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ABSTRACT 

 

A wavefront sensor in an adaptive optics system, measures the phase 

changes across the telescope pupil of the incident beam. The estimate of 

these errors is later used in a closed loop correction system to achieve 

close to diffraction limited optical quality. A new wavefront sensor based 

on polarization shearing interferometry technique using two crossed 

Babinet Compensators (BC) has been developed and studied. The 

necessary theory for shearing interferometry using BC has been 

developed.  Simulations of the interferometric records were carried out 

for the study of various aberrations in an optical system and the effect of 

noise, ripple and atmospheric turbulence in the interferograms. The 

geometry of the optical set up for carrying out the laboratory experiments 

using Shack Hartmann and Polarization Shearing Interferometer 

wavefront sensors in the same set up have been described. The data 

reduction procedure for the estimation of wavefront errors from a single 

interferometric record using Fourier technique has been worked out. The 

actual results obtained from the laboratory experiments for both the 

sensors have been compared. The method provides a convenient 

alternative choice for wavefront sensing in an actual adaptive optics 

system for astronomical telescope. The suitability of this new wavefront 

sensor is highlighted.  
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Chapter 1 

 

Introduction  

 

              Since the invention of optical telescopes by Galileo in 1609, 

man has started venturing into the exploration of the universe. In the 

last 400 years, the technology of astronomical telescopes has evolved 

from a simple mechanical device to more complex computer controlled 

instrument. Throughout this development, the basic objective remains 

the same, to look far and beyond with the improved sharpness of the 

image and angular resolution as well as sensitivity of the telescope.  

 

               Rayleigh proposed the criterion; that the two point objects are 

just resolved if their angular separation is such that the central 

maximum from one point source lies on the first minimum of the other. 

The theoretical resolving of optical telescopes can be determined by the 

expression: 

radians                                         (1.1) 

where   is the angular separation (in radians)  is the wavelength of the 

light being collected and d is the diameter of the Primary of the telescope.  

Thus the angular size to which an optical telescope can detect depends 

on the diameter of the telescope. Besides the large photon counting 

1.22
d
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power of the telescope, the quest for high angular resolution drives one to 

increases the aperture of the telescope. If an optical telescope achieves 

its theoretical limit it is said to be diffraction limited.  A detailed account 

of diffraction limited imaging for telescopes is given by Swapan  (2007). 

But in practice, independent of the telescope size, the angular resolution 

is equivalent to that of a telescope with a diameter of ≈ 10 cm, which 

corresponds to about 1 arc second for visible wavelength. This is because 

the atmosphere through which the light from the stars propagate, is 

turbulent and distort the wavefront. This significantly affects the image 

quality at the focal plane of the telescope. With the recent advancement 

in computer speed and improved control electronics and optical devices, 

it is possible to form a fast closed loop system. The distortion induced by 

the turbulent atmosphere on the incoming wavefront from the stars can 

thus be corrected which enables the telescope to reach diffraction limited 

image quality thereby improving the resolution (Roggemann et al, 1997) 

of the ground based telescopes. Such a real time correcting system is 

named as Adaptive Optics (AO). The Adaptive Optics concept was 

originally proposed by Babcock in 1953 (Babcock, 1953) but was never 

put into practice till 70‟s due to lack of high-speed computing. The 

invention of lasers and high-speed computers, have enabled to realize an 

AO based system today.  A wide range of references for the basic 

concepts on adaptive optics for astronomy is given in the resource letter 

(Milonni P, 1999). 

 

          Designing of an adaptive optics system requires a better 

understanding of the characteristics of the atmospheric turbulence and 

its effects on the wavefront aberrations. The atmospheric turbulence is a 

random process and can be estimated statistically by means of variances 

and co-variances of local refractive index fluctuations. The planar 

wavefront, from a distant star, propagating through the turbulent 

atmosphere, gets distorted due to change in refractive indices of the 
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different layers. As a result, the amplitude and the phase of the incoming 

beam fluctuate during its passage and changes with time. A study of the 

statistical properties of the turbulence and their characteristics and their 

evolution with time is discussed in the second chapter. The temporal and 

anisoplanatic effects are briefly discussed. The random process of the 

atmospheric turbulence, affect the image forming capabilities of the 

telescope. The expressions for the effect of short exposure and long 

exposure imaging are derived. A brief account of the Zernike polynomials, 

describing atmospheric turbulence is given. 

                

            An adaptive optics system consists of many important 

components. There are sensing devices, computing systems and 

controlling units. These components operate in a closed feedback loop. It 

is necessary to understand the functions of each unit and its feedback 

characteristics. A detailed study of the important components has been 

reported in the third chapter. The wavefront sensor is the most important 

component of an AO system. It detects the aberrations in real time and 

uses a closed loop servo system to correct the same. Most commonly 

used wavefront sensors are discussed in chapter 3. Wavefront sensing 

using shearing interferometry is discussed in detail. The advantages of 

using shearing interferometry as a wavefront sensor are illustrated. A 

new Polarization Shearing Interferometer based wavefront sensor has 

been developed as part of this dissertation. 

                 

            A wavefront sensor, which measures the phase changes across 

the incoming wavefront, is an important component of AO system. This 

dissertation aims at developing a novel wavefront sensing technique 

based on shearing interferometry for astronomical applications. A 

simulation study has been performed by Jeffrey et al. (2002) on the 

performance of Shack Hartmann (SH) and Shearing Interferometer (SI) 

wavefront sensors on the propagation of laser beams through the 
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extended turbulence. It is shown that the performance of the shearing 

interferometer is superior to that of the Shack Hartmann sensor in the 

presence of low Fried parameter and for Rytov numbers greater than 0.2. 

Therefore, a new method has been developed to produce lateral shearing 

of the wavefront using Babinet Compensator (BC) and exploit it for 

wavefront sensing in adaptive optics system.  

            

             A Babinet Compensator is an effective optical device used for the 

measurement of phase differences. The typical shearing interferometers 

that are in use, shear the wavefront in either X or Y directions only. 

Hence, there is a requirement to record the shearing interferograms in 

two orthogonal directions. The unique property of the method described 

in the fourth chapter requires only a single interferogram to retrieve 

complete information of the phase. By this method, the shearing can be 

done in two orthogonal directions simultaneously. The fundamental 

laboratory optical set up for using the single BC and two crossed BC is 

explained in chapter 4. A geometrical approach and the Fourier approach 

on the use of two crossed BC interferometric fringes are also described. 

            

              Based on the theory developed in chapter four, theoretical 

simulations have been carried out for the case of two crossed BC. The 

interferometric records were simulated for primary aberrations and 

presented in chapter five. Rigorous simulations have been carried out for 

various aberrations independently and as a combination. The effect of 

defocus and its importance in this interferometric method is highlighted. 

The effects of various shear values have also been presented. The 

simulations have been carried out using Zernike polynomials also, since 

Zernike polynomials are best suited to represent atmospheric turbulence 

over a circular aperture and it is sufficient to retain Zernike polynomials 

up to sixth order. The shearing interferogram produces wavefront slope 

and hence the derivatives of the Zernike polynomials have been used to 
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demonstrate various aberrations. An attempt has been made to simulate 

atmospheric turbulence in terms of various values of ro, the Fried‟s 

parameter, and its effect on the interferometric pattern has been studied. 

The effect of random noise and the ripples due to the fabrication defects 

have also been simulated and presented. Thus, the sensitivity of this 

interferometric method in the presence of turbulence, noise, ripples and 

the system errors can be well understood. 

               

              The next focus is to estimate the wavefront errors from the 

interferometric records generated by the new Polarization Shearing 

Interferometric (PSI) method. The interferograms generated by the PSI 

method contains the wavefront slope data. The intensity at each spatial 

coordinate in the aperture corresponds to the wavefront slope at that 

coordinate. There are two major tasks namely, to isolate the wavefront 

slope from the intensity values and to estimate the wavefront errors from 

the wavefront slope values. The methods used to perform these major 

tasks are explained in chapter six. The original interferogram contains 

the noise and the actual phase information. The Fourier method is 

superior to use in these situations. The Fourier method and its 

advantages over other methods are explained. Since no two 

interferograms are necessary for the PSI method, it is advantageous to 

use the Fourier method to retrieve the wavefront slope from the intensity 

data. The data thus obtained has 2  ambiguity and a suitable method 

has been used to remove such ambiguities. This method is called phase 

unwrapping. After estimating the wavefront slope, the next task is to 

estimate the wavefront errors from these slope data. As derivatives of the 

Zernike polynomials can be written as a function of Zernike polynomial, 

this property has been exploited to derive the actual Zernike coefficients 

from the slope data.  
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              After completing the study of the polarization shearing 

interferometer through its theoretical simulations, laboratory 

experiments were performed to demonstrate the efficacy of the method. 

The necessary optical set up for using two crossed BC has been 

explained. The different optical components and their specifications are 

presented. The experimental procedure is explained in detail in the sixth 

chapter. The experiments were carried out at the Photonics Division of 

Indian Institute of Astrophysics. Measurements were carried out using 

two wavefront sensors, namely, Shack Hartmann (SH) wavefront sensor 

and Polarization Shearing Interferometer (PSI) to compare the 

performances. To represent atmospheric turbulence, a thin phase plate 

was chosen, as a substitute to atmosphere induced errors, for this 

experimental purpose. The interferograms and the Shack Hartmann 

images were recorded using Charge Couple Device (CCD) detector in 

similar environmental situations. The data reduction was carried in 

LabView platform and the results were derived in terms of Zernike 

polynomial for both the wavefront sensing methods. Using the Zernike 

coefficients the wavefront was reconstructed. Details are given in chapter 

five. The discrepancies in the values of the Zernike coefficients are 

discussed, which are mainly due to the accuracies of the method. Due to 

larger spatial sampling, the PSI results are more accurate than that the 

Shack Hartmann method. The efficacy of the PSI method is discussed. 

 

           An attempt has been made to provide an alternative method of 

wavefront sensing using polarization shearing interferometer for adaptive 

optics application. The theory and the experimental results prove that 

the method offers a suitable choice for wavefront sensing. One of the 

main reason for ignoring shearing interferometry as a potential wavefront 

sensor had been that it requires two orthogonal records in order to 

completely estimate the wavefront errors. In this work, it has been 

proved that the method of polarization shearing interferometry using two 
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crossed Babinet compensators provide a means of reconstructing the 

wavefront using a single record. The advantages of this method, over 

others have been effectively brought out. As a part of the future plan this 

wavefront sensor will be used in a telescope to estimate the wavefront 

errors. 
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Chapter 2 

 

Imaging Through Atmospheric Turbulence 

 

               The wavefronts from a distant star approaching the Earth are 

nearly perfect plane waves, coherent, in the sense that their phase is 

nearly uniform in a plane transverse to the direction of propagation. 

During its passage through the atmosphere, these wavefronts are 

distorted randomly by moving through different layers or cells with 

differences in the refractive index (Fig.2.1).   

                                     

Fig.2.1 A schematic of the wave propagation through turbulent 

atmosphere 
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These variations in the refractive index arise from variations in density, 

which are caused by temperature fluctuations (Roddier, 1999). There are 

many models describing atmospheric turbulence, but the most 

commonly used one is the introduced by Kolmogorov in 1961 

(Kolmogorov, 1961). The theory based on Kolmogorov turbulence has 

been comprehensively reviewed elsewhere (Roddier, 1999).  

 

2.1 The statistics of the amplitude and Phase 

perturbations 

 

           In classical theory the wave propagation is treated as 

 

                           (2.1) 

 

where  is the complex field at  and time t,  represents the a 

phase offset,  represents the frequency of the light determined by  

/ 2c k  and A the amplitude of the light. As wavefronts pass through 

the atmosphere they are perturbed by refractive index variations 

resulting in the fractional change in the amplitude and phase in a given 

time.  The time scales for these variations will be set by the speed 

refractive index fluctuations in the atmosphere.  

 

             To quantify the effect of the atmosphere it is useful to 

decompose the atmosphere artificially into a number of distinct layers. 

Every layer consists of a number of turbulent cells of varying sizes and 

varying densities, both spatially and temporally. Thus the refractive 

index at any arbitrary point  can be written as, 

 

                             (2.2) 
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Where  is the fluctuation in the refractive index,  being a 3 

dimensional vector   x,y,z, while  is the average refractive index of 

air. As is well known, the average  = 0, while Kolmogorov proved 

from pure dimensional arguments: 

 =                             (2.3)                     

In the range  called inertial range. Since ~ 1 mm or less 

(called the inner scale of turbulence) while  ~ several tens of meters, 

this is also the region of importance for us as a typical telescope has a 

diameter 1 ~ 5 meters. The actual phase change depends on the 

transient in the air pocket and thickness of the turbulent layer and will 

vary with time. 

          In the inertial range, the statistical properties of the phase 

perturbations can be specified using a spatial structure function D as is 

given below. This structure function is valid for distances between an 

empirically determined inner scale and outer scale ( l < r < L ). The spatial 

structure function is equal to the mean squared value of the difference 

between the phase perturbations at two points on the base of the layer, 

which are separated by a vector . Mathematically, 

 

                                            

                                                                             (2.4)                                                              

                                                                                    

where  and  are spatial points separated by a distance and < > 

denotes ensemble average over all points,  is the wavelength,  is the 

angle of observation measured from zenith, 2

nC  is the refractive index 

structure constant which is a function of height z above ground and ro is 

the fundamental Fried-parameter (Fried, 1965) defined by 
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3/5
2

1 2

0

2.91 2
(cos ) ( )

6.88
o nr C z dz                                   (2.5) 

 

It characterizes the effect of atmospheric turbulence at a particular 

wavelength. The ro value is dependent on the integrated magnitude of 

refractive index variations in the atmosphere as added over all the layers. 

This relation points out the link between the value of ro at the telescope 

and the varying value of 2

nC  with height, which features strong 

contributions at different altitudes. The quantity ro also depends on the 

zenith angle  and the wavelength of observation. The length scale ro is a 

measure of the phase coherence length of the light wave, as it arrives at 

the telescope aperture. Hence, a larger value of ro implies better seeing. 

