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Abstract

While the importance of phase space constraints for gravitational clustering of neutrinos 

(which are fermions) is well recognized, the explicit use of such constraints to limit 

neutrino emission from ultra energetic sources has not been stressed. Special and general 

relativistic phase space constraints are shown to limit neutrino luminosities in compact 

sources in various situations.

                                                
1 Christ Junior College



2

1. Introduction

The most energetic events occurring in the Universe such as supernovae and gamma ray 

bursts not only involve the emission of prodigious amounts of electromagnetic radiation 

of all bands in a short time duration but are also expected to be accompanied by 

corresponding vast energy generation in the form of neutrinos. 

As is well known, in the late stages of the evolution of a massive star neutrino emission 

dominates (reducing the lifetime of the star when it starts fusing heavier elements). 

Processes such as photoneutrino production and pair annihilation into neutrinos dominate 

at core temperatures of more than a billion degrees. 

The core collapse of such a massive star results in a Type II supernova and formation of a 

neutron star (or black hole) as remnant. The protoneutron star cools from a temperature 

of a few billion degrees and most of the binding energy of the neutron star  ergs53103

is radiated in the form of neutrinos in a period of a few seconds. 

Again gamma ray bursts releasing 5351 1010   ergs in a few seconds are also expected to 

release an intense burst of neutrinos during the same period. [1]

However unlike photons, neutrinos being fermi particle are constrained by phase space 

(i.e., two particles per unit volume of phase space, i.e., 3 , 
2

h
  being Planck 

constant).

Many of the discussions of intense neutrino bursts and emissions (e.g. ref. [1-4]) do not 

seem to consider this aspect. 

As we shall see, these constraints limit the neutrino luminosity in various situations. 

When discussing neutrinos as dark matter (DM) candidates (especially for galactic halos), 

it is well recognised that taking into account that the neutrinos, being fermions, phase 

space densities must satisfy the inequality 333 . pdxd , constrains the neutrino mass. 

For example see [5,6,7].
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More precisely for a given dark matter density DM  (assumed to be dominated by say 

neutrinos of mass m , so that  nmDM  ) and a typical galactic (constant) rotation 

velocity of v, this constraint on the mass m , translates into,

4
1

3 





v
m m


 .

(For a typical 324 /10;/200 cmgmskmv DM
  , this gives eVm 50 ).

Similar phase space constraints on m  arise from neutrino clustering in the gravitational 

potential of galaxy clusters etc.

While the importance of phase space constraints for gravitational clustering of neutrinos 

is well recognised [5], the explicit use of such constraints to limit neutrino emission for 

ultra energetic sources has not been highlighted.

2. General Case

Let us consider a general example first. Consider neutrinos of average energy E  being 

emitted from a source. Let n  number density of the emitted neutrinos produced. Then 

the phase space constraint 333 . pdxd , translates into:
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Giving, 
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    …(1)

Further if   is the energy density of the emitted neutrinos, i.e.,  En , then we 

have:

 3
4

3
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E
E
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E







 





    …(2)

Equation (2) then implies the phase space constraint on the neutrino flux as:

32

4 1

4 c

E
f 
     …(3)
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For MeVE 10 , this implies,

scmergsf //103 239    …(4)

Notice the 4
E , energy dependence!

(For 1 MeV, this is about scmergsf //103 235 ).

If the binding energy of the neutron star  ergs53103  is released by neutrino emission 

over a period of about ten seconds [7], equation (4) would constraint the source size to be 

about a few kilometres and also give an upper limit to the source temperature if the 

emission is thermal. 

These constraints are consistent with the intense emission of the neutrinos by a 

protoneutron star (like in the case of SN1987A).

More generally, if the neutrino diffusion time is dt , then if   is the neutrino opacity; n

is the number density of neutrons, then;

cn
td


1

 ;   Pnm~    …(5)

Equations (3)-(5) can be used to constrain source size. Using a total neutrino opacity [8], 

1
2

17

4102  




 cmMeV

kT
  , we can further refine the constraint.

The outgoing neutrinos could accelerate (by exerting pressure) a spherical shell of matter 

of radius r and thickness dr . This acceleration can be expressed as,

dr
c

L

drr
a 
 


24

 , nnm    …(6) 

L  would be constrained by equations (1)-(4). If the number of neutrino scatterings is N, 

then,
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Plugging in the values we get,

sec/102 52 ergsL  .

