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where we have used the abbreviations f.c., o.b. and t.b. for fully contracted, effective one-body and

effective two-body terms respectively. In this expansion of D, the effective one-body and two-body

terms are computed keeping terms of the form of

Do.b. = D + T †D + DT + T †DT, (3.3)

and

Dt.b. = DT1 + T
†
1D + DT2 + T

†
2 D, (3.4)

respectively. Other effective terms correspond to higher orders in the residual Coulomb interaction

and hence they are neglected in the present calculation.

The reduced matrix element corresponding to E1, E2 and M1 transitions are given earlier papers

written by few of the authors [20, 21]. The emission transition probabilities (in sec(−1)) for the

E1, E2 and M1 channels from states f to i are given by

AE1
f→i =

2.0261 × 1018

λ3[jf ]
SE1

f→i (3.5)

AE2
f→i =

1.11995 × 1018

λ5[jf ]
SE2 (3.6)

AM1
f→i =

2.69735 × 1013

λ3[jf ]
SM1, (3.7)

where [jf ] = 2jf +1 is the degeneracy of a f -state, S is the square of the transition matrix elements

of any of the corresponding transition operator D, and λ (in Å) are the corresponding transition

wavelength.

IV. RESULT AND DISCUSSIONS

Many-body calculations started with closed shell coupled cluster calculations of Ti V. The

reference state of this closed shell system is obtained from Dirac-Fock (DF) calculation using

Gaussian type orbital (GTO) formalism [22]. The exponent of the GTO functions are obtained

from universal even temporing condition with α = 0.00825 and β = 2.73 for all the symmetries.

The number basis function used in this DF calculations are 32, 30, 25, 20, 20 for l=0, 1, 2, 3, 4

symmetries. Number of DF orbitals corresponding to these symmetries used in the closed shell

CC calculations are 11, 9, 8, 8 and 6. Number of active orbitals for different symmetries used in
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TABLE I: Ionisation Potential(IP) in cm−1 of different levels of Ti IV and its comparison with NIST value

and MCHF values and the Fine Structure Splitting(FSS)

IP FSS

States NIST MCHF CC NIST MCHF CC

3d3/2 0 0 0

3d5/2 382.10 790.11 418.02 382.10 790.11 418.02

4s1/2 80388.92 79716.67

4p1/2 127921.36 124749.38 127689.51

4p3/2 128739.59 125539.49 128534.43 818.23 790.10 844.91

4d5/2 196889.96 197050.03 85.69 96.80

5s1/2 212407.34 212823.15

5p1/2 230608.89 228714.51 231061.48 315.49 263.37 353.46

5p3/2 230924.38 228977.88 231414.94

4f5/2 236135.29 234881.75 236217.07

4f7/2 236142.30 235254.86 236220.0 7.01 373.10 3.71

5d3/2 258838.48 260290.41

5d5/2 258877.08 260335.26 38.94 44.85

6s1/2 265847.42 267187.94

6p1/2 274726.29 272719.18 275396.29

6p3/2 274881.21 272828.92 275620.04 154.92 109.74 223.75

5f5/2 275847.01 276669.72 277647.10

5f7/2 275861.94 277942.67 277633.09 14.93 1272.95 14.01

5g7/2 278510.63 278530.47

5g9/2 278511.23 278531.05 0.60 0.58

6d3/2 289185.99 292720.83

6d5/2 289206.93 292760.30 20.94 60.30

this calculations are based on convergent criteria of core correlation energy for which it satisfies

numerical completeness.

In Table I, we have shown the ionisation potential obtained using the CCSD(T) method of a

few low-lying excited states taking 3d3/2 as a ground state. Kingston and Hibbert [12] have also

calculated few of them by multiconfiguration Hartree-Fock (MCHF) method. Our calculated results

are in better agreement with the experiemnetal results (obtained from NIST [23]) in comparision

with the MCHF results. Except for 3d5/2 state, the average deviation with the NIST results is
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only 0.427%, whereas in the MCHF method it is 1.08%. The CC calculated fine structure splitting

(FS) of 3d has far better agreement than MCHF calculation. Also, the excellent agreement of

the FS splittings of F states indicates the accurate description of correlation in the CC approach.

Especially, the all order considerations of core-polarization and pair-correlations.

Large lifetime has been estimated for 3d5/2 state as seen in table II shows its potentiality as a

candidate for plasma temperature disgonistics in stars and plasma fusion devices. The millisecond

lived excited state 4s might have importance in many astronomical diagonistics.