“Seeing” being described as the angular separation that the telescope can 

resolve, one can say  

                                           (2.6)                    

 Therefore, the seeing is better in the infra red compared to the visible 

region. It shows that an ro value of 10 cm at 550 nm corresponds to 53 

cm at 2.2 micron. Clearly, a telescope with an aperture diameter greater 

than ro is limited by atmospheric turbulence to the resolving power of a 

telescope with an aperture diameter of only ro. At optical wavelengths, ro 

can be as large as 30 cm in very stable atmospheric conditions. 

 

            The mean square wavefront phase distortion over a circular 

aperture of diameter D (Roddier, 1999) can be expressed as  

                          

5/3

2

1 1.03
o

D

r
                                                          (2.7) 

Noll (1976) has shown that the spatial power spectrum of phase 

fluctuations due to Kolmogorov turbulence: 
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                      5/3 11/3( ) 0.023 ok r k                                                       (2.8) 

 

The integral over the power spectrum gives the variance of the phase. 

The integral over ( )k   11/3k  is infinite. This means that the variance of 

the turbulent phase grows very fast for low k, which is a well known 

property of Kolmogorov turbulence. In reality, low order frequencies are 

truncated by the outer scale of turbulence, as modeled by the more 

realistic Von Karman spectrum. 

 

2.2 Temporal and anisoplanatic effects 

 

           The wavefront phase distortions occur spatially and temporally. 

These phase fluctuations occur with a varying speed according to the 

wind velocity. In such case, the structure function of the wavefront phase 

becomes 

 

                                                             (2.9) 

 

         Assuming “Taylor” approximation of a „frozen-in-turbulence‟ a 

mean propagation velocity   v   of air the temporal variations occur over a 

time scale  given by 

 

                      0.314 o
o

r

v
                                                                 (2.10) 

 

which is of the order of few milliseconds. These time scales are also 

called „coherence time‟. For adaptive optics the reciprocal of the coherence 

time indicates the required bandwidth of the closed loop correction 

system. Greenwood (Greenwood, 1977) after more elaborate analysis, 

gave a definition for the required bandwidth being, called the „Greenwood 
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frequency‟ that is often used to specify adaptive optics system. For a 

single layer, this frequency is  

 

                      0.43
o

v
v

r
                                                                 (2.11) 

As an example, if the turbulent layer moves at a speed of 10m/s, the 

closed loop bandwidth for ro = 11 cm, in the visual band (550 nm) is 

around 39 Hz.  

             So far, it has been assumed that a single plane wave originating 

from a star at an angular distance  from zenith. The light of a star at a 

slightly different angular position travels through slightly different 

portions of the atmosphere and this puts the limitation in the 

compensated field of view. It occurs because of differences between 

wavefronts coming from different directions. This effect is called 

Anisoplanicity. As the angular separation between the observational star 

and the neighboring star increases the image quality decreases. For a 

weighted average „h‟ of the layer altitudes, the anisoplanicity error is 

 

                      

5/3

2 ( ) 6.88
cos

aniso

o

h

r
                                              (2.12) 

 

The 2

aniso  depends on two atmospheric parameters h  and or . For the rms 

error to be less than 1 radian, the angular distance must be less than  

 

                  3/5 cos cos
(6.88) 0.314o o

o

r r

h h
                                     (2.13) 

This angular distance is called iso-planatic angle. 
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2.3 Image Formation 

 

           It is interesting to determine how the atmospheric turbulence 

affects the image quality. In the absence of turbulence, the image 

exhibits an Airy pattern which is called diffraction limited.  

 

                     Fig.2.2 The Airy pattern of a telescope image 

            As the strength of the turbulence increases the width of the Airy 

pattern increases as seen in the figures. The optical transfer function of 

the telescope and the atmospheric turbulence determine the quality of 

the astronomical image. Here it is shown how the turbulence reduces the 

image quality obtained from a telescope. 
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Fig.2.3 The effect of image quality  due to turbulence. (a) No 

turbulence (b) Week turbulence   (c) Moderate turbulence and (d) 

Strong turbulence.      

 

The images presented above are reproduced from the Ph.D thesis by 

Seward (Seward, 2005) for the demonstration of the image quality 

deterioration due to Fried parameter (ro) in other words atmospheric 

turbulence. In such cases the value of Cnn has the following values 

Strong turbulence  19.65 x 10 -14
 

Moderate turbulence 40.07 x 10-15 to 19.60 x 10 -14 

Weak turbulence  63.65 x 10 -15 to 40.07 x 10 -15 

No turbulence  63.65 x 10-16 and below 

All units are in m-2/3 

To achieve close to diffraction limited performance of the telescope, these 

effects have to sensed and removed. The first method of correcting the 

effects of atmospheric turbulence to produce a nearly a diffracted image 

was, by the method of speckle interferometry. Labeyrie (1970) proposed a 

statistical method of reconstructing the image of an object from an image 

taken through atmospheric turbulence. This method cannot be applied 

for on line evaluation of the wavefront and correction. Diffraction limited 

images are obtained by the post processing of the speckle data obtained 

at very short exposures of few milli-seconds. Long exposures averages 

out the seeing effect. 
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2.3.1 Long Exposure Imaging 

 

             A long exposure image can be considered as an image taken over 

a period longer than the coherence time. The point spread function for 

long exposure images is 

 

                     ( ) ( )LE o aP P f P f                                                           (2.14) 

 

Here, ( )oP f is the Optical Transfer Function (OTF) of the telescope and 

( )aP f  is the atmospheric transfer function. The phase structure function 

of the atmosphere is given in eqn. (2.2) and so the OTF of the turbulence 

is  

 

                 

5/3

( ) exp 3.44turb

o

f r
OTF r

r
                                        (2.15) 

 

The atmospheric Point Spread Function (PSF) is the Fourier transform of 

the OTF. 

 

 

2.3.2 Short Exposure Imaging 

 

            In the case of short exposure image, the atmosphere is 

considered to be frozen during the integration time of the exposure. A 

short-exposure image is equivalent to a tilt-free image. A time averaged 

short exposure image can be obtained, if the tilt is corrected in real time, 

for example, with a steering mirror. The expression for the short 

exposure OTF of Kolmogorov turbulence is [Fried, 1966]. 
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5/3 1/3

( ) exp 3.44 1turb

o

f r f r
OTF r

r D
                        (2.16) 

The term  is a constant and takes the value of 1 if the telescope is in the 

near field imaging 
2( / )L D of the turbulence. The PSF of the short 

exposure image is the ensemble average of the re-centered images and is 

again determined by taking the Fourier transform of the optical transfer 

function.  

 

2.4 Zernike representation of atmospheric turbulence 

 

              Zernike polynomials are widely used for describing the classical 

aberrations of an optical system (Born & Wolf, 1965). They have the 

advantage that the low order polynomials are related to the classical 

aberrations like, spherical aberration, coma and astigmatism. Fried 

(Fried, 1965) used these Zernike polynomials to describe the statistical 

strength of aberrations produced by the atmospheric turbulence. 

Zernike polynomials are a set of orthonormal polynomials, defined on a 

unit circle and hence are convenient to express the turbulent wavefront 

in the circular aperture telescope. The central obscuration can be treated 

as a special case and presently ignored. The modified Zernike 

polynomials for annular pupil has been extensively dealt in the literature 

(Dai and Mahajan, 2007).  Noll (1976) has introduced a normalization for 

the Zernike polynomials that is perfectly suited for application of 

Kolmogorov turbulence. The Zernike polynomials are usually written in 

polar form  and   

 

                    (2.17) 
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2

2

2

3

3

3

3

_________________________________________

( , )

_________________________________________

1 0 0 1

2 1 1 2 cos

3 1 1 2 sin

4 2 0 3 2 1

5 2 2 6 sin 2

6 2 2 6 cos 2

7 3 1 8 3 2 sin

8 3 1 8 3 2 cos

9 3 3 8 sin 3

10 3 3 8 sin 3

11 4 0

jj n m Z

4 2

4 2

4 2

4

4

5 3

5 5

5 3

5 3

5

5

6 4 2

5 6 6 1

12 4 2 10 4 3 cos 2

13 4 2 10 4 3 sin 2

14 4 4 10 cos 4

15 4 4 10 sin 4

16 5 1 12 10 12 3 cos

17 5 1 12 10 12 3 sin

18 5 3 12 5 4 cos3

19 5 3 12 5 4 sin 3

20 5 5 12 cos5

21 5 5 12 sin 5

22 6 0 7 20 30 12 1

2 6 4 2

6 4 2

3 6 2 14 15 20 6 sin 2

24 6 2 14 15 20 6 cos 2

 

 

……contd. 
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6 4

6 4

6

6

7 5 3

7 5 3

_________________________________________

( , )

_________________________________________

25 6 4 14 6 5 sin 4

26 6 4 14 6 5 cos 4

27 6 6 14 sin 6

28 6 6 14 cos6

29 7 1 4 35 60 30 4 sin

30 7 1 4 35 60 30

jj n m Z

7 5 3

7 5 3

7 5

7 5

7

7

8 6 4 2

4 cos

31 7 3 4 21 30 10 sin 3

32 7 3 4 21 30 10 cos3

33 7 5 4 7 6 sin 5

34 7 5 4 7 6 cos5

35 7 7 4 sin 7

36 7 7 4 cos7

37 8 0 3 70 140 90 20 1
 

Table 2.1 Zernike orthonormal polynomials Zj for j = 1 to 37, n is the 

radial order of the polynomial and m the azimuthal frequency. Index 

j is the polynomial ordering number and even j correspond to 

symmetric modes   (cos m ) and odd j correspond to antisymmetric 

modes ( sin m ). 

 

where  

                                        (2.18 )

 

 

According to Noll‟s numbering system, j is used instead of n, the radial 

order and m the azimuthal order. The two indices m and n are whole  
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Examples of Zernike Modes 
 

                                       
 

          X-Tilt                               Y-Tilt                           Defocus 
 

                           
 Astigmatism X                Astigmatism Y                Primary Y Coma 
 

                                
   Primary X Coma        Triangular Coma X              Triangular Coma Y 
 

 

                         
 

      Spherical                  Sec. Astigmatism X       Sec. Astigmatism Y  
 

 

     Fig.2.4 Graphical representation of few Zernike modes 
 

X-TILT



 

37 

numbers satisfying m n  and n-m is even. The total number of modes up 

to a given radial order is therefore 

                     
( 1)( 2)

2
n

n n
j                                                            ( 2.19) 

The low order Zernike polynomials (Table 2.1), where the columns and 

rows indicate azimuthal and radial order respectively, and Figure 2.3 

displays them graphically. 

 

The polynomial expansion of an arbitrary wavefront ( , ) over the unit 

circle is defined as 

                                         
1

( , ) ( , )i i

i

a Z                              (2.20) 

and the coefficients ia , are determined using the principle of 

orthogonality of polynomials as 

                          1 ( , ) ( , )i ja Z d d                                   (2.21) 

    Since Zernike polynomials have the unique property of representing 

each mode individually, one can estimate the contributions by the 

atmosphere by estimating the individual Zernike terms.  The mean 

square value or the variance of the phase aberration is equal to infinity 

and the mean square residual phase error across the aperture can be 

written as  

                                
22 2

1

N

j

j

a

                                      (2.22)

 

However, the variance of the piston removed aberration is finite. 

                                        2 2

1 1a
                                          

 

                                            5/31.0299( / )oD r
                                 (2.23)       

 

If the aberration be due to first “J” Zernike polynomials, it is written as  

                                    
1

( , ) ( , )
J

J i i

i

a Z                                    (2.24) 



 

38 

Then the variance or the mean square residual error of the remaining 

aberrations can be expressed as 

 

                        
21 ( , ) ( , )J J d d                          (2.25) 

                             
2

1 1

2

J

j

a  

When no correction is applied then 

 

                     2 5/3

1 1.0299( / ) 1oD r  radian when D = or     (2.26)
 

           In other words, the Fried‟s parameter is the diameter of the circle 

whose variance is equal to 1 rad2 . Variance of the other residual phase 

errors contributed by the atmosphere in units of 5/3( / )oD r is given in the 

Table 2.2 

 

                      

1 12

2 13

3 14

4 15

5 16

6 17

7 18

8 19

9 20

___________________________________

1.0299 0.0352

0.582 0.0328

0.134 0.0304

0.111 0.0279

0.0880 0.0267

0.0648 0.0255

0.0587 0.0243

0.0525 0.0232

0.0463 0.0

10 21

3 / 2

11

220

0.0401 0.0208

0.0377 0.2944 ( arg )

_____________________________________________

J J For l e J

 

Table 2.2 The residual variance j  of Kolomogorov turbulence after 

after the first j modes are removed (Noll, 1976). 
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It is seen that  i.e. falls with J. But this fall not being 

sufficiently fast, one is required to keep sufficient number of Zernike 

polynomials. In the present work, it has been investigated up to 21 

polynomials. 

 

2.4.1 Phase Variance and Image quality 

 

      The final image quality is usually expressed in terms of Strehl ratio 

that defines the peak of the point spread function to the peak of the 

diffraction limited point spread function.  

 

                                           
(0,0)

(0,0)

aberr

diff

I
S

I
                                       (2.27) 

 

Many approximations for the Strehl ratio have been investigated 

(Mahajan 1982, 1983) and the best approximation found was empirical 

and the Strehl ratio is related to the variance of the phase aberration 

across the pupil by 

 

                                              2exp( )S                                       (2.28) 

For small arbitrary aberrations 2 1,  21S  

A system is well corrected when 0.8S , the equality being called the 

Marechal criterion (Born and Wolf, 1980). At the Marechal limit 

                                 

2

2 2 22
0.2W rad                                      (2.29) 

corresponding to an rms wavefront aberration of 
14

or a wavefront 

variance of 2 2 / 200W  
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Chapter 3 

 

Adaptive Optics System and its Elements 

  

             The application of adaptive optics for improving image resolution 

and quality of large optical telescopes has revolutionized the approach to 

ground-based astronomy. Adaptive Optics (AO) is a technique that 

corrects the corrugated wavefront in a closed loop configuration to attain 

diffraction limited performance of the ground-based telescopes (Hardy 

1998). It is a means for real time compensation of the image degradation. 