This can be used in equation (6) to give the value of the acceleration as,

26 /102 scma  .

3. General Relativistic Case

For compact objects like neutron stars, where General Relativistic effects could be 

substantial we could use the corresponding generalised phase space relation,

   33
00

3
00 pdgxdg    …(8)

Assume same metric coefficient for both co-ordinate and momentum space. 

Where, the coefficients of the Schwarzschild metric are,
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1
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GM
g ; 2

22 rg  ; 22
33 sinrg  .

The phase space constraint in this case gives the limit on the number density as,
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    …(9)

The reduction in the energy due to the redshift is given by,

2rc

GM

E

E



.

For a typical KmrMM 10;4.1   , this shift is of the order of E1.0 .

The upper limit for the energy density in this case is given by,
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The maximum flux is given by,

4

c
F   …(10)



6

For MeVE 10 , this implies,

scmergsf //105.5 238  …(11)

Again considering the binding energy of the neutron star  ergs53103  released by 

neutrino emission over a period of about ten seconds, equation (11) would constraint the 

source size to be about 30 kilometres. 

In certain cases, the entire energy of the burst could be emitted in the form of neutrinos, 

giving a silent burst in gamma rays, like in the case of collision of neutron stars. The 

kinetic energy  ergs5310  of the two NS as well as their binding energy  ergs53103

will be released in the burst, giving a total energy released in the form of neutrinos as, 

ergs53107 .

4. Special Relativistic Case

Due to the high velocities of the emitted neutrinos, we have to take into account the 

Special Relativistic corrections on the phase space constraints, 333 . pdxd .

The deceleration radius of the gamma ray burst gives the co-ordinate space. For a 

neutrino energy of E  and number density n, the co-ordinate space is given by, 
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
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
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E .

Including these Special Relativistic effects the phase space constrain becomes, 
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Which gives the limit on the number density of the neutrinos as,
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And the limit on the energy density as,


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 …(13)

Notice the 5
E  dependence and also note the sharp 5  dependence!

The phase space constraint on the flux from equation (13) is given by,

 
4

c
f   …(14)

For MeVE 10 ; scmergsf //104 236  …(15)

Considering the binding energy of the neutron star  ergs53103  being released by 

neutrino emission over a period of about ten seconds, equation (15) would constraint the 

source size to be about 200 kilometres. 

Neutrinos being fermions will obey Fermi-Dirac statistics. Hence the maximum allowed 

energy is the Fermi energy FE .

For a neutrino emission in a cone of angle  , the energy flux is given by,





 




c
dp

cEdF
FE

P 3
0

3
2

0 16

cos1
  

.

Where, the energy density is given by, 
3









F

F
pE .

This gives an upper limit on the neutrino luminosity.

  cRFR
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


tcR 
2

2
.

The bursts energy is given by,
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2

2
 tLE  .

If the neutrino burst energy is constrained by the binding energy of the neutron star 

 ergs53103 , then the burst duration is given by, 




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2
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
 .

Including both special relativistic and general relativistic effects into account, we have 

the neutrino flux given by,
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The comoving luminosity is given by,

24 RfL   .

In the observer’s frame it is given by,
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P
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
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5. Modelling GRB

The phase space constraints obtained for the neutrino flux can be used to model the 

gamma ray burst, by determining the limit on the energy density.

The neutrinos will undergo pair neutrino annihilation:

   eeee

The minimum energy required for this interaction is given by,

MeVcme 12 2  .

The cross section for this interaction is given by,

 
cnn

c

EG
R ee

F 
4

22


.

Where, 2vnR  .

And in equilibrium condition the electron and positron densities are given by,
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The energy density is then obtained as,

 kTR
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9
56
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
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The flux is given by,

scmergs
K

Tc
f //

1
105.7

4
2

9
47 






  .

The flux obtained from the phase space constraint is of the order of scmergs //104 234 . 

For the two to be comparable, the temperature should be of the order of K910 .

One of the mechanisms suggested for the production of intense gamma flux in gamma 

ray bursts is the neutrino annihilation reaction:

  , 

This is especially relevant perhaps for the short duration bursts where merger of two 

neutron stars is expected to occur. The combined binding energy could be released 

substantially as neutrino pairs, which could annihilate to produce gamma rays.

