Tensor polarization of ω produced at threshold in $p-p$ collisions

G Ramachandran1, J Balasubramanyam2,3, S P Shilpashree1 and G Padmanabha4

1 Indian Institute of Astrophysics, Koramangala, Bangalore-560 034, India
2 K. S. Institute of Technology, Bangalore-560 062, India
3 Department of Physics, Bangalore University, Bangalore-560 056, India
4 Sri Bhagawan Mahaveer Jain College, Bangalore-560 004, India

E-mail: gr@iiap.res.in

Abstract. It is shown that the dominant decay mode of $\omega \rightarrow \pi^+\pi^-\pi^0$ can be employed to determine the Fano statistical tensor t_0^2 of ω with respect to the quantization axis normal to the decay plane. In $pp \rightarrow pp\omega$ one can choose decay planes with different orientations for a given ω direction, θ. By choosing three different experimentally convenient orientations of the decay planes for the same θ, one may determine empirically the t_0^2 and $t_{\pm 2}$ characterising the tensor polarization of ω in the Transverse Frame for $pp \rightarrow pp\omega$.

Meson production in $N - N$ collisions has attracted considerable attention during the last decade of the past century as total cross section measurements for pion production in the early years of the decade were found to be more than a factor of 5 than the then available theoretical predictions. This catalyzed a variety of theoretical approaches and Hanhart et al [1] in 2000 have observed: “As far as microscopic model calculations of the reaction on $NN \rightarrow NN\pi$ are concerned one has to concede that theory is definitely lagging behind the development of the experimental sector”. With measurements of spin observables in charged [2] as well as neutral [3] pion production employing a polarized beam on a polarized target, experimental studies have indeed reached a high degree of sophistication. Reference may be made to several excellent reviews on these developments [4]. The Jülich meson exchange model [1], which yielded theoretical predictions closer to data than most other models, has been more successful in the case of charged pion production [2] than with neutral pions [3]. A recent analysis [5] of $\bar{p}p \rightarrow pp\pi^0$ measurements [3], following a model independent irreducible tensor approach [6], showed that the Jülich model deviates from the empirically extracted estimates quite significantly for the $^3P_1 \rightarrow ^3P_0p$ and to a lesser extent for the $^3F_3 \rightarrow ^3P_2p$ transitions; this analysis has also been carried out with and without taking into consideration the Δ contribution to emphasize its importance in the model calculation. As the c.m. energy is increased further, thresholds for heavier meson production are reached and one has to consider also contributions from excited nucleon states. Since theoretical models for the nucleon predict resonance states not seen in $\pi - N$ scattering, experimental studies on meson production in $N - N$ collisions and on photo production of mesons [7]...
are useful to look for the ‘missing resonances’ as well. It is also interesting to note
that production of isoscalar mesons like ω and ϕ involve only excited nucleon states, in
contrast to the case of isovector pion production. Moreover, since meson production in
$N-N$ collisions probes short range hadron dynamics, it is particularly of interest to
study heavy meson production. While the distance probed is ≈ 0.53 fm in the case of
pion production, it goes down to 0.21 fm for ω and 0.18 fm for ϕ production. In the
absence of strange quarks in the initial state, the Okubo-Zweig-Iizuka (OZI) rule supresses ϕ production relative to ω production. In view of the dramatic violation of this rule observed in $\bar{p}p$ collisions, the ratio $R_{\phi/\omega}$ was measured and was found to be an order of magnitude larger, after correction for the available phase space, than the theoretical estimate $R_{OZI} = 4.2 \times 10^{-3}$. The latest experimental estimate is $R_{\phi/\omega} \approx 8 \times R_{OZI}$. Heavy meson production has also attracted attention in the context of di-lepton spectra and medium modifications. There is a proposal for the experimental study of heavy meson production in $\vec{N}\vec{N}$ collisions. Moreover the state of polarization of vector meson provides an interesting observable in addition to the differential cross section and analyzing powers. Concerning ourselves here with ω production, the total cross section has been measured at five different c.m. energies in the range 3.8 MeV to 30 MeV above threshold by Hibou et al for $pp \rightarrow pp\omega$ and by Barsov et al for $pn \rightarrow d\omega$. Measurements of the total cross section and angular distribution have also been reported on $pp \rightarrow pp\omega$ at excess energies of 92 MeV and 173 MeV and at 60 MeV and 92 MeV apart from data yet to be published. The model independent irreducible tensor approach has been extended to ω production where it was pointed out that the state of polarization of ω can be studied experimentally using the decay mode $\omega \rightarrow \pi^0\gamma$. The importance of measuring the polarization of ω has also been highlighted to determine empirically the threshold partial wave amplitudes for $pp \rightarrow pp\omega$. It is learnt that it has been possible to fully reconstruct the decay of the ω into three pions and identify the orientation of the decay plane with respect to the ω direction as well as the beam direction. Therefore, the purpose of the present paper is to examine if the dominant decay mode of $\omega \rightarrow \pi^+\pi^-\pi^0$ could be utilized to study the state of polarization of ω.