An AO system basically consists of three main components, a wavefront 

sensor, a wavefront corrector and a control system. A portion of the beam 

from the telescope is diverted to the wavefront sensor to estimate the 

aberrations induced in the beam due to atmospheric turbulence. The 

wavefront control system computes the control signals for the wavefront 

corrector and sends it to the correcting device. This servo loop is 

repeated continuously to get a corrected image. This chapter reviews the 

different components of the AO system. The schematic of an AO system 

is given in Figure 3.1. 

 

 

 

 



 

41 

                              

 

 

                   Fig.3.1: Schematic of an Adaptive Optics System 

 

The main components for an adaptive optics system are: (1) Wavefront 

sensor, (2) tip-tilt mirror (3) deformable mirror, and (4) Wavefront 

controller. Wavefront sensor is the most critical part of the adaptive 

optics system. Effectiveness of the AO system directly relates to the 

accuracy and efficiency of the wavefront sensor.  

 

3.1 Wavefront Sensing  

 

              A wavefront sensor is the heart of the adaptive optics system. A 

wavefront sensor provides the estimate of the wavefront distortion 



 

42 

produced by the telescope system and atmospheric turbulence at the 

pupil plane. It is of prime importance to evaluate the wavefront with 

enough spatial resolution and suitable speed for real time compensation. 

The wavefront sensor must efficiently use the star light. So it should 

preferably work on broad spectral band width. Secondly, the Wavefront 

sensor must use the photons efficiently. Thirdly, the wavefront sensor 

must be linear over the full range of atmospheric disturbances. Most 

sensors evaluate the wavefront gradients (the spatial first derivative) or 

the curvature (Laplacian) over an array of sub-apertures of the 

wavefront.  

 

         The performance of the wavefront sensor depends on the effective 

measurement of the errors in the incoming wavefront.  Thus a highly 

accurate and efficient wavefront sensor is very much desirable. The 

present work is aimed at developing a simple and accurate wavefront 

sensing method suitable for such applications. Some of the existing 

methods commonly used have certain inherent shortcomings. The 

present method aims at versatility and improvement upon them. 

 

3.1.1. Concept and Methods of Wavefront Sensing  

 

         A comparative study of different wavefront sensing methods has 

been undertaken. This chapter outlines the basic concepts of some of the 

major wavefront sensing techniques that are currently used.  

 

         A wavefront sensing is to characterize the wavefront distorted by 

atmospheric turbulence and quantifying the parameters for real time 

correction. According to the diffraction theory the complex amplitude of 

the wave at the pupil plane of the telescope is given by 
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              A (x,y) = exp [- i 2 /  W (x,y) ]                                                  (3.1)                      

 

The term  represents the phase of the propagating optical wave. 

The phase contains all the information of the aberrations of the system. 

It is impossible to estimate the phase directly. Nevertheless, it can be 

done using indirect methods. This can be done either at the focal plane 

or in the image/focal plane. The two fundamental methods of wavefront 

sensing are geometric and interferometric. The geometric methods are 

Shack Hartmann wavefront sensor, Curvature sensing etc. The 

interferometric methods are in general based on lateral shearing 

interferometry. It is also possible by deconvolution technique (Primot J. 

et al, 1990) to retrieve the wavefront from the turbulence degraded 

images. A general tutorial text on wavefront sensors is provided by 

Joseph Geary (1995). 

 

3.1.2 Shack Hartmann Wavefront Sensor 

 

         Presently Shack Hartmann (SH) method is the most commonly 

used method.  It is the modified ( Platt and Shack, 2001) and improved 

version of the Hartmann test used for large mirror testing. In the 

Hartmann test, a wavefront is sampled in a number of locations by 

means of an opaque screen with a set of holes placed at the telescope 

pupil. As a result, when light propagates through the holes, a set of spots 

is produced on the recording plane. The local slope of the wavefront at 

each sample point can be evaluated from the direction in which most of 

the light emerges from the corresponding hole, that is, from the spot 

position. It is based on the principle of displacement of the image due to 

the local slope in the wavefront (Tyson, 1991; Rousset, 1999).  
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           Fig.3.2. Schematic of a Shack Hartmann sensor. 

          

 In the Shack Hartmann sensor, an array of holes is replaced by a 

microlens array (Fig.3.2). The lenslet array is positioned in a plane 

conjugate to the telescope pupil, to sample the incoming wavefront. The 

incident wavefront is sampled into small sub-apertures using a lenslet 

array, which produces the Fraunhofer diffraction pattern corresponding 

to the wavefront sampling, on to the detector plane. If the incident 

wavefront is planar, then the lenslet forms an image at its focus. If, on 

the other hand the incident wavefront is distorted and non planar, then a 

portion of the distorted beam corresponding to each sub aperture, forms 

an off axis image in its focal plane. Measurement of the difference 

between the two image positions gives an estimate of the wavefront slope 

over the sub aperture. By measuring the displacements of the image in 

the x and y directions, an array of x slope and y slope estimates at the 

aperture is obtained.  The slope of the wavefront is related as 

 

       x  slope = 
    

&      y  slope =                                       (3.2) 

 

where f is the focal length of the lenslet and M is the magnification 

between the lenslet plane and telescope entrance plane. 

x

f M

y

f M
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Usually a CCD is used as a detector to record the images of the spots. 

The center of gravity of each spot is measured using the formula 

                       and                                    (3.3) 

 

Where  and  are the intensity and the position coordinates of the 

CCD pixel. The sum is made over all the pixels in the lenslet field and 

normalized over the signal. Hence, we measure a set of local slopes of the 

wavefront. Modal wavefront estimation using Zernike polynomials is one 

way in which the wavefront from the local slopes can be reconstructed.  

 

          The wavefront can be expressed by 

                     

 

                                                                                                   (3.4) 

  

where the Zi(x,y) are the Zernike polynomials and Ci are the coefficients of 

the Zernike modes. Several methods have been developed that are 

computationally stable. Solving the above matrix equation using Single 

Value Decomposition (SVD) method, the Zernike coefficients are 

evaluated. The entire wavefront can be estimated knowing the Zernike 

coefficients. The Shack Hartmann sensor suffers from low spatial 

frequency and the measurement noise arises from an uncertainty in the 

determination of centroid position of each spot and limited in terms of 

range and accuracy of measurement dictated by CCD performance and 

diffraction effects of the lenslet array. The wavefront estimation 

performance will be fundamentally limited by both the measurement 

technique and the noise propagation.  
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3.1.3 Curvature Wavefront Sensor 

 

           The curvature sensor (CS) has been proposed and developed by 

Roddier (1988) to make wavefront curvature measurement instead of 

wavefront slope measurements. In this, the wavefront sensor aims at 

measuring the second derivative of the wavefront slope. It measures the 

image at two locations, one before focus called intrafocal image and the 

other outside focus called extrafocal image (Fig.3.3). The intensity 

distributions of the images are a measure of wavefront curvature, i.e. its 

second derivative, in the telescope pupil.  

 

                           

               Fig.3.3 Principle of Curvature sensor 

 

A local wavefront curvature in the pupil plane produces excess 

illumination, say in plane P1 and lack of illumination in plane P2. On the 

pupil edge, the same difference between the two illuminations provides a 

measure of the radial tilt. In geometrical optics approximation, the 

normalized difference between the two intensity distributions is related to 

the wavefront phase  in the pupil plane by 

 

                                      (3.5) 

 

21 2
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where c is a linear impulse distribution around the pupil edge. I1 and I2 

are the intensities in the two planes and is the Laplacian operator  

is the first derivative of the wavefront, f, the focal length of the telescope 

and l is the distance of the irradiance plane. It is the irradiance transport 

equation and the phase retrieval has been worked out by (Ichikawa et.al, 

1988).  The normalization of the difference in illumination makes the 

sensor insensitive to scintillation and works well for extended sources. In 

CS the choice of the distance l is very critical. To summarize, increasing 

the distance l increases spatial resolution on the wavefront measurement 

but decreases sensitivity. On the other hand, a smaller distance yields a 

higher sensitivity to low order aberrations.  

 

3.1.4 Pyramid Wavefront Sensor 

 

             The concept of pyramid wavefront sensor was suggested in the 

mid-1990s (Pugh et al, 1995) is based on the modified Focault knife edge 

test used in optical testing. This technique was later proposed in the 

familiar form by Ragazzoni (1996).  Like Shack Hartmann sensor it 

measures the first derivative of the wavefront. A pyramid lens with four 

equal faces is placed with its vertex on the nominal focus of the optical 

system. The four faces deflect the beam in four different directions, 

depending on which face of the prism gets the incoming ray. A field lens 

is used to re-image the pupil of the telescope. In the pupil plane a CCD 

detector is used to measure the individual signals of the four faces 

(Fig.3.4).  

2
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                      Fig.3.4. Principle of Pyramid Sensor 

 

              In order to improve the sensitivity Ragazzoni proposed to 

oscillate the pyramid to allow all the aberrated rays to sweep over the 

four faces. In such case, each face will receive a particular intensity of 

illumination that shall be proportional to the displacement of the rays 

with respect to the pyramid vertex. After an integer number of oscillation 

cycles, the four pupil signals I1, I2, I3, I4 are combined and normalized by 

the sum. Hence it is possible to retrieve the derivatives or slopes  

and  of the wavefront along two orthogonal axes. 

 

        
          (3.6) 

 

and 

 

                      
                                     (3.7)   
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where and are the modulation introduced in the x and y 

directions such that 

> .  More details on the calculations and improvement on the 

oscillation were done by Riccardi et al. (1998). 

             The work on pyramid sensor for adaptive optics application is 

reported in the literature (Esposito and Riccardi, 2001). The energy 

distribution of a pyramid wavefront sensor over the pupil is non-uniform. 

Most of the illumination is over the edges of the pupil leading to low 

signal to noise ratio. This adds more complication in the closed loop 

adaptive optics system and procedure is quite time consuming. 

 

 3.1.5 Shearing Interferometer Based Wavefront Sensor 

 

                Shearing interferometry is another technique to measure 

wavefront phase through intensity measurements (Sandler et al, 1994) 

for adaptive optics applications. The basic approach is to produce an 

interference pattern between the wavefront and a sheared or displaced 

replica of itself. In this way, the phase variations, which cannot be 

measured directly because of its high temporal frequency, are converted 

into intensity variations (fringe pattern) in the pupil plane. Shearing 

interferometry is self-referencing and does not require a coherent 

reference source. Like SH sensor, Shearing interferometry measures the 

wavefront slope. 

 

A wavefront may be sheared in different ways. 

a. Laterally, by displacing the wavefront a replica by a fraction of 

    the aperture and made to interfere. 

b. Rotationally, by rotation of the replica wavefront by an angle and  

    combining it keeping the same origin. 

x y

( )r

r
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c. Radially, by magnifying a replica and combining it with the  

    original wavefront. 

             The lateral shearing interferometer (Wyant, 1975) is the most 

commonly used method for real time wavefront correction systems. 

Lateral shear can be produced in many ways. A wavefront eikw ( x , y ) is 

sheared by a small amount x and made to interfere by itself. A 

schematic of lateral shearing of wavefront is shown in figure 3.5.  

                                  

Fig.3.5 A schematic representation of the lateral shearing of the 

wavefront. 

 

The interference pattern I ( x, y ) of the interferogram can be written as  

                                 (3.8) 

where the wavefront is sheared in the x direction by  x/2  

Expanding and simplifying 

                                                                        (3.9) 

The phase in the cosine term is directly proportional to the slope of the 

wavefront at the measured position. To reconstruct the complete 

wavefront, the data containing x shear and y shear are required. In such 

( , ) exp , exp ,
2 2

x x
I x y ikw x y ikw x y

( , ) cos
w

I x y A k x
x
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cases, one needs to obtain two interferometric records. There are many 

ways to produce a shearing wavefront. The text book on optical testing by 

Malacara (1992) gives a detailed account of the shearing interferometers 

used for optical testing. Shearing interferometer offers better choice for 

its linearity, better signal processing and added spatial information. The 

suggested methods employ refraction or reflection to produce two 

interfering beams and the optical system generates fringes whose period 

is proportional to wavelength, restricting operation to lower spectral band 

width.   

             Birefringent crystals are the best suitable optical devices to 

provide shearing wavefronts. An efficient approach is to separate the two 

orthogonally polarized beams and analyzing the beams using an 

analyzer. Shearing interferometer using birefringent prisms have been 

described by Saxena (1979), Hardy & Mac Govern (1987), and Sandler et 

al.(1994) particularly for AO applications. 

 

3.2 Wavefront correcting system 

 

           The wavefront corrector is a component in the adaptive optics 

train which is used to compensate for any aberrations due to atmosphere 

or imperfections in the telescope optics. The corrector is an electro-opto-

mechanical device and the physical movement is proportional to the 

applied voltage. There are basically two different types of wavefront 

correctors presently in use to correct two distinct ranges of frequencies. 

Following text gives a brief account of the wavefront correctors used in 

AO system. In the recent past, many new developments have taken place 

in the manufacturing of flexible and micro-electro-mechanical based 

correcting devices. Since, the aim of the thesis is on wavefront sensing, 

only a brief account of the tip-tilt mirrors and deformable mirrors are 

given for the sake of completeness. 
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3.2.1 Tip-tilt Mirror:   

 

              The simplest form of adaptive optics is tip-tilt correction, which 

corresponds to correction of the tilts of the wavefront in two dimensions. 

This is performed using a rapidly moving tip-tilt mirror which makes 

small rotations around two of its axes. A significant fraction of the 

aberration introduced by the atmosphere can be removed in this way. 