TABLE II: The lifetime(in Sec) of few low-lying states

States Lifetime

3d5/2 1.274E+03

4s1/2 7.531E-04

4p1/2 4.651E-10

4p3/2 4.563E-10

Table III provides the comparison of the CC calculated electric dipole (E1) oscillator strengths (f-

value) with the MCHF [12] in length and velocity form. In most of the cases MCHF underestimate

the f-values, though there are cases where good agreement seen among the results obtained from

both the methods. The good agreement between the results of length and velocity forms indicates

the accuracy of the numerical approaches employed.

Table IV presents the electric quadrupole and magnetic dipole transition wavelengths and

amplitudes, respectively, for most of the low-lying states. They are all relevant to astrophysically

studies. The calculated wavelengths have good agreement for most of the cases with the result

obtained from the website of National Institute of Standard and Technology (NIST) [23]. From

physics point of view, the important transitions among these are the forbidden transitions among

the fine-structures of the 3d and 4p states. Former one falls in the infrared region, which has

many applications in the plasma research and infrared laser spectroscopy [24]. The latter one falls

in the optical region, has immense prospect in different atomic physics experiments. We have not

reported wavelengths for most of other fine structure transitions those fall far beyond the infrared

region.

Quantitative contributions from different correlation terms for few E2 transitions among low-

lying states are presented in Table V. The table shows a comparative estimations of core-
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TABLE III: Oscillator strengths in the length fl and velocity fv form for E1 transitions and its comparison

with MCHF results[12].

Transitions fl(MCHF) fv(MCHF) fl(CC) fv(CC)

3d3/2 → 4p1/2 0.0765 0.0914 0.1588 0.1103

→ 4p3/2 0.0154 0.0182 0.0158 0.0109

→ 5p1/2 0.0080 0.0091 0.0185 0.0129

→ 5p3/2 0.0016 0.0019 0.0037 0.0012

→ 6p1/2 0.0030 0.0031 0.0075 0.0042

→ 6p3/2 0.0006 0.0007 0.0022 0.0014

→ 4f5/2 0.1248 0.1109 0.1020 0.1066

3d5/2 → 4p3/2 0.0925 0.1093 0.1430 0.0982

→ 5p3/2 0.0011 0.0111 0.0017 0.0112

→ 6p3/2 0.0038 0.0039 0.0076 0.0040

→ 4f5/2 0.0060 0.0053 0.0049 0.0041

→ 4f7/2 0.1200 0.1069 0.1108 0.1154

polarization, core-correlation and pair-correlation effects in these transitions. The diagrams in-

volving these contributions are discussed in our earlier papers [25]. Though all order effect of

core-polarization and pair correlation contributions are considered in the calculations here. Table

shows the lowest order contributions of them for few transitions among the low-lying states. The

unusual strong core correlation, almost same as DF, contribution has been seen for E2 transition

among the fine structure states of 4p. Core correlation are weakest among the three correlations

presented in the table. Dominance of pair correlation effects over core polarization observed in all

the transitions.

In ths similar manner the Quantitative contributions from different correlation terms for few

M1 transitions among low-lying states are presented in Table VI. From the table VI, it is really

interesting to see low correlation effects, especially, core porization effect is almost negigible up to

the digits displayed in the table. Few cases, strong pair correlations are noticeable.

V. CONCLUSION

In this paper, we have reported the ionisation potential of a few excited states of Ti IV by using

the MR-FSCCSD(T) method, which are in excillent with the NIST results. Magnetic dipole and

electric quadrupole transition amplitudes among the bound states of the system are important for
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astronomical observations and plasma researches. Here, we have reported these results for the first

time. Especially, forbidden transitions between the fine structure 4p states may be considered for

different atomic experiments of fundamental physics due to its optical transition line. Long lifetime

has been observed for the first excited D- state and it can be used as potential metastable state

for experiments in physics. We have also highlighted different correlation effects arising through

the MR-FSCCSD(T) method.
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TABLE IV: Transition wavelengths and transition amplitudes of Ti IV for electric quadrupole (E2) and

magnetic dipole transitions (M1)

