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Preface

The solar atmosphere admits a rich variety of phenomena, which are mainly associated
with the interaction of an ionized plasma with a magnetic field. To describe the field
structure and its evolution one usually employs the Magnetohydrodynamic (MHD) ap-
proximation, which assumes that the plasma can be described by one-fluid theory, and
that the spatial and temporal scales of interest are “large”. These approximations leads
to the usual MHD equations discussed in detail in Alfvén (1950), Cowling (1957) and
Priest (1982).

Study of wave motions on the Sun began in the late 1940’s. Theorists started to
realize that waves could carry energy from the convection zone up to the chromosphere
and corona. Dissipation of these waves could then explain the observed increase in
temperature of the outer layers of the Sun. Typically, the temperature of the corona is
some million degrees, whereas that of the photosphere is only a few thousand degrees.
In spite of about half a century of study, it is still not fully understood how the million
degree temperature of the corona is maintained against losses due to electron heat
conduction, radiation and energy outflow into the solar wind. Propagating waves which
are believed to be responsible for this heating are difficult to observe, largely because
they are transient and are of small spatial scales. Presence of these waves are inferred
from observations of nonthermal broadening of solar spectral lines.

Earliest theories of heating was based on acoustic waves. According to these theor-
ies, the sound waves generated in the convection zone travel upwards and form shocks
at higher atmosphere (due to increase of amplitudes) and dissipate their energy in these
layers. However, after the Skylab observations of the early 1970’s, it became apparent
that the upper chromosphere and corona do not derive their high temperature from

acoustic waves. So pure acoustic wave theories are inadequate for explaining coronal
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heating. Modern theories involve magnetic fields in some way or the other.

It is now generally accepted on the basis of observations (Stenflo, 1989) that the solar
magpetic field is highly structured, with most of the magnetic flux in the photosphere
being clumped into small intense flux tubes, with diameters of the order 200 - 300 km.
The high resolution imaging observations (Berger and Title, 1996) suggest that the
strong component of the magnetic field outside sunspots and pores is concentrated in
isolated flux tubes of about 200 km in diameter with kilogauss field strength. Diameters
of tubes, corresponding to a sunspot is of the order of several thousand kilometers.
There are also tubes with intermediate sizes, such as pores and faculae. There is
further evidence of weak field component at the center of supergranular cells (Zirin,
1987). Estimate of the strength of this field component vary from 100-500 G (Keller et
al. 1994). Thus the waves carrying energy from the photosphere to the corona can be
modelled as waves propagating along magnetic flux tubes.

Unfortunately, the construction of an equilibrium solution for a stratified flux tube is
extremely complicated, let alone the question of wave propagation. Most of the analyses
of waves in flux tubes have either neglected the gravity or used the thin flux tube
approximation (Defouw 1976, see reviews by Thomas 1990, Hollweg 1990 for further
references). The neglect of stratification is inappropriate for photospheric flux tubes.
On the other hand, the thin flux tube approximation is more reasonable for treating
wave propagation in intense flux tubes, where the tube radius is typically smaller than
the pressure scale height in the vertical direction. If thin flux tube equations are used
to study the wave propagation along flux tubes, then one obtains two kinds of solutions
corresponding to the “sausage” and “kink” modes.

The present thesis is roughly divided into two parts. Part I (Chapter 1) treats the
problem of energy transport to the solar corona by magnetic kink waves in the thin
flux tube approximation and part II (Chapters 2, 3 and 4) pertains to homogeneo‘us
fields and not to flux tubes. In this part of the investigation we assume that the flux
tubes in question are sufficiently thick, so that the field can be regarded to have infinite
horizontal extent.

In the past twenty five years, observations of oscillations with fairly broad range of

frequencies have been reported in magnetic elements of solar atmosphere (Bhatnagar et
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al. 1972, Lites and Thomas 1984, 1985, Giovanelli 1975, Moore and Rabin 1985, Lites
1992). The umbral oscillations with periods in the 2-3 min band and the penumbral
waves are perhaps the best reported oscillations in flux tubes on the Sun. In addition,
oscillations have also been observed in intense flux tubes, though not as extensively as
in sunspots, because intense tubes are hard to resolve from ground-based instruments.
Thus, waves provide a powerful diagnostic for probing physical conditions within flux
tubes, particularly in deeper layers, normally inaccessible to observations. In part II of

this thesis we shall examine some of the properties of such oscillations.

Outline of the thesis

In Chapter 1 we show that the magnetic kink waves generated by the motions of photo-
spheric footpoints of the coronal flux tubes can supply adequate energy for heating the
quiet corona. We model the solar corona as a two layer isothermal atmosphere, with
the lower layer having chromospheric thickness and temperature, and the upper layer
having coronal temperature. Even in the presence of such a temperature jump, we find
that the rapid footpoint motions (observed by Muller et al. 1994) are efficient enough
to carry enough energy to the corona and the estimated energy flux is sufficient for quiet
coronal heating. In addition to presenting results for the solar corona, we discuss the
general problem of the propagation of kink pulses in two-layer atmosphere for different
possible values of the basic parameters. We find a fairly complicated behavior which
could not be anticipated from the analysis of a pure Fourier mode. For pulses generated
by rapid footpoint motions, the energy flux decreases due to reflection at the transition
layer. For pulses generated by slow footpoint motions, however, the behavior of the
system is governed by modes, which are evanescent in the lower layer, but can tunnel
through it. The energy flux carried by such pulses can actually increase when there is
a temperature jump in the atmosphere.

In Chapter 2 we develop a theory for magnetoatmospheric oscillations. Qualitat-
ively, the waves that we are dealing with are called magneto-acoustic-gravity (MAG for
short), denoting the three distinct forces that are present, viz., magnetic, preséure and
gravity, Without gravity, the theoretical analysis is straightforward. However when

stratification due to gravity is taken into account, the mathematical analysis becomes
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more complicated. Therefore, what is required is a theory of wave propagation in a
stratified atmosphere with a vertical magnetic field. The theoretical understanding of
the nature of wave modes in such a medium is currently far from complete. In this
investigation, we attempt to analyze the physical nature of MAG oscillations, by ex-
amining how the normal modes of an unmagnetized stratified atmosphere are modified
by the introduction of a small vertical magnetic field. We employ a set of boundary
conditions, which may not be directly applicable to a realistic solar situation; never-
theless, the results provide some insight into the general properties of oscillations in a
stratified atmosphere with a vertical magnetic field. The general solutions of the wave
equation for an isothermal magnetized medium are first given. We present asymptotic
expansions of these solutions in the weak-field limit. An analytical expression for the
dispersion relation is derived, which allows the effect of a weak magnetic field on the
modes to be studied. We explicitly demonstrate how the choice of boundary conditions
affect the various elementary wave modes present in the atmosphere.

Detailed results are presented in the form of diagnostic diagrams, showing the vari-
ation of frequency with horizontal wave number. The solutions clearly reveal the pres-
ence of avoided crossings, which occur at the otherwise degenerate frequencies. Our
results, though somewhat idealized, find application in the analysis of waves in sunspots.

Oscillations in a realistic stellar atmosphere are affected by radiative dissipation
and energy loss at the boundaries. Thus the modes are damped, with complex fre-
quencies. In Chapter 3 we concentrate on the behavior of the modes near the avoided
crossings in the the k — w diagram for zero-gradient boundary conditions. We find that
in such regions the frequencies of the modes become complex, whereas away from the
avoided crossings the frequencies are real (in the adiabatic case) for these boundary
conditions. The effects on the topology of the K — ), diagram ({2, being the real part
of the frequency) in the vicinity of an avoided crossing depend on the relative mag-
nitude of the damping rates of the two modes involved and the minimum separation in
the (undamped) avoided crossing. If the minimum separation exceeds the difference in
damping rates between the modes, €}, undergoes an avoided crossing, while the damp-
ing rates cross. QOur results clearly demonstrate that for certain boundary conditions,

the frequencies can become complex in an adiabatic system, where no explicit energy
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loss mechanism is taken into account. It appears that the boundary conditions permit
the phase relationship between the modes to be changed in a manner so as to allow the
wave to leak out from the boundary, thereby leading to a loss of energy from the cavity.
This behavior occurs only when there is a strong mode coupling for certain combination
of frequencies and wave numbers. We study the behavior of the eigenfunctions near the
avoided crossing regions, calculate the net upward energy flux going out of this cavity

and examine the height variation of various components of the energy density.

In Chapter 4 we examine non-adiabatic effects on the modes of an isothermal strati-
fied magnetic atmosphere. The innlusion of radiative dissipation in magnetoatmospheric
wave problems is often necessary, since thermal cooling effects can be important. As a
first step, we modify the adiabatic treatment by allowing for radiative losses approxim-
ated by Newton’s law of cooling. Using this cooling law, an analytic expression for the
dispersion relation is derived in the weak field case, which allows us to study the effect
of the magnetic field on the modes. We show how the effects of radiative damping can
be incorporated in magnetoatmospheric problems be letting the ratio of specific heats,
v, become a complex frequency dependent quantity. We examine the nature of the
eigenfrequency curves in the diagnostic diagram and find that, similar to the previous
analysis, the modes undergo avoided crossings. We find that radiative heat exchange
leads to a damping of the modes. This damping is particularly effective at the avoided
crossings. Thus strong mode coupling in the avoided crossing regions permits energy

leakage. We address the implication of our results to waves in solar flux-tubes.

Finally, in Chapter 5 the results of the investigation described in the thesis are
summarized with specific conclusions. . A brief discussion on the further scope on this

study is also presented.



Contents

Preface

1

Energy Transport by Magnetic Kink Waves
1.1 Introduction
1.1.1 Two-layer atmosphere
1.2 MHD Equations for a thin tube
1.2.1 Equation of motion
1.2.2 Continuity and Induction
1.2.3 Transverse oscillations of a vertical tube
1.3 The nature of a Fourier mode
1.4 Pulse propagation
1.5 Parameter space study
1.6  Application to the St;la.r atmosphere

1.7 Discussion

The Influence of a Vertical Magnetic Field on Oscillations
2.1 Introduction

2.2 Ideal magnetohydrodynamic equations . . . .. ... .........
221 Equilibrium. .. ... ... ... ... . 000000,

2.2.2 Wave equations in a uniform vertical field

2.3 Asymptotic properties of normal modes in the weak-field limit . . . .

2.3.1 Rigid boundaries

2.3.2 Zero-gradient boundary conditions. . . . ... .. ... .. ..
2.3.2.1 The separatesolutions . . ... ... .. ... ....

2.3.22 Avoided crossings between Lamb and m—modes . . . .

......................

------------------------

.....................

......................

-----------------------------

--------------------------

------------------

---------------------------------

--------------------------------

11
13
13
14
14
15
21
27
34
37

40
40
43
43
45
46
47
48
48
51



CONTENTS 7

2.3.2.3 Avoided crossings between p— and m—modes

2.3.2.4 Avoided crossings with the gravity-Lamb mode . . .. 54

2.3.3 Mixed boundary conditions. . . . .. . ... .. ... ... 54
24 K—QDiagramforaweakfield . . . .. ... ... ... . . 0., 56
2.4.1 Avoided crossings between Lamb and m—modes . . . . .. . .. 58
2.4.2 Avoided crossings between m— and g— modes . . . . ... . .. 60
2.4.3 Mixed boundary conditions. . . . .. .. ... ... ... ... 62
2.5 Properties Of The Gravity-Lamb Mode . . . . . . ... ... ...... 64
2.5.1 Avoided crossings between the gravity-Lamb mode and the mag-
peticmodes . . . ... .. L. e e 64
2.5.2 Effect of the gravity-Lamb mode on avoided crossings between
pure Lamb and magpeticmodes . . . . . ... ... ... ... 64
2.5.3 Avoided crossings between p—modes, magnetic modes and the
gravity-Lambmode . . . . .. .. ... Lo o L o L. 67
2.6 K —Q Diagram For Strong Fields . . . . .. ... ............ 71
2.6.1 Modes in the strong-fieldcase . . .. ... ... ... ...... 71
2.6.2 Umbral oscillations . . . . .. ... ... ... ... ... 72
2.7 DISCUSSION . .+ .« v i i e e e e e e e e e e e e e e e 76
3 Wave Leakage from Magnetized Atmosphere 80
3.1 Imtroduction . ... .... ... . ... e 80
3.2 Solution of Wave Equation in the weak - Magnetic field case . .. . . . 82
3.3 Eigenfunctions for various wavemodes . . . ... .. ... ....... 84
3.3.1 Elementarymodes .. .. ........... ... . . ..., 84
3.3.1.1 MagpeticLambmode . .. ... ............ 84
3.3.1.2 Low-order magneticmode . . .. .. .......... 85
3.3.1.3 High-order magneticmode . . . . .. ... ....... 85
3314 pmodes ......... .. ... ... 86
332 Mixedmodes . .. ... ... ... ... ..o, 87
3.3.2.1 Coupling between Lamb and m- type mode . .. ... 87
3.3.2.2 Coupling between p- type and m- type mode . . . . . . 88

34 Wave-EnergyEquation . . ... ... ... ... .. . .. .. 90



CONTENTS

8

341 EpergyFlux . . .. ... .. ... .. . o oo 0oL, 91

342 Energydensity .. .. ... .. .. ... ... ... 93

3.42.1 Coupling between a Lamb and m-mode . . ... ... 93

3.5 Properties of the gravity-Lambmode . . . . ... .. ... ....... 95
3.5.1 Eigenfunction of the gL— mode . . .. .. .. .. ..... ... 95

3.5.2 Energy density of thegL—mode . . ... ............ 98

3.6 Strong magneticfieldcase ... ... ... ... ... ... .. ... .. 98
36.1 Enpergydenmsities . .. . ... ... ... ... 00 00 100

3.6.2 Umbraloscillations . . . ... ... ... ... ... .. ..... 103

3.7 Conclusion . . . . . . . .. e e 105

4 Effects of Radiative Cooling on Waves 108
41 Background .. ... . .. ... e 108

4.2 The wave equation with Newtonian cooling . . . . .. .. ... .. ... 110

43 Solutionsfor K =0 . .. .. . .. .. ... . . e 113
44 Solutionsfor K 00 . .. . . . . o i i e e e 114
4.5 Normal modes in a weak magneticfield . . . . ... ... ... ..... 115
4.5.1 Rigid boundary condition. . . . .. .. ... .. .. 0 L. 115

45.1.1 Numericalresults . . . .. .. .............. 117

4.5.2  Zero-gradient boundary condition . . . .. .. ... . L. 123

4.6 High magneticfieldcase . .. ... .. ... ... ... .. .. ..., 125
47 Conclusions . .. ... .. . ... e e 128

5 Concluding Remarks 130
5.1 Magnpetickinkwaves . .. .. .. ... ... . ..o oo oL, 130
5.2 Magnetoatmosphericwaves . . . . .. ... . ... L 0000 131
Appendix A 134
Appendix B 137
Bibliography 143

List of Publications

149



Chapter 1

Energy Transport by Magnetic Kink
Wayves

1.1 Introduction

Two mechanisms have been suggested for heating the solar corona - direct dissipa-
tion of magnetic topologies and dissipation of waves (Parker 1986; Hollweg 1990a;
Ulmschoeider et al. 1991; Narain and Ulmschneider 1991,1996). Though it is con-
ceivable that both these mechanisms are operative in the closed active region loops,
the heating of the quiet corona with open magnetic field lines can only be due to the
dissipation of hydromagnetic waves which are produced by photospheric disturbances
and then propagate along magnetic field lines. The magnetic flux at the photospheric
level exists as isolated flux tubes, which fan out upwards and eventually merge with
each other above the chromosphere. Hence the waves carrying energy from the photo-
sphere to the corona can be modelled, at least in the layers just above the photosphere,
as waves propagating along magnetic flux tubes. Until recently there was no direct
observational evidence as to the nature of the footpoint motions. Since footpoints are
presumably shuffled by the granular convection, theorists working on the coronal heat-
ing problem assumed that the typical length, time and veléx:ity scales for the footpoint
motions are comparable to those for the granules. Although supergranular scales can
also be of some importance in the topological dissipation models, they are unlikely to
be of any relevance for the wave heating theories. A question of crucial importance is:
what is the nature of these waves? If thin flux tube equations are used to study the

wave propagation along flux tubes, then one obtains two kinds of solutions correspond-
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ing to the sausage and kink modes (Spruit 1981; Roberts 1985). Each mode has its
own characteristic cutoff period and propagates upward only if its period is below the
cutoff period. For the solar atmosphere just above the photosphere, the cutoff periods
for the sausage and kink modes are, respectively estimated to be about 200 s and 700 s.
For photospheric disturbances with the typical granular time scales (about 500 s), the
sausage mode would not propagate, whereas the kink mode barely propagates. When
the footpoints moves rapidly for a short time, we find that much of the energy is fed into
the kink mode at frequencies well above the cutoff frequency and hence can propagate
upward. Though there exists some studies of the propagation of sausage modes along
flux tubes in the solar atmosphere (Rae and Roberts 1982; Hollweg 1982), to the best of
our knowledge detailed studies of the propagation of kink modes have not been carried
out earlier.

By using the full MHD equations, one can show the existence of a third kind of
mode - the shear Alfvén mode (also called torsional Alfvén mode) - which cannot be
handled by thin flux tube equations (Hollweg 1990a). Most probably the movements of
flux tube footpoints give rise to a mixture of all these modes (see discussion and figures
in §2 of Hollweg [1981]).

Some recent observations suggest that the flux tube footpoints occasionally undergo
rapid motions for short durations (Muller et al. 1994). The theoretical implications of
these rapid intermittent motions have been studied by Choudhuri, Auffret and Priest
(1993; hereafter CAP). The bright points seen in high-resolution photographs of the
photosphere are usually identified as intense flux tubes which are presumably the foot-
points of the magnetic fields that thread the corona (Muller et al. 1994). Berger and
Title (1996) has reported the dynamics of the small scale solar magnetic field, based on
high resolution images of the solar photosphere obtained at the Swedish vacuum tower
telescope. The bright points move in the intergranular lanes and are primarily driven
by the evolution of the local granular convection flow field. It has also been observed at
Pic-du-midi (Muller et al. 1994.) that these bright points occasionally undergo rapid
motions with velocities of the order of 3 km/s typically lasting for 3 minutes. It was
pointed out by CAP that such jerky motions of footpoints would give rise to kink modes

in the flux tubes above, and the properties of these kink modes were studied by con-
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sidering an isothermal atmosphere of photospheric temperature above the photosphere.
It was found that these occasional jerky motions were much more efficient for sending
energy to the corona compared to the slow Brownian motions of footpoints that must
be taking place most of the time. A calculation of the energy flux using the isothermal
atmosphere model incorporating these rapid footpoint motions suggested a value of
energy flux well above what is needed for heating the quiet corona. In the actual solar
atmosphere, however, one may expect the flux to be reduced due to reflections from the
transition layer where the temperature jumps sharply from chromospheric to coronal
values. The aim of the present study is to extend the calculations of CAP for a two-
layer atmosphere, which illustrates how the energy transport to the corona is influenced
by the temperature jump in the transition layer.

The reflection of the shear Alfvén mode (i.e., torsional Alfvén mode) at the transition
layer has been studied by several authors (Hollweg 1981, 1984; Zhugzhda and Locans
1982). One may at first expect that the reflection of kink modes will be of very similar
nature. A qualitative difference between the two situations, however, arises from the
fact that the kink modes propagating along flux tubes in a gravitationally stratified
atmosphere have a cutoff frequency below which they do not propagate, whereas there
is no such lower cutoff for the shear Alfvén mode. Most wave modes in gravitationally
stratified atmospheres - starting from the simplest acoustic mode (Lamb 1932) - have
cutoff frequencies. The shear Alfvén mode is one very special mode which does not
couple to gravity, at least in the linear theory vﬁth purely horizontal displacements, and
hence does not have a cutoff frequency. We show that the reflections of kink modes
with frequencies close to the gravitational cutoff frequency is a much more subtle and

richer phenomena than reflections of the shear Alfvén mode without a cutoff.