Tip-tilt mirrors are widely used in stellar and solar imaging, to correct 

the aberrations introduced by the atmosphere on the light path and to 

improve the image quality over the aperture. Tip-tilt mirrors are 

effectively segmented piezo-electric actuator driven by external voltage 

having only one segment which can tip and tilt, rather than having an 

array of multiple segments which can tip and tilt independently. 

Basically, the actuators operate in push pull mode. 

              A tip-tilt mirror is introduced in the optical path of the telescope 

as shown in Fig.1.1. The tip tilt mirror corrects the wandering of the 

center of the seeing disc and its frequency is in the order of 50Hz. It may 

be required to give a stroke typically few tens of microns peak to peak. 

Tip tilt mirrors generally cannot correct rapid fluctuations in the 

wavefront provide medium or low bandwidth pointing in real time. 

 

3.2.2 Deformable Mirror 

 

           The residual phase errors are corrected by the use of deformable 

mirrors (DM). They are made of a very thin mirror whose shape can be 

changed by the force applied by many actuators stacked behind the 

mirror. For astronomical purposes, the number of actuators that a DM 

should possess, is proportional to  

 

                        
2

/ oN D r                                                                (3.10) 



 

53 

 

where D is the telescope diameter and ro is the Fried‟s parameter. The 

required stroke ranges to a few microns. The response time  typically, is 

the time to sweep the turbulence cell pattern across the Fried distance ro 

by the mean wind velocity. This makes proportional   ro/v, where v is 

the velocity of the wind, and its value is in the order of few milliseconds. 

Individual voltages are applied to the actuators to change the shape of 

the DM described by its influence function.  

                Several types of deformable mirrors have been made. Some of 

the important features of the deformable mirrors are discussed here.  

segmented mirror consists of an array of single tip-tilt elements. The 

single elements can be moved independent of each other and they can be 

replaced easily. The motion of the individual mirrors is restricted to 

piston and tilt. The main drawback of this mirror is high fitting error and 

edge diffraction effects induced by gaps between segments. Bimorph 

mirrors consist of two piezoelectric wafers which are bonded together and 

oppositely polarized, parallel to their axes. An array of electrodes is 

deposited between the two wafers. When a voltage is applied to the 

Piezoelectric Transducer (PZT) material it expands in area as in a  

bimetallic strip. The curvature of the surface is proportional to the 

applied voltage.  

           Membrane mirror consist of a thin reflecting membrane stretched 

over a ring and deformed by means of electrostatic forces in a partial 

vacuum chamber.  

                     2 ( , ) ( , ) / mZ x y P x y T                                                 (3.11) 

where Z (x,y) is the deformation of the membrane, ( , )P x y  is the pressure 

and mT  is the tension of the membrane. The effect of applying a local 

pressure is to change the local curvature of the membrane.  
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3.3 Wavefront Controller:  

 

           An adaptive optics system can be defined as a closed loop servo 

system. Wavefront sensors measure the shape of the wavefront and 

produce signals that represent the wavefront.  It may be modal or zonal 

representation. It is the function of the controller to translate these 

signals and relay them to the correcting device. In most cases, parallel 

paths are employed whereby one channel controls lower order aberration 

modes, such as focus and tilt while another channel simultaneously 

controls the higher order wavefront errors with deformable mirror.  

          The functions of the controller can be described in two parts. In 

the first part, the wavefront is reconstructed from the input signals from 

the wavefront sensor on the basis of deformable mirror actuators 

geometry. It estimates the control vector containing the control voltages, 

which are to be fed to the tip-tilt and deformable mirror. The second 

stage, involves the hardware using digital to analog converters, control 

voltages are generated and fed to the tip-tilt and deformable mirrors to 

enable the required correction. Although, adaptive optics control systems 

often analyze and direct many parallel channels of information, most of 

the systems in practice are based on single channel linear processing 

algorithms. Advancement of digital computers allows the parallel 

operations to be performed at very high speed. 
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Chapter 4 
 
 

Polarization Shearing Interferometer based 

wavefront sensor  
 
 

        Adaptive Optic systems measure and correct errors in optical 

systems by using a wavefront sensor combined with a deformable mirror 

and appropriate control hardware and software. Three main wavefront 

sensing techniques are outlined in the previous chapter. Of these, Shack 

Hartmann method is most widely used by different groups around the 

world.  

          Various methods of shearing interferometry have been devised for 

optical testing (Malacara, 1992). The use of shearing interferometry has 

been studied extensively since 1970s for phase measurement of the 

atmospheric turbulence. Hardy and Mac Govern (1987) mention in their 

article that an efficient approach for shearing interferometry is to 

separate two beam by polarization using birefringent prisms. This class 

of interferometers is called Polarization interferometers (Francon and 

Mallick, 1971). The use of birefringent prisms as a lateral shearing 

interferometer (Saxena, 1979, Malacara, 1992, Hyun-Ho Lee et. al, 2003) 

for optical testing has been extensively reported in the literature. In order 

to reconstruct a two-dimensional wavefront, it is necessary to measure 

the slope in two directions separately. Lateral Shearing Interferometers 

(LSI) normally uses two orthogonal shear directions. The present work 
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reported in this thesis is devoted to the development of a Polarization 

Shearing Interferometer (PSI) based on the use of a Babinet Compensator 

(BC) as a wavefront shearing device where a single interferogram can 

provide complete information about the incident wavefront. This chapter 

describes the basic use of single BC and subsequently a suitable scheme 

for the use of two crossed Babinet Compensators for PSI based wavefront 

sensing. Necessary theory has been presented based on Fourier optics to 

establish that a single interferogram can be efficiently used as a 

wavefront sensor. 

 

4.1 Babinet Compensator (BC) 

 

              The Babinet Compensator (BC) was invented in the nineteenth 

century by Jacques Babinet, a French physicist, mathematician and an 

astronomer, who used this device for the study of polarized light in 

microscopy. The Babinet Compensator is widely used as an effective 

optical device for the measurement of retardation between the ordinary 

ray (o) and extraordinary ray (e) i.e. to study the degree of birefringence. 

A Babinet Compensator can be adjusted to provide a variable path 

difference. The BC has been exploited for accurate measurement of 

phase differences (Hariharan and Sen, 1960) and for the evaluation of 

aspheric surfaces (Saxena, 1979).  The Babinet Compensator consists of 

paired quartz wedges, of small wedge angle, which are cut in such a 

fashion that one is positioned with the optic axis parallel to the edge, 

while the other has the axis perpendicular to the edge (Fig.4.1). When the 

two wedges are optically cemented they act as a plane parallel plate of 

thickness h. The theory of the Babinet Compensator using Jones 

Calculus and the criteria for proper choice of the compensator 

parameters has been worked out in detail (Pandya and Saxena, 1978).  
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                                    Optical axis of the system 

 

                                  
                                                                              
Fig.4.1 A Babinet Compensator prisms showing the preferential 

direction of the optic axis in each prism. 

 

          As can be seen from figure 4.1 the optical path difference in each 

wedge increases from the edge to the base and the birefringence has 

opposite values in the wedges. The extraordinary axes of the two plates 

are perpendicular to each other so the roles of the ordinary and 

extraordinary ray are reversed as the light travels through one plate and 

then the other. A phase difference or retardation that is accumulated in 

first wedge may be partially or completely canceled out by second wedge.  

            

       Let ne and no be the ordinary and extraordinary refractive indices of 

quartz and h1 and h2 be the thickness of the two wedges at some 

particular point. When two wedges are combined and on passing through 

both wedges, the phase difference between the two rays is 

                                                                      (4.1) 

A dark fringe appears where the net optical phase difference through the 

compensator becomes zero and a bright fringe when the phase difference 

is  and continues in a direction at right angles to the zero line as the 

distance increases. Between crossed polarizers, dark and bright bands 
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are observed in monochromatic light at a separation distance of one 

wavelength of optical path difference. A typical fringe BC fringe pattern is 

shown in figure 4.2. 

 

 

                                            
  

Fig.4.2. Typical view of the fringes seen in collimated 

monochromatic light from a Babinet Compensator when placed 

between two crossed polarizers. Fringes are equally spaced and 

depend upon the wedge angle of the prisms. 

 

The intensity is given as  

                                                                                 (4.2) 

where  are the phase differences introduced by the wedges 1 

and 2 respectively. In white light, the polarization colors appear in rising 

orders. In polarized light microscopy, measurements are conducted by 

observing the fringe shift caused by the addition of the optical path 

difference of the specimen under observation. In optical testing the fringe 

shifts and the shape changes due to the change of phase of the incoming 

wavefront provides the estimate of the wavefront errors.  

 

       Important conclusions drawn from this study (Pandya and Saxena, 

1978) are included here for the proper choice of the BC components and 

precautions for the use.   For any accurate quantitative application, the 

various possible defects have to be taken into account and their effects 

on the performance of the compensator have to be evaluated. These 
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defects can be classified into (i) Defective Polaroid (ii) Misalignment of 

polaroids, (iii) Fabrication defects. The compensator should be examined 

for the presence of fabrication defects. These are readily revealed by the 

appearance of fringes when is mounted at the azimuth of zero or  with 

respect to the crossed polaroids. It should then be arranged at an 

azimuth of  with respect to the polaroids for optimum sensitivity. The 

poloraids pair should be carefully chosen so as to satisfy the criterion the 

values of  should be 0.9 and 0.1 for the range of wavelength 

used in the investigation. The accuracy in the crossing the poloraids, 

however, is not critical.  

 

4.2. Polarization Shearing Interferometer (PSI) using single 

BC for the evaluation of surface/wavefront errors 

 

            The single Babinet Compensator has been effectively exploited for 

testing concave aspheric surfaces (Saxena, 1979).  The theory of the 

method and its effectiveness for detecting small surface errors was 

demonstrated in this paper. A schematic of the optical set up for testing 

a concave aspheric surface using single BC is shown in Fig.4.3. In this 

arrangement, a cone of light from a source, kept at the radius of 

curvature, is incident on the test surface and after reflection passes 

through the Babinet Compensator, placed between the polarizer and 

analyzer. At the focal point F2 one observes a fringe pattern due to the 

different phase changes introduced between extraordinary (e) and 

ordinary (o) vibrations at different points during the oblique passage of 

the ray.  

The phase difference  in this case is given by 

                                                                     (4.3) 

Where and are the actual path lengths through the wedges 

respectively. A small error in the mirror surface alters the phase of the 
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incident beam. The fringe pattern represents the phase changes due to 

the errors present at the pupil plane. The number of fringes seen at the 

observation plane is also proportional to the distance of the Babinet 

compensator from the focus F2.  

 

Fig.4.3 A schematic of the optical setup for testing a concave mirror 

using a single Babinet Compensator. A lens (not shown) is used to 

image the mirror plane on to the detector. 

 

The shear introduced by the BC is given by 

S = 2 (ne - no ) tan   R                                             (4.4) 

where ne and no are the refractive indices for the extraordinary and 

ordinary rays of the birefringent material, S is the amount of shear and 

is the wedge angle of the BC and R is the Radius of curvature of the 

mirror under test. A wavefront is considered to be nearly spherical of 

radius R so that the wavefront errors may be regarded as small 

deviations from its sphericity. The wavefront may be expressed as W(x,y) 

over the aperture. When the wavefront is sheared by an amount s the 



 

61 

error at a point x,y is W(x-s,y).  This is illustrated in Fig.3.5. The resulting 

path difference W(x,y) – W(x-s,y) = W(x,y) which is equal to n When s is 

small the wavefront error may be written as 
w

s
x

. Thus  

W(x,y) s = n (4.5) 

             Considering a specific situation for primary aberrations for 

W(x,y) it can be written as  

2 2 2 2 2 2 2 2 2( , ) ( ) (( ) ( 3 ) ( )W x y A x y By x y C x y D x y Ey Fx             (4.6) 

The wavefront error for defocusing may be written as  

                           2 2( , ) ( )W x y D x y                                                    (4.7) 

In this situation 

                                     2
w

s Dxs
x

                                                    (4.8) 

The defocusing coefficient is given by 

                                   
2 22 2

o

o o

R l d
D

R R
                                                (4.9) 

The shape, spacing and position of these bright and dark fringes will 

depend upon the wavelength of light used, incoming phase of the 

wavefront and the physical properties of the compensator.  A typical 

fringe pattern is shown in Figure 4.4.  

                                    
 

Fig.4.4. Typical interferogram using single Babinet compensator for 

an aspheric surface. BC is placed inside focus of the convergent 

beam. 
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        Besides, the number of fringes will depend upon the distance of the 

BC from the vertex of the test mirror and the angle at which the rays are 

traversing through it. A detailed geometrical theory is explained in the 

literature (Jerrard, 1949). The surface departures of the test optics are 

evaluated by determining the difference between the positions of the 

fringes from the test optics to the true one. The sensitivity of this 

instrument also has been explained. It has been shown that with 

suitable precautions, the minimum detectable phase change that can be 

measured is as low as 2  milli-radians.  

 

4.3. Polarization Shearing Interferometer using two 

crossed BC 

               

           Saxena and Jayarajan (1980) has proposed an alternative 

approach by using two crossed Babinet compensators for optical testing 

of aspheric surfaces.   A typical arrangement of the two crossed BC is 

shown in Figure 4.5.  

 

                  

            Fig.4.5 Two crossed Babinet Compensator arrangement 
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The two identical Babinet compensators are placed closed to one another 

with their preferential optic axes are crossed to each other. A typical 

optical test set up for testing a concave mirror is shown in Figure 4.6. In 

the optical set up a point source of light, kept at the radius of curvature 

of the test mirror, is made to incident on the test mirror and up on 

reflection passes through the two Babinet compensators which are 

placed on either side of the focus F2. The two compensators are crossed 

to one another and they are placed at a distance d1 and d2 from the focus 

F2. The sheared wavefronts in two orthogonal directions gives an 

interference pattern with fringes oriented at 45  in the observation plane. 