Transition λCC E2 M1

3d3/2 → 3d5/2 -1.0336 -1.5458

→ 4d3/2 508.81 1.4928 0.0863

→ 4d5/2 507.48 1.0186 -0.0026

→ 5d3/2 384.18 0.5334 0.0443

→ 5d5/2 384.12 0.3738 -0.0012

→ 6d3/2 341.62 0.3894 0.0371

→ 6d5/2 0.2769 -0.0009

→ 4s1/2 1254.44 -2.1842

→ 5s1/2 469.87 -0.0283

→ 6s1/2 374.29 -0.0159

→ 5g7/2 359.03 -1.1243

3d5/2 → 4d3/2 509.89 -1.0034 0.0012

→ 4d5/2 508.56 1.9701 0.0241

→ 5d3/2 384.80 -0.3562 -0.0009

→ 6d3/2 342.11 -0.2606 0.0008

→ 4s1/2 1261.05 -2.6593

→ 5s1/2 470.79 -0.0467

→ 6s1/2 374.85 -0.0229

→ 5g7/2 359.57 0.3775

→ 5g9/2 359.57 -1.3342

→ 6d5/2 0.1035

→ 5d5/2 384.73 0.1239

4d3/2 → 4d5/2 -9.1095 -1.5485

→ 5d3/2 1568.49 7.4885 0.1370

→ 5d5/2 1567.39 5.3203 -0.0010

→ 6d3/2 1039.66 2.3737 -0.0010

→ 6d5/2 1.8081 -0.0004

→ 4s1/2 856.02 7.3600

→ 5s1/2 6139.37 14.7325

→ 6s1/2 1415.37 -2.0579

→ 5g7/2 1219.58 24.1136
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(Continuation of Table IV)

Transition λCC E2 M1

4d5/2 → 5d3/2 1568.49 -5.3540 -0.0022

→ 5d5/2 1567.39 9.8113 0.3836

→ 6d3/2 1039.66 -1.8214 –0.0015

→ 6d5/2 6139.51 3.0965 0.2316

→ 4s1/2 856.03 8.9919

→ 5s1/2 6139.51 18.0734

→ 6s1/2 1413.37 -2.5365

→ 5g7/2 1219.57 -8.0497

→ 5g9/2 1219.57 28.4611

5d5/2 → 6d3/2 3087.79 -15.4604 -0.0021

→ 6d5/2 0.5057

→ 4s1/2 553.65 0.9166

→ 5s1/2 2104.73 -30.6035

→ 6s1/2 14592.83 58.9756

→ 5g7/2 5495.95 24.2502

→ 5g9/2 5495.77 -85.7563

5d3/2 → 5d5/2 -33.0491 -1.5479

→ 6d3/2 3083.52 28.4053 0.1803

→ 6d5/2 15.3297 -0.0019

→ 4s1/2 533.79 0.7484

→ 5s1/2 2106.73 -24.9925

→ 6s1/2 14497.95 48.0724

→ 5g7/2 5482.44 -72.6985

6d3/2 → 4s1/2 469.47 0.5346

→ 5s1/2 1251.60 -6.2888

→ 6s1/2 3916.52 -60.8104

→ 5g7/2 6627.89 42.6236

6d5/2 → 4s1/2 469.38 0.6626

→ 5s1/2 1250.98 -7.7575

→ 6s1/2 3910.47 -74.4313

→ 5g5/2 7027.49 -14.1738

→ 5g9/2 7027.77 50.1131

5g7/2 → 5g9/2 -21.7443

4p1/2 → 4p3/2 -16.4408 -1.1466

→ 5p1/2 967.38 -0.0248

→ 5p3/2 964.08 -10.2894 0.0049

→ 6p1/2 677.02 -0.0134

→ 6p3/2 675.99 0.0030

→ 4f 921.42 -24.0090
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(Continuation of Table IV)