1.1.1 Two-layer atmosphere

Let us consider a vertical thin flux tube embedded in a two-layer atmosphere, the
lower layer of height h at a temperature T} and the upper one at temperature T3,
with T, > Tj. Such a two-layer model is quite appropriate for the solar atmosphere
(see Fontenla, Avrett and Loeser 1990) and has been used by many authors. The
cutoff frequency w,, of hot upper layer will be less than that of the lower layer (i.e.,
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we, < W, ). For frequencies larger than w,,, the modes will propagate in both the layers.
On the other hand, modes with frequencies less than w,, will be evanescent in both the
layers. But for the intermediate frequencies between w., and w,,, the modes will be
evanescent in the lower layer and propagating in the upper layer. If the lower layer
extended over many scale heights, then these intermediate modes would not be able
to take away any energy flux. On the other hand, if the lower layer were sufficiently
thin, then these modes could “tunnel” through it and then propagate in the upper layer.
Hence, under certain circumstances, the asymptotic energy flux, instead of becoming
less than what it would have been in an isothermal atmosphere with temperature T3,
actually becomes more if there is a temperature jump from T3 to T, with a hotter layer
above! Something like this is never possible for a mode like the shear Alfvén mode
without a cutoff, for which, if there is a jump to higher temperature in the overlying
atmosphere, the flux is always reduced due to reflection compared to the flux in the
isothermal atmosphere. Most previous studies of this mode involved the study of a
particular Fourier component, and this was sufficient to understand the behavior of the
mode. However, for kink modes behaving very differently in different frequency ranges,
it is not sufficient to look at individual Fourier components in order to understand the
basic physics. Hence we study the propagation in this two-layer atmosphere of kink
pulses having wide ia.nges of frequencies in their spectral resolution.

A previous study of kink propagation along flux tubes in the solar atmosphere was
reported by Spruit (1984), where he incorporated the merging of flux tubes above a
certain height. Since our analytical expressions for pulse propagation become quite
formidable even without the merger of flux tubes, we have not incorporated it in this
study, though we wish to look at the effects of merger in future. The emphasis in
this study has been to understand the basic physics of pulse propagation along isolated
flux tubes in the presence of a temperature jump without putting other additional
complications.

Much of the Chapter is devoted to studying the basic physics of the problem. We
present a fairly exhaustive parameter space study to illustrate the nature of kink wave
propagation in a two-layer atmosphere for different possible combinations of the basic

parameters. Finally at the end, we apply our general results to the solar atmosphere. We
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reinforce the main conclusion of CAP that the rapid footpoint motions are much more
efficient for transporting energy to the corona. Even in the presence of the temperature
jump at the transition layer, the rapid footpoint motions are able to transmit sufficient
energy to heat the quiet corona, though the epergy flux is somewhat reduced due to
reflection from the transition layer. For the slow footpoint motions, on the other hand,
the energy flux may increase slightly due to the “tunnelling” effect described above.
The basic magnetohydrodynamic equations for a thin flux tube is presented in §1.2.
The next Section studies the nature of a Fourier component of the kink mode in a
two-layer atmosphere. Subsequently § 1.4 discusses how the Fourier modes can be
superposed to provide a kink pulse. The parameter space study is presented in §
1.5. We apply our results to the solar atmosphere in § 1.6. Finally the last Section

surmnmarizes our conclusions.

1.2 MHD Equations for a thin tube
1.2.1 Equation of motion

Throughout this Chapter we will assume that viscosity and resistive diffusion are neg-

ligible. The equation of motion for a fluid with an arbitrary field configuration is given

by

dv B2 1

v __ ZV+—(B- 1.
7= Vptg)t+ - (B-V)B+pg , (1.1)

where p is the density, p is the pressure, B is the magnetic field and g is the acceleration
due to gravity. We want to apply this to the case of an isolated flux tube. The tube is
assumed to be thin compared to the scale height H (= p/ pg) of the atmosphere. The
cross section of the tube could in principle have any arbitrary shape, but we neglect the
details of the shape here and assume that it is circular at all times. Secondly, we assume
that the tube is untwisted. This is an essential simplification which ignores process like
kink instability or the propagation of twist along the tube by shear Alfvén wave.
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1.2.2 Continuity and Induction

For a fluid with zero resistivity the equation of continuity and induction can be combined
into one equation (Roberts 1985)

dB _

4B (E
dtp  ‘p

Viv. (1.2)

This equation expresses the conservation of mass, in terms of the mass per unit length

of the tube (p/B).

1.2.3 Transverse oscillations of a vertical tube

Now we consider a vertical flux tube, initially at rest in a hydrostatically stratified
atmosphere. Suppose the tube is shaken sideways, for example by convective motions
with a frequency w at some point in the atmosphere. For a flux tube which is in tem-
perature equilibrium with its surroundings, the equation for propagation of transversal

oscillations of a vertical flux tube is given by (Spruit 1981)

(2,3 + 1)3uf = g@,{ + ﬁuiauf. (1-3)

For an isothermal atmosphere H is constant. The solutions of equation (1.3) are of the

form

€ = expl(iwt + ikz + Z‘;{—) (1.4)
such that

k= ﬂ:z%(g—: S (1.5)

where w, is the cutoff frequency given by

2_ 9 1
Ve TBHP 1 (1.6)

For w less that the cutoff frequency w,, the solution is evanescent, and for w > w,, the
solution is an up or downward propagating wave whose amplitude increases exponen-
tially with height (¢f. Eq. [1.4]). Formally, the solution is completely analogous to that
for a vertically propag‘a.ting acoustic wave in an isothermal atmosphere. For the acoustic
wave the factors 1/4 in equations (1.4) and (1.5) are replaced by 1/2, and w, by the

acoustic cutoff frequency w, = ¢/2H. In the case of sound waves, it is observed (in the
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5 min oscillations) that almost all power lies just below the acoustic cutoff frequency,
i.e.they do not propagate into the chrorhosphere. Hence, sound waves are not believed

to cause chromospheric or coronal heating any more.

1.3 The nature of a Fourier mode

We consider the propagation of a kink mode of frequency w along a vertical flux tube
in a two-layer atmosphere. The lower layer with temperature 7; is taken to extend
from z = 0 to z = h, and the upper layer with temperature 7 starts from z = h. The
pressure scale heights in the two layers are proportional to the temperatures We list

the two assumptions used throughout this Chapter.

o The flux tube along which the kink propagates is considered isolated, i.e., we do
not take into account the merging of neighboring flux tubes above the photospheric

level.

e We peglect nonlinear effects so that any kink disturbance can be represented by

a linear superposition of individual Fourier modes.

The kink mode coming from below reaches the interface z = h, where a part of the wave
gets reflected downwards into the first layer and the rest transmits into the second lz;yer.
Using the solution for a kink mode in an isothermal atmosphere (Eqs. [1.4]-[1.6]) we
write the velocity in the first layer as the linear combination of an upward propagating
wave and a downward propagating reflected wave, whereas the velocity in the second

layer consists of only the upward propagating transmitted wave:
vi(z,t) = [Du(w) exp{iwt — ik (w)z} + Da(w) exp{iwt + ik; (w)2}] exp(z/4H,) , (1.7)

va(z,t) = U¢(w) exp{iwt — iky(w)z} exp(2/4H2) , (1.8)

where ¥, (w), ¥a(w), D:(w) represent the amplitudes of the original wave, reflected wave
and transmitted wave respectively, whereas H; and H; are the pressure scale heights.

The wavenumbers k) (w) and kq(w) are related to w as follows (see Eq.[1.5])

k(W) = £ (2 _1)12 (1.9)
4H1 wfl ’
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ko(w) = i—l—(i"—2 1)1/2 (1.10
4H2 w ! ) )
where w,, and w,,, the cutoff frequencies of the first and second layers, are given by
2 _ 9 1
“a T 8H 2841 (1.11)
and
2 g 1
—_— 1.12
Yo T S, 28 1 1 (1.12)

If we assume the flux tubes to be in thermal equilibrium with the surroundings, it can
be easily shown that § = 87p/B? has to be a constant inside a particular layer. The
continuity of pressure and magnetic field across the interface further ensures that 3 is
continuous across the interface, i.e., it is constant everywhere. We now relate 9,(w),
¥4(w) and U4(w) by using the boundary conditions to be satisfied across the interface
z = h. Firstly, the displacements on the two sides have to be matched. From equations

(1.7) and (1.8) the corresponding displacements in the two layers can be written as
(2, t) = %[ﬁu(w) exp{iwt —ik;(w)z} + 9a(w) exp{iwt + ik; (w)z}] exp(z/4H;), (1.13)

bz, 1) = ;llz[ﬁt(w)emp{iwt _ iky(w) 2} exp(z/4Ha). (1.14)

By matching these expressions of displacements at the interface at z = h, we have

Du(w) exp{ik; (w)h + } + 4(w) exp{iky (w)h + 4:{

O (w) exp{—iky(w)h + — (1.15)

4H,"
The second boundary condition can be obtained from the basic equation of kink mode
propagation (Eq. [1.3]). By integrating this equation from z = h —€to z = h+ ¢

( € being a very small quantity), it is easily seen that

6,{ Ih—c = az§|h+¢a (116)

i.e.0,£ is continuous across z = h.

Applying equation (1.16), we have

[ — ik (w) + —H—] ¥y (w) exp [ — ik, w)h + ——-] [1k1(w 4;{1] va(w)

exp |1k (w)h + 42 ] = [—ikz(w) + Zf—I-z— vy(w) exp [— iky(w)h + Z%_] (1.17)
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From equations (1.15) and (1.17),

_ k(W) ~ ka(w)} — (zr — o)l exp{—2ik; (w)h}

Bale) @) T Fa()} F (2 = 2] Sule)  (18)
) < ) Rihe) ~ B+ Ry = ) )

[i{ky(w) + ka(w)} + (g — 3]
Thus the amplitudes of reflected and transmitted waves are expressed in terms of the
incident upward wave so that the amplitude of the incident wave, which is a measure
of the overall amplitude, remains the only free parameter.

In order to study the transmission of energy towards the corona in this two-layer
model, we define the transmission coeflicient 7 as the ratio of the energy density due

to the transmitted wave at the bottom of the second layer to the energy density due to

the original wave at the footpoint:

p2(h)A2(h)vi(h)
p1,041,0v2(0)

p’s and A’s being the densities and cross-sectional areas of the flux tube in the two

T= : (1.20)

layers given by

p(2) = proexp(—z/Hy) , - (1.21)
pa(2).= p20 exp(—2/Hz) , (1.22)
Av(z) = Arp exp(z/2H;) (1.23)
Ax(z) = Agp exp(z/2H,) (1.24)

and v, is the part of v; as given in equation (1.7) which corresponds to the upward

wave. The quantities p10, p20, A1,0, A0 are related to one another in the following

manner: Since the pressure is continuous across z = h,

p(R)Ty = p(W)Ty (1.25)
or
T h h
P20 =7 1o p(—p + 7). (1.26)

Again, since the flux tube must be continuous at z = h,

Al(h) = Ag(h), 1 o7\
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or

h h
A2,0 = Al,o exp(ﬁ: - E-I:l—_z-) (128)
Using equations (1.7) - (1.8), (1.19) - (1.24), (1.26) and (1.28), we can rewrite the

expression (1.20) as

_ T 2iky (w) exp(—iki(w)h) ’
T, |i{k1(w) + k2 (W)} + (g — 27)

It 1s to be noted that we are defining the transmission coefficient 7 as a ratio of

T

(1.29)

energy densities, whereas the more usual practice is to define it as a ratio of energy
fluxes. Our motivation behind using densities rather than fluxes is to develop a uniform
approach which would be applicable even in the cases where the wave in the lower
layer is evanescent and there is no flux in that layer. We can express 7 as a function
of frequencies by using the dispersion relations for the two layers given in equations
(1.9) and (1.10). From equations (1.11) and (1.12) it can easily be seen that the cutoff
frequency w,, of the first layer is higher than the cutoff frequency w,, of the hotter

wc:/wcl =y TI/T2- (130)

Choosing the signs of k;(w) and k(w) in such a way that the propagating waves propag-

second layer and

ate upwards and the evanescent waves die away with height, we have the following five

combinations of k;(w) and k,(w) for different ranges of w.

(kW) = —g(& -V,
For — 00 <w < —wey, 4 (1.31)
w?
k) = g -1,
( i
bw) = —gp(- £,
for —w,, < w < ~wy, (1.32)
) = - -1,
) = - £,
for — w, < W < we, . B (1.33)
baw) = —gg(1— S,
b)) = g - M,
forwy, < w < we,, (1.34)

kz(UJ) = —"'J'—(;w;;—l)l/z,
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W’
k(w) = & -1,
forw,, <w < oo, (1.35)
w2
ka(w) = o5 - —1)/2,

The transmission coeflicient 7 for any frequency can now be found out by substituting
the appropriate combination for k;(w) and kq(w) in equation (1.29).

At this point, it is useful to introduce a set of dimensionless variables, some of which
have already been introduced in CAP. Here we shall make the variables dimensionless

with respect to the constants of the first layer.

U= ;:, (136)
T = Wgt, (1.37)
z
= — 1.3
h
= — 1.39
T,
2 1
= — .40
so that
Wey [we, =T (1.41)

Here u, T and s are dimensionless frequency, time and height fespectively. The other
two variables o and r are the two basic parameters for the two-layer atmosphere. They
are respectively the measures of the thickness of the lower layer and the temperature
contrast between the two layers.

It is easy to see from equation (1.29) that 7 is symmetric in positive and negative
frequencies. Hence we write down the expressions of 7 for different ranges of positive
frequencies only. Choosing the proper expressions from equations (1.31) to (1.35), for
u < r, t.e., when the waves are evanescent in boéh the layers, we have

T = 4r?(1 — u?) exp(-—2a\/-1_:7) ' (1.42)
{(V1—uw?+ryr2—u 4+ (1 -r?)}?

For r < u < 1, i.e., when the waves are evanescent in the first layer but propagating in

the second layer,
7= 4r*(1 — u?) exp(—20/1 — u2) (1.43)
- r2(u? — r2) + { 1 —u?+ 1- ,.2)}2' )
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For u > 1, i.e., when the waves are propagating in both the layers,

4ri(u? - 1)
{ﬁz —14 r\/u2 _ r2}2 + (,.2 - 1)2 )

By varying the values of r and a, we can study how the transmission of energy changes

T =

(1.44)

when the temperature ratio of the two layers is changed or the height of the interface

is altered. In Figure 1.1, 7 has been plotted against frequency u. Figure 1.1a shows

Figure 1.1: Transmission coefficient 7" as a function of frequency (v = w/w,) for (a) different
temperature contrasts r and a fixed thickness a = 0.5 of the first layer, (b) for different o
(thickness of the first layer) and a particular temperature contrast r = 0.3.

the transmission for different values of r, smaller r corresponding to larger temperature
contrast between the layers. For u > 1, the mode is propagating in both the layers and
we expect the transmission of energy to decrease as the temperature jump increases to

produce larger reflection. We see in Figure 1.1 that T is reduced for smaller r not only
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when u > 1 but also when u < 1. If we have the frequency in the range r > u > 1,
then the mode can propagate in the upper layer after tunnelling through the lower.
With larger temperature jump (i.e., smaller r), the range of tunnelling becomes larger.
Hence, though the value of 7 is smaller for smaller r, the overall energy transport may
enhance with smaller r because of this increase in the range of tunnelling. We shall show
in the next Section that the transmission of a low-frequency pulse can become more
efficient in a two-layer atmosphere if the upper layer is made hotter, thereby making r
smaller and increasing the range of tunnelling. Figure 1.16 shows how 7 changes on
changing o« for a particular r. When the mode is propagating in both the layers (:.e.,
u > 1), T is independent of a as can be seen in equation (1.44). Only when the mode
is evanescent in the lower layer, 7 decreases with increasing o (which is a measure of

the thickness of the lower layer).

1.4 Pulse propagation.

After considering a Fourier component of the kink mode in the last Section, we now
study the propagation of a pulse along the flux tube which can be represented as a
superposition of the Fourier components. We consider a pulse generated by a footpoint

motion having a Gaussian profile of velocity as a function of time:
vz(z = 0,1) = voe™*"" (1.45)

The total displacement due to this motion is finite and is given by

L= \/%vo (1.46)

Though the velocity is mathematically non-zero at all times, it 1s appreciable only from
time —1/ Vb to time +1 / Vb . Hence a finite motion of the footpoint in finite time can
roughly be modelled with such a Gaussian profile. The advantage of taking a Gaussian
velocity profile is that the calculations can be carried out analytically. To find the
response of the flux tube to such a motion, we superpose the Fourier modes as given in

equations (1.7) and (1.8) i.e.,

+co
vi(z,t) = / [tu(w) exp(iwt — ik1(w)z) + Pa(w) exp{iwt + iky(w)z}] exp(zliﬂ)dw,

(1.47)
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+o00

vz, t) = / y(w) exp(iwt — iky(w)z) exp(z—;—{;)dw. (1.48)

-—00

The corresponding displacements of the flux tubes in the two layers are

+oodw .
i(z,1) = / o [Pu(w) exp {iwt — ik (w)2} + Da(w) exp {iwt + ik, (w)z}] eXP(ZE)’
h (1.49)
+°°dw ;
£a(z,t) = / T () exp fit — ko) ] exp(g ) (1.50)

Since we have already related 94(w) and %:(w) to 9,(w) in equations (1.18) and (1.19), we

just have to find out ©,(w) from the footpoint motion equation (1.45). Using equations

(1.18), (1.45) and (1.47), we have

() {ilks + ka) + (g — ZHI—;)}eihh v

= - . - - . - e 1%,
Ul W lkl (elklh, + e_‘klh) + ikz(e'klh — e—lhh) + (ﬁ _ ﬁ.{:)(elhh — elkxh) 2\/';r_b
(1.51)
We now introduce one more dimensionless variable in addition to the ones introduced
earlier

A= 2 (1.52)

T we L hE

where A is a parameter which gives the strength of the jerking at the footpoint. Using
the dimensionless variables we write down the expressions of displacements (given in
Appendix A). To calculate the displacements, we evaluate the integrals numerically. For
a = 0.5 and r = 0.3, the displacements have been plotted versus altitude for different
times in Figures 1.2a,b. Asin CAP, here also we find that for slow footpoint motion (i.e.,
A = 0.2), the flux tubes always remain close to vertical while being shifted. For stronger
footpoint motion (i.e., A = 1.0), the disturbance is found to propagate as a kink pulse
and the flux tube oscillates for some time before relaxing. Whenever a pulse propagates
through a stratified medium, it is known to leave a wake behind it oscillating with the
cutoff frequency of the atmosphere (Lamb 1932; Rae and Roberts 1982). For a single
layer solar atmosphere model, CAP clearly shows the evidence of a wake oscillating with
the cutoff frequency. In our two-layer model, however, the situation is somewhat more
complicated, since each layer has its own characteristic cutoff frequency. Figures 1.3a-c

show wakes for three different combinations of a and A. From Figure 1.3a, we find that
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Figure 1.2: Displacement £ (in units of the total displacement L) of the magnetic flux tube as
a function of altitude s(= 2/4H,) at various instants 7(= w,, t) for (a) A = 0.2 and (3) A = 1.0.

for not too large A and o, the wake mainly oscillates with the cutoff frequency of the
upper layer, which corresponds for r = 0.3 to a period of 67 in our dimensionless units.
A careful look at Figure 1.3a, however, reveals the existence of another frequency with
a very low amplitude. The amplitude of this frequency grows with increasing X (i.e.,
stronger footpoint motion) as in Figure 1.3¢ or with increasing a (i.e., thicker lower
layer) as in Figure 1.3b. This new frequency is neither the cutoff of the lower layer nor
that of the upper layer. It has a value somewhat, though not very, close to w,, + w,,
which_ corresponds to a period 1.54 w. Presumably this frequency is due to the coupling
between the two layers and becomes more prominent as the effect of the lower layer
becomes more dominant. We now discuss how to find out the energy transmitted to
the corona. The expression for energy per unit length of the flux tube at a particular

altitude at an instant of time (using dimensionless units) is

E(s,7)

%pl(s)Al(s)éf(s,T)wzl for s<a , (1.53)
= %pz(s)Ag(.s;){-;.;‘:(.s,'r)w,f1 for s>a , (1.54)

where the dot represents differentiation with respect to 7 = w,,t. We can easily find
£1(s,7) and £(s,7) by differentiating the expressions (A1) and (A2). The expressions
for p1(s), p2(8), A1(8), Aa(s) are obtained from equations (1.21) - (1.22) , on substituting
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Figure 1.3: Displacement & of the magnetic flux tube as a function of time r at various
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@=05r=03.
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4Hys for z. We evaluate £(s, 7) numerically and plot it against the altitude s for three
values of 7 in Figure 1.4 (taking r = 0.3, @ = 1.0, A = 1.0). When 7 is small, the energy
has not propagated much and we find the maximum of it is residing in the first layer.
But after a while, when it reaches the second layer, suddenly its speed of propagation
increases as a result of the larger group velocity —flﬁ:- in the upper layer, whereas its
amplitude falls due to the jump to lower density. Hence we find that the amplitude
of the energy density suddenly drops in the upper layer, though the energy propagates

more quickly to the higher altitudes so that the energy conservation is not violated. To

0.6

1=0.3

— — 1=0.6

—~ N> T=1.1
l.)
)
o

0 0.5 1 15 2 2.5

altitude s

Figure 1.4: Energy density £(s,7) per unit length of the flux tube as a function of altitude s
at various instants 7 fora = 1.0, A = 1.0, r = 0.3

find out the total kinetic energy &:.:(r) residing in the whole flux tube, we integrate
&(s,7) from s =0 to 8 = oo, which gives

4P1,0A1,0Uf,oH1
22

Eot(T) = F() a,r,7), (1.55)

where F'(A,a,r,7),is given in Appendix A. The total energy can be obtained by mul-
tiplying €.,¢{7) with (Spruit 1981).

| o 1
C=3+—=+~=. 1.56
p B (1.56)
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Though F(A,a,r,7) is more complicated than the function F'(A,7) introduced by
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Figure 1.5: Total kinetic energy F()\, ,r, 7) as a function of time 7 for several values of A
for fixed @ = 0.5 and r = 0.3.