Employing the irreducible tensor operators $S^\lambda_\mu(s_f, s_i)$ of rank λ connecting initial and final channel spin states s_i and s_f of hadrons as defined in and following the approach of Dalitz, we may write, the decay matrix for $\omega \rightarrow \pi^+\pi^-\pi^0$ as

$$M = f(S^1(0, 1).Q^1),$$

where f is a symmetric function of the energies of the 3 pions and Q^1_μ denote the spherical components of

$$Q = [q_1 \times q_2 + q_2 \times q_3 + q_3 \times q_1].$$

in terms of the momenta q_1, q_2, q_3 of the three pions which add up to zero in the ω rest frame. We may define a right handed coordinate system with z-axis along Q and x-axis along say q_1 in the decay plane. This may be referred to as the Decay Frame (DF).
Following the Madison convention \[23\], the spin density matrix ρ of a polarized ω may be written in the form

$$\rho = \frac{\text{Tr} \rho}{3} [1 + \sum_{k=1}^{2}(\tau_k \cdot t_k)],$$

(3)

in terms of the standard 3×3 matrices $\tau_k^\mu, \mu = -k, \ldots, k$ and the Fano statistical tensors t_k^μ of rank k, characterising the polarized ω. Noting that $\tau_k^\mu = S_k^\mu(1, 1)$ and making use of the known \[25\] properties of the irreducible tensor operators along with Racah techniques, the angular distribution of the three pions in the decay plane is given by

$$M\rho M^{\dagger} = |f|^2 \frac{\text{Tr} \rho}{3} [(Q \cdot Q) - \sqrt{3} \sum_{k=1}^{2} (t_k^1 \cdot (Q^1 \otimes Q^1)^k)],$$

(4)

where M^{\dagger} denotes the hermitian conjugate of M. The first term $(Q \cdot Q)$ leads to the well-known Dalitz plot for the 3π decay of unpolarized ω. Since $(Q^1 \otimes Q^1)^1_\mu = 0$, the $k = 1$ term drops out, so that (4) contains only the tensor analyzing power

$$A^2_0(DF) = -\sqrt{3} (Q^1 \otimes Q^1)^2_0,$$

(5)

since $(Q^1 \otimes Q^1)^2_\mu = \delta_{\mu 0} \sqrt{\frac{2}{3}} (Q \cdot Q)$ in DF. We have

$$M\rho M^{\dagger} = \frac{|f|^2 \text{Tr} \rho}{3} (Q \cdot Q) [1 - \sqrt{2} t^2_0(DF)],$$

(6)

where $t^2_0(DF)$ denotes the $\mu = 0$ component of the tensor polarization t^μ_0 of the $\vec{\omega}$ in its decay frame, DF. Thus the distribution of points in the Dalitz plot retains the same shape, even when $t^2_0(DF) \neq 0$. However, since $-\sqrt{2} \leq t^2_0 \leq \frac{1}{\sqrt{2}}$, the total number of points $N(DF)$ in the associated decay plane is sensitive to the tensor polarization $t^2_0(DF)$ of $\vec{\omega}$ as the multiplicative factor $(1 - \sqrt{2} t^2_0(DF))$ may vary between 0 and 3.