The fringe width also reduced to half the value obtained from individual 

compensators. In optical testing, the interferometric fringes are the true 

representation of the characteristics of the test mirror in the observation 

plane. The resultant path difference  is due to the path difference 

between the sheared wavefront and the original wavefront and the phase 

difference is 

                                                              (4.10) 

The resultant interferogram is due to the shearing of the wavefronts in 

two orthogonal directions. The geometrical approach (Saxena and 

Lancelot, 1982) for the formation of fringes  is discussed in the following 

section. 
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          Fig.4.6 A schematic of the optical set up for testing a concave 

mirror using two crossed Babinet Compensator. Note that the two 

compensators are placed on either side of the focus F2. Optic axes 

are shown parallel for figure clarity. For actual measurement BC2 is 

to be rotated by 90o. Lens L images the mirror surface (pupil plane) 

on the detector. 

 

4.3.1 A Geometrical approach for the fringes 

 

          In the optical set up shown in Fig. 4.6 the compensators are 

placed on each side of the paraxial center of curvature with the line of 

equal thickness at right angles to each other and coinciding with the X 

and Y coordinate axes respectively. The two compensators are located at 

distances 1l  and 2l  from the mirror vertex, such that the distance from 

the paraxial center of curvature is given by 1 1od R l  and 2 2od R l  

Since the two compensators produce shear in two mutually 

perpendicular directions, one along the X axis and the other along the Y 
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axis, location of the bright fringes in the resulting interferogram can be 

represented by 

 

                                             
w w

s t n
x y

                                     (4.11) 

 

where s and t are the shear in X and Y directions respectively, given by 

 

12( ) tane o os n n R        and      22( ) tane o ot n n R                              (4.12) 

 

where &e on n are the refractive indices of the extraordinary and ordinary 

rays, 1 2& are the wedge angles of the compensators and oR is the 

radius of curvature of the system. If they are two identical compensators 

having equal wedge angles then, 1 2 ; in such case the amount of 

shear in both the X and Y directions are same. 

 

                                        2( ) tane o os t n n R                                 (4.13) 

 

Considering the primary aberrations and specifically in the case of 

defocusing the equation becomes  

 

                                       1 1
1 2 22 2

o

o o

R l d
D

R R
                                        (4.14) 

 

 

                                        2 2
2 2 22 2

o

o o

R l d
D

R R
                                      (4.15) 
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When only defocusing error is present, the wavefront error can be written 

as  

 

                                  1 2( , ) 2 2W x y D xs D yt                                   (4.16) 

 

where D1 and D2 are the defocus coefficients. Hence, from equation 4.2 

the intensity at the detector plane is 

 

                                                                 (4.17) 

 

More comprehensive interferograms for different aberrations are 

presented in chapter 5. 

 

4.3.2 A Fourier approach for the fringes 

 

             In the following section, a mathematical treatment for the two 

crossed BC is being dealt with. The amplitude transmittance function for 

a plane wavefront in the case of a single BC has been worked out by 

Pandya and Saxena (1978) using Jones calculus. By extending their 

approach to a most generalized expression for the amplitude 

transmission function for two crossed BC the equation can be written as 

             

                1 2 1 2( , ) exp[ 2 { / / }] exp[ 2 { / / }]o oM x y a i x d y d b i x d y d      (4.18) 

 

where oa and ob are the constants taking into account the imperfections in 

polarizer and analyzer, 1d and 2d are the respective half fringe widths for 

the two compensators obtained with a plane wavefront ( Saxena and 

Lancelot, 1990). 
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The complex amplitude at the pupil plane is 

                               

                                   
2

( , ) ( , ) exp ( , )o o o o o oU x y P x y i W x y
                (4.19)

 

where ( , )o oP x y  = 1 inside the pupil  

                       = 0 outside the pupil 

 

( , )o oW x y is the wavefront aberration in units of wavelength 

The complex amplitude function after the BC is given by 

   

                                     ( , ) ( , ) ( , )U x y U x y M x y
                            (4.20) 

 

where ( , )U x y is the Fourier transform of ( , )o oU x y  

The amplitude distribution at the detector plane can be taken as the 

convolution of ( , )o oU x y with the Fourier transform of ( , )M x y . On 

substitution it gives 

 

1 1 1 1 1 1

1 2 1 2

( , ) exp 2 / , exp 2 / ,o o

f f f f
U x y a i W x y b i W x y

d d d d

 

                                                                                                       (4.21) 

and the Intensity  

                                1 1 1 1 1 1( , ) ( , ) ( , )I x y U x y U x y                                   (4.22) 

 

2 2

1 1 1 1 1 1

1 2 1 2

2
( , ) 2 cos , ,o o o o

f f f f
I x y a b a b W x y W x y

d d d d
                  

                                                                                                       (4.23) 
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2 2

1 1 1 1 1 1

2
( , ) 2 cos , ,

2 2 2 2
o o o o

s t s t
I x y a b a b W x y W x y         (4.24) 

 

where s and t are the shear introduced by the two BC in two orthogonal 

directions respectively. 

 

Defining  

2 2

o o oa b K     and      12 o oa b K ; it can be rewritten as 

 

                            1 1 1

2
( , ) cosoI x y K K W                                   (4.25) 

 

where 
1 1 1 1, ,

2 2 2 2

s t s t
W W x y W x y  

 

and  oK  is the constant background intensity and 1K   is the modulation 

factor. Equation 4.25 gives the most generalized equation of the two 

crossed Babinet Compensator polarizing shearing interferogram. 

 

The equation 4.25 represents a familiar interferometric expression 

for cosine fringes and it is the same representation of the equation 

obtained through geometrical approach. 

                       

                      
1( , ) cos ( , )oI x y K K x y                                  (4.26) 

 

          where the phase ( , )x y contains the desired information of 

wavefront slope and K0 and K1 represent the background intensity and 

the modulation of the cosine fringes respectively. In this case there is no 

requirement of carrier frequency to identify the actual phase of the 

original wavefront. The phase term itself contains the carrier frequency 
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which is represented by the defocus term as explained in the text before. 

Hence, compared to many other shearing interferometers, this PSI does 

not need any other external carrier frequency and thereby eliminates one 

source of error due to carrier frequency. Deriving the phase factor from 

the cosine fringes yields the derivative of the actual phase of the incident 

beam.  

 

4.4 Accuracy of the Phase measurement using  

BC based PSI 

 

          The accuracy of the phase measurement of the BC based 

Polarization Shearing Interferometers depends primarily on the value of 

wedge angle of the BC and also governed by the factors explained in 

section 4.1. In the proposed intensity mode of operation accuracy and 

sensitivity of the measurement will also depend on the dynamic range of 

the detector. By suitable choice of the BC parameters, with due 

precautions and using a 10 bit accuracy of the detector, local phase 

errors at any point of the wavefront can be estimated to a close 

theoretical limit of  2  milli radians or  /1000 wavefront errors. 

 

         The application of this method for wavefront sensing in reference to 

AO systems and the method of phase retrieval from single interferometric 

fringe record, is explained in the later chapters. 
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Chapter 5 

 

 

Theoretical Simulations 

 

              This chapter deals with the theoretical simulations of the 

proposed wavefront sensor for adaptive optics application. In a telescope 

imaging system, the major sources of error, is from the atmospheric 

turbulence apart from other sources like, fabrication error and noise. A 

wavefront sensor computes these wavefront errors in real time and sends 

the signals for the control computer for adaptive correction. It is 

important to understand the Polarization Shearing Interferometer 

theoretically and its efficacy to sense the wavefront errors and its 

limitations. A systematic theoretical study has been undertaken. In the 

first part of the section, explanations about the simulations that were 

carried out with specific case of wavefront errors or primary aberrations 

of an optical system with respect to the Polarization Shearing 

Interferometer wavefront sensor is given. In the later part, the wavefront 

was generated using Zernike polynomials and the wavefront errors 

caused due to atmospheric turbulence was incorporated. The errors due 

to the fabrication in terms of ripple and the noise were also simulated 

and presented. From these simulation studies the optimum parameters 

for which the PSI wavefront sensor could be used in AO system has been 

derived. The theoretical simulation helps one to understand the behavior 
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of the fringe patterns in different circumstances. Simulations were also 

carried out with varying noise levels and atmospheric turbulence.  

 

5.1 Basis of theoretical simulation 

 

             A simple wavefront equation having third order aberrations as 

derived by Kingslake (1978) is given below 

 

2 2 2 2 2 2 2 2 2( , ) ( ) (( ) ( 3 ) ( )W x y A x y By x y C x y D x y Ey Fx           (5.1) 

 

 where  A  Primary Spherical aberration 

  B  Primary Coma 

  C  Primary Astigmatism 

  D Defocus 

  E Tilt in X direction 

  F Tilt in Y direction 

When the shear value in X and Y directions are small, the shearing 

wavefront can be approximated as the first order derivative function as  

               
W W

W s t
x y

             (5.2) 

where s and t are the shears in the  x and y directions respectively.     

The intensity at the detector plane (eqn.4.25) can be written as   

                         1

2
cos ( , )oI K K W x y                                         (5.3) 

The fringes in the observing plane or the detector plane, is due to the 

gradient of the wavefront errors expressed by ( , )W x y . Simulations were 

carried using IDL and LABVIEW. In the later part of the chapter the 

simulations using Zernike polynomials were carried out taking into 

account the errors due to atmospheric turbulence. 
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Fig. 5.1 Front Panel of the Lab VIEW for the theoretical simulation 

of PSI records. 
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5.2 Fringe Profiles in ideal conditions 

 

             In the case of Polarization Shearing Interferogram, the ideal 

conditions are described as the system having no aberrations but only 

defocus term. The defocus in this case means the distance between the 

Babinet Compensators and the focus. Considering the equation 5.1 for 

the general wavefront, the sheared wavefront for various aberrations can 

be written. Keeping only the defocus and taking the other coefficients A, 

B, C, E & F equal to zero, the wavefront derivative takes the form,  

 

                     
1

2

( , )
2

( , )
2

W x y
s D xs

x

W x y
t D yt

y

     and                       (5.4)   

                  1
1 22 o

d
D

R
  and     2

2 22 o

d
D

R
                              (5.5) 

s and t are the shears in the x and y directions respectively.  

 

                              

                a                                                                b. 

Figure 5.2 Typical Polarization Shearing Interferogram in the 

presence of defocus only. (a). D1 = D2; (b) D1  D2; 

 

When the BC is kept equidistant from the focus and s = t (Fig. 5.2 (a)) the 

fringes are oriented at 45o to the coordinate axis. Figures 5.2 (b) shows 
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when  D1  D2;  the orientation of the fringes changes and will depend on 

the ratio 1

2

D s

D t
.  

 

5.2.1 Effect of Shear in the interferogram 

 

            A detailed study on the effect of interferogram profiles due to 

different shear values have been done. The shear are expressed in terms 

of the aperture. For the normalized aperture of 1 the shear values are 

generally in the ratio of ~ 0.1. A few typical cases has been reported in 

the figure 5.3. 

 

                

                     (a)                            (b)                               (c) 

Figure 5.3 Typical PSI interferogram profiles for various shear 

values. Equal shear values s = t; and equal defocus values D1 = D2; 

have been assumed in this case. The normalized shear values are (a) 

s =0.025; (b) s = 0.5; (c) s = 0.075.   

 

For the maximum sensitivity an optimum shear value and the defocus 

values have to be chosen. When the shear values are too large, the 

fringes become too crowded and difficult to detect.  It is better to choose 

the shear values with reference to the dynamic range of the detector 

being used in the optical system. 
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5.3  Effect of Third order aberrations in fringe profiles 

 

               In order to study the effect of primary aberrations namely, 

spherical aberration, coma, astigmatism and the x and y tilt in an optical 

system, interferometric fringe profiles were simulated using the third 

order equations.  

5.3.1 Spherical aberration and Defocus 

          In the presence of spherical aberration the wavefront error takes 

the form as  

                                 2 2

1

( , )
4 ( ) 2

W x y
s Axs x y D xs

x
                           (5.6) 

                               2 2

2

( , )
4 ( ) 2

W x y
t Ayt x y D yt

y
                           (5.7) 

and the intensity at the detector plane is 

   2 2 2 2

1 1 2

2
cos 4 ( ) 2 4 ( ) 2oI K K Axs x y D xs Ayt x y D yt            (5.8)                                                                                      

These expressions are very similar to the one described by Malacara 

(Malacara, 1992), except that these expressions are derived for two 

dimensional case. For spherical aberration, the fringe shape takes an S 

shape and the curvature depends on the amount of spherical aberrations 

present in the system. These expressions hold true in the case of single 

BC case wherein the shear in either of the directions is made zero. When 

the magnitudes of the aberrations are very large, the fringes become 

crowded and the S shape fringes (Fig.5.4) are distorted and reduce the 

sensitivity of the measurement. At the same time when the aberrations 

are very small say about /10 the profiles tend towards straight line.  



 

76 

              

              (a)                                   (b)                                        (c) 

Figure 5.4 Typical PSI interferometric fringe profiles for spherical 

aberration and defocus. Different values of spherical aberrations are 

chosen.(a) A = 1 (b) A = 10 ; (c) A = /10 

 

5.3.2 Primary Coma and defocus 

            In the presence of primary coma alone the wavefront error takes 

the form as  

                      
1

( , )
2 2

W x y
s Bxys D xs

x
                                      (5.9) 

                    2 2

2

( , )
( 3 ) 2

W x y
t B x y t D yt

y
                               (5.10) 

and the intensity at the detector plane is 

           2 2

1 1 2

2
cos 2 2 ( 3 ) 2oI K K Bxys D xs B x y t D yt               (5.11) 

and  shown in Figure 5.5.    

                                 

Figure 5.5 Typical PSI interferogram for coma and defocus 

combined. 
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5.3.3 Primary Astigmatism and defocus 

               In the presence of primary coma alone the wavefront error 

takes the form as  

1

( , )
2 2

W x y
s Cxs D xs

x
                                        (5.12) 

 2

( , )
2 2

W x y
t D yt Cyt

y
                                     (5.13) 

and the intensity at the detector plane is 

          1 1 2

2
cos 2 2 2 2oI K K Cxs D xs D yt Cyt                         (5.14) 

Figure 5.6 shows the effect of astigmatism and defocus. Note that the 

fringes broadening at one end and narrowing at the other end. 