CAP, there are some resemblances. This is made clear in Figure 1.5, which plots
F(O,a = 0.5,r = 0.3,7) as a function of 7 for different values of A. This figure
is strikingly similar to Figure 4 in CAP. We again see that F(\ «,r,7), which is a
measure of the flux tube energy, oscillates for some time depending on whether the
footpoint motion works on the flux tube or the flux tube returns the energy due to the
evanescent modes to the footpoints. Eventually when the footpoint stops, F(\, a,r, 7)

reaches a steady asymptotic value Fyuy(A,a,r) for large . The energy transmitted to
the corona is given by

_ 4Cp1,041,09) Fasy (A, 2, 1) (1.57)

gcoronn - Az
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1.5 Parameter space study

We have already seen in CAP that the nature of magnetic kink pulse propagation in
an isothermal atmosphere depends on the value of only one dimensionless parameter ),
which is a measure of the rapidity of the footpoint motion with respect to the cutoff
frequency of the atmosphere. For the two-layer atmosphere, however, the problem
becomes much richer with the introduction of two additional dimensionless parameters
r and a, which are respectively the measures of the temperature contrast between the
two layers and the thickness of the lower layer. Before choosing the values of these
parameters appropriate for the solar atmosphere (done in the next Section), we first
study the basic physics of pulse propagation in the two-layer atmosphere by allowing
the parameters to have different possible values. We, however, restrict ourselves to the
study of situations in which the upper atmosphere is hotter (which implies 0 < r < 1),
since the mathematical expressions derived in the last Section are valid only for this
case. The temperature jump disappears for r = 1 and becomes more prominent for
smaller . The other parameter a can lie in the range 0 < a < o0, the limiting
values 0 and oo corresponding to isothermal atmospheres with temperatures T, and T
respectively. As seen in equation (A9), the energy transmitted to the corona depends
on all these three parameters.

Though a pulse involves the superposition of many Fourier modes, a value of A much
less than unity indicates the presence of mainly evanescent modes in the lower layer.
In §1.2, we have discussed the possibility of tunnelling of energy to the hotter upper
atmosphere even for modes evanescent in the Jower layer (provided the lower layer is not
too thick, i.e., @ is not too large). We expect such tunnelling to be noticeable mainly
when A is small. On the other hand, a larger A implies the presence of propagating
modes. For such modes, energy is reduced due to reflection and this is expected to
be more important when X is larger. Hence we may use the following rule of thumb:
energy transmission at low ) is dominated by tunnelling (provided a is small), whereas
energy transmission at higher A is dominated by reflection. This rule of thumb will
help us a lot to make sense of the rich data we are presenting below. For a given set
of values of the three parameters A, a, r, We pumerically evaluate Fuy(\ a,7)/A? by

using equation (A9). The energy transmitted to the corona can then be subsequently
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Figure 1.6: Plot of Fuy(), a,r)/A? (which is energy transmitted to the corona divided by
4Cp10A1,0v3 ) a8 a function of X for different o’s for (a) r = 0.3, (b) r =0.1.
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calculated by multiplying this with 4Cp; gA;ov2H,, as seen in equation (1.57). In
Figures 1.6a,b, we plot Fpy(), ,r)/A? against A for two definite values of r (r = 0.3
for Figure 1.6a and r = 0.1 for Figure 1.65). In each of the Figures 1.6a and 1.6b,
we plot several curves corresponding to different values of a. As we have already
mentioned, o = 0o corresponds to an isothermal atmosphere with temperature T;. As
the interface between the two layers is lowered by reducing ¢, the reflection becomes
more important and the energy flux is initially reduced, except for very low values of
A where the tunnelling becomes dominant as pointed out in our rule of thumb. This is
clearly seen in Figures 1.6¢,b, where we find that the energy transmission at sufficiently
low A is always enhanced by reducing o to make tunnelling more efficient. When
a is sufficiently small, the tunnelling becomes so important that it can overcome the
reflection and the flux may increase with decreasing o even for high values of A. Finally
when o = 0, the curve corresponds to an isothermal atmosphere with temperature T;.
This curve has the same maximum value as the curve for @ = oo corresponding to the
isothermal atmosphere with temperature T;. In fact, it appears that one just has to
shrink the curve for ¢ = oo in the horizontal direction in order to get the curve for
a = (. We show below that this is indeed true and one can get one curve from the
other by a simple scaling.

From CAP, one can easily see that the energy transmitted to an isothermal atmo-
sphere divided by 4C pgAqv2H is a function of A(= vy/w.L) alone, i.e.

gcorona(’\:a = 00, T) _

= G(]A). 1.58
4Cpy oA, oviHy *) (1.58)

Here we have taken A = vp/w, L. Since a = 0 also corresponds to another iso-

thermal atmosphere where the cutoff frequency is w,, = rwe, , the quantity Ecorona( X, @ =
0,r)/4p2,0A20v3 H; has to have similar functional dependence on X = vo/ws, L = Afr.

Therefore '
Ecoroma( X, =0, 1) 8.;0,0,,,(-’,‘%, o = 0o, r)

4C p20A20v5 H, 4C p1041 0v¢H;
From equations (1.26), (1.28), and the fact that scale heights are proportional to temper-

- 6()= (1.59)

ature, it is easy to show that py oAz 9Hs = p10A1,0H:. Hence it follows from equations
(1.57) and (1.59) that
Fuy(Ma=0,r) Fuy(A/r,a= 0o, r)

X2 (A/r)?

(1.60)
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The equation(1.60) clearly explains why the curve corresponding to one isothermal
atmosphere is shrunk r times (as one finds in the Figures 1.64,b) to produce the curve
corresponding to another isothermal atmosphere which is 1/r? times hotter. It is seen in
both Figures 1.6a and 1.64 that the curves corresponding to a = oo (i.e., for isothermal
atmosphere with temperature 7)) have maxima at about A = 0.9. It is clear from the
scaling equation (1.60) that the curves for a@ = 0 (i.e., for isothermal atmosphere with
temperature T3) will have maxima at A/r = 0.9, the peak value at the maxima being
the same as the peak value for the @ = 0o curve. This is clearly borne out in Figures
1.6a,b. In fact, it will help us to understand some of the results presented below if we
remember the fact that Fiey (), a, )/A? for small values of @ becomes largest when A\/r is

close to 0.9. How the reflection and the tunnelling depends on the temperature contrast

0.15
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Figure 1.7: Plot of Fpey (), @, 7)/A? as a function of X for several values of temperature contrast
r for a particular o = 0.5.

between the two layers becomes clear in Figure 1.7, in which we plot Fyy(, a,r)/A?
against ) for several values of the temperature contrast (smaller r implying larger
contrast), while the thickness of the lower layer is held constant (a = 0.5). For larger

2, the effect of reflection is more dominant and the flux decreases on increasing the
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temperature contrast (i.e., decreasing r). For very small values of J\, on the other hand,
the tunnelling is more important and the flux increases as the upper layer is made
hotter (by decreasing r). Thus we clearly establish the fact that the energy flux is not
always diminished by reflection in the presence of a temperature jump, but the flux
can actually be enhanced under certain circumstances due to the increased tunnelling.
This is an interesting new result which would not become apparent in a Fourier mode
analysis and requires the study of a pulse propagation for its derivation.

Figures 1.8a,b,c, which plot Fa,(},a,1)/)A? against r for three different values of
A, bring out more clearly the dependence on the temperature contrast. In Figure
1.8a with A = 1.0, the reflection is more important and the flux decreases with larger
temperature contrast (smaller r) for any value of @. On the other hand, for Figure
1.8¢ with A = 0.2, we expect the tunnelling to be dominant and the flux to increase
with smaller r. This is seen on right side of the figure. However, all the curves have
maxima close to A/r = 0.9 for reasons explained above. In Figure 1.8a, the flux is
enhanced on increasing the height of the lower layer (i.e., increasing o), which makes
reflection less efficient. In Figure 1.8¢, however, the flux is enhanced on decreasing
a, since tunpelling is more important in this case. Figure 1.8b presents curves for an
intermediate value of ), for which the results are more complicated. Finally Figures
1.9a,b show how the energy flux varies with the thickness of the lower layer. These
figures present Fi.y (), a,r)/A? plotted against a for two different values of A. Figure
1.9a is for A = 1, which makes reflection important. Unless « is very small to make
tunnelling important, the flux increases with height, since there is less reduction of flux
due to reflection as the interface between the layers is moved higher up. The curves for
higher temperature contrast (lower r) lie lower, because there is more reflection when
the contrast is more. When a is sufficiently large so that hotter upper layer is far away
from the footpoint, the flux becomes independent of' the temperature of the upper layer
and curves for different values of r coalesce. Figure 1.9b is for A = 0.2 so that the
tunnelling is dominant and we find more energy to tunnel through when the height is
less. The tunnelling is expected to be more efficient when the upper layer is hotter (i.e.,
when r is smaller). Hence we may expect the curves for lower r to lie higher, which is

true for r = 0.1 and r = 0.5. For r = 0.2 and r = 0.3, however, we have )\/r sufficiently
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close to 0.9, which makes the energy flux for these cases larger.

1.6 Application to the Solar atmosphere

Our task now is to calculate the energy transmitted to the corona and compare with
the results of CAP for isothermal atmosphere. The isothermal atmosphere of 6000 K
temperaturc extending above the photosphere, which was used in CAP, will be referred
to as Model I. If one looks at the temperature-altitude curve of a standard solar atmo-
sphere model above the photosphere (Figure 1.2 in Priest 1982), one finds that there is a
temperature jump to about 50000 K around a height of 1500 km above the temperature
minimum, and then there is another jump to temperatures of about 5 x 10° K around
a height of 2000 km at the base of the low corona. The temperature plateau region
between the two jumps was introduced in the earlier semi-empirical models in order to
account for the emission measure of the Lyman line observations (Vernazza, Avrett and
Loeser 1981). A more recent study by Fontenla, Avrett and Loeser (1990), however,
suggests that the temperature plateau is no longer needed if one includes ambipolar dif-
fusion and hence a two-layer model is a good representation of the solar atmosphere. If
we want to fit a two-layer model, perhaps the best option is to consider a hundred-fold
temperature jump at 2000 km height. This is achieved by taking r = 1/10, & = 2.0
(using the fact that the scale height near the temperature minimum is about 250 km).
We refer to this as Model II. In order to see the effect of the lower edge of the temper-
ature plateau, if it exists, we also consider a Model III with r = 1/3, @ = 1.5, which
corresponds to a nine-fold temperature increase at a height of 1500 km.

Before presenting the results, we use equation (1.57) to write the expression for the

asymptotic energy in a convenient form as in CAP:

1026 P1,0 Aip } { Vo }2 { H,y } Fasy(A, 1)
Ecorona = 107°C { 10~ "gmem 3 } {1051(11'12 lkms™!J 1250km A c1e:
(1.61)

It has been estimated in CAP that fast footpoint motions correspond to A = 0.44,

vo = 3 km/s, whereas slow footpoint motions correspond to A = 0.22, vp = 1 km/s.
Figure 1.10 shows a set of plots of Fyy(), a,r)/A? for the three models described above.
One can now read off the value of Fagy(), a,r)/A? for a particular A from Figure 1.10
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Figure 1.10: Plot of Fo.y (), @,7)/A? against A for the three models appropriate to the solar
case.

and then the energy can be calculated by using equation (1.61). We take the density at
the photospheric level p; o = 3 x 10~ "gmem ™, the cross-sectional area of the flux-tube
A1 = 0.5 x 10°km? and the scale height H; = 250 km. We follow Spruit (1981) to
take the constant C (defined in eq. [38]) to have a value 6.5. The values of E.orona for
all the three models are given in Table 1.1. for both fast and slow footpoint motions.
One can finally estimate the energy flux by multiplying €corona by the number density
of footpoints and the frequency of motions. Assuming that there are about 10 footpoints
in an area of 10* km x 10* km, we get a number density of 107*"cm™2. Since slow
footpoint motions have granular time scales, we take the frequency to be about 1 in
500 s. The fast footpoint motions are less frequent and so far we do not have very
reliable data on their frequency (Muller et al. 1994). For the purpose of rough estimate,
let us take the frequency of fast motions to be once in 5000 s, i.e., 10 times infrequent
compared to the slow footpoint motions. Hence the energy flux due to fast footpoint
motions alone and slow footpoint motions alone can be obtained by multiplying Ecorona

by respectively 2 x 10~ cm=2s~! and 2 x 10~%°. The values of energy flux for the three
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Fast motions Slow motions
(A =0.44, vp=3 km s7) (A=0.22,v5=1km s71)
Ecorons Net flux Ecorona Net flux
(ergs) (ergs cm=2571) (ergs) (ergs em~2s71)
Model I 8.75 x 10%° 1.75 x 10° 9.50 x 10* 1.90 x 10°
(a = o0)
Model 11 8.35 x 10%¢ 1.67 x 10° 6.00 x 10% 1.20 x 10°
(a=2.0,r =1/10)
Model 111 7.90 x 10% 1.58 x 108 1.45 x 10%° 2.90 x 10°
(¢ =15r=1/3)

Table 1.1: Energy flux for different cases.

models are also presented in Table 1.1. The reader is reminded that the energy flux to
heat the quiet corona is estimated to be about 3 x 10%erg cm=2s~! (Hollweg 1990a).
There are several things to be noted in Figure 1.10 and Table 1.1. Firstly, the curve for
Model I in Figure 1.10 is not very different from the other two curves. Given the other
uncertainties in the model, one concludes that an isothermal atmosphere is not a bad
model for the solar atmosphere as far as the propagation of magnetic kink modes are
concerned. Secondly, the two-layer calculations reinforce the main conclusion of CAP
that the fast footpoint motions are much more important for transporting energy to
the corona compared to the slow motions, even though the fast motions may be much
less frequent. This is because the individual fast motions cause a much larger Ecorona
than the individual slow motions — both due to a larger vo and a larger Fyey (X, a, ) /A%
Hence, the contribution made by fast motions, though infrequent, is more substantial.
In fact, as seen in Table 1.1, the energy flux due to slow footpoint motions alone for all
the models falls slightly short of the requirement for heating the quiet corona. On the
other hand, the rapid footpoint motions alone can provide the necessary energy flux. It
is to be noted from Figure 1.10 that energy flux for rapid footpoint motions is slightly
reduced in going from the isothermal model to the two-layer model, which is obviously
due to reflection. But the energy flux for slow footpoint motions may get somewhat
enhanced due to tunnelling as we go to the two-layer model.
In summary, we identify the rapid footpoint motions as the potential source for supplying

energy in the form of magnetic kink waves for heating the quiet corona. The slow
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motions alone would not have provided adequate energy.

1.7 Discussion

There are two aspects of the coronal heating problem. Firstly, we have to understand
how energy is transported to the corona. Secondly, we have to show that the energy can
be dissipated at the correct altitude. Here we are concerned only with first question of
the energy transport. We point out that horizontal motions of photospheric footpoints
of flux tubes would give rise to kink waves. Though footpoint motions having granular
time and velocity scales may not be sufficient for providing adequate energy, we identify
the occasional rapid footpoint motions as the potential source of energy for coronal
heating. The slower motions dump energy mainly around the cutoff frequency, whereas
the rapid footpoint motions put a substantial part of the energy above the cutoff so that
the energy transport is much more efficient. Since we do not yet have sufficient data to
do a proper statistical study of the rapid footpoint motions (Muller et al. 1994), it is
difficult to make a very accurate estimate of the energy flux. A rough estimate clearly
shows that the energy flux should be more than enough. Because of the importance
of the rapid footpoint motions for coronal heating, more extensive observational data
on such motions are urgently needed. One would also like to know how these rapid.
motions are produced - whether by exploding granules or by other means. We hope
that {uture observations will clarify many of these issues.

The main thrust of this work as compared to CAP was to study how the propagation
of the kink waves is affected by the temperature jump at the chromosphere-corona
transition layer. Previous studies of wave propagation in the presence of temperature
jump were done most extensively for the shear Alfvén mode (Hollweg 1981, 1984;
Zhugzhda and Locans 1982),'and it was found out that the reflection at the transition
layer can reduce the energy flux substantially. These studies led to the suspicion that
energy flux due to all other wave modes also may similarly be drastically reduced by
reflection and not enough energy may reach the corona (Hollweg 1990a). We point
out that the shear Alfvén mode is somewhat special in the sense of not having a cutoff
frequency and show that the propagation of kink modes having a cutoff is a very different

and a richer problem. Only in the high frequency limit (i.e., when the frequency is much
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larger than the cutofl frequency), the kink mode behaves similar to the shear Alfvén
mode. In the solar atmosphere, however, we are in the opposite limit of the frequencies
being comparable to the cutoff frequency. In this limit, the study of a pure Fourier
mode does not provide adequate insight into how a pulse may propagate. Hence we
have carried out calculations for pulses made up of frequencies in the different ranges.
Most of the studies of the shear Alfvén mode treated only pure Fourier modes, which
are good proxies for Alfvenic pulses. We have actually demonstrated some cases where
the energy flux is enhanced due to the presence of a temperature jump and dispelled
the worry that the energy flux would always be reduced by a temperature gradient.

We have concluded that the isothermal atmosphere model used in CAP is a fairly
good model for propagation of kink pulses in the solar atmosphere. This is because of the
fact that the temperature jump takes place several scale heights above the photosphere
and the energy transport is not much affected by what is happening several scale heights
above the footpoints, which act as drivers of the kink pulses. This is clearly seen in
Figures 1.6a,b, which show that the curves for @ = 1.0 are not very different from
the curves for & = 0o. One assumption in our calculations was to neglect the merger
of neighboring flux tubes above the chromosphere (Spruit 1984). However, since this
merger takes place several scale heights above the photosphere, we feel that the merger
also will not change the energy transport substantially, though this has to be proved by
detailed calculations. We wish to look at this aspect in near future. Another assumption
was to neglect the nonlinearities which must become important in the higher regions
where the amplitudes are large. Nonlinear calculations for the sausage mode by Hollweg
(1982) showed results very similar to the linear results of Rae and Roberts (1982), and
we expect this to be true for kink modes also. We hope that more detailed simulations
of kink pulse propagation in the solar atmosphere will be carried out in future by
incorporating nonlinearities and by going beyond the thin flux tube approximation.

Similar work has been reported by Huang et al. (1995), who numerically invest-
igated the nonlinear time-dependent response to purely transverse shaking of a thin
exponentially spreading vertical magnetic flux tube embedded in a solar convection
zone and atmosphere model.

Though our calculations were done specifically for the kink mode, we believe that
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some of the general features we obtained will be true for the propagation in a two-layer
atmosphere of other kinds of modes with different cutoffs in the two layers. Purely
acoustic waves and sausage waves on flux tubes are expected to behave very similarly.
This gives us the hope that our results with some modifications might be useful in other
situations also, especially to the problem of wave propagation in stellar and planetary

atmospheres of other types.



Chapter 2

The Influence of a Vertical Magnetic
Field on Oscillations

2.1 Introduction

In the past twentyfive years, observations of oscillations with periods in a fairly broad
range of frequencies have been reported in magnetic elements of the solar atmosphere
(e.g., Beckers and Schultz 1972; Giovanelli, Harvey and Livingston 1978; Moore and
Robin 1985). A study of wave motions can reveal useful information about the nature of
magnetic structures. The aim of the present study is to contribute towards developing
a theory for such wave motions, also known as magnetoatmospheric oscillations.