In the case of $\vec{\omega}$ in $pp \to pp\vec{\omega}$, we may identify $\text{Tr} \rho$ with the unpolarized differential cross section $d\sigma_0/d\Omega$, which is given as a function of the angle θ between the momentum q of the ω and the momentum p_i of the proton beam in the c.m. frame for the reaction. A right handed Cartesian coordinate system with z-axis along $p_i \times q$ and x-axis along p_i, was referred to \[23\] as the Transverse Frame(TF), where in the Fano statistical tensors t^μ_0 characterising the tensor polarization of the $\vec{\omega}$ are such that $t^2_{\pm 1} = 0$ and

$$\text{Tr} \rho t^2_0 = \frac{1}{384 \pi^2} \sqrt{\frac{1}{2}} \int dW \left([0.6 |f'|^2 - |f|^2]
ight.$$

$$+ 1.8 \cos^2 \theta \left[10 |f_2|^2 + 2 |f_3|^2 - |f'|^2 \right],$$

(7)

$$\text{Tr} \rho t^2_{\pm 2} = \frac{1}{256 \pi^2} \sqrt{\frac{1}{3}} \int dW \left([|f_1|^2 + 0.6 |f'|^2] - 1.2 \cos^2 \theta \left[15 |f_2|^2
ight.$$

$$+ 3 |f_3|^2 - 0.5 |f'|^2 \right] \mp 0.6 \sin 2\theta \left[15 |f_2|^2 - 1.5 |f_3|^2 - 0.5 |f'|^2 \right]),$$

(8)

while

$$\text{Tr} \rho \frac{d\sigma_0}{d\Omega} = \frac{1}{192 \pi^2} \int dW \left([|f_1|^2 + 0.3 |f'|^2]
ight.$$

$$+ 0.9 \cos^2 \theta \left[10 |f_2|^2 + 2 |f_3|^2 - |f'|^2 \right])$$

(9)
in terms of the lowest three partial wave amplitudes \(f_1, f_2, f_3 \) for \(pp \rightarrow pp\omega \) given in Table 1 of [23] and \(f' = \sqrt{10} f_2 + f_3 \). The integration with respect to the invariant mass \(W \) of the two protons in the final state may also be replaced by integration with respect to the c.m. energy \(E_\omega \) of \(\omega \) using eqn(1) of [23]. If \((\alpha, \beta, \gamma) \) denote the Euler angles of rotation for going from \(TF \) to \(DF \), we have

\[
 t_0^2(DF) = \sum_{\mu=-2}^{2} D_{\mu\alpha}^2(\alpha, \beta, \gamma) t_\mu^2.
\]

(10)

Thus \(t_0^2(DF) \) depends not only on the angle \(\theta \) at which the \(\omega \) is produced, but also on the Euler angles \((\alpha, \beta, \gamma) \) which characterise the orientation of its decay plane with respect to \(TF \). Counting \(N(DF) \) in a given decay plane provides, by virtue of (6), an estimate of the associated \(t_0^2(DF) \). Noting that \(t_{-2}^2 \) is the complex conjugate of \(t_2^2 \), it is clear that eqn.(10) is a linear equation in three real unknowns viz., \(t_0, Re(t_2^2) \) and \(Im(t_2^2) \) in the \(TF \). One may conveniently choose three different sets of \((\alpha, \beta, \gamma) \) to measure experimentally the corresponding real numbers, \(t_0^2(DF) \) on the left hand side of eqn.(10) for \(\omega \) produced in the same direction \(\theta \). Having set up an appropriate set of three linear equations, one may then solve for \(t_0^2, Re(t_2^2) \) and \(Im(t_2^2) \) in the \(TF \) which characterise completely the tensor polarization of \(\omega \) produced in any chosen direction.

Acknowledgments

We thank Professor K. T. Brinkmann for encouraging us to look into this problem. GR and SPS thank Professors B. V. Sreekantan, R. Cowsik, J. H. Sastry, R. Srinivasan and S. S. Hasan for the facilities provided for research at the Indian Institute of Astrophysics. JB and GP thank Principal and Management of their respective organizations for encouragement.

References

 Moskal P, Wolke M, Khoukaz A and Oelert W 2002 Prog. Part. Nucl. Phys. 49 1

Zweig G 1964 CERN Report 8419/TH412

[16] Rathmann F et al 1999 Study of Heavy Meson production in NN collisions with polarized Beam and Target, Letter of Intent to COSY-PAC No. 81 (Jülich)

Rathmann F et al 2002 Czec. J. phys, 52, c319

[24] Brinkmann K T 2006 private communication

[26] Dalitz R H 1953 Phil. Mag. 44 1068

Dalitz R H 1954 Phys. Rev. 94 1046

Fabri E 1954 Nuovo cimento 11 479

Stevenson M L et al 1962 Phys. Rev. 125 687

Charles Zemach 1964 Phys. Rev. 133 B1201

[27] Källén G 1964 Elementary Particle Physics (Addison-Wesley Publishing Co) p 201