                                                

Figure 5.6 Typical PSI interferogram for Primary Astigmatism and 

Defocus. 

 

5.3.4 Tilt in X and Tilt in Y 

              Tilt in X and Y directions results in lateral shift of the fringes in 

the direction of the resultant shear. When the shear values are chosen to 

be equal, the lateral shift will be 45 degrees to the direction of the 

fringes. 
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5.3.5 All Primary Aberrations 

               When the wavefront error is assumed to have all the primary 

aberrations (Fig.5.7) then the intensity at the detector plane takes the 

form as 

          

2 2

1

1

2 2 2 2

2

2
4 ( ) 2 2 2

cos
2

4 ( ) ( 3 ) 2 2

o

Ax x y Bxy Cxs D x E s

I K K

Ay x y B x y Cy D y F t

      (5.15) 

                                         

           Fig.5.7 Typical PSI interferogram having primary aberrations.                                                                    

 

5.4 Interferogram Simulations using Zernike Polynomial 

 

The use of Zernike polynomials for describing the aberrations introduced 

by the atmospheric turbulence is well known. The PSI wavefront sensor 

measures the wavefront slope. The representation of a wavefront using 

Zernike polynomial has been detailed in chapter 2. Noll (1976) has 

introduced the integral representation and the derivatives of the Zernike 

polynomial. The derivatives of the Zernike Polynomials can be written as 

a linear combination of Zernike polynomial. Hence, the slope information 

from the wavefront sensor can be conveniently expressed as a function of 

the Zernike polynomials. Detailed theory of the Zernike polynomials has 

been reported in chapter 2 and the results are only used in this section. 

The basic interferometric equation is given by eqn.5.3. 
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And the gradient of the Zernike polynomial is represented by 

                                             
j jj j

j

Z Z                                      (5.16) 

And the wavefront slope is explicitly written as  

                              ' ' ' '

' '1

( , )
n

j x yjj j jj j
j j j

W x y a s Z t Z

                 (5.17)

 

where jj is called Zernike Derivative matrix. It is presented in Table 5.1. 

Upon proceeding with Zernike coefficients, the interferograms are 

simulated (Fig.5.8) for different values of the Zernike coefficients 

representing different aberrations. 

 

                           

(a)                                                               (b) 

Fig.5.8 Simulated PSI interferograms using the Zernike coefficients 

(a) only defocus term and all other coefficients is zero. (b) inclusive 

of all Zernike coefficients.                                                                                                                                                                                              
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5.5 Effect of atmospheric turbulence, noise and ripples in 

the PSI record  

 

             An important characteristic of the wavefront sensor is the output 

interferogram visibility. It is defined as 

max min

max min

( )

( )

I I
V

I I
                                 (5.18) 

Fringe visibility is a quantitative measure of the contrast of the fringe 

pattern. In adaptive optics the phase aberration amplitude is 

continuously changing. This leads to continuous variation in the fringe 

visibility and contrast. In the absence of the atmospheric turbulence, as 

seen from the simulations of the interferograms, the visibility is limited 

only by the noise level and the polarizer and the analyzer imperfections 

(Pandya and Saxena, 1978). Rigorous numerical simulations of the 

atmospheric turbulence (Tubbs, 2004, 2005) and the effect of wavefront 

corrugations on fringe motion has been extensively studied. Another 

important characteristic of the wavefront sensor is the sensor‟s 

nonlinearity; that is the nonlinearity of the phase – intensity 

transformation. This nonlinearity is characterized by the correlation 

between the phase ( )r and the output intensity ( )I r . In the presence of 

atmospheric turbulence induced phase distortions, the wavefront tilts 

cause the displacement of the fringes. When the displacements are large 

enough, the fringes become crowded making the detection more 

cumbersome. 

         Rigorous simulations of the atmospheric turbulence, is not the 

scope of the present work but an effort has been made to understand the 

behavior of the PSI interferometric fringes in the presence of atmosphere 

like noise. Simulations were performed having a uniform intensity and 

introducing random phase variations inside a circular aperture of 
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diameter D. The input phase variations were characterized by the 

variance of the Zernike coefficients (Noll, 1976). 

 

The mean square residual error is  defined as  

2 2

1

J

j

j

a                                          (5.19) 

where 2  is the phase variance and 
ja are the Zernike coefficients. 

The approximated equation is given by 

                                
5/33 / 20.2944 /J oJ D r    (rad2 )                       (5.20) 

Based on the above equations, and from the mean residual errors 

calculated by Noll given in table 2.2, some sample simulations were 

carried out for few values of D/ro are shown in the figure 5.9 a-d.  

 

    

(a)                         (b)                         (c)                         (d) 

 

  

             (e)                       (f)                       (g)                         (h) 

 

Fig.5.9 Simulated PSI interferograms corresponding to different or  

values and D=1. (a) or  
= 1, (b) or  

= 0.75, (c) or  
= 0.5, (d) or = 0.25,             

(e) or = 0.125, (f) or = 0.1, (g) or = 0.05, (h) or = 0.025 



 

82 

           The simulated results show the presence of atmospheric induced 

distortions by the change in the value of or .  The visibility and contrast in 

the interferograms do not change considerably whereas it causes the 

displacement of the fringes quite appreciably. The orientation of these 

fringes also changes. The value of or  , also keep changing with time. The 

effect of other sources of noise is not taken into consideration for 

simulating the above interferograms. The results were computed with 

one fringe in the field of view.  

 

5.5.1 Effect of noise 

 

          The signal to noise ratio of an interferogram is a quality estimation 

factor. It is a measure of how strong the signal is with respect to the 

external noise present at the time of observation. The CCD detectors 

produce noise due to the stray photons apart from the original signal. In 

one dimensional, the profile of the noise free interferogram (Fig.5.10.a.) 

provides a pure sinusoidal pattern (Fig.10.b.) and the amplitude of this 

sinusoidal wave can be regarded as the strength of the signal. In the 

presence of white noise (Fig.5.10.d.), in one dimensional profile, the 

sinusoidal pattern is enveloped with high frequency components 

(Fig.5.10.e). The noise is removed in the Fourier domain by subtracting 

these frequencies. Observation of the Fourier transforms (Fig.10.c. & 

10.f.) of both the interferograms shows the Gaussian noise in the fringe 

pattern translates into white noise in the Fourier domain.  The noise is 

the standard deviation of the resultant image obtained by subtracting the 

sinusoidal component from the fringe pattern. 
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(a)                                                   (d) 

 

               
(b)                                                    (e) 

                               

(c)                                                     (f)  

                                                 

Fig.5.10 (a) A Noise-free fringe pattern; (b) a one dimensional profile; 

(c) Fourier transform of (a); (d) A noisy fringe pattern; (e) one 

dimensional profile; (f) Fourier transform of (d). 

 

            The presence of random noise, alters the visibility and the 

contrast of the fringes drastically. For visualization and for illustration 

purposes, a random noise was additionally introduced in the same 

simulation. The effect of varying noise level on PSI are shown in Fig.5.11. 
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                                 (a)                                                (b) 

                                   
                                   (c)                                              (d) 

 

Fig.5.11 The effect of noise on PSI interferograms. The effect of 

noise introduced in the interferometric equation as an added 

random term in the phase. (a) (b)  (c)  (d)  

 

These visualizations show that the performance of the PSI wavefront 

sensor can only be limited by the presence of noise during the 

observation. The noise is represented as a random number obtained from 

a normal distribution. The value of noise introduced as a random 

number into the interferometric equation  

                                                       (5.21) 
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5.5.2 Ripples 

 

The next source of error comes from the inherent fabrication errors. 

These errors are from low frequency to high frequency components. The 

following Figures in 5.12 show the presence of ripples produced during 

the fabrication of the optics, which reduces the fringe visibility and 

introduces high frequency components into the system. 

 

                            

                        (a)                                                   (b) 

               

                         (c)                                                     (d) 

Fig.5.12 Simulated PSI interferograms for ripples. The ripples are 

created as cosine function introduced into the phase factor of the 

interferometric equation.(a) (b)  (c) 

 (d)  

 

The ripples are the static errors which do not change in time. These 

errors can be evaluated and subtracted from the interferogram. Different 

amount of ripples are demonstrated in the simulated interferograms. 
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Since these ripples and noise are of high frequency compared to the 

modulation frequency, it is convenient to remove these using Fourier 

transform technique. 

 

     The theoretical simulations help to understand and visualize the 

polarization shearing interferometric fringes behavior in the presence of 

various aberrations in an optical system. It also demonstrated the 

capability of the interferometer in measuring the phase errors introduced 

by the atmospheric turbulence with the use of Zernike polynomials. The 

method proves to be a promising option for the measurement of 

wavefront errors in the presence of atmospheric turbulence for an 

adaptive optics system. 
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Chapter 6 

 

 

Reconstruction of the wavefront from 

Polarization Shearing Interferogram 

 

 

             Typical simulations of the Polarization Shearing Interferometer 

(PSI) records were discussed in the last chapter. The two dimensional 

wavefront has to be reconstructed from the shearing interferograms 

Several methods (Harbers et al. 1996; Humphries et al. 1997; Okuda et 

al. 2000; Peiying Liang et al. 2006;) are suggested to perform this task. 

This chapter is devoted to the analysis of a single PSI interferogram to 

estimate errors for appropriate correction for an AO system. Fourier 

analysis approach has been adopted for determination of local phase of 

the proposed PSI interferogram. The Fourier transform method is 

resistant to noise and is highly efficient and very simple to apply. The 

phase thus recovered is measured with an integral multiple of 2  

uncertainties. The process of removing these uncertainties is called 

phase unwrapping. After phase has been completely unwrapped, the data 

contains the derivatives of the original phase of the wavefront. The 

derivative of the wavefront phase can conveniently be written in terms of 
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Zernike polynomials, to estimate the wavefront errors. The Zernike 

coefficients provide the complete information of the wavefront. 

            Generally, interferogram analysis has been divided into two 

major categories by their use of either a single or multiple interferogram 

analysis. Several methods are suggested in the literature in both 

categories (Creath 1981; Takeda et al. 1982; Greivenkamp and Bruning 

1992). The multiple interferogram techniques combine several separate 

measurements. Generally, in the case of lateral shearing interferogram, 

measurements taken from two orthogonal directions are combined to 

determine the phase of the interferogram. There is no one method which 

can be universally adopted for interferogram analysis. In adaptive optics 

situations, where the processing of the interferogram has to be carried 

out in minimum possible time, analysis of the single interferogram is a 

preferred choice. 

 

6.1 Single Interferogram Analysis of Polarization 

Shearing Interferogram 

 

The Fourier Transform method is most commonly used for solving the 

case of single interferogram analysis. A complete study of the existing 

method was undertaken in order to choose the most appropriate one for 

the Polarization Shearing Interferogram analysis.  The basic assumption 

is that the intensity variations are caused by the phase variations rather 

than the amplitude fluctuations.  

 

6.1.1 Fourier Transform Analysis of the PSI Interferogram 

 

       Since early 1980s, Fourier transform techniques for interferogram 

fringe pattern analysis and wavefront recovery have gained widespread 

acceptance as the leading methods for single interferogram analysis. 
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(Takeda et al. 1982; Nugent 1985; Bone et al. 1986; and Roddier C & 

Roddier F 1987). Fourier transform methods offer greater flexibility in the 

separation of the low frequency and high frequency components in the 

spatial frequency spectrum.  

        The irradiance distribution in an interferogram can be described as 

             ( , ) ( , ) ( , )cos 2 . ( , )oI x y A x y B x y f r x y                       (6.1) 

where A(x,y), and B(x,y), are the unwanted irradiance variations arising 

due to the imperfections in the optical system, and (x,y) represents the 

phase of the interferogram and of is the spatial carrier frequency. A 

typical one dimensional irradiance distribution of an interferogram and 

its Fourier transform is shown in Figure 6.1 

         

                       (a)                                                         (b) 

Fig.6.1 (a) A typical one dimensional noisy interferogram profile and 

(b) Fourier Transform of the interferogram 

 

In the present case of Polarization Shearing Interferometry, the phase 

( , )x y  is related to the slope ( , )W x y  of the actual wavefront. In general, 

for the analysis of single interferogram, a spatial carrier frequency is 

introduced in the phase term to facilitate analysis. In this case, an 

additional carrier frequency is not required as it is contained in the 

( , )x y . The carrier frequency comes handy by means of the defocus term 

in the Zernike polynomial and it corresponds to the distances of the BC 

on either side of the focus (eqn. 5.5) and it is explicitly written in the 

above equation. 
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To facilitate the Fourier representation of the interferogram, the intensity 

function is re-written in the complex form as 

  

cos 2 . ( , ) sin 2 . ( , )1
( , ) ( , ) ( , )

2 cos 2 . ( , ) sin 2 . ( , )

o o

o o

f r x y i f r x y
I x y A x y B x y

f r x y i f r x y
       (6.2) 

 

In a more convenient form in one dimensional it can be re-written as  

             *( , ) ( , ) ( , ) exp( 2 ) ( , ) exp( 2 )o oI x y A x y C x y i f x C x y i f x            (6.3) 

where 

                                    
1

( , ) ( , )exp( ( , )
2

C x y B x y i x y                              (6.4) 

and * denotes complex conjugate. 

 

Performing Fourier Transform operation in one dimensional using FFT 

algorithm results in 

                           *( , ) ( , ) ( , ) ( , )o oI f y A f y C f f y C f f y                     (6.5) 

where I , A , C  represents the Fourier transforms of I, A, & C 

respectively. Since, A(f) and C(f) are low spatial frequency components, 

they are strongly peaks at zero frequency. Depending on the phase 

aberrations present in the system, C  and *C  typically consist of a narrow 

peak near zero frequency. The presence of the carrier frequency shifts C  

and *C  by of and - of . Choosing either of a spectra say, ( )oC f f  and 

translate it by  of on the frequency axis toward the origin to obtain 

( , )C f y . By doing this process, the fringe modulations are separated out 

and all the unwanted background noise has been filtered out. Prior 

knowledge of the spatial frequency, which has been dictated by the 

defocus term, enables easier identification of the modulation frequency. 