Transition λCC E2 M1

4p3/2 → 5p1/2 975.35 -5.3367 0.0058

→ 5p3/2 972.00 -4.7702 -0.1556

→ 6p1/2 680.91 -2.1388 0.0041

→ 6p3/2 679.87 -1.8725 -0.0851

→ 4f5/2 928.65 6.3548

→ 4f7/2 928.62 -15.5754

→ 5f5/2 670.63 -0.8062

→ 5f7/2 670.69 2.1849

5p1/2 → 5p3/2 282914.16 -30.1611 -1.1508

→ 6p1/2 2255.56 0.0306

→ 6p3/2 2244.24 17.5393 -1.1467

→ 4f5/2 19396.42 -24.4364

→ 5f5/2 2146.58 -35.8189

5p3/2 → 6p1/2 2273.69 17.8798 -0.0089

→ 6p3/2 2262.18 16.7129 0.1942

→ 4f5/2 20824.11 12.8459

→ 4f7/2 20811.39 2.1849

→ 5f5/2 2177.12 19.3650

→ 5f7/2 2122.42 47.4574

6p1/2 → 6p3/2 -70.9679 -1.1435

→ 4f5/2 2552.37 6.9155

→ 5f5/2 76.6077

6p3/2 → 4f5/2 2537.88 -3.7780

→ 4f7/2 2538.11 9.2581

→ 5f5/2 399.86 -41.2699

→ 5f7/2 399.88 100.9901

4f5/2 → 4f7/2 -10.0372 -1.8513

→ 5f5/2 2413.71 -14.7715

→ 5f7/2 2414.52 -6.4105

4f7/2 → 5f5/2 2413.71 6.4049

→ 5f7/2 2414.52 -17.4159

5f5/2 → 5f7/2 -35.759 -1.8511

4s1/2 → 5s1/2 751.27 -0.0687

→ 6s1/2 533.41 -0.0386

5s1/2 → 6s1/2 1839.42 0.0837
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TABLE V: Explicit contributions from the MR-FSCCSD(T) calculations to the absolute magnitude of

reduced E2 transitions matrix elements in a.u.

Transition DF Core − Correlation Pair − Correlation Core − Polarization Norm Total

3d3/2 → 3d5/2 -1.1938 0.0010 0.0688 0.0794 0.0223 -1.0335

3d3/2 → 4d3/2 1.5863 -0.0016 -0.1227 0.0198 -0.0234 1.4928

3d3/2 → 4d5/2 1.0364 -0.0003 -0.0477 0.0385 -0.0160 1.0186

3d3/2 → 5d3/2 0.5426 0.0025 -0.0469 0.0341 -0.0328 -2.1843

3d3/2 → 4s1/2 -2.3347 0.0050 0.1626 -0.0269 0.0328 -2.1843

3d3/2 → 5s1/2 -0.0597 0.0009 0.0076 0.0093 0.0004 -0.0283

3d5/2 → 4d3/2 -1.0433 0.0001 0.0464 -0.2254 0.0157 -1.0003

3d5/2 → 4d5/2 2.0825 -0.0001 -0.1589 0.0726 0.3562 1.9701

3d5/2 → 4s1/2 -2.8689 0.0076 0.1983 -0.0125 -0.0401 -2.6593

4d5/2 → 5d3/2 -5.5128 0.0071 0.0922 -0.0167 0.0511 -5.3540

4d5/2 → 5d5/2 10.9993 -0.0046 -1.0611 0.0319 -0.0978 9.0113

5d3/2 → 4s1/2 0.9699 -0.0051 -0.2398 -0.0268 -0.0066 0.7484

5d3/2 → 5s1/2 -25.758 0.0538 0.5885 0.0133 0.1695 -24.9925

5d5/2 → 5s1/2 -0.0753 -0.0014 0.0072 -0.0786 0.0006 0.0467

4p1/2 → 4p3/2 -8.6289 -8.5459 0.5297 0.0812 0.1789 -16.4408

5p1/2 → 4p3/2 -5.2202 0.0137 -0.1654 -0.0293 0.0335 -5.3369

5p1/2 → 5p3/2 -31.4436 0.1799 1.0952 0.0301 0.0888 -30.1611

TABLE VI: Explicit contributions from the MR-FSCCSD(T) calculations to the absolute magnitude of

reduced M1 transitions matrix elements in a.u.

Transition DF Core − Correlation Pair − Correlation Core − Polarization Norm Total

3d3/2 → 3d5/2 -1.5489 0.0005 0.0000 0.0000 0.0333 -1.5458

3d3/2 → 4d5/2 -0.0015 -0.0000 0.0097 0.0001 0.0000 -0.0026

3d5/2 → 4d3/2 -0.0017 0.0001 -0.0099 -0.0002 0.0000 -0.0012

3d5/2 → 4d5/2 -0.0007 0.0001 0.1857 -0.0000 -0.0038 0.2407

3d5/2 → 5d3/2 -0.0001 -0.0001 -0.0061 -0.0001 -0.0000 -0.0008

4d3/2 → 4d5/2 -1.5491 0.0003 0.0000 0.0000 0.0153 -1.5485

5d3/2 → 5d5/2 -1.5492 0.0019 0.0001 0.0000 0.0147 -1.5479

4s1/2 → 5s1/2 0.0004 -0.0006 0.0560 0.0000 0.0004 -0.0687

4p1/2 → 4p3/2 -1.1545 0.0059 0.0000 0.0000 0.0125 -1.1466

4p1/2 → 5p1/2 0.0000 0.0000 -0.0207 0.000 0.0002 -0.0248

4p1/2 → 5p3/2 -0.0059 0.0108 -0.0060 0.0000 -0.0000 0.0049
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