The first theoretical study of magnetoatmospheric waves was initiated by Ferraro
and Plumpton (1958; hereafter FP), where solutions for a stratified isothermal atmo-
sphere with a vertical magnetic field were obtained. This analysis was carried further
by Zhugzhda and Dzhalilov (1979, 1982, 1984a,1984b), in which exact solutions were
obtained in terms of Meijer functions. Any theory has to take into account the variable
structure of the atmosphere in the vertical direction. Local dispersion relations based
on a WKB approach had earlier been used (McLellan and Winterberg 1968; Nagakawa,
Priest and Walleck 1973) to study wave modes in a magnetized stratified atmosphere.
However, in order to determine accurately the frequency spectrum, global dispersion re-
lations are needed. These are usually difficult to obtain in terms of analytic expressions,
apart from certain limits. The frequency spectrum in the strong-field limit was calcu-
lated analytically in the quasi-Alfvénic approximation by Uchida and Sakurai (1975)
and numerically by Scheuer and Thomas (1981), Hasan and Abdelatif (1990), Abdelatif

40
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(1990), Wood (1990). Hasan and Christensen-Dalsgaard (1992; bereafter HC) extended
this analysis to the weak-field limit, and obtained an analytic dispersion relation for the
wave modes. Despite the mathematical progress, the physical properties of the solutions
have not been fully explored. The stratification allows mutual transformation of waves,
so that in general the problem can not be examined in terms of the elementary modes
of a nonstratified magnetized atmosphere. HC has examined the effect of a weak field
on the normal modes of a stratified isothermal atmosphere and demonstrated that the
normal modes of a magnetized atmosphere can be analyzed to lowest order in terms
of elementary wave modes of an unmagnetized atmosphere along with purely magnetic
modes. Mode coupling was also studied and it was shown that this coupling becomes
particularly important at the locations in the diagnostic diagram where the frequencies
of different elementary modes coincide.

In the present work we extend the previous analysis, for different sets of boundary
conditions. We attempt to analyze the physical nature of magneto-acoustic-gravity (or
MAG) oscillations and also to understand the cause for the existence of different types of
elementary wave modes in a magnetic isothermal atmosphere subject to different sets of
boundary conditions. We examine how the normal modes of an unmagnetized stratified
atmosphere are modified by the introduction of a small vertical magnetic field. The
results are compared with those for the non-magnetic case, and the nature of coupling
between the elementary wave modes and their properties in the different regions of the
diagnostic diagram is analyzed. In the present study, we shall be concerned primarily
with nonradial modes (i.e., modes with finite horizontal wave number).

For vertical fields, the effect on p—mode frequencies due to scattering off flux tubes
has been addressed by Zweibel and Bogdan (1986), Bogdan and Zweibel (1985), and
Bogdan and Cattaneo (1989), but the stratification was neglected in these studies.
Mode coupling in a stratified atmosphere with a strong magnetic field has been studied
by Hasan and Abdelatif (1990) and Abdelatif (1990), and in a general field by Spruit
and Bogdan (1992). Abdelatif (1990) elucidated the frequency behavior in the K —
) diagram in the strong-field case. showing that it could be understood, for small
horizontal wave numbers, in terms of the interaction between fast and slow modes. The

present study considers both the strong- and weak-field solutions of the wave equation,
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with the main emphasis on the latter. In the strong-field limit, our results complement
those of Abdelatif (1990) by using the small and large horizontal wave number limits to
classify the modes. Our investigation differs from that of Spruit and Bogdan (1992) in
two important respects: in the assumed temperature stratification of the atmosphere,
and, more importantly, in the methods employed in the analysis of the problem. The
primary concern of Spruit and Bogdan was to find a mechanism for converting p—modes
into downward propagating slow waves, in order to explain p—mode absorption in a
sunspot. In contrast, we concentrate on examining the normal modes of the system,
by combining a semi-analytic approach based on asymptotic dispersion relations with
numerical solutions; in this way, it is possible to examine the nature of modes and gain
an understanding of their mutual interaction in a vertical magnetic field.

Strictly speaking, the present analysis pertains to homogeneous fields and not to
flux tubes. Unfortunately, even the construction of an equilibrium solution for a strat-
ified flux tube is extremely complicated, let alone the question of wave propagation.
Most of the analyses of waves in flux tubes have either neglected gravity or used the
thin flux tube approximation (see Hollweg 1990b; Roberts 1990; and Thomas 1990 for
recent reviews on flux tube waves). The former approach, which neglects the stratific-
ation, 18 inappropriate for application to photospheric flux tubes. The thin flux tube
approximation, on the other hand, provides a more reasonable framework for treating
wave propagation in intense flux tubes, where the tube radius is typically smaller than
the pressure scale height in the vertical direction. However, in addition to its somewhat
restrictive scope, this approximation has the limitation that it effectively eliminates the
fast mode from the analysis. In the present investigation, it is assumed that the flux
tubes in question are sufficiently thick, so that the field can be regarded to have infinite
horizontal extent.

The plan of the Chapter is as follows: in §2.2 the basic MHD equations are presen-
ted. In §2.3 the coupled wave equation for MAG waves is presented for an isothermal
stratified atmosphere in a vertical magnetic field. In §2.4 we present the dispersion
relation for a weak field subject to different sets of boundary conditions. We examine
the behavior of the solution, when different elementary wave mode frequencies come

closer. In §§2.5 and 2.6 numerical results are presented showing the variation of ei-
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genfrequencies with horizontal wave numbers for the case of a weak field. In §2.7 we
treat the strong-field case and examine the K — ) diagram. Finally, a discussion of the

results and a comparison with previous studies are taken up in §2.8.

2.2 Ideal magnetohydrodynamic equations

We consider an isothermal plane stratified atmosphere, embedded in a uniform vertical
magnetic field B, which is unbounded in the horizontal direction. Using a fluid descrip-
tion and assuming an ideal plasma (i.e., inviscid and with infinite conductivity), the

ideal magnetohydrodynamic (MHD) equations are
dp

9% G ov) = 2.1
dv 1
pat—ng—Vp—EVxBxB, (2.2)
d/p
— [ £ = 2.
dt(p‘*) 0, (23)
VB=0, (2.4)
1 0B

E. _19B 2.5
vx c at ’ ( )
E+—l—(va):0, (2.6)

where p is the mass density of the fluid, v is the velocity, p is the pressure, B is the
magnetic field strength and E is the electric field. The constants g, ¢, and v refers to
acceleration due to gravity, the speed of light and the ratio of specific heats respectively.
Equation (2.1) express cc;ntinuity of mass, equation (2.2) is the equation of motion,
equation (2.3) corresponds to the assumption of an adiabatic fluid (i.e., we ignore the
loss of heat by conduction and radiation), equations (2.4) - (2.5) are Maxwell’s equations

and equation (2.6) is Obhm’s law for an infinitely conducting plasma.

2.2.1 Equilibrium

At t = 0 (i.e., the unperturbed state) let us assume that the fluid is in hydrostatic
equilibrium and that all physical quantities have only z dependence, apart from the
magnetic field, which we take to be constant. The equilibrium state can be determined

by solving equations (2.1) - (2.6), without the time derivative. Let us also assume that
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the velocity is zero in the unperturbed atmosphere. Thus, in equilibrium we have,

dp
= — 2.7
FP 27)
We assumne a cartesian geometry where z, the vertical co-ordinate, is measured positive
upwards, the gravity acts in the z direction, which is chosen to point away from the

Sun. For simplicity, let us assume that the equilibrium atmosphere is isothermal t.e.,

the temperature is constant with height. This implies that the sound speed is constant

cs = \/—7—;5 , (2.8)

where the density varies with height according to the law

with z and is defined as

p = poe” " (2.9)

where H = p/pg is the scale height of the atmosphere, which 1s constant for an iso-

thermal medium and pg 18 the mass density at z = 0.

zZ=d

Cs

/

Figure 2.1: The basic geometry of the problem. The region in consideration is isothermal and
plane stratified. It has a uniform magnetic field B in the vertical direction. The sound speed
cs is constant, but the Alfvén speed is exponentially increasing.
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2.2.2 Wave equations in a uniform vertical field

We now consider wave propagation in an ideal stratified atmosphere. This is accom-
plished by considering small perturbations about the equilibrium. Let £ denote a Lag-
rangian displacement of a fluid element from its equilibrium position. This displacement,
is related to the velocity through the equation

_ %
T

v

(2.10)

Expressing all physical variables in equations (2.1) - (2.6) as the sum of an unperturbed
part and a small perturbation and retaining only the first order terms in perturbations,

we arrive at the following differential equation

62
AN G) 1)
where
m9=—vw—¢¢1%wmmx3% (2.12)
bp = —pVLE—-E£-Vp, (2.13)
bp = —pVLE£—¢-Vp, (2.14)
5B = Ux(¢xB), (2.15)

where ép ,8p, 0B denote Eulerian perturbations in density, pressure and magnetic field
respectively.
In cartesian geometry, the linearized equations for MAG waves can be written in

terms of the Lagrangian displacement ¢ ~ €!(“*~%?) as (Ferraro and Plumpton, 1958),

d? . d
[vf‘;d—zg— ~ (& + V3K + WPE, — lk(c?(,-—d—z—— —g)t, =0, (2.16)
d? d d
S — 19— e, —ik[ck— — (v — = 2.1
[cs dz2 7gdz +w’lE lk[chz (v l)g ]éz: 0, ( 7)
2 2 d*
(Ld +UA3;2-)EI, = 0, (218)

where k is the horizontal wave number, w is the frequency and v4 is the Alfvén speed

defined as
B

VA =

(2.19)

5
R
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Equations (2.16) and (2.17) governs the propagation of MAG waves in a stratified
atmosphere. Equation (2.18), which, incidentally, is decoupled from the other equations
and describes the purely transverse Alfvén waves, will not be considered in the present
investigation. Detailed solutions for Alfvén waves in an isothermal plasma can be found
in the paper by FP. We have implicitly assumed that the propag'ation and motions of
the MAG modes are confined to the z — z plane. This involves no loss of generality.

In order to obtain a dimensionless wave equation we introduce three dimensionless

parameters
K =kH , (2.20)
wH
= -—C-S— , (2.21)

and the dimensionless vertical coordinate

0 — wH _ 55 Qe2/(2H) ’ (2.22)
Va V4,0
where v 4o is the Alfvén speed at z = 0. In terms of the variables defined by equations
(2.20) - (2.22), equations (2.16) - (2.17) can be combined into the following fourth-
order differential equation, which govern the propagation of MAG waves in a stratified
atmosphere (Zhugzhda 1979, see also HC) and is given by,
{9‘—‘-11 + 40333— + [+4(Q*- K3+ 402]0232— ~[1 -4+ K*) - 1202]9i
do4 dé? d6? dé
Dy

+I6[(02 4 KA —1))02—921(2]}51:0, (2.23)

where Qfy = (y — 1)/? is the squared Brunt-Viisila frequency (in dimensionless
units). The general solution of equation (2.23), which can be expressed in terms of

Meijer functions (ZD) is given in Appendix B, along with the asymptotic expansions in
the weak-field limit.

2.3 Asymptotic properties of normal modes in the
weak-field limit

We now examine the asymptotic properties of waves and normal modes of a stratified
atmosphere with a weak magnetic field (corresponding to the limit of small €, where

€ =v49/Cs), n order to delineate the influence of the field on the oscillation spectrum.
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The analysis is based on the asymptotic solution developed in HC (see Appendix B);
here, however, we consider various different boundary conditions. The analytical results
are used 1n the interpretation of the numerical solutions presented in § 2.4. In order to
get a physical picture of the solution, we consider the upward propagation of a wave,
excited from below at z=0, in an isothermal atmosphere. It is well known that acoustic
modes are easily reflected if the temperature of the medium changes with height (for a
good discussion see Leibacher and Stein 1981). The slow mode can be reflected due to
the increasing Alfvén speed with height from layers where v4 ~ cg, through conversion
into a fast mode (e.g. Zhugzhda 1984). We implicitly assume that the properties of the
atmosphere change abruptly at the top boundary, resulting in downward reflection of
the waves. The lower boundary condition is chosen to simulate a forcing layer. This
permits standing wave solutions. It should, however, be kept in mind that an isothermal
atmosphere by itself does not trap modes, rather we use this assumption to understand
the physical properties of the modes in a stratified atmosphere with a vertical field. Let

us now derive approximate dispersion relations for various boundary conditions.

2.3.1 Rigid boundaries

We first consider the case of rigid boundary conditions
E:=¢6 =0 at 2=0 and z=4, (2.24)

here d is the height of the top boundary boundary, and D = d/H is the dimensionless
height.

The asymptotic form of the general solution in the limit of a weak field is presented
in Appendix B. Substituting equations (2.24) into equations (B16) and (B27) yields the
following dispersion relation (for details of the derivation see Appendix B & HC)

(92 — K?)sin Osin(K,D) = Z%eD“{K,Kz[cosh(D/ll) cos O cos(K, D) — 1]

+ sinh(D/4) cos Bsin(K, D) M(Q? — K?) — K’(% - %)]} + 0(;—22), (2.25)

where K72 is given by

K?=Q- K*1 - &2‘3—“) _L (2.26)
z 92 4 )
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furthermore
2Q%V 1
M=K -1, (2.27)
6o =06(0), O6p=6(D), 6=2(6—0p). (2.28)

The solutions of this dispersion relation has been discussed in detail in HC. Next we

will use another set of boundary conditions.

2.3.2 Zero-gradient boundary conditions

We now consider the case of zero-gradient boundary conditions at the top and bottom

of the layer,
d¢;  d¢,
dz  dz

Substituting equations (B44) and (B45) into equation (2.29) yields the following dis-

=0 at 2=0 and z=d. (2.29)

persion relation (for details of the derivation see Appendix B and HC)
(K2 4 3)(F — K?)sinfsin(K.D) =
2(K2 + %)écD/"{K,K:*[cosh(D/zl) cos B cos(K, D) — cosh(D/2)]
+sinh(D/4) cos Gsin( K. D)[(M + 3)(0  K?) - K3(% )
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+ O(S_ﬁ)’ (2.30)
In Appendix B, the coeflicient of the second-order term is also provided.
2.3.2.1 The separate solutions

For ¢ < 2, the dispersion relation, to lowest order in ¢/}, becomes

1 o~
(K2 + Z)(Q2 — K*)sin 0sin(K, D) =0. (2.31)

Equation (2.31) leads to the following separate dispersion relations:

sin(K,D) =0, (2.32)
Q=K, (2.33)
sin =0, (2.34)
K?+ oo, (2.35)

4
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We first consider the solution given by equation (2.32) which implies that K, D = nm,
where n is an integer and denotes the order of the mode. Using equation (2.26) yields

the usual relation for p— and g—modes:
2, 1 - :
O — (K + ) + Ky = (i = p,9), (2.36)

where K2 = K? + K?2.

The solution corresponding to equation (2.33) can easily be recognized as the Lamb
wave in an unmagnetized atmosphere (Lamb 1932). We denote its frequency by Q.
This is simply a horizontally-propagating sound wave, which is evanescent in the vertical
direction. Strictly speaking, the Larmnb solution is not a normal mode of the atmosphere
in the absence of a magnetic field, since it does not satisfy the boundary conditions
(2.29). However, in the presence of a weak field, this can be achieved through a slight
coupling with the magnetic modes.

The solution given by equations (2.34), represent the modes, which arise solely due
to the presence of the magnetic field. The magnetlic modes, hereafter referred to as

m—modes, have frequencies

0. =" =12, (2.37)

T s
where s = (1 — e P/%). These modes are approximately transverse, since it can be
shown from equations (B16) and (B27) that

¢(1:2)
= ~ 0(6) . (2.38)

(1.2)

Physically, these modes can be interpreted as gravity-modified slow modes in a weak

magnetic field.
Now we turn our attention to the solution of equation (2.35) which is a new feature

of the present analysis. Using equations (2.26) and (2.35) we get
Q' - K+ K%, =0. (2.39)

This equation has the solution

o=lgrl1+(1- Oy . (2.40)
T2 K? ’ )
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thus a real frequency is found only for K > 2Qgyv. The solution resembles a gravity
mode on the lower branch and a Lamb mode on the upper branch. In order to see
this, consider the limit K — oo. The smaller solution in equation (2.40) has the limit
1 ~ gy, which is the dispersion relation for a g—mode for large K; the larger solution
has the limit Q ~ K for large K, which shows that the mode behaves like a pure Lamb
wave. Therefore the mode will henceforth be referred to as a gravity-Lamb (or gL—)
mode. More details about the properties of this mode and its interaction with other
modes in the K — ) diagram will be considered in §2.5. This mode was not found
in HC, where rigid boundary Fonditions were used. It exists even in a non-magnetic
atmosphere, as can easily be seen by looking at the solution for the vertical displacement,
which is

¢, = ™[ Asin(K,Z) + Bcos(K,Z)] , (2.41)

where A and B are constants. If we apply the boundary conditions (2.29) we get the

exact dispersion relation
1
(KX + Z)sin(K,D) =0, (2.42)

yielding again equation (2.35). From equation (A15), we find that in the presence of
a weak magnetic field the dispersion relation for this mode is not modified, at least to
O(€?). In fact, as we shall sec in §2.6, this mode is present even when there is a strong
magnetic field, though with a modified dispersion relation.

The frequencies of the magnetic m—modes (eq. [2.37]) are independent of K, whereas
the frequencies of the Lamb mode increase linearly with K. The p— and g—mode
frequencies, as determined by equations (2.32) and (2.34), also increase with K; thus
it is evident that for some value of K the p—, g— and Lamb mode frequencies will
cross the pure m—mode frequencies. However, in the vicinity of such a crossing point
the right-hand side of equation (2.30) can no longer be neglected. It has the effect of
turning the crossing of the frequencies into avoided crossings, as was also discussed in

HC. In the following sections we consider the behavior in the vicinity of such avoided

Crossings.
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2.3.2.2 Avoided crossings between the Lamb mode and the m—modes

We first consider crossings between the Lamb mode and the magnetic modes. In the
vicinity of the unmodified Lamb mode, with ! = K, K, becomes imaginary. Hence in
equation (2.30) we replace K, by K, = |K,|, sin(K, D) by sinh(K, D) and cos(K,D) by
cosh(K, D). Crossing of the pure modes occurs at K = K; = Q,,,, where Q,, is given by
equation (2.37); at this point equation (2.26) shows that K, = 1/y — 1/2. To analyze
the behavior of the full dispersion relation (2.30) around this point, we let

K=K 4+§K, Q=0,.4+450, (2.43)

where 6K and 8Q are regarded as small quantities. We expand 8 to obtain 8 = Iz +
25/e50. Replacing K, and the right-hand side by the values at the crossing, we obtain

the approximate dispersion relation

(-1 2 (080 K,&K)&Qsinh[(% D)=
25— {(% - %)Kf [(_ )l cosh(D/4) cosh[(% ~ 5)D) - cosh(D/z)]
~(=1)'sinh(D/4)sich{( = )DIKF( — 3)
- (—1)'%@‘*(% _ %)Kf{cosh[(z _ ;)D] (<1 cosh(D/2)} (2.44)
(597 — 6K 5 simh(— — 2)D] =
- ;—ZeDM(% - %)K,{cosh[(g - %)D] ~ (=1 cosh(D/2)} L (245)

This gives a quadratic equation for 6}, which may be written as

50 — 6K6Q — _am =0, (2.46)

min

with the solution

50 = —51{ +- (51{2 +6Q2, 2. (2.47)

Here

S & sinh(D/4) 1
Moo =165 Kt 5 2){cosh[( )D]—(——l)'cosh(D/Z)},(2.48)
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where 77 = € /2s is the separation between the frequencies of adjacent magnetic modes.

In the case of rigid boundaries (HC) a similar expression was found, where 6022,
was non-negative for all values of I (see eq. [46] of HC); hence in that case the roots
were always real. In contrast, for the solution given by equations (2.47) and (2.48)
622, is negative for even I. Hence, in the present case of vanishing gradients of the
displacements at thc boundaries, we obtain pairs of complex conjugate roots for even
values of [ when K is within the range 3|6Qnin| of the location of the crossing of the
pure modes. The consequences of this for the global behavior of the eigenfrequencies
are discussed in §2.4, based on numerical solutions of the oscillation equations.

We now consider the minimum frequency separation 595,:2\/1) in an avoided crossing
between the Lamb mode and a magnetic mode of odd !, shown in Figure 2.2 as a
function of K for different D. Unlike the zero-displacement case (see Figure 45 of HC)
one finds that in this case the minimum scparation depends on K. Clearly, values of
595:;2,/17 exceeding unity indicate a breakdown of the asymptotic description and this
occurs at smaller values of K in the casc of zcro-gradient boundaries. The dashed lines
similarly show |5Q£;2,/ n| for even [, corresponding to the range in K around the avoided
crossing for which there are complex conjugate roots; thus 2|§22{7)| gives the minimum

separation in K between the eigen-curves atl such an avoided crossing.