Again using the FFT algorithm, compute the inverse Fourier transform 
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( , )C f y  with respect to f, to obtain ( , )C x y . The wavefront slope 

information is contained in ( , )C x y .  

Now the intensity distribution after removing all the unwanted amplitude 

variations,  

                           
1

( , ) ( , ) ( , )exp( ( , )
2

I x y C x y B x y i x y                            (6.6) 

 

and ( , )x y is computed as 

                              
Im ( , )

( , ) tan
Re ( , )

c x y
x y arc

c x y
                                   (6.7) 

The phase thus obtained is indeterminate to a factor of 2  

 

6.1.2 Phase Unwrapping or Determination of Wavefront 

slope 

 

           The phase, as per the above equation, is measured within an 

integer multiple of 2 . Due to the periodic nature of the arctangent, the 

phase ( , )x y is determined within an arbitrary multiple of 2 , in some 

cases, within a multiple of . It is imperative to reconstruct the actual 

wavefront slope from the value of ( , )x y which is discontinuous. Each 

point in ( , )x y is related to the actual wavefront slope by an arbitrary 

number of 2  steps. ( , )x y is called a modulo 2  wavefront slope and is 

related to the actual wavefront slope by the relation 

                          ( , ) ( , ) mod 2actual x y x y                                         (6.8) 

Several approaches are suggested in the literature (Takeda et al. 1982; 

Macy 1983; Bone et al. 1986; C. Roddier & F Roddier 1987) to solve this 

inverse problem. The modulus 2  wavefront slope is used to reconstruct 

the actual wavefront slope such that ( , )x y  is a continuous function. The 

procedure to be followed is explained as follows. 
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               The first step in making this determination is to compute the 

difference of the phase ( , )x y  from the adjacent points.  

                                 1,( , ) ( , ) ( , )i ix y x y x y                                  (6.9) 

Since the variation in the wavefront slope is slow compared with the 

sampling interval, the absolute value of the difference is much less than 

2  at points where the distribution is continuous. But it becomes almost 

2  at locations where the 2  phase jump occurs. Hence, by setting an 

appropriate criterion for the absolute value for the difference, say 0.9x2 , 

we can specify all the points at which the 2  jump takes place. Repeating 

this procedure by appropriately adding or subtracting 2  at the points of 

discontinuity the ambiguity is overcome. As a result, a continuous 

wavefront slope distribution is obtained. 

 

6.2 Wavefront determination from wavefront slope 

data using Zernike polynomial  

 

           The aberrated wavefront has to be reconstructed from the 

wavefront slopes derived from the above method. The wavefront 

aberrations can be well represented by Zernike polynomials. A brief 

overview of the Zernike polynomials has been discussed in the chapter 2. 

The derivatives of the Zernike polynomials can be expressed as a linear 

combination of Zernike polynomial (Noll, 1976). They are written as  

 

                                     ' '

'

j jj j
j

Z Z                                               (6.10) 

Alternatively 

  

                                 ' '

'

j jj j
jj

a Z                                           (6.11) 
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where 'jj
are the coefficients of the Zernike expansion of the derivative of 

the jth Zernike. The matrix  is called Zernike derivative matrix and it is 

given in Noll, 1976. It is presented here as a Table 4.1. The wavefront 

slope as derived from this method can be written as in equation 5.2. 

 

                                   ( , )
w w

W x y s t
x y                                                                

 

where 
W

x
 & 

W

y
 correspond to the x and y derivatives of the wavefront 

slope. Therefore 

        ' '

'

x

j jj j
jj

W
a Z

x
      and      ' '

'

y

j jj j
jj

W
a Z

y
                (6.12)    

 

So that combining (5.2), (6.11) and (6.12), 

                   ' ' ' '

' '

( , ) x y

j jjj j jj j
j jj j

W x y s a Z t a Z                    (6.13) 

In matrix notation this equation can be written as 

 

   W = A Z 

Where W contains the values of the wavefront slope, A the Zernike 

coefficients which are to be determined and Z is the Zernike polynomial  

corresponding to the coefficients with a multiplicative factor of shear. The 

number of measurements is typically more than the number of 

unknowns, so a least square solution is useful. This over determined 

system is solved as follows: 

                             W  ZT    =   A Z ZT  

                   W  ZT   (Z ZT)-1 =   A (Z ZT ) (Z ZT)-1                               (6.14) 

                                      A  =  W  ZT   (Z ZT)-1 
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          Table 6.1 Zernike Polynomial X Derivative x

jj
matrix elements 

 

 

 

 

 

 

          

 
 

 

  m’                             1 1 0 2 2 1 1 3 3 0 2 2 4 4 

  J’ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

m j                 

0 1                 

1 2  2               

1 3                 

0 4   2√3              

2 5    √6             

2 6   √6              

1 7      2√3           

1 8  √8   2√6  2√3          

3 9      2√3           

3 10       2√3          

0 11   2√5      2√10        

2 12   √10      2√5  2√5      

2 13    √10    2√5  2√5       

4 14           2√5      

4 15          2√5       

1 16  √12   6  3√2     2√15 √30    

1 17      3√2        √30   

3 18       3√2      √30    

3 19      3√2        √30  √30 

5 20               √30  

5 21                √30 
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           Table 6.2 Zernike Polynomial Y derivative y

jj
matrix elements 

 
 
 

 
 

 
 
 

 
 
 

 
 

  m’ 0 1 1 0 2 2 1 1 3 3 0 2 2 4 4 

  J’ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

m j                 

0 1                 

1 2                 

1 3  2               

0 4     2√3             

2 5    √6              

2 6     -√6             

1 7  √8   2√6  -2√3          

1 8       2√3           

3 9        2√3          

3 10      -2√3           

0 11     2√5    2√10         

2 12    -√10    -2√5   2√5       

2 13   √10      2√5  -2√5      

4 14          -2√5       

4 15            2√5      

1 16       3√2         √30   

1 17  √12   6  -3√2     2√15 -√30    

3 18      -3√2        -√30   √30 

3 19        3√2         √30  -√30  

5 20                -

√30 

5 21                √30  
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A provides the Zernike coefficients. Note  that the piston term is not 

calculated in the above method as it is zero and it moreover, it is not 

necessary. Using the Zernike coefficients, the aberrated wavefront is 

reconstructed as 

                              
2

( ,
N

j j

j

W x y a Z                                                    (6.15) 

where ja s are the Zernike expansion coefficients. So far the 

considerations have involved, derivations based on the theory for xW and

yW , with the resulting polynomial expressions formulated always in 

terms of a circle of unit radius. Measurement of the shearing 

interferograms, in the pupil overlaps region and the fitting of the circle 

polynomials to these have been carried out. For small shear, the pupil 

overlap region is close in position and size to that of the original pupil. 

For larger shear values (S>0.1) corrections are required for the changed 

geometry in which the fringes are produced and measured. These 

corrections are described by Atad et al.(1990).  For the present 

considerations with shear values S and T < 0.1, these corrections are 

negligible. 

 

6.3 Sensitivity 

 

The sensitivity of the wavefront sensors is defined as the ability to 

measure the wavefront errors in the turbulent atmosphere. In the case of 

the Polarization Shearing Interferometer the sensitivity of the device lies 

in the choice of the Babinet Compensators (BC). The wedge angle of the 

BC and the f-ratio of the optical system being used, determine the 

amount of shear produced by the shearing device in the optical beam. As 

suggested (Welsh et al., 1995), the optimum value of the shear for a 

Gaussian source distribution is  
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1/opts
                                       (6.16)

 

 

where  is the ratio of the angular size of the source to the seeing limited 

angular resolution. It is also suggested that the s < 0.25 is resistant to 

the degradation caused due to the atmospheric turbulence. In the case of 

PSI a shear value of 0.1 to 0.25 is comfortably achieved by proper choice 

of wedge angle to suit the optical system.  The appropriate value of the 

shear is chosen based on the pupil aperture, fringe parameters, detector 

resolution and the dynamic range of the detector. The measuring 

sensitivity of the Polarization Shearing Interferometer (PSI) can be 

evaluated by the minimum detectable wavefront aberration (Xu, et al, 

2006). Hence, the real sensitivity lies on the ability of the BC to detect 

the smallest phase change. It has been shown (Saxena, 1979) that the 

minimum detectable phase change is 2  milli radians. The sensitivity of 

the method depends on the position of the BC near the focus. When the 

two crossed BC are placed very close to the focus of the optical system, 

there appears only a single fringe in the field of view. A small phase error 

alters the intensity of point in the observation image plane. Hence, 

maximum sensitivity can be obtained in this position and a  small error 

in the position or location will not alter the sensitivity drastically. 

Secondly, the sensitivity of the method depends on the spatial resolution 

of the detector pixels. With the advent of small pixel size detector the 

sensitivity is bound to improve for better. Finally, the sensitivity of any 

shearing interferometer depends on the shear value.  

 

 

 

 

 

 



 

98 

 

 

 

 

Chapter 7 

 

Details of the Laboratory Experimental Work 

and Results 

 

  

             In order to validate the performance of the proposed 

wavefront sensor using Polarization Shearing Interferometer, 

laboratory experiments were carried out in our laboratory. An 

optical design has been worked out for carrying out the 

experiments with Polarization Shearing Interferometer (PSI-WS) and 

Shack Hartmann Wavefront Sensor (SH-WS). The optical system 

has been designed in such a way where the two measurements can 

be carried out in the same optical bench. The details of the optical 

layout for both the measurements and the experimental procedures 

followed are presented. A static phase plate, to represent 

atmospheric turbulence, was used to estimate the wavefront errors 

by PSI-WS and SH-WS.  

          Turbulence plates should produce aberrated waves that have 

temporal and spatial characteristics. Different methods exist to 

obtain a phase screen or plate either by using a CD ROM plastic 

support (Pinna et al, 2004) or by etching on glass plates (Stefan, 

2006) or by rotating glass plates to create atmospheric turbulence 
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(Rhoadarmer and Angel 2001). However, for testing purposes, a 

static phase plate consisting of two plane thin glass plates with a 

thin film of air is considered. Though, this plate may not exactly 

quantify or simulate atmospheric turbulence, it was chosen to 

introduce random errors into the system and is adequate to test 

the principles of wavefront sensing described in this thesis. This 

phase plate was initially calibrated using the Zygo interferometer. 

The measurements were taken in quick succession on the same 

optical bench, with the identical environmental conditions. The 

results of the PSI-WS are compared with the results of SH-WS. The 

wavefront profile, Zernike coefficients, peak to valley (PV) and the 

rms deviation of the wavefront deviation are estimated using the 

above methods and compared.  

 

7.1 Laboratory Experiment with Shack Hartmann 

Wavefront Sensor 

 

7.1.1 Optical Design and Layout 

 

              The optical design of the experimental set up was worked out.  

The main parameters in designing the optical system are the size of the 

Shack Hartmann lenslet array and the detector array size. The optical 

design included a beam reducer system, which consists of a combination 

of lenses to re-collimate the beam to a smaller diameter. The system 

consists of second collimator and using the optical design the conjugate 

pupil plane was located. The entire optics procured from reputed 
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companies (with tested standardization norms), were rigidly housed in a 

single metal tube, to avoid any moving parts of the system.  

                 The schematic of the optical layout for the wavefront sensing 

experiment is given in Fig.7.1. It consists of collimators, re-imaging 

optics, wavefront sensor and detector, coupled to the recording system.  

 
Fig.7.1 Schematic diagram of the optical layout for SH wavefront 

sensor 

 

The collimated beam of 100 mm aperture is simulated using Zygo 

interferometer operating at the wavelength 632 nm. A 100 mm aperture 

f/3 lens represents telescope optics and the pupil plane, which focuses 

the collimated beam to focus at F1. The lens combination L2, L3 and L4 

re-images the pupil plane P1 at P2 with reduced beam diameter 

equivalent to the size of the detector array size. The Shack Hartmann 

lenslet array is placed at the conjugate pupil plane P2. The focus of the 

lenslet array lies at the detector plane.  A reference beam was generated 

using a 25 mm collimator and passes through the beam splitter. The 

Shack Hartmann lenslet array was procured from AOA and the 

specifications are given below.   
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Details Specification 

Lenslet Array Size 20 x 20 

Diameter of the lenslet 500  

Focal length of the lenslet 30 mm 

    

DALSA CA-D7 1024 T  area CCD detector was used for recording of the 

SH images and for the interferometric records. The important 

specifications of the CCD camera are: 

 

Details Specifications 

Camera Resolution 1056 x 1024 

Sensor Size 12.288 mm x 12.288 mm 

Pixel Size 12 m x 12 m 

Frame rate 8 Hz 

Dynamic Range 10 bit 

 

7.1.2 Shack Hartmann Experiment: 

 

           In the laboratory setup a collimated beam is derived from a Zygo 

interferometer as described in the last section. The actual experiment 

was performed in an anti vibration isolation table and the components 

mounted as per the optical layout of Fig.7.1. A neutral density filter was 

introduced in the optical beam to control the intensity of the light and to 

have better contrast. A special adapter was fabricated to house the 

Shack Hartmann lenslet array and the adapter was fitted on to the 
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detector housing such that the detector plane lies at the focal plane of 

the lenslet array. The actual photograph of the set up is shown in the 

Fig.7.2. The Shack Hartmann images were acquired using the DALSA 

CCD camera.  

 

          

 

               Fig. 7.2 Photograph of the Actual  set up 

 

First, using the reference beam the optics was aligned such that the 

images were centered to the detector. The reference images were recorded 

using the laser source. The reference image is shown in Fig. 7.3. 
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Figure 7.3 CCD image of the Shack Hartmann spots of the reference 

beam. 

After recording the reference image, the turbulator or phase plate was 

introduced at the pupil plane P1 as discussed before and without 

changing any parameter in the optical set up, the shack Hartmann image 

was again recorded. The aberrated Shack Hartmann image recorded as 

above is shown in Fig. 7.4.  