It follows that phase space constraints on the neutrino and antineutrino fluxes would in 

turn imply a constraint on the gamma ray flux arising from this mechanism.

Interactions of hadrons in the region of gamma ray burst (close to central engine and in 

the jet) could produce high-energy neutrinos and high-energy gamma rays:

eepn

pppp
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Phase space constraints apply to the high-energy neutrinos (resulting from hadron decays, 

etc.) and the maximum neutrino energy released is given by,

sec/
4

2

2267

422

ergs
c

c

EG

c

EEG tFtF








  


.

In the following process,   , the pions produced by proton-proton or proton-

photon collisions ( 0 pppp ,   pppp , etc. 

   pp , etc.) would be of high energy.

For example, for a pion energy of GeVE 200 , the decay neutrino energy is given by:

GeVE
m

mm
E 85

2

22










 
 




 .

The maximum limit for the neutrino momentum is given by,

  cTeVcGeVcEP 25 1021021    .

For  cv  ;1  and 1000 .

This would also apply for other high energy  TeV  neutrino sources like microquasars, 

blazars, etc. [10] with implications for the expected detectability of fluxes of such 

particles (at various distances) in large-scale neutrino detectors like Amanda, Icecube, 

etc. [8] The estimates of constraints and fluxes would be taken up in a later publication 

[17]. 

6. Modification in the Phase Space Constraint due to Generalised Uncertainty 

Principle (GUP)

At around the Planck scale, one expects a modification of the uncertainty principle, 

giving a so called generalised uncertainty principle (GUP).
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The ‘smooth’ structure of space-time manifolds could undergo drastic changes at the 

Planck scale, perhaps giving rise to discrete structure of space-time, where even spatial 

co-ordinates become non-commutative, i.e.   2, pliLyx  , apart from   ipx x , , etc.

These quantum fluctuations in space-time, could have microscopic consequences which 

in principle could be detected in deviations from Newton’s gravity law, corrections in 

atomic spectroscopy, with consequences for gravitational wave detectors (in their 

displacement noise spectrum), k-meson decays, time delays in gamma ray bursts, etc 

[18,19].

A typical GUP relation (also suggested in superstring theories) is [20]:

 2ppx 





 …(16)

Where,   has the dimensions of 2
plL , where, plL  is the Planck length and, 

  2662 10 cmLpl 1 atto shed; 1 shed 2410  barns

The usual phase space giving the total number of quantum states is modified from 

 
 





2~

2 3

3

px
pdVd

 , to, 
   

3,2,1,,
12

2
323

3




ippp
p

pdVd i
i


.

The non-commutativity  px,  becomes:

   21ˆ,ˆ pipx   , which can be interpreted as a ‘modification’ of  to  21 p 

(this was first suggested in ref [21]).

The above relation implies a modification to the phase space constraint given by 

333 . pdxd

The GUP (eq.16), implies a phase space constraint of the form, 

 32333 1. ppdxd    …(17)
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The number density of the neutrinos will be modified from eq. (1) to the form,

 323

3

1 1 p
c

E
n 
 






   …(18)

Since 12 p , we can expand the right hand side of eq. (18) binomially. This gives,

 ...31 23

3

1 





 p

c

E
n 
   (Neglecting higher order terms in 2p ).

This gives the upper limit on number density as,

  12

3

31








 p

c

E
n 



 …(19)

The phase space constraint on the neutrino flux will be modified from that of eq. (3) to,

















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2

232

4 3
1

4 c

E

c

E
f 





 …(20)

Where, the neutrino momentum is given by, 
c

E
p 

The first term corresponds to the phase space constraint given by eq. (3), and the second 

term corresponds to the modification introduced by the GUP. 

For neutrino energies of the order of TeV, and 2662 10 cmLpl
 , the modification is of 

the order of 3210 .

The highest observed energies (in cosmic rays) are of the order of TeV910 . The 

correction corresponding to this is of the order of 1410 .

As we can see, the effects are too small to be detected.

If the scale is reduced to the order of weak interactions, that is, 2332 10 cmlW
 , for 

TeV energies, the correction is of the order of 10. Since this modification is very large, 

we can conclude that the assumed reduction in the scale does not take place. 
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