2.3.2.3 Avoided crossings between p— or g~modes and m—modes

We now consider a crossing between a p— or g—mode of order n, characterized by
K,D = nm, and a magnetic mode of order ! with frequency Q,, = enl/2s. We know

from equation (2.26) that the crossing will take place at the point (K ,m) in the
(K, Q) diagram where

nin? 03 1
Dz a7, — Ka(l - QBE:) T2 (2.49)
As before, we let
K=Kuy+6K, Q=0,+400. (2.50)

Expanding K, we obtain

nt DKy I DQ 0F
K,o~v— 2% (1 -2BY ™ (] - g2 2BV . 2.51
D nm ( 0 ) SK + nm (1 K Qi ) o (2:51)

m
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Figure 2.2: Asymptotic values for the minimum separation §{pn;,, in units of 7, between
adjacent avoided crossings between the Lamb mode and magnetic modes, as a function of K,

for € = 0.01 and y = 5/3. The sohd lines show JQ /n for D = 1,2, 3 for odd values of [,
whereas the dashed lines show |5Q /17| for even I, for the same values of D.

The expansion of 0 was already given in §2.3.1.2. We substitute these expansions into
the left-hand side of equation (2.30), while the right-hand side and the factor Q* — K?
are evaluated at (K,;,,,). This leads to

2 2 2
(—1)"“23(93" - K,f,)D [( K? QBV) 0,,6Q — ( gy ) n,éK] 50
nm

nl Q4 Qz
N D/42n7r

=o""5 K3 [(~1)"* cosh(D/4) — cosh(D/2)] , (2.52)

which can be further simplified to
2 _ 02 2,2 J’3 _ ntl
K (2, nBV)éKJQ—— e?r*n? K2 [cosh(D/4) — (—1)**' cosh(D/2)]

50?% —
an‘K;‘:IQ}?av D3s (2 — K:,)(Q“ K Q )

=0.
(2.53)
Equation (2.53) provides a quadratic equation for 62 as a function of § K. For §K = 0,

the minimum separation between two branches can be obtained from equation (2.53)

as

502 _ 4sn’n? K3 [cosh(D/4) — (—=1)"* cosh(D/2)]

= 2.54
mn = D (0 — K8)(0 — KA0Ry) (2.54)
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The bebavior near the avoided crossing depends crucially on n +[. When n + 1 is odd
we obtain a normal avoided crossing in 2. On the other hand, 692, is negative for
even n + I, so that real solutions are again absent near the avoided crossings. We also
note that §Qp;, Increases with K approximately as K:I/Q, i.¢., more rapidly than for the

avoided crossings between the Lamb mode and the magnetic modes (¢f.. Eq. [2.48]).

2.3.2.4 Avoided crossings with the gravity-Lamb mode

According to equation (B50), K24 1/4 is a factor to all terms in the dispersion relation,

2. Thus, to this order, there is exact crossing

upto and including the term of order ¢
between the gL—mode and the remaining modes, and an analysis similar to the one’
carried out in §§2.3.1.2 and 2.3.1.3 is not possible. In §2.5.1 we show, from numerical
computations, that the actual behavior in the vicinity of the crossing points do indeed
lead to avoided crossings with regions in K with no real solutions, the minimum sep-

aration scaling roughly as 2. This suggests that the exact factorization ceases to hold

in the term of order ¢* in equation (B50).

2.3.3 Mixed boundary conditions

To analyze the eflects of boundary conditions on various elementary wave modes, we
have chosen diflerent combinations of conditions on the displacements at the boundar-
ies. Specifically, we now examine the behavior of the normal modes for the following

boundary conditions:

=6 =0 at z2=0, (2.55)
and
d¢,  d¢,
= = =d. 2.56
P p 0 at =z ( )

This choice corresponds to a node at the base and an anti-node at the top boundary.
As before, the asymptotic dispersion relation can be obtained by substituting equations
(B16) and (B27) into equation (2.55) and equations (B44) and (B45) into equation

(2.56); here we consider only the lowest-order terms, obtaining

[sin(K, D) + 2K, cos(K,D)|(Q* — K?) cosf=0. (2.57)
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As before, to this order the dispersion relation has separated solutions. We obtain the

following separate dispersion relations:

1
K.+ 5 tan(K.D) =0, (2.58)
Q=K , (2.59)
cosf =0. (2.60)

The solutions of equations (2.59) and (2.60) correspond to the Lamb and magnetic
modes, discussed earlier. The Lamb mode is unaffected by the change in boundary

conditions, while for the magnetic modes the frequencies are given by

€T ]
Q= —(+ =), [=0,1,2,...); 2.
Z4z), (=012 (261)

thus they are shifted by an amount en/4s in the diagnostic diagram with respect to
the m—modes calculated for the previous sets of boundary conditions treated in §3.1
and in HC. However, the frequency separation between adjacent modes 1s the same as
before.

We now return to the solution of equation (2.58), which represents the modified
form of the p— and g—mode dispersion relation. In fact, by applying the boundary
conditions (2.55)-(2.56) to the solution ¢, for an isothermal non-magnetic atmosphere

given by equation (2.41), we get the exact dispersion relation
sin(K,D) + 2K, cos(K,D) =0, (2.62)

which is identical to equation (2.58). For large mode order n the solution can be

approximated as
1
K,D ~ (n + 5) T. (2.63)

This expansion yields the usual p— and g—modes with a frequency shift, as compared
to HC and the previous case (§2.3.1), due to the additional term of 7/2 on the right
hand side of equation (2.63).

The general result of this analysis is therefore that the overall frequency spectrum
of the p—/ g—modes, magnetic modes and the Lamb mode for a magnetic atmosphere
(apart from a possible constant frequency shift) is insensitive to the precise nature of

the boundary conditions.
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We have also considered the normal modes for yet another set of boundary condi-

tions, namely

&, =6=0 at z2=4d, (2.64)
and

d¢, d& _

Fyal 0 at z=0. (2.65)

The results are the samé as for the above case, because of symmetry. One can check
this easily by using equation (2.41) for an isothermal non-magnetic atmosphere.

In principle the coupling between the separate solutions at points where they cross
could be analyzed by including the term O(¢) in the dispersion relation (2.57). However,
as discussed in § 2.4.3 below we have found that the behavior of the numerical results

deviates strongly from the resulting expression. We shall not pursue this further here.

2.4 K — ) Diagram for a weak field

We now consider numerical results for the weak-field case. The solutions were com-
puted by solving equation (2.23) (formulated as a system of first-order differential
equations) with a fourth-order Newton-Raphson-Kantorovich scheme (Cash and Moore
1980) which was used also in HC. We first consider the case of using the zero-gradient
boundary conditions in equations (2.29). Figure 2.3 ¢ depicts the resulting variation of
frequency with horizontal wave number, for ¢ = 0.01, y = 5/3 and D = 1 (this is used
as the default case unless otherwise specified). The long dashed line corresponds to the
Lamb solution 2 = K and the short dashed lines correspond to the gravity modes ¢;, g2
n a nop-magnetic atmosphere. The solid and dotted lines, respectively, correspond to
the numerical solution of equation (2.23) and the roots of the analytical dispersion re-
lation (B50). The default choice D = 1 for the vertical extent of the cavity may appear
to be somewhat idealized and not relevant to photospheric flux tubes. This choice is
basically made to allow us to use the asymptotic analysis for a weak field over the entire
extent of the atmosphere. The asymptotic analysis proves to be an extremely valuable
tool for understanding the‘modal structure and permits us to understand the numerical
results much better. By gradually increasing D, it is possible to see how the modal

structure is modified and also to classify the modes.
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Figure 2.3: Variation of 2 with K in an isothermal atmosphere using the default values
€¢=0.01, D =1 and v = 5/3. The long-dashed curve represent the Lamb solution Q2 = K and
the short-dashed curves correspond to the g;~ and go—modes in a non-magnetic atmosphere.
(@) Results for zero-gradient boundary conditions; the solid lines correspond to the numerical
solution of equation (2.23) and the dotted lines to the solution of the dispersion relation (B50).

(8) Results for rigid boundary conditions; solid lines correspond to the numerical solution of
equation (2.23).
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We first compare the numerical results with those obtained by solving the analytical
dispersion relation (B50). For small values of K (roughly when K < 1), the agreement
between the two sets of curves is very good. However, as K increases the two sets
of solutions begin to differ, with the largest discrepancy for small values of 2. The
reason for this behavior has already been discussed in HC: it is essentially due to the
breakdown of the asymptotic expansion for large K, such that K? > Q%v,/cs.

It is interesting to compare the results shown in Figure 2.3a with those obtained
in HC using rigid boundary conditions. The latter are shown in Figure 2.3b. The
most important qualitative difference between the two sets of calculations is in the
appearance of the gravity-Lamb mode, labeled ¢gL. This mode corresponds to the
solution of equation (2.35). The remaining solutions for 2 < 0.5 (the region shown in
Figures 2.3a and 2.3b) consist of magnetic or m—modes, which interact with the Lamb
mode (for  ~ K) or with the g—modes when equation (2.32) is satisfied; as pointed
out in HC the frequency is restricted to be above the frequency of the m;—mode.

Comparison of Figures 2.3a and 2.3b show that with the exception of the gL—mode
the solutions are very similar for the two sets of boundary conditions apart from the
vicinity of the avoided crossings. We now turn to an analysis of these, based on the
asymptotic results obtained in §2.3. The interactions between the gL —mode and the

remaining modes are discussed in §2.5.

2.4.1 Avoided crossings between the Lamb mode and the
m—modes

Figure 2.4 shows an enlargement of a portion of Figure 2.3a, showing the interaction
of the lowest-order m—modes with the Lamb mode. These modes have been labeled
my (I = 1,2,...). The Lamb mode frequency, as mentioned above, tends to zero for
K = 0. However, for finite K the Lamb mode frequency crosses those of the magnetic
modes.

To investigate the resulting behavior, we focus first on the m; mode; as K increases,
it begins to acquire the character of a magnetic Lamb mode with £ ~ K. The m; mode,
on the other hand, with frequency larger than that of the Lamb mode, behaves as a pure

magnetic mode, with no dependence on K. As K increases further, the frequencies of
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Figure 2.4: Variation of © with K in an isothermal atmosphere using the default values
¢=0.01, D = 1 and v = 5/3. The short-dashed curve represent the Lamb solution 2 = K,
and the solid line correspond to the numerical solution of equation (2.23) with zero-gradient
boundary conditions. The magnetic modes have been labeled as m; (1 = 1,2,...).

the two modes approach closely. The modes corresponding to even-order m—modes
do not have real solutions near the intersection points. On the other hand, as an
odd m—mode approaches the 8 = K curve it acquires the character of a Lamb mode
and avoids crossing it by merging with the next higher-order even mode. Thus the
odd- and even-order magnetic modes behave differently as they approach the (2 = K
curve; this is in accordance with the asymptotic expressions (2.47) and (2.48). The
odd m—modes undergo a mode transformation to a Lamb mode, but since there is no
real solution for the even-ordered m—modes near the avoided crossings, they cannot
cross the intersection point and as a result merge with the modified Lamb mode. These
merged modes reappear at some distance away from the avoided crossing and separate
out as two independent magnetic modes. Physically, at the avoided crossing there is a
strong coupling between the two modes, and the character of the solution is a mixture
of a pure magnetic-like and a pure Lamb-like mode.

Thus, the asymptotic analysis explains the difference in the connectivity of the eigen-
curves near the avoided crossings for even and odd values of I. Note that this result

is entirely different from the case of rigid boundaries (considered in HC), where 8{}nin
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is always real for all values of {. Consequently, in that case, for all [ the nature of the
solutions near the intersection points follows the pattern of the odd solutions found for

zero-gradient boundary conditions.

2.4.2 Avoided crossings between the m—modes and the g— and
p—modes

Figure 2.5a shows the interaction between g— and m—modes, assuming default values
of the parameters. We first consider the m;—mode. As K increases this mode acquires
the character of a g;—mode. In accordance with the asymptotic description in equation
(2.54), the naturc of the solution near the intersection point, similar to the previous
section, is one where this mode merges with m,. To the right of the intersection point,
there are two branches: the lower branch is a modified m;—mode whereas the upper
one is a modified gy —mode. The latter undergoes an avoided crossing with the magnetic
mode m3, but this time the interaction is different due to the fact that we have an odd
m—mode. This phenomenon is repeated when the next odd magnetic mode (ms), which
behaves like a gravity mode, approaches the my—mode. Regarding the two branches
on the right of the intersection point, we find that they merge again, possibly due to
the influence of the g,—mode.

At higher values of K the validity of the asymptotic expressions is dubious. However;
the qualitative nature of the avoided crossings is similar, leading to the formation of
extended “islands” in the K — 1 diagram (cf. Figure 2.3a). The location of these
islands coincides closely with the almost parallel eigen-curves found in the case of zero-
displacement boundary conditions (see Figure 2.38).

The interaction between the pj—mode and higher-order magnetic modes is depic-
ted in Figure 2.5b. The first avoided crossing (in the lower half of Fig. 4b) between
the py~mode and an odd-order mode (labeled as m,) leads to a merger in accord-
ance with equation (2.54), since n + [ is even. When these two modes reappear away
from the intersection point, they separate into an m—mode and a p;—mode. When the
p1—mode comes closer to the next even-order m—mode it undergoes a mode transforma-
tion in the form of an ordinary avoided crossing, the p;— and the m—mode exchanging

character. Furthermore, the alternation between the narrow (in K) and wide (in {2)
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geparations for even and odd n + [ is evident here. Thus the asymptotic analysis en-
ables us to understand the alternate behavior of the magnetic modes, which leads to

: rest-neighbor eigen- i i
merging of nea g igen-curves around an avoided Crossing accompanied by

mode transformation.

2.4.3 Mixed boundary conditions

Figure 2.6a shows a K — ) diagram for mixed boundary conditions (eqs [2.55]-[2.56)),
using the default parameters. The solid lines show the numerically computed frequencies
for this case, whereas the long-dashed and short-dashed lines show the Lamb mode and
the lowest-order g—modes, respectively. A closer inspection reveals that the frequen-
cies of the magnetic modes have in fact been shifted by half the frequency separation,
as predicted by equation (2.61). However, the most striking difference from the pre-
vious cases is in the behavior at the avoided crossings: although formally these are
topologically equivalent to those in Figure 2.3b, alternating between avoidance in
and avoidance in K, the separation 1s now so large as to leave an extended mode-free
region surrounding the location of the Lamb-mode, with similar regions surrounding
the low-order g—modes. This behavior is particularly striking in Figure 2.65, which
shows the region of low K for ¢ = 0.002, but otherwise using the default parameters.
Here the density of magnetic modes is so high that the regions of avoidance are clearly
delineated. We have found from numerical solutions that these regions are essentially
independent, of the value of ¢, for small e. This behavior is qualitatively different from
what is obtained for zero-displacement or zero-gradient boundary conditions. In par-
ticular, we note from equations (2.48) and (2.54) that in the latter case |6Qmin| x € 3t @
given point (K, Q) in the diagnostic diagram. However, for mixed boundary conditions
it appears that the minimum separation at avoided crossings is much larger than the
separation between adjacent magnetic modes, thus invalidating the simple asymptotic
description. We hope to return to this point in a future publication.

We have also computed numerical solutions for the boundary conditions (2.64) and
(2-65). As argued in § 2.3.2 the separate solutions are the same as in the case considered
in Figure 5; however, the behavior at the avoided crossings is even more extreme, leading

Q:Kat

to an apparent near suppression of the modes to the right of the Lamb line
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Figure 2.6: Variation of 2 with K in an isothermal atmosphere using the default values
D =1 and v = 5/3, and the mixed boundary conditions (2.55)- (2.56). The long-dashed
curve represent the Lamb solution 2 = K and the short-dashed curves correspond to the g; —
, §2— and gz—modes in a non-magnetic atmosphere. The following values of € are shown: (a)

e =0.01; (b) e = 0.002.
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frequencies below 2 o~ 0.5. This case deserves closer scrutiny.

2.5 Properties Of The Gravity-Lamb Mode

The gravity-Lamb mode is 2 new feature of the solution for the zero-gradient boundary
conditions. Its interactions with the other modes lead to a number of intricate phenom-
ena, some of which are apparently related to the fact that more than two modes may

be involved in a given interaction. Here we examine these interactions in some detail.

2.5.1 Avoided crossings between the gravity-Lamb mode and
the magnetic modes

The asymptotic analysis in § 2.3.1 left some uncertainty about the interaction between
the gL— and the m—modes in the weak-field limit. To investigate this interaction by
means of numerical calculations, Figure 2.7 shows results for avoided crossings near
=08, for D=1,~=05/3, and ¢ = 0.01,0.02,0.05 and 0.1. It is evident that the
crossings are indeed avoided, leaving regions in K corresponding to complex solutions
for §). Also, the minimum separation § K, in K is extremely small for small €: the
numerical results can be approximated quite accurately by § Kpin ™ 4.5¢2. On the scale

of Figure 2.3 this behavior is evidently invisible.

2.5.2 Effect of the gravity-Lamb mode on avoided crossings
between pure Lamb and magnetic modes

Figure 2.7 illustrates the interaction between a magnetic mode and what might be con-
sidered the pure gravity-Lamb mode. However, the frequency separation between the
latter and the ordinary Lamb mode is comparable with, or smaller than, the separation
In the avoided crossing for ¢ = 0.1. This suggests that all three modes must be taken
into account when studying the interaction. We have not attempted an asymptotic
apnalysis of this very complex case; however, the numerical results provide an indication
of the phenomena that it gives rise to. As a reference, we first briefly recall the behavior
observed in HC for rigid boundary conditions. Figure 2.8a shows the avoided crossings
between the Lamb mode and magnetic modes for € = 0.1. In the limit K — 0, we

denote the magnetic modes m; (I = 1,2,...). The Lamb mode is represented by the
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Figure 2.7: Avoided crossings between the gravity-Lamb mode and a magnetic mode, using
the zero-gradient boundary conditions (2.29), for D = 1, v = 5/3, and different values of ¢,
as indicated in the figure. In panel (a) the solid line is for ¢ = 0.01 and the dashed line for
€ = 0.02. In panel (b) the solid line is for ¢ = 0.02, the dotted line for € = 0.05 and the dashed
line for ¢ = 0.1.

dashed line. The main feature, which has already been pointed out in HC, is that suc-
cessive magnetic modes undergo avoided crossings due to one of the modes becoming
transformed into a Lamb mode, which then undergoes avoided crossings with the next
higher-order magnetic mode. This behavior can now be compared with Figure 2.8b,
for zero-gradient boundary conditions (2.29), but otherwise using the same parameters
as for Figure 2.8a. In the limit K — 0, and for K substantially higher than the value
corresponding to the Lamb mode, the frequencies of the magnetic modes appear at ap-
proximately the same locations in the diagnostic diagram as in Figure 2.8a. However, in
Figure 2.8b we note the appearance of the gravity-Lamb mode. Also, the mode coupling
is much more complicated than before. This can be illustrated by considering in some
detail the interactions near the intersection point marked by a cross in Figure 2.8b. As
K increases, the m;—mode begins to acquire the character of a magnetic Lamb mode
as before, but as it approaches the intersection point, the two magnetic modes join up.
This is equivalent to the behavior observed in Figure 2.4 for smaller e. However, in the
present case the magnetic modes emerging to the right of the intersection immediately

encounter the gravity-Lamb mode. This leads to a new pair of avoided crossings, the
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Figure 2.8: Region in the diagnostic diagram, for ¢ = 0.1, where there are magnetic and
Lamb-type solutions. The dashed curve corresponds to the pure Lamb solution Q = K. (a)
Results for zero-displacement boundary conditions; the solid curves show magnetic modes with
orders 1 to 4. (b) Results for zero-gradient boundary conditions; the pure Lamb mode (2 = K)
has been shown with a dashed line, and the gravity-Lamb mode frequency (given by equation
15) has been labeled as 2,7, whereas the other solid curves correspond to the magnetic modes
of order 1 to 4.
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lower of which was shown in more detail in Figure 2.7a. Only after this additjona] in-
teraction does the pair of magnetic modes emerge and continues towards higher K. The
same pattern of behavior is repcated near the subsequent intersection points, such as
the ma—, mg—modes also shown in Figure 2.8b; however, here the separation between
the Lamb and the gravity-Lamb modes is so small that the two sets of avoided crossings
almost merge.

Another interesting feature of this analysis concerns the lowest possible frequency
of the normal modes, for a weak field. In HC, we found that this is given by the
m;—mode. However, in the present case the lower cutoff is given by the smaller of the
m, and the gravity-Lamb mode frequencies. This behavior persists even as we increase
the strength of the magnetic field, as can be seen in Figures 8a-d, where we present the
K — Q1 diagram for ¢ = 0.15, 0.20, 0.25 and 0.30. The short-dashed and dotted lines
depict the pure Lamb and gl.—modes respectively. With increasing e, the frequencies of
the magnetic modes increase, but the g L—mode is unmodified with frequency Q — Qgy

for large K.

2.5.3 Avoided crossings between p—modes, magnetic modes
and the gravity-Lamb mode

The situation becomes further complicated when interactions involving the p—modes
are considered. This is also illustrated in Figures 2.9a-d, where the long-dashed line
shows the p,—mode in the non-magnetic case. With increasing € the frequencies of
the magnetic modes shift past the p—mode frequencies, leading to shifting patterns of
avoided crossings. Particularly striking is the formation of “islands” of modes which
drift towards higher K; this is visible, for example, in going from panel (c) to panel (d)
in Figure 2.9. Also, the connectivity of the eigen-curves changes. This is illustrated in
more detail in Figure 2.10, corresponding to values of ¢ intermediate between those for
panels (a) and (b) in Figure 2.9. It is evident that there are values of € where an actual
crossing of the curves take place, leading to degeneracy in the eigen-spectrurn. Although
we have not analyzed this behavior further, it appears to be linked to the interaction,
even though fairly distant, with the p;—mode. The development of the K — {} diagram

.. T - . Here
for somewhat stronger field, corresponding to € = 0.5, 1 illustrated in Figure 2.11
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Figure 2.9: The evolution of the K — § diagram with increasing ¢, for D = 1, y = 5/3 and
zero-gradient boundary conditions. The following values of ¢ are shown: (a) € = 0.15; (b)
€ = 0.20; (¢) € = 0.25; (d) € = 0.30. The pure Lamb mode (2 = K) has been shown with a
short dashed line, the pure gravity-Lamb mode frequency (given by equation 2.39) by a dotted

line, and the pure p; —~mode by a long dashed line.
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Figure 2.10: Details of the changes in the connectivity of the K — {2 diagram with ¢, for
D =1, y = 5/3 and zero-gradient boundary conditions. The following values of € are shown:

(@) €=0.15; (b) € = 0.16; (c) € = 0.185.

the dashed curves correspond to the zero-displacement boundary conditions of HC and
the continuous lines represent the zero-gradient boundary conditions. In the latter case
the lowest two magnetic modes m; and m;, the lowest p—mode p; and the gravity-
Lamb mode are present. The behavior of the mode coupling is drastically different
in the two cases. In the zero-displacement case, the avoided crossing occurs through

the interaction of a Lamb-modified magnetic mode with a p—mode, which results in a

conversion of a modified m; ~mode to a p;—mode and vice versa. On the other hand,

for the zero-gradient boundary conditions the gravity-Lamb mode merges with the rn,—

and the p,—modes, in a manner similar to Figure 2.9. In fact, near the avoided crossing
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the coupling is here between three different modes, namely the p; -, the modified m,~
and the gravity-Lamb mode; thus the coupling cannot be explained in terms of the two-
mode coupling analyzed so far. To the right of the intersection points we find, similar
to the behavior in Figure 2.9, the appearance of the m; and p; branches. At higher K,

the behavior is similar to that found for rigid boundary conditions.

Figure 2.11: Details of avoided crossings in the diagnostic diagram between the pj—mode,
magnetic modes and Lamb mode for € = 0.5, corresponding to moderate field strength. The
solid curves are for the zero-gradient boundary conditions and dashed curve are for the rigid

boundaries used in HC.

Another interesting feature of the results, visible in Figures 2.9 and 2.11, is that as
€ increases the gL —mode starts crossing the Q) = K line. In this region of the diagram,
the mode begins to feel the increasing effects of the magnetic field and its classification as
a gL—mode is not fully appropriate: thus the validity of equation (2.39) is questionable.

However, on the basis of a local treatment it appears that the appropriate generalization

of equation (2.39) is
94-—(cz+1)K292+Q%vK2=0- (2.66)
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This expression is taken from the analysis by Nagakawa et al. (1973) for trapped
magnetoatmospheric waves, based on the use of a WKB approximation. Nagakawa et
al. examined the domain of trapped magnetoatmospheric waves, and obtained equation
(2.66) for of one of their boundary curves. Moreover, their K — ) diagram shows this
branch. The main concern of these authors was to find out the domains of trapped
waves, but they did not identify the branch corresponding to equation (2.66) as a
gravity-Lamb mode (or more accurately a magneto-gravity Lamb mode) for moderate
to strong fields. From equation (2.66) we find that asymptotically, in the limit of large
K, Q~ (1 + e)Y?K on the upper branch of this mode, and for the lower branch, that
>~ Qpv/(1 + €2)!/2. The quantitative agreement of this asymptotic behavior with the

numerical results is discussed in the next section.

2.6 K —Q Diagram For Strong Fields

We now consider an isothermal atmosphere extending over several scale heights for
which v4 > ¢, over most of the atmosphere. This situation is somewhat similar to the
atmosphere in a sunspot. We first classify the elementary wave modes present in such
an atmosphere for zero-gradient boundary conditions and examine their behavior in the
diagnostic diagram. Our main emphasis will be on the properties of the gravity-Lamb

mode in a strong field.

2.6.1 Modes in the strong-field case

Figures 2.12a,b show the diagnostic diagram corresponding to D = 5.0,¢ = 0.8, and
D =10.0,¢ = 0.5. The solid lines were obtained by solving equation (2.23) numerically.
We first consider the solution for small K. There are two families of solutions, which
correspond to slow magnetoacoustic modes or p—like modes with frequencies given by

n2mr?

nir? (2.67)
D2

+

b

-

Qpn =

and fast magnetoacoustic modes or m—modes with frequencies approximately given by

(Scheuer & Thomas 1981)
2
Qi = W ) (2.68)
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where j2x denotes the I-th zero of J5x. equations (2.67) and (2.68) are used to classify
the modes close to K = 0 in the diagnostic diagram. Note that, unlike the weak-
field case, the p—mode frequencies are essentially independent of K: the p—modes are
indicated by the nearly horizontal dotted curves in the diagnostic diagram. Equation
(2.68) suggests that m—mode eigen-curves, indicated by dashed curves in the diagnostic
diagram, are nearly parabolic.

Unlike HC, where the p;—mode provided a cutoff for the lowest possible frequency
of the system for this set of parameters, we also find the presence of the gL—mode
below this cut-off for large magnetic field. The avoided crossings around the K =
line in Figures 2.12a,b are due to the interaction between the gL—mode and p—modes.
In Figure 2.12a the gL—mode crosses the = K line because of the strong magnetic
field (cf. the discussion following eq. [2.66]), and when it comes close to the p;—mode
it merges with it. The dot-dashed curve represents the solution of equation (2.66}; it
is interesting to note that the asymptotic limits are in quantitative agreement with the
numerical results. Because of the strong magnetic field effect the pure gL—mode mod-
ifies into a magneto gravity-Lamb mode or MgL—mode. The MgL—mode reappears
away from the avoided crossing and the same behavior is repeated. On the other hand
the m; —mode and ps—mode undergo a mode transformation in the usual way.

Magnetoatmospheric waves for strong magnetic field were studied by Abdelatif
(1990). To compare the results of the two analyses, we concentrate on Figure 2.125,
which can be compared with Figure 3 of Abdelatif (1990). One easily identifies the

gL—mode near the = K line; in fact, equation (2.68) shows that there are no

. : M 1 t
m—modes in that part of the diagnostic diagram. Abdelatif did not recognize the
raction

126

presence of the M gL—mode and moreover he did not interpret correctly the inte

. . e 2’
of this branch with the p—modes. The avoided crossings in other parts of Figure

; ]
: ; - and m—modes in the usua:
can be explained in terms of interaction between p modes and

way.

2.6.2 Umbral oscillations

Vatbiong | typically bave
It is well known from observations, that oscillations in sunspot umbrae typ:

The lower layers of the umbral atmosphere are

periods in the range ~ 2 to 3 mins.
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Figure 2.12: Variation of Q with K in an isothermal atmosphere for the strong-magnetic field
cage. The classification of the modes into p— and m—type refers to the solutions of equations
(2.67) and (2.68), respectively, for K =: 0. The dotted curves represent the p—type solutions
and the dashed curves represent the m—type solutions. The magneto-gravity-Lamb mode
(corresponding to the solution of equation [2.66)) is represented by the dot-dashed line labeled
as Q1. Panel (a) is for D = 5.0,¢ = 0.8 and (b) for D = 10,¢=0.5.
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found to have maximum power in the five minute range while the chromos shere and
transition region have periods in the range 120 to 200 secs.

Our results on the M gl.—mode may be applied to oscillations in the atmosphere of
a sunspot umbra, which we idealize as an isothermal layer of vertical extension D = 20.
For ¢,=6.5 km/s (corresponding to a scale height of 100 km), the upper boundary is
at a height of 2000 km, which roughly corresponds to the chromosphere in a sunspot.
The sharp increase in temperature in these layers provides a natural reflection for the
modes. Fig. 2.13 shows the MgL—mode in the K — ) diagram for various values of
€ or the field strength B, which are used to label the curves. We do not show the
p—modes in the figure, as their spectrum is essentially the same as that shown in Fig.

10 of HC. The curves depicted in Fig. 2.13 closely follow the dispersion relation given by
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Figure 2.13: Region in the diagnostic diagram, for D = 20 and different field strengths, as
labeled. Only the MgL—mode is present.

équation (2.66). An interesting point to note here is that with increasing magnetic field
strength, the MgL— mode resembles more of a magnetic mode than a pure gl —mode.
We now determine the eigenfrequencies of the M gL—mode for a typical umbral radius
in the range 3000 to 5000 km and magnetic field between 2000 G and 4000 G. Table 2.1
presents the eigenfrequencies of the M gL—mode obtained from our model atmosphere
with D = 20. Following Scheuer and Thomas (1981) let us treat the sunspot umbra
as a cylinder of radius a. It can easily be shown that our analysis for a plane can be

carried over in a straightforward way to cylindrical geometry, by treating axisymmetric
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modes and regarding §; and k as the radial displacement and wave number respectively.
Assuming that the radial component of the displacement vanishes at r = a, we find that
k takes discrete values given by ka = j7;,, where j;, denotes the zero of the Bessel
function J; of order v. We consider the lowest-order mode (where order refers to the
horizontal direction) corresponding to v=1. This provides us with a relation between

the horizontal wave number and radius of the spot.

lakm) [B(G)|w(EH]P ()]

3000........... 2500 | 0.0228 | 275
3000 | 0.0317 | 198
3500........... 2500 | 0.0212 | 297

3000 | 0.0298 | 211
3500 | 0.0343 | 183
4000........... 2500 | 0.0198 | 317
3000 | 0.0278 | 226
3500 | 0.0324 | 194
5000........... 2500 | 0.0145 | 432
3000 | 0.0224 | 280
3500 | 0.0267 | 235
4000 | 0.0298 | 211
6000........... 3000 | 0.0209 | 301
3500 | 0.0250 | 251
4000 | 0.0293 | 214
7000........... 3000 | 0.0172 | 365
3500 | 0.0208 | 302
4000 | 0.0234 | 268

Table 2.1: Eigenfrequencies of the M gL—mode for different radii and magnetic field
strength of a sunspot umbra.

We thus see that for field strengths and radii typical for sunspots, the MgL—mode
has periods in the observed range. It should also be noted that the lowest-order
fast magnetoacoustic mode or m;—mode appears at {2 = 0.8 which corresponds to
a period of 119 s. Though our model atmosphere is somewhat idealized we show that

the MgL—mode might be relevant to umbral oscillations.
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2.7 Discussion

The present analysis has revealed many interesting features regarding wave Propagation
in a stratified media. As in HC, we have largely concentrated our analysis on the weak-
field limit (va/c, = € < 1) and extended the previous calculations to different types
of boundary conditions. For vs/c, < 1, the character of the waves can be analyzed in
terms of elementary modes of a non-magnetic atmosphere and pure magnetic modes.
Our analysis confirms the result found in HC that, to lowest order in ¢, the magnetic
Lamb mode is also a solution. As noted in HC, the Lamb mode is not a mode of a
non-magnetic atmosphere, since it does not satisfy the boundary conditions. However,
this becomes possible in the presence of a magnetic field, through a slight coupling with
the magnetic modes via the boundary conditions.

Our treatment of the weak-field lunit has permitted an analysis of the K —Q diagram
in terms of asymptotic approximations; this has allowed us to understand the nature
of the modes in a vertical magnetic field. The insight so gained has proved useful in
extending the computations to the moderate- to strong-field case.

A new feature of the present analysis is the occurrence of an additional mode. For
larger K, this mode has one branch merging with Qpy and a second branch which
is close to the pure Lamb mode; this leads us to refer to it as a gravity-Lamb mode
(see Fig. 7b). It is striking that the gravity-Lamb mode is also a solution in a non-
magnetic atmosphere for zero-gradient boundaries. In the asymptotic description the
mode arises from a factor K? + 1/4 in the dispersion relation (B50) which seems to
persist to fairly high asymptotic order. We do not find the presence of this mode for
other sets of boundary conditions used in HC and in this study as well. The main
emphasis of this work has becn on the properties of this mode. We have ext'ended our
analysis to moderate to strong fields also and find that the gravity-Lamb mode becomes
modified as a magneto-gravity-Lamb mode. Due to the influence of the strong magoetic
field it crosses the pure Lamb mode and merges with the magnetic modes (Figures 2.39

. . t
and 2.11). The identification and irteraction of this mode with other modes does n0

. . cal
appear to have been carried out earlier, despite the fact that 1t appears in the IOCh
is, whi
analysis of Nagakawa et al. (1973). However, the results of a local analysis, W
(Thomas

do not take into account boundary conditions, should be viewed with caution
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1982). Our results based on a rigorous approach confirm that the gL—~mode is present
in the special case of vanishing gradient boundary conditions, but not for all sets of
boundary conditions.

Another aspect of the results regards the influence of the magnetic field on the dense
spectrum of g—like modes. The analysis of HC revealed that the entire low frequency
spectrum of g—modes below the frequency of the m; —mode is effectively eliminated by
the magnetic field. As the magnetic field increases, the lower threshold frequency can
become larger than the Brunt-Vaisala frequency for rigid boundary conditions. In this
case, we find that it is the Brunt-Vaisilid frequency which provides the lower cutofl.
Thus, even when the magnetic field becomes large, there is always a gravity-like mode
present at large K.

The present calculations also demonstrate that when the same reflecting boundary
conditions are used at the top and the bottom of the layer the overall nature of the
frequency spectrum, at least for weak fields, is insensitive to the precise form of the
boundary conditions, away from the avoided crossings; an exception is the gL—mode
which exists only when the gradients vanish at both boundaries. However, the qual-
itative nature of mode interaction close to the intersection point can be sensitive to
the boundary conditions. This feature appears to hold even for strong fields. The use
of mixed boundary conditions (zero displacement on one boundary and zero g;'adients
on the other) introduces a frequency shift in the m—, p— and g—modes corresponding
approximately to half the frequency separation between adjacent modes.

The change of the boundary conditions has a striking effect on the connectivity of
the eigen-curves at avoided crossings, relative to the results obtained in HC with zero-
displacement conditions. This was already noticeable in the results of Abdelatif (1990).
The zero-displacement boundary conditions provide real solutions for the frequency 2
at all wavenumbers K; in contrast, calculations with zero-gradient conditions at both
or one of the the boundaries lead to complex-conjugate pairs of roots for ! when K is
in the vicinity of some or all of the avoided crossings. In terms of the real solutions,
the avoidance happens in K rather than in Q. This behavior can be understood from
asymptotic analysis of the solution near the avoided crossings. A mathematically ana-

logous phenomenon was found by Lee & Saio (1990) in the case of coupling between
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stellar pulsation and rotation. It is obvious that one of the complex branches of
corresponds to overstable modes. In the case of rotating stars, the growth of the mode
results from a transfer of energy from rotation to the pulsation, as noted by Lee & Saio.
In the present case, the encrgy input to the growing mode must presumably occur at the
boundaries, but the physical details of this process so far elude us. For mixed boundary
conditions the behavior is superficially similar, although the minimum separations in the
avoided crossings are substantially larger, leading to extensive regions in the diagnostic
diagram where no modes are found.

Oscillations in a realistic stellar atmosphere are affected by radiative dissipation
and energy loss at the boundaries. Thus the modes are damped, with complex frequen-
cies. The eflects on the topology of the K — Q, diagram (0, being the real part of the
frequency) in the vicinity of an avoided crossing depend on the relative magnitude of
the damping rates of the two modes involved and the minimum separation in the (un-
damped) avoided crossing (Christensen-Dalsgaard 1981). If the minimum separation
exceeds the difference in damping rates between the modes, 2, undergoes an avoided
crossing, while the damping rates cross. On the other hand, if the difference in damping
rates exceeds the minimum separation, the avoided crossing of the undamped modes is
converted to an actual crossing.

It is appropriate to mention that the main thrust of our investigation has been to
examine the physics of wave propagation in a stratified atmosphere with a vertical mag-
netic field. One of our objectives has been to examine the modal structure and see how
it is influenced by the field. These studies of modal physics form a useful background
for physically more realistic situations. In HC, a specific set of boundary conditions was
used to study this problem. We have now extended the previous results to different
boundary conditions, and seen how théy influence the various modes. We have also
demonstrated that the new MgL—mode has periods that fall within those observed in
umbral oscillations. In forthcoming investigations, we hope to further enlarge the scope
of our analysis to more realistic conditions; especially to consider wave leakage from
the boundaries. For polytropic and sunspot atmospheres, this problem has been stud-
ied by Cally & Bogdan (1993) and Cally, Bogdan & Zweibel (1994) Following Spruit
& Bogdan (1992), slow modes are allowed to drain energy by propagating downwards
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through the bottom boundary. This provides an effective method of absorbing energy
from external p—modes, by the coupling between these modes in layers where the sound
and Alfvén speeds are comparable. However, a careful analysis of the effect of the field
on the modal structure still needs to be carried out. This we hope to attempt in sub-
sequent study. We expect that study of the present kind of mode physics will also help

gs in understanding heating in active regions through the process of mode conversion.



Chapter 3

Wave Leakage from Magnetized
Atmosphere

3.1 Introduction

The detection of oscillations in magnetic elements has led to the development of several
theoretical models to understand their physical nature. Bulk of the work in this area
has focussed on oscillations in sunspots, particularly in the umbra where the magnetic
field can be regarded as almost vertical. Theoretical models for understanding umbral
oscillations in the 3-min band fall into two distinct classes. In the first one, the os-
cillations are considered to be fast modes trapped in a resonant cavity located in the
photospheric layers of the umbra and below (Scheuer and Thomas 1981; Thomas and
Scheuer 1982). The other model proposed by Zhugzhda et al.(1983, 1984) and Gurman
and Leibacher (1984) treats the oscillations as resonantly trapped slow modes within a
chromospheric cavity. However, more recent work by Hasan (1991) suggests that both
types of cavities may exist simultaneously in the umbral atmosphere. Furthermore, it
appears that there may be a strong coupling between the two cavities, especially for
modes with horizontal wave numbers that undergo avoided crossings in the k — w dia-
gram. This can have many important consequences, particularly as it can lead to a
transfer of energy between the cavities.

The purpose of this Chapter is to examine in greater detail the character of MAG
waves, particularly in the avoided crossing regions of the k —w diagram. We expect that
the strong mode coupling of different waves in such regions can have interesting effects,

which could be relevant for sunspots and more generally for stratified flux tubes. With

80
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this view in mind, we undertake an exhaustive study of the effects of mode coupling on
MAG waves. In the previous Chapter we made a detailed investigation of the nature
of MAG oscillations in an isothermal medium. By using the weak field approximation,
it was possible to derive an analytic dispersion relation and thereby infer many useful
properties of the waves. Assuming the eigenfrequencies to be purely real it was found
that, when the vertical gradients of the velocities vanish at one of the boundaries, the
avoided crossings in the k —w diagram could be characterized by large voids or zones of
avoidance. From an analysis of the asymptotic dispersion relation, it was predicted that
the eigenfrequencies in these regions become complex. This is certainly an unexpected
finding and will be examined further in this Chapter. We shall show that a consequence
of this result is that there is a leakage of wave energy out of the cavity, despite the
absence of an explicit dissipative mechanism. This leakage of wave energy occurs only
at specific locations in the k — w diagram.

It is worthwhile to note that similar results have been obtained in other physical
systems. For instance a detailed analysis of wave interactions in fluid flows was done
by Craik (1988). Using dynamical boundary conditions he derived a dispersion rela-
tion which has complex conjugate roots. He attributed the instability in the flow to
the exponentially growing mode. Modes with real w are neutrally stable. Cairns and
Lashmore-Davies (1983) proposed an interesting model for mode coupling in inhomo-
geneous media. They provided a unified theory for a class of mode conversion problem.
Here we propose an alternative theory of wave leakage from the photospheric cavity
where mode coupling plays a crucial role in determining the frequency spectrum.

The plan of this Chapter is as follows: we begin in §3.2 by briefly recapitulating the
form of the k — w diagram. This is followed by calculations giving the damping rates
of various modes along with eigenfunctions in §3.3. The coupling between different
modes are examined by inspecting the changes in the eigenfunctions as they approach
an avoided crossing. In §3.4 we present the wave energy equation, which allows us to
calculate the time averaged net energy densities and energy flux associated with these
wave modes. In §3.5. the properties of the gravity-Lamb mode are examined in detail
while looking at their eigenfunctions and different components of energy density. In

§3.6 we treat the strong-field case. Finally, a discussion of the results and comparison
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with previous studies are taken up in §3.7.

3.2 Solution of Wave Equation in the weak - Magnetic
field case

We first consider the case of zero-gradient boundary conditions at the top and bottom

of the cavity,

d¢; dé.
= = 1 = =dad: .
L - d 0 at z=0 and 2=4d; (3.1)

where d is the height of the cavity. The linearized wave equations for an isothermal
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Figure 3.1: Variation of  with K using default values ¢ = 0.01, D= 1.0,y = 5/3. The solid
lines correspond to the numerical solution of Eq. (2.23) obtained assuming real frequencies.
The long dashed curve corresponds to the Lamb solution 2 = K and the short-dashed curve
corresponds to g— mode in a non-magnetic atmosphere.

atmosphere with a vertical magnetic field (Eq. 2.23) were solved numerically, using a
complex version of the Newton-Ralphson-Kantorovich scheme with the above boundary
conditions, to determine § for different values of K. We first compare our results with
those of the previous Chapter, in which the eigenfrequencies were assumed to be purely
real. Figure 3.1 shows an enlarged view of Figure 2.3 which depicts the variation of
the real part of  with K, for D =1, € =0.01 and ~ = 5/3 (henceforth, the default

parameters for this Chapter). The dispersion relations for this particular choice of
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Figure 3.2: Three dimensional view of the diagnostic diagram of the first magnetic mode
corresponding to an atmosphere with ¢ = 0.01, D = 1.0,y=5/3.

boundary condition allows us to identify the different elementary modes (see Eqs. [2.33]
— [2.35]). The various solid curves depict magnetic or slow modes m;— (I denotes order
of the mode), the long dashed line corresponds to the Lamb solution £ = K|, and the
short dashed line correspond to the lowest order gravity mode g;— in a nonmagnetic
atmosphere. We now focus our attention on the region in the K — {2 diagram where
therc are voids. In §2.3.1.2 of Chapter 2, we had pointed out that these regions are
physically related to a strong coupling between modes. The nature of the solutions
near the vicinity of the intersection point depends upon the boundary conditions. For
vanishing gradient boundary conditions, the avoided crossings take on the character of
“zones of avoidance” or voids, where the frequencies become complex. For illustration,
let us consider a single mode, which we choose as the lowest order magnetic mode m;—,
and follow its behavior as it interacts with the Lamb and gravity modes. Figure 3.2
gives a three dimensional view of the complex diagnostic diagram of the first magnetic
mode, where the imaginary part of Q) is plotted along the z-axis. This plot clearly
reveals that () is complex precisely in the regions of the real K — () diagram where
there are voids, whereas elsewhere € is purely real. Thus, we see that the gaps in the

diagnostic diagram are now filled up by the real part of the complex frequency.
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3.3 Eigenfunctions for various wave modes

We now exarriine the form of the eigenfunctions, i.e. the variation of ¢, and € with 2.
To study the mature of coupling we first look at the eigenfunctions of the elementary
modes. In order to do that we choose a combination of frequency and wave number in
the diagnostic diagram away from the avoided crossing. Then we inspect the changes

in the eigenfunctions as they approach an avoided crossing. We will use zero gradient

boundary con ditions.

3.3.1 Elementary modes

3.3.1.1 Magnetic Lamb mode
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!
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Figure 3.3: T he real part of £, (panel a) and £, (panel b) as a function of hei:ght for K = 0.04
and 2 = 0.054 corresponding to a Lamb-like mode. The normalization is arbitrary.

Let us consider a magnetic Lamb mode with a purely real frequency, given by @ = 0.054
at K = 0.04 (sec Fig. 3.1). This mode is simply a horizontally propagating sound
wave, which is evanescent in the vertical direction. The eigenfunction of this mode is
clearly real. Figure 3.3 shows the variation with height of the horizontal and vertical

components of the displacement, viz. & and ¢, for the above mode. It is seen that
Strictly speaking, a pure Lamb
fied Lamb mode acquires

mode. Also, we find

&> €., which is a general property of a Lamb mode.
mode does not have any vertical component, but this modi
a small verti cal component due to the influence of the magnetic

. imatel
that {; increasges monotonically with height, which for small values of z approximately
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follows the form for a Lamb wave, given by

f:z ~ e-(l;_-éli (32)

The above equation follows from equation (2.17) with £, = 0. At the upper boundary,
this form is modified by the effects of the magnetic mode which influences the above

behavior through the boundary condition requiring that the gradient of the displacement

vanishes.

3.3.1.2 Low-order magnetic mode
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Figure 3.4: The real part of £, (panel a) and ¢, (panel b) as a function of height for K = 0.04
and {2 = 0.08 corresponding to a pure magnetic mode. The normalization is arbitrary.

We now consider the lowest order magnetic mode in the K -(1 diagram, for which
K = 0.04 and Q = 0.08 (see Fig. 3.1). Figure 3.4 shows the eigenfunctions as a
function of height in the cavity. We find that this mode is approximately transverse
since £, >> €., which is consistent with the asymptotic analysis presented in the
previous Chapter (see Eq. [2.38]). This mode can be interpreted as a gravity modified

slow mode in a weak magnetic field.

3.3.1.3 High-order magnetic mode

We choose a high frequency region of the K — Q diagram and follow the behavior of a

magnetic mode with high order. Figure 3.5 shows the eigenfunctions as a function of
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Figure 3.5: The real part of ;. (panel a) and £, (panel b) as a function of height for K =
0.1 and @ = 3.21 corresponding to mgo- , which is a high frequency magnetic mode. The

normalization is arbitrary.

height in the cavity for a mgo— mode. The wiggly behavior of the horizontal comporent

are due to the high mode order, which result in closely spaced nodes.

3.3.1.4 p- modes

Let us now turn our attention to a py— mode in the K — () diagram for which K = 0.6

and 2 = 3.23. The complex diagnostic diagram

is not shown for this case, since in

Figure 2.5b, the gaps are rather small, so that the complex diagram does not differ from

the corresponding real diagram. Figure 3.6 shows the eigenfunctions as a function of

height in the cavity. The smaller fluctuations in the z— component of the displacement

indicate the influence of the high ordered m— modes. The high frequency m— modes

(order 80) which are transverse in nature interact with the py— modes and produce these

smaller fluctuations in the horizontal component.

The absence of these fluctuations in

the vertical component reconfirms the influence of the high ordered magnetic modes.

Figure 3.6 also shows that £ >> &, which further indicates that t

essentially p— or acoustic modes. Now we will concentrate on regions in th

hese modes are

e diagnostic

diagram where the two modes comes closer and the behavior of the resultant mode is a

mixture of both.
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Figure 3.6: The real part of £; (panel a) and £, (panel b) as a function of height for K = 0.6
and Q = 3.23 corresponding to p;— mode in the high frequency domain of the diagnostic
diagram. The normalization is arbitrary.

3.3.2 Mixed modes
3.3.2.1 Coupling between Lamb and m- type mode

Let us concentrate on a mixed mode with K = 0.072 and 2 = (0.078,0.0012) in order
to examine an avoided crossing between the Lamb mode and the magnetic mode (see
Fig. 3.9a). Clearly the eigenfunctions will be complex for this mode. Figures 3.7a,b
show the real and imaginary components of £, and &, as functions of height in the at-
mosphere. A comparison of Figures 3.3a, 3.4a with Figure 3.7 reveals that the behavior
of the real part of the eigenfunction of the mixed mode closely follows the behavior of
the pure Lamb like mode, whereas the imaginary part follows that of the magnetic type.
Thus at the avoided crossing, because of strong coupling between these two modes, the
resultant mode acquires the properties of both of them. From this we conclude that
after a mode transformation these modes exchange their properties but in the avoided
crossing regions they lose their individual characteristics and can be regarded as a

mixture of the two individual modes.
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Figure 3.7: The real (solid line) and imaginary (dashed line) parts of displacements as a
function of height for K = 0.072 and © = (0.078,0.0012) corresponding to a mixed mode
composed of a Lamb type and m— type mode. Panel (a) shows variation of £, and Panel (b)
shows the variation of £,. The normalization is arbitrary.

3.3.2.2 Coupling between p- type and m- type mode

Now we look at the high frequency domain of the diagnostic diagram and choose a mode,
with K = 0.416 and © = (3.21,0.0005) corresponding to an avoided crossing between a
p— mode and a high order m— mode. Figure 3.8 shows the behavior of the eigenfunction
of this coupled mode as a function of height in the cavity. A comparison of Figures 3.6a,
3.5a with Figure 3.8a,b indicates that the behavior of the eigenfunction of the coupled )
mode is a combination of the two individual modes. This is all the more apparent if
one compares £, the vertical components of the eigenfunctions, shown in Figures 3.6b,
3.5b and Figure 3.8c. We therefore find that the real part of the eigenfunction of the
coupled mode behaves more as a p— mode and the imaginary component behaves as a

high order m— mode, similar to the previous case.
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Figure 3.8: Displacements (in arbitrary units) as a function of height for K = 0.416 and
£2 = (3.21,0.00051) corresponding to a mixed mode composed of a p— type and m— type
mode. Panel (a) shows the variation of the real part of {;, whereas panel (b) shows the
variation of the imaginary part of £, and panel (c) shows the variation of the real (solid line)

and imaginary (dashed line) parts of ;.
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3.4 Wave-Energy Equation

Let us now consider the energy density and energy flux associated with the MAG waves
discussed in the previous Chapter. The wave energy equation can be obtained from the

linearized MHD equations and is given by (Bray & Loughhead, 1974),

oW
- tV-Q=0, (3.3)

where W denotes the time-averaged energy density and Q the energy flux. The energy

density of the waves is given by,

dpdp™ 1 iB - iB*

~ Ppoly = D + 202 3.4
4p0c3+cggp°(7 ) (3-4)

1
<W>:Zp0v-v'+

where ép and 6B denote the Eulerian perturbations in the pressure and magnetic field
respectively and are given by equation (2.13). The time-averaged net upward energy

flux 1s given by,
] * L] BO * ®x
<Q,>= Z(&pvz + dp°v,) — m(éB:Uz + §Bv;), (3.5)

where the asterisks denotes complex conjugate. The energy density can be split in

terms of its various components as follows,

W=Wi+W,+ W, 4+ W, (3.6)

where
Wi = 142(0: ‘vr+ v, vy), (3.7)
_pdp o (3.8)
4 47( P p ) ’
W, = L%y (66) (3.9)
_ et 006 | pap 3.10
Wrn - 4 (az az +K Eﬂ?Ez) - ( ¢ )

The different components Wy, W,, W,, W,, are the kinetic, internal, gravity and mag-
netic energy densities respectively. The energy density and energy flux can be expressed

in terms of the eigenfunctions £, and ¢, and eigenfrequency 2.
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Figure 3.9: Expanded region of the diagnostic diagram showing the interaction between the
m; — mode with the Lamb mode and the gravity mode for zero-gradient boundary conditions.
(a) Variation with K of the real (solid line) and the imaginary (dashed line) parts of the

frequency, (b) Variation with K of the time-averaged net upward flux from the boundaries as
indicated.

3.4.1 Energy Flux

First we will look at the energy flux associated with the individual modes. Figure 3.9
depicts the variation with K of the real (solid line) and imaginary (dashed line) parts of
1 corresponding to the m,— mode of Figure 3.1. The main difference with the result of
Chapter 2 is that we find complex eigenfrequencies in the regions of avoided crossings:
instead of voids in the K —  diagran. as found earlier, the branches of the solution
are connected by the real part of the complex eigenfrequencies. Also, Im({2) has a
substantial value in the region where there is a crossing between the magnetic m,—
and the gravity g;— mode. This behavior is consistent with the asymptotic equations
(2.53) and (2.54), if we note that 802, is negative. Panel (b) in Figure 3.9 depicts

the net upward flux from the boundaries. Note that the net negative flux from the
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lower boundary is more than the flux leaking out from the top, which indicates that net
energy is leaking out from the lower end of the cavity. Moreover the strong interaction
between the gravity and magnetic modes results in a considerable amount of energy
leakage compared to the Lamb-magnetic mode interaction.

Now we will apply another set of boundary condition, viz.

A _ =0 at z2=d. (3.11)

£, =€ =0 at z=0,and e 1 =

This choice corresponds to a node at the base and an anti-node at the top boundary.
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Figure 3.10: Expanded region of the diagnostic diagram showing the interaction between
the m;— mode with the Lamb mode and the gravity mode for mixed boundary conditions.
(a) Variation with K of the real (solid line) part of the frequency. (b) The solid line depicts
the variation with K of the imaginary part of the frequency and the dashed line depicts the
variation with K the time-averaged net upward flux from the top boundary.

As before we allow the frequencies to become complex and follow the behavior of the
mmy— mode in the K — § diagram as it interacts with the Lamb and the gravity mode
respectively. Figures 3.10a,b show the variation with K of the real and imaginary
parts of  and the net upward flux by. We find that there is energy leakage from
the upper boundary because of a coupling between different modes. The imaginary
part of ) peaks at values of K which correspond to an avoided crossing. Moreover,
a comparison of Figure 3.9 with Figure 3.10 suggests that the coupling between the

above-mentioned modes is much stronger for the case of mixed boundary conditions
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than for the previous case. This results in the imaginary part of  having a larger

value, leading to an enhanced energy leakage from the top.

3.4.2 Energy density

We now consider the spatial variation of various components of the energy density, first
for two elementary wave modes and then for a mixed mode corresponding to an avoided

crossing region in the complex K — {1 diagram.

3.4.2.1 Coupling between a Lamb and m- mode

Figures 3.11a,b show the variations of the different components of the energy density as
a function of height for a magnetic Lamb and a magnetic type mode respectively. In this
region of the diagnostic diagram (K = 0.04) these two modes are uncoupled, and the
dominant contribution to the total energy density comes from the internal energy. As
we approach an avoided crossing, at 0 = (0.078,0.0012) and K = 0.07, the contribution
of different components of the energy density as a function of height corresponding to
a mixed mode is shown in Figure 3.11c. The eigenfunction of this mode (see Fig 3.7)
indicates that this mode behaves as a mixture of the two individual modes. It once
again clearly reveals that the behavior of the coupled mode is quite different from
that of the individual modes. When these modes are away from an avoided crossing
they are uncoupled and they can be described as separate elementary modes, but as
they approach a crossing these modes coalesce. Thus near an avoided crossing these
coalesced modes with complex conjugate roots have the properties of both the modes.
Mode conversion process goes on during this period and they reappear as separate
modes away from an avoided crossing. This process of mode coalescence leads to mode
damping. Note that the magnetic energy does not constitute the dominant component
of the total energy of the magnetic mode. This is because the magnetic energy density
is proportional to K2 and € (from Eq. [3.9]) and since K and € are both small by

assumption, W,, is also small.
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Figure 3.11: Height dependence of energy density of the magnetoatmospheric waves (in arbit-
rary units). Different line style correspond to different types of energy density (W} for kinetic,
W, for internal, W, for gravity and W, for magnetic). Panel (a) is for K = 0.04,(2 = 0.054
corresponding to a Lamb like mode, (b) for X = 0.04,§ = 0.08 corresponding to a m— type
mode and (c) for K = 0.07,Q = (0.078,0.0012) corresponding to a coupled mode.
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3.5 Properties of the gravity-Lamb mode

We have seen that the gL — or gravity-Lamb mode exists only for zero-gradient bound
ary

conditions. The general properties of this mode have already been mentioped ; §2.5 |
n §2.5.

Here we will focus our attention on the eigenfunctions and energy densities for the g,
g f—

mode, which were not discussed earlier.

3.5.1 Eigenfunction of the gL— mode
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Figure 3.12: Eigenfunctions for gI,.— mode corresponding to moderate field strength (e = 0.1).
In panel (a) the real part of & and ¢, are shown by solid and dashed lines respectively for
K = 2.0,2= 0513 . In panecl (b) the various parts of displacements are indicated by different
line styles for K = 0.7 and 2 = (0.77,0.016).

Let us consider a gl.— mode with K = 2.0 and Q = 0.513 (see Fig. 2.8), and examine
the nature of the eigenfunctions for this mode. For larger values of K the frequency
of the gL— mode approaches the Brunt-Vaisala frequency Qpy (=0.5in dimensionless
units). Figure 3.12a shows the horizontal and vertical components of the Lagrangian
displacement for this mode for ¢ = 0.1, which is slightly higher than the default value.
(A higher value of ¢ is chosen mainly to isolate this mode from the influence of other
nterfere with this mode.)

modes. For smaller values of ¢ the magnetic modes tend to 1

We find that this mode behaves like a gravity mode in a nonmagn
its eigenfunction as it interacts

etic atmosphere.

Let us follow this mode as K increases and look at
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with the Lamb mode. Figure 3.12b shows the variation of different components of the

displacernents as a function of height for K = 9.7 and ) = (0.77,0.016). Note that
the mode has acquired a considerable imaginary component because of mode coupling.
Consequently this coupled mode can be regarded as a mixture of Lamb and gravity
modes. This particular mixed mode has comparable values of the horizontal and vertical
components of the displacements, unlike the Lamb mode which s dominantly horizontal,
Thus this mode behaves quite differently from the gravity and Lamb modes,

Now let us increase the magnetic field strength further and examine the implication
for the gL.— mode. Figure 3.13 shows the eigenfunction of a gL— mode with K = 0.4
and 2 = (0.39,0.21) for a field strength of B ~ 1000G i.e. € = 0.5 (see Fig. 2.11).
For this sct of values of A and QO this mode is expected to behave as Lamb-like.
In Figure 3.12b (¢ = 0.1) and Figure 3.13 (¢ = 0.5) the magnitude of the vertical

displacements does not vary with height. Thus, the qualitative nature of the gL— mode

remains unchanged when the magnetic field strength increases.
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Figure 3.13: Eigenfunctions for gL— mode corresponding to moderate ﬁelq strength 1(16 (?1?5%
with K = 0.4, 2= (0.39,0.21) . In panel (a) the real (solid line) and imaginary (dashed line
parts of £; are shown. Panel (b) shows the real part of §;.
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3.5.2 Energy density of the gL— mode

Let us concentrate on the different components of the energy density as a function of
height for the gL — mode with X = 2.0 and 2 = 0.51 (corresponding eigenfunctions are
plotted in Fig. 3.12a). Figure 3.14 shows the variation of the different components of
the energy densities with height. Figure 3.14a reveals that the kinetic and gravitational
energy densities are the dominant ones whereas the internal and magnetic ones are
negligible. This mode has the character of a gravity mode. If we now turn our attention
to the complex gL— mode with K = 0.7 and Q = (0.77,0.016) and examine panel (b)
in the above figure, we find that its behavior is considerably different from panel (a),
indicating that this mixed mode does not have the nature of a gravity mode. For
this mode, the internal energy density forms the dominant component, suggesting the
similarity to a Lamb mode (see Fig. 3.11a). We now consider the gL— mode with
K =0.4 and (! = (0.39,0.21) for a higher field strength, € = 0.5 (see Fig. 2.11). From
Figure 3.14 we find that the internal energy density is comparable to the kinetic energy
density — which is generally true for a Lamb mode, unlike that for a gravity mode.
This further confirms the conclusion drawn in the earlier Chapter that the gL— mode

behaves as a Lamb like mode for low K, and as a gravity mode for large K.

3.6 Strong magnetic field case

We consider now an isothermal atmosphere extending over several scale heights (large
D). This situation is more realistic as far as the solar photosphere is concerned. At
the lower boundary, the Alfven speed is typically less than the sound speed, but at
higher levels the contrary is true. If we consider an atmosphere with a vertical extent
of several scale heights, then over most of the atmosphere the strong field solutions of
the wave equation are applicable (see §2.6).

Let us look at the complex K — (1 diagram for high magnetic fields. Figure 3.15a,
shows an enlarged portion of the diagnostic diagram (Fig. 2.12b) for D = 10,¢ = 0.5.
The long-dashed line represents the m— type solutions. Note that the voids are filled
with the real part of the complex frequencies. Figure 3.15b also reveals that there are

peaks in the complex frequency, corresponding to a mode coupling between the p—
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Figure 3.15: Enlarged portion of the diagnostic diagram in the strong field case with D = 10
and € = 0.5. Panel (a) shows the variation of real part of the frequency and panel (b) shows
the variation of the imaginary part of the frequency with K.

and m— modes. Mode coupling leads to a temporal decay of oscillations with a form
exp(~t/7p), where 7p = Im(1/w) denotes the characteristic damping. Table 3.1 lists
the eigenfrequencies of a few coupled modes corresponding to a structure with D = 10
and B = 1200 G. It clearly indicates that the coupling of the p— modes with the m—
modes is not as strong compared with its coupling to the MgL— mode. The lifetime of
the mixed mode composed of p— and m— modes is very large, it decays after several
time periods, whereas the coupled p— and MgL— modes decay within two oscillation
periods. Thus mode coupling alone enables certain modes to decay rapidly, even when
there is no explicit dissipative mechanism. It also indicates that for a sunspot umbra
the coupling between a p— and m— mode leads to an energy leakage of a small amount
whereas the coupling of other modes with the MgL— mode could be very important
for small flux tubes with radii in the range 300 to 500 km. Note that this enhanced
coupling with the MgL— mode can be observed for large K values only; thus mode
coupling with the M gL~ mode may not be important for wave leakage from sunspot
umbra. Before we focus our attention to the application of our result to sunspots in
detail (Chapter 4), we would like to study the general properties of the modes present

in sunspots, in this Chapter.
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Coupled mode type | K | Radius (km) [ Re() | Im(Q) | P(S) | 70(S) | 70/P |
P2 &my 0.15 2100 1.066 | 0.0121 | 91 1271 | 13.97
ps & my 0.38 825 1.325 | 0.0249 | 73 618 | 8.46
P2 & MgL 0.75 420 0.775 | 0.1225 | 125 125 | 1.00
MgL & Lamb 0.84 375 0.854 | 0.106 | 114 145 | 1.27
ps & MgL 0.93 338 0.982 + 0.079 | 99 195 | 1.96

Table 3.1: Eigenfrequencies (corresponding to different magnetic structures) of different
coupled modes for a model atmosphere with D =10, B = 1.2 kG.

3.6.1 Energy densities

Now we will discuss the properties of the modes in the strong field case (discussed in
§2.6.1), particularly the height variation of the energy density and its various constitu-

ents. Let us focus on modes corresponding to D = 10, € = 0.5 (see Fig. 3.152) subject
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Figure 3.16: Height variation of the different components of the total energy density in a
slow magnetoacoustic mode corresponding to a p;— mode for an atmosphere with D = 10.0,
€=10.5 K =0.1and Q,; = 0.8.

to zero-gradient boundary conditions. Figure 3.16 shows the variation of different com-

ponents of the energy density with z for the p,— or second order slow magnetoacoustic
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mode with K = 0.1 and Q,; = 0.8. Figure 3.16 reveals that the kinetic energy dens-
ity is the dominant component to the total energy density, whereas the internal and
gravity energies contribute to a lesser extent. However, the magnetic energy also does
not contribute, which is not surprising since we are essentially dealing with an acoustic
mode in a cavity. We also find that the total energy density is a harmonic function of

height and is spread over the entire extension of the cavity. Let us turn our attention
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Figure 3.17: Energy density of the fast magnetoacoustic mode in the high magnetic field case.
Panel (a) shows the kinetic(solid line) and magnetic (dashed line) energy density corresponding
to m;— mode in an atmosphere with D = 10.0 and € = 0.5 at K = 0.01 and Q,; = 0.96. Panel
(b) shows the total energy density corresponding to mj;— mode. The dashed line corresponds
to an atmosphere with D = 5.0,¢ = 0.8 at K = 0.1,€,,; = 1.6 and the solid line corresponds
to an atmosphere with D = 10.0,¢ = 0.5 at K = 0.01,2,,; = 0.96.

0

to the fast magnetoacoustic modes or m— modes in the strong field limit. Figure 3.17a
shows the height variation of the various components of the total energy density for
D = 10.0,¢ = 0.5 for the m, — mode with K = 0.01 and €,,; = 0.96. In Figure 3.17b
we show the energy density in a fast magnetoacoustic mode for different values of D
and €. The solid line corresponds to the m;— mode for D = 5.0,¢ = 0.8 at K = 0.1
and Q,,; = 1.6, and the dashed line correspond to D = 10.0,e = 0.5 at K = 0.01
and Q,,, = 0.96. If we examine the fast mode, we notice that the wave energy density
decreases rapidly with height, which suggests that such waves are localized in the lower
regions of the atmosphere within a few scale heights of the bottom boundary. In the
lower part of the cavity, the main contribution to the total energy density comes from

the magnetic and kinetic energy. The latter is mainly due to the horizontal velocity
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perturbation. This is of course related to the fact that we are dealing with a fast mode
of the magnetic type trapped in a cavity, in which the wave is reflected back at a fairly

low height, due to the rapid increase of the Alfvén speed. We now examine the proper-
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Figure 3.18: Height variation of the energy density for MgL—~ mode in an atmosphere with
(a) D =5.0,e = 0.8 at K = 1.5 and 2 = 0.412, (b) D = 20.0,¢ = 1.05 at K = 0.2 and
Q=0.2

ties of the gL— mode in the strong field limit. Indeed because of the strong magnetic
field, the pure gL~ mode modifies into a magneto- gravity-Lamb mode or M gL — mode
(as already pointed out in §2.6.1). Figure 3.18a shows the height dependence of en-
ergy density for a MgL— mode in an atmosphere with D = 5.0,¢ = 0.5 for K = 1.5
and ) = 0.412 (Fig. 2.12a shows the corresponding K — Q diagram). Note that the
gravitational energy is the major contributor to the total energy density of this mode,
which further supports the fact that this mode behaves essentially as a gravity mode
for large K. Because of the strong magnetic field the magnetic energy density has also
grown considerably as compared to Figure 3.14a. We also find that the energy density
falls off very rapidly with height similar to the fast modes. Let us increase the height
of the cavity still further to D = 20 and also consider a large magnetic field strength
such that € = 1.05. This choice of parameters might be relevant to an active magnetic
field concentration region. The height dependence of the energy density for the MgL—
mode has been plotted in Figure 3.18b with K = 0.2 and 2 = 0.2 (Fig. 2.13 shows the
corresponding K — () diagram). Note that the magnetic and the internal parts are the

dominant contributors to the total energy density. We find once again that similar to
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the fast modes, the energy density for this mode is localized in the lower lower part of
the atmosphere. This suggests that the M gL — mode may not be a good candidate for

heating the atmosphere above highly concentrated magnetic field structures.

3.6.2 Umbral oscillations

Let us now consider the application of our result to umbral oscillations. As already
pointed out, observed umbral oscillation falls in the range 120 - 200 s. From the
preceding discussion and that in Chapter 2, we find that these oscillations fall into
three basic categories associated with slow, fast and MgL— modes. The last two are
essentially confined to photospheric regions (i.e.the lower part of the atmosphere), where
the wave energy density in the former is spread over the entire extension of the cavity.
As far as wave heating is concerned, the slow mode appears to be a more promising
candidate than the other two. Figure 3.19 shows a part of the diagnostic diagram for
D = 20(Chromospheric height) and ¢ = 1.3 (B = 3000 G) corresponding to the zero-

gradient boundary condition. ( This diagnostic diagram could be relevant for observed

| P
[+)
0.8 —
Ps R
0.6 | P
c P
0.4 }
QMQL
0.2
0 A A 1 1 5
0.02 0.04 0.08 0.08 0.1

K

Figure 3.19: Enlarged portion of the diagnostic diagram in the strong field case with D = 20
and € = 1.3 (B = 3000 G).

umbral oscillation, and differs from the one given by Hasan (1991), in the choice of
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boundary conditions. In this part of the diagnostic diagram we find only slow modes
and the MgL— mode. The figure reveals the absence of avoided crossings since the
modes are widely separated in frequency, suggesting that they can be studied in terms

of uncoupled modes. Figure 3.19 also indicates that for the slow modes the frequency

{ Mode type T Q ] P(s)]

Mgl | 0.2969 | 325
P 0.5241 | 184
. 0.5905 | 164
Ps 0.6870 | 140
s 0.8029 | 120

Table 3.2: Eigenfrequencies of different modes corresponding to a sunspot with D =

20, B = 3 kG and radius = 5000 km.

hardly varies with K'; moreover these frequencies match well the ones calculated from
expression (2.67). Thus in the limit K — 0, the dispersion relation (Eq. [2.67])
is quite accurate. One can also show that these slow modes are insensitive to the

strength of the magnetic field as already pointed out by Hasan (1991). Table 3.2 lists
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Figure 3.20: Tiie real part of &, (panel a) and &, (panel b) as a function of height for K = 0.1
corresponding to different order p— modes as labeled with frequencies Qp; = 0.524,Qy; =

0.59,andQy3 = 0.687 for an umbra with D = 20 and B = 3000 G. The normalization is
arbitrary.

calculated eigenfrequencies from Figure 3.19 for K = 0.062, which corresponds to a
typical sunspot umbra with a radius of 5000 km. It shows that the uncoupled slow

modes are very much within the observed range. Thus the mode leakage phenomenon
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due to rmode coupling may not be as important for sunspots, as for small flux tubes as

already pointed out(see Table 3.1 and Fig. 3.15). To shed further lights on the properties

40
P .
£ 30 ‘.
C .‘
° ;
O 5
fg 20 f‘
© b ',‘
g ‘ 2 P //f\\
e e WA
£ 90 N : ; \
X \ LN \
N
. \ /
0 . " Ly
0 5 10 15 20

Height

Figure 3.21: Variation of Wy, with 2 for n = 1,2,3 assuming B = 3000 G and K = 0.1
(Radius = 3150 km). The normalization is arbitrary.

of the slow modes we plot the eigenfunctions and kinetic energy densities associated
with these modes. Figure 3.20a,b depict the variation of ¢; and ¢ with height for the
first thiree ordered slow modes. The change in ;, close to the upper boundary,' occurs
because of the rapid decrease in the density. Now let us examine the variation of the
kinetic energy density with height for various order p— modes. Figure 3.21 shows the
height wvariation of Wi;,. Note that the energy of the modes is distributed uniformly
over the height range under study. The occurrence of multiple peaks for higher order

is due to the exislence of nodes in the velocity distribution.

3.7 Conclusion

In this study we have undertaken a detailed examination of the complex wave frequency
. i t

spectrum. On the basis of quantitative calculations, the present analysis has brought ou
: . : ti

many useful properties of waves in a magnetized stratified medium. The asymptotic

i ' f
analysis in the weak field limit carried out in Chapter 2 predicted the presence 0

) . ulations show
complex roots in certain regions of the k — w diagram. Indeed, our calcula

; ' tion
that the large gaps near the vicinity of avoided crossings (found under the assumptio
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of real frequencies) get filled up by the real part of the complex frequency. In these
regions, the imaginary part of the frequency is finite, and zero elsewhere. An interesting
feature of the results concerns the nature of the eigenfunctions when there is a strong
coupling between modes. We find that at the avoided crossings between two modes,
the mixed mode acquires the properties of both the modes, which manifests itself by
the real and imaginary components of the displacement taking on the characteristics of
both the modes.

An important consequence of the above results s that mode coupling can lead to a
leakage of wave energy {rom the cavity, even in the absence of a dissipative mechanism.
It appears that the boundary conditions permit the phase relationship between the
modes to be changed in a manner so as to allow the wave to leak out from the boundary,
thereby leading to a loss of energy from the cavity. This bebavior occurs only when there
is a strong mode coupling for certain combination of frequencies and wave numbers.
For the strong magnetic field case, we find that the coupling of the M gL— mode with
a p— mode can lead to a Jeakage of the wave energy from a cavity in a time as short
as two oscillation periods. This may be relevant for small flux tubes of radii in the
range 300-500 km. Our results complement those of Cally and Bogdan (1993) and
Cally, Bogdan and Zweibel (1994), where wave-leakage through the lower boundary of
a magnetized polytropic atmosphere is explicitly taken into account. However, in our
calculations the leakage of wave energy occurs precisely at the avoided crossings, but
not elsewhere.

By studying the the height variation of the wave energy density and its different
consti! 1ents, we have been able to get further insight into the nature of the various
modes in the atmosphere. For parameters typical to sunspots, we find that the fast
and MgL— modes are localized in the lower part of the cavity, whereas the slow mode
energy is distributed over the full extension of the cavity. We identify the slow mode as a
potential candidate for heating the atmosphere in active regions. For umbral oscillations,
our results are compleme :tary to those of Hasan (1991), who made a detailed analysis
of the nature of various modes in sunspots.

Despite the assumption of an isothermal atmosphere, our results provide an insight

into the fundamental nature of mode coupling in magnetic flux tubes. So far we have
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assumed adiabatic conditions, in the forthcoming Chapter we enlarge the scope of our

analysis by explicitly taking the influence of radiative damping on the various wave

modes.



Chapter 4

Effects of Radiative Cooling on Waves

4.1 Background

In the previous Chapters the interaction of various elementary modes in a stratified
magnetized atmosphere was studied in the purely adiabatic limit. Oscillations in a
realistic stellar atmosphere are affected by radiative dissipation and energy losses at the
boundaries. Thus the modes are damped and have complex frequencies. In this Chapter
we examine the influence of non-adiabatic effects on the modes of an isothermal stratified
magnetized atmosphere. The inclusion of radiative dissipation based on Newton’s law of
cooling demonstrates the importance of this effect in the study of magnetoatmospheric
waves. It was pointed out by Binte and Bogdan (1994) that Newtonian cooling can
be incorporated in the solution of isothermal magnetoatmospheric wave problem by
replacing 7, the ratio of specific heats, by a complex frequency-dependent quantity.
This procedure permits one to generalize easily the previous calculations to include
radiative dissipation. Binte and Bogdan treated a planar, isothermal and stratified
atmosphere in the presence of a horizontal magnetic field, whereas in this study we
consider a vertical magnetic field. We shall consider the effects of radiation losses
on MAG waves in a stratified magnetized atmosphere. We consider wave damping
by radiative energy exchange, which is likely to bé efficient in the solar photosphere,
where radiative relaxation times are very short compared to typical wave periods. By
comparison, damping of hydromagnetic waves due to viscous dissipation and particle
conduction is entirely negligible in those layers of the solar atmosphere where small

amplitude disturbances are likely to occur. As we will see later, the condition for the

108
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propagation of gravity waves, which depends on the existence of the buoyancy force,
is more stringent in the presence of radiative damping than in its absence (Bray and
Loughhead, 1974).. Equally significant are the changes which result in the phase and
amplitude relationship among the perturbations in density, pressure, temperature, and
velocity. In fact, observations of such relationships may ultimately prove to be of crucial
importauce in identifying the wave modes actually present in the solar photosphere and
chromosphere. In this connection, Schatzman and Souffrin (1967) have pointed out that
radiative damping may lead to heating of the atmosphere.

Noyes and Leighton (1963) poiuted out that the time scale 7 for radiative relaxa-
tion is of the order of 1 s at the photospheric level, but increases rapidly with height.
Leighton et al. (1962) mecasured the mean lifetime of oscillations by the decay of the
velocity time autocorrelation function and give a value of 380 s. According to Zirker
(1964), oscillations persist for 2 to 4 cycles. Deubner (1967) gives 20 min as a mean
lifetime. Temperature fluctuations. which are correlated with the oscillations were ob-
served by Leighton ef al. (1952).

The radiative damping of oscillatory modes in a optically thin, isothermal, unmag-
netized medium was studied by several authors (Stix, 1970; Souffrin, 1972; Mihalas
and Mihalas, 1984). Bogdan and Knolker (1989) obtained the dispersion relation for
linear compressive plane waves in a homogeneous, unstratified, uniformly magnetized -
radiating fluid. Here we cousider the propagation of optically thin MAG waves in a
stratified, uniformly magnetized medium in which radiative energy exchange occurs
through Newton’s law of cooling. The main effect of radiation is to damp the waves.
The plan of the Chapter is as follows: in §4.2, the basic wave equations are presented,
including Newton’s law of cooling. This is followed in §§4.3 and 4.4 by an analysis of
the asymptotic solutions in the limits of vanishing and infinite horizontal wave number
respectively. In §4.5 we present the dispersion relation for a weak field followed by
numerical results in the form of K — ) diagram. In §4.6 we treat the strong field case.

Finally, a discussion of the results are taken up in §4.7.
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4.2 The wave equation with Newtonian cooling

We shall confine our attention to an isothermal atmosphere with a vertical magnetic
field which is unbounded in the horizontal direction. In addition to the momentum
equation (Eq. [2.2]}, we rewrite the energy equation as,

at‘;] + 6 % ‘;?- + (v = 1)V dv= -%% (4.1)
where §v = 8,€ is the velocily perturbation, T is the temperature of the gas and 67 the
temperature perturbation. We assume the Lagrangian displacement E varies e{@=*)
where w is the angular frequency and k is the horizontal wave number. Unlike the
adiabatic case considered previously, we allow for radiative losses, approximating them
by Newton’s law of cooling (e.g. Spiegel, 1957; Mihalas and Mihalas, 1984), which
assumes that temperature fluctuations are dainped radiatively on a time scale 7, given

by
_ P
T lxo T

where x is the mean absorntion coefficient per unit length, ¢, the specific heat per unit

™ (4.2)

volume, and ¢ the Stefan Boltzmenn constant. For simplicity, we assume that 7y is
constant over the atmosphere. If the vertical dimension of the perturbation is small
compered to the loca] scale Leight, the relation between the Lagrangian perturbations
in pressure p and density p is then approximately given by ép/p ~ v*dp/p, where

. I + w7y
7 w) = (4:3)
-+ IWTR

With t- ese assumptions, the lincarized equations for MAG waves are given by a system

of two coupled diflerential equations,

2 d
[U/z\gfi — (ek + vi )k* + w¥ie — ik(%cga— -9). =0, (4.4)
., d? . d . .9 d .
ey —Fens +l — ikl — (- Dg =0, (43)

where ¢, and ¢, are the amplitudes of the vertical and horizontal displacement, g is the
acceleration due to gravity, and 4 = v*/y. The adiabatic sound speed and Alfvén speed
are given, respectively, by

N 7 R -
Cg = — al VA =
0 4

) (4.6)

3



Chapter 4. Effects of Radiative Cooling on Waves 111

equations (4.4) and (4.5) have the same structure as the linearized wave equation for
adiabatic perturbations (sec Egs. [2.16}-[2.16]), apart from the appearance of the para-

meter ¥, which incorporates rudiative cooling. In non-dimensional form equation (4.3)

Figure 4.1: The complex parameter 7* as a function of Qfg. As Q7g varies from 0 to oo, ¥*,
defined in Eq. (4.7), describes a semi-circle in the complex plane.

can be written as
. 1+1Qmy
T T T 0%

where the dimensionless relaxation time scale is given by T = (cs/H). As Q7r

, (4.7

varies from 0 to oo , y* describes a semi-circle in the complex plane as shown in Fig 4.1
(see also Biinte and Bogdan). TFigures 4.2 a and b show the variation of the real and
imaginary parts of ¥* respectively as a function of 17g. We find that for 7g < 0.1, v*
approaches the isothermal limit, and 4* = 1. For Q7g > 10, Re(y") = 5/3 = . Thus
in the limit 7R, — oo f.e. in the limit of adiabatic perturbations, v* =y and 4 = 1.
Letting 4 = 1 in equations (4.4) and (4.5) we recover the linearized equations given in
Chapter 2. The imaginary contribution to 4* is maximum for Qg ~ 1. Thus to study
the maximum effect of radiative hea! exchange we should choose our parametric values
such that 37g becomes close to 1. In terms of the variables defined by equations (2.20)

- (2.22), equations (4.4) and (4.5) can be combined into a fourth-order differential
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where 02, = (7" — 1)/47" is the square of the effective Brunt-Vaisild frequency (in
dimensionless units). This Brunt-Vaisala frequency is a function of frequency in the

non adiabatic case. Figure 4.3 shows the dependence of gy on the radiative relaxation
0.6
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Figure 4.3: The variation of the real part (solid line) and the imaginary part (dashed line) of
the effective Brunt-Viisila frequency