                              

Fig.7.4 The CCD images of the Shack Hartmann spots of the 

aberrated beam.  

The exact characteristics of the turbulence plate is not of prime 

importance as we are not duplicating exact atmospheric turbulence in 

the plate.  
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7.1.3 Data Analysis and Results: 

 

              The software for the analysis of the Shack Hartmann images 

was written in the LabView platform. The standard data reduction 

procedure expressing the slope as a function of Zernike polynomial 

(Primot et al, 1990) has been adopted. The complete analysis was carried 

out using the software written by ourselves for this purpose. The basic 

steps used in the analysis are as follows.  

a. Fixing of the origin for both the records  

b. Keeping the same origin determines the centroids of the 

spots in both the images. 

c. Calculation of the slope of the wavefront at every co-

ordinate 

d. Fitting of the derivative of the Zernike polynomials to the 

slope 

e. Estimation of the Zernike coefficients by least square fit 

f. Wavefront reconstruction 

g. Plotting of the wavefront surface 

h. Computation of Variance, Peak to Valley and rms deviation 

of the wavefront 

The Figures 7.5 (a) and 7.5 (b) show the method of identifying the 

centroids for the Shack Hartmann spots. To reduce the computation time 

a small area around each spot was chosen and the co-ordinate of 

maximum density was computed using the algorithm discussed in 

chapter 6.  
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              (a)                                                              (b) 

Fig.7.5 A small area around each spot has been marked for 

computing the centroid of the spots (a) reference spots (b) Spots due 

to aberrated beam.  

The centroids for each record were calculated and the difference 

computed. The difference gives the value of the slope of the wavefront at 

that particular co-ordinate. The slope values are fitted to the derivatives 

of the Zernike polynomials as discussed in the theory. In this case, 21 

Zernike co-efficients have been taken for wavefront determination. Using 

the least square method of fitting the Zernike co-efficients were 

computed. The wavefront surface was reconstructed by using the Zernike 

coefficients excluding the tip-tilt terms. The wavefront surface 

determined is shown in Fig. 7.6 

                                   
Fig.7.6 The 2D representation of the wavefront error computed from 

the Shack Hartmann method. 

3D Surface 2
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Fig. 7.7  Front Panel of the Lab VIEW for the reduction of Shack 
Hartmann record. 
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The wavefronts were mainly evaluated using the three measures namely, 

Strehl Ratio, Peak to Valley and the rms deviation. These measurements 

were calculated from the Zernike coefficients computed using the above 

methods. The tip-tilt and the defocus terms were removed from the 

estimate.  

7.2 Laboratory Experiment using Polarization Shearing 

Interferometer Wavefront Sensor 

              The optical layout (Fig.7.8) for conducting the experiment with 

Polarization Shearing device, is very similar to the optical lay out for SH 

experiment. The optical system has been designed in such a way that 

with minimal change in the system optics two wavefront sensors can be 

conveniently employed in the same setup. Perhaps, this has another 

advantage when sensing has been done by two independent methods 

reliability also improves. The schematic of the optical lay out for the 

Polarization Shearing Interferometer experiment is shown below. 

 

Fig.7.8 Schematic diagram of the optical layout for Poalrization 

Shearing Interferometer wavefront sensor. The positions of the BC 

are shown in the inset. 
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              The polarization Shearing Device is introduced in between the 

re-imaging optics. The device is located in such a way that the focus of 

the imaging optics lies on either side of the Babinet compensators. The 

polarization shearing device consists of a polarizer (P), analyzer (A) and 

two Babinet compensators (BC). The polarizers were procured from 

Edmund Optics and the Babinet compensators were procured from 

Halle, Germany. The optical specifications of the Babinet compensators 

are given in the table below. 

Aperture 15 x 15 mm  

Wedge Angle 5 degrees 

Material Quartz 

Surface accuracy /20 

Refractive Index 

a. Ordinary Ray  

b. Extra-ordinary Ray 

 

1.54424 

1.55335 

 

7.2.1 Polarization Shearing Interferometer Experiment: 

              The laboratory set up for the measurement using Polarization 

Shearing Interferometer is given in Figure 7.8. The beam reducer optics, 

the polarizer (P), two crossed Babinet compensators (BC) and the 

analyzer (A) are housed in a specially made aluminium tube. The close-

up view of the BC is shown in the Figure 7.9.  



 

109 

                             

 

Fig.7.9 A close up view of the mounting of the two crosses Babinet 

compensators in a cell 

 

The interferometric fringes projecting on the pupil plane is re-imaged on 

to the CCD detector using a lens L3. The Dalsa Camera has been used as 

a detector. Number of interferometric records was obtained for the 

evaluation of the phase plate. One of the sample records is shown in 

Figure 7.10 

        Note that the inherent errors in the optical system. Later, the 

wavefront error plate or turbulator was introduced near the pupil plane 

(P1) of the Zygo interferometer beam. Proper attention and care was 

taken that the same face of the wavefront error plate was introduced into 

the optical path for SH experiment and PSI experiment, such that the 

results could be compared. These experiments were performed in quick 

succession such that other environmental parameters remain the same. 
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Fig.7.10 The Interferometric record of the Polarization Shearing 

Interferometer obtained in the laboratory after introducing the 

phase error plate at the pupil plane of the optical system 

 

7.2.2 Data Analysis and Results: 

 

     The data analysis of the PSI interferometric data has been carried out 

in the Lab View platform. The following methodology as shown in Figure 

7.11 has been adopted based on the theory discussed in chapter 5. 
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                        Fig.7.11 Flow chart of the methodology adopted 
 
 

The Polarization Shearing interferogram is rotated by an angle  equal to 

the ratio of the distances d1 and d2. The inherent noise, in the 

interferograms were removed using the two dimensional Fourier 

transform  

Image Rotation 

2D FFT 

Noise Elimination 

Inverse 2D FFT 

Shift of carrier frequency side to the origin 

Identification of carrier Frequency 

Arc tan imaginary/Real 

Phase Unwrapping 

Fitting Wavefront derivation to Zernike Polynomials 

Estimation of Zernike coefficients 

Wavefront reconstruction 

PSF, RMS 
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Figure 7.12 A radial profile of the Polarization Shearing 

Interferogram showing the presence of high frequency noise 

 

            

 

Figure 7.13 The same radial profile of the interferogram after 

removing the high frequency noise using two dimensional Fourier 

transform technique. 

 

technique. A radial profile of the interferogram with noise and the noise 

removed by the Fourier transform method is shown in Figures 7.12 and 
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7.13 respectively. The carrier frequency i.e. the number of fringes in the 

field of view corresponds to the distance of the two Babinet 

Compensators on either side of the focus as seen from the intensity 

oscillations in Figure 7.13. This particular frequency is the predominant 

frequency in the Fourier Transform domain.  

               

Figure 7.14 The radial profile across the interferogram after 

removing the carrier frequency from the field of view. 

                 

         To recover the phase derivative, first suppress this Fourier mode 

corresponding to the carrier frequency and are thus left with the residual 

intensity profile with 2  ambiguity is given in Figure 7.15. The next task 

is to remove 2  ambiguity which is called phase unwrapping. On removal 

of the 2  ambiguity by methods discussed in chapter 6.1.2. the phase 

derivative was computed and one dimensional ambiguity removed from 

Fig.7.15 is shown in Figure 7.16., The two dimensional map of the phase 

derivative thus obtained is as shown in Figure 7.17.  
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            Figure 7.15 A radial  profile showing the 2  ambiguity 

 

 

 

Figure 7.16 The radial profile after the 2  ambiguity removed 
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Figure  7.17 The two dimensional phase derivative inclusive of the 

shear factor. 

               The derivative of the Phase was fitted to the Zernike polynomial 

as discussed and using least squares matrix inversion method the 

Zernike coefficients were determined. By virtue of the derivative the 

piston term is removed.  

 

                            
                            

         Fig.7.18 The 2 D wavefront error map (in  of the phase plate 

as computed from the Zernike polynomials. 

3D Surface 2
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After removing the x-tilt and y-tilt and the defocus term the wavefront is 

recomputed using the Zernike polynomials. The 2 dimensional wavefront 

error computed is shown in Figure 7.18. The Zernike coefficients are 

compared  (Fig.7.19) in the bar diagram. 

 

              

                          

Fig.7.19 A comparitive plot of the 20 Zernike coefficients computed 

by the SH and PSI method 

 

The wavefront variance is defined as  

2 2( ( , )) ( , )w W d d W d d  

 

2 2 2

, 0,0

,

w n m

n m

a a  

where ,n ma  are the Zernike coefficients derived from the above analysis. In 

practice, the variance is computed using integration method. According 

to the definition of Strehl ratio, which is related to the variance of the 

wavefront, these values are computed from the Zernike coefficients. The 

rms deviation of the wavefront is computed as  
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Fig. 7.20 Front Panel of the Lab VIEW for the reduction of PSI 
record. 
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Sigma 
21

2

3

i

i

rms a  

where ai  are the normalized Zernike coefficients.  

The peak-to-valley – SH : 2.65  

The peak-to-valley – PSI : 3.17  

The rms – SH : 0.35  

The rms – PSI : 0.51  

 

The Peak to Valley of the wavefront error due to the phase plate as 

estimated from the Zygo interferometer gave 2.9  and the rms error 

measured as 0.42 . The Zernike coefficients could not be compared with 

the Zygo results as the numbering and normalization followed is different 

from the normalization used here.  

 

7.3 Discussion 

 

          Several experiments were carried out and PSI interferograms and 

SH images were recorded in the laboratory in different optical setup. 

Later, in order to do the experiments in the same setup, the new optical 

design was worked out. The vibration and the thermal effects, affect the 

fringe quality considerably. The use of anti-vibration table and controlled 

thermal environment helped to overcome the above shortcomings. 

Analysis of all the interferograms and the SH images were carried out in 

Lab View and the exercise helped to overcome the bugs in the software. A 

typical record obtained in the laboratory has been given in the thesis 

presentation. 

             The wavefront error surface plotted in the Figures 7.7 and 7.19 

are obtained using the Shack Hartmann method and Polarization 

shearing interferometer method respectively. The error surface matches 

quite well in both the methods but the value of the Zernike coefficients 
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differ for certain aberrations. The Shack Hartmann method employed 

only 13 x 13 matrix elements where as the Polarization Shearing 

interferometer method employed a total of 1251 data points for the 

computation. The PSI method had a better sampling of the pupil 

compared to the SH method. Another reason, for the difference one can 

notice in the surface profile, is that the surface is slightly rotated with 

respect to one another. As mentioned before, the PSI record was rotated 

by an angle to suit the Fourier transform reduction technique. The order 

of magnitude of the surface error in both cases agrees as well. The rms 

and the Strehl ratio values also agree very well in both the SH and PSI 

methods. 

      The laboratory experiments and the results demonstrate that the 

Polarization shearing interferometer using Babinet compensator can be 

conveniently employed in adaptive optics system to estimate the 

wavefront errors introduced by the atmospheric turbulence.  
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Chapter 8 

 

Conclusions 

 

 

              Estimation of the wavefront errors is very important aspect in 

adaptive optics. Besides the telescope system errors, most of the errors 

are introduced by the atmospheric turbulence. The atmospheric 

turbulence is aptly characterized by the Kolmogorov model. It is essential 

to accurately estimate these aberrations in the dynamic situations, in 

order to apply, real time corrections. A simulation study by Jeffrey et al. 

(2002) of the shearing interferometers and Shack Hartmann sensor prove 

that the Shearing interferometer performs better in the presence of low 

Fried parameter and for Rytov numbers greater than 0.2. A new method 

of wavefront sensing using a polarization shearing interferometer has 

been developed for this purpose. An attempt has been made to use the 

Babinet Compensator as a convenient and suitable optical device to 

create the shearing of wavefronts in two orthogonal directions 

simultaneously. Since the sensitivity of the BC for the measurement of 

phase is shown to be 2 milli radian, it was planned to exploit its 

maximum potential.  An in-depth, study has been made of the proposed 

polarization shearing interferometer. Fourier theoretical approach has 

been applied to the Polarization Shearing Interferometer to establish the 
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basis of the wavefront sensing. Theoretical simulations were carried out 

for visualization of various aberrations in the interferometric fringe 

pattern. The study reveals that under moderate turbulent conditions 

where D/ro = 0.025, the sensitivity of the PSI is not altered significantly. 

The errors due to other factors like noise and ripples are well removed in 

the reduction procedure. The proposed method uses a single 

interferogram, in order to reconstruct the complete wavefront. Two 

dimensional shears in orthogonal directions are produced in a single set 

up, by the proper choice of the Babinet Compensator and system 

parameters. Use of Fourier transforms techniques to estimate the 

wavefront errors have been demonstrated. In an adaptive optics 

situation, one requires a fast method of wavefront sensing and 

reconstruction. The proposed method using Babinet compensator based 

Polarization Shearing Interferometers can be suitably used with greater 

amount of flexibility. Being in the intensity mode, high spatial sampling 

is possible and speed and sensitivity is dictated by the detector dynamic 

range and the computation time, which is progressively improving. A 

study of Shack Hartmann wavefront sensing was also used to estimate 

the phase plate errors for comparison with the polarization shearing 

interferometer results. The results are presented in the seventh chapter. 

To conclude, wavefront sensing by Polarization Shearing interferometer 

using two crossed Babinet compensator is quite a promising option. 

Thus, in essence, is the main advantage of the system, designed and 

developed as is reported in the foregoing chapters. 

           There is also much work to be carried out in the future in order to 

fully exploit the maximum potential of the PSI. As part of the future 

work, more realistic model of Kolomogorov turbulence will be simulated 

in the laboratory and can be applied to evaluate the effect of Fried‟s 

parameter from PSI records. This is a very important requirement for the 

characterization of site seeing for its suitability for adaptive optics based 

astronomical telescopes.  
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        This wavefront sensing method is planned to be used in adaptive 

optics systems of the future large telescopes. 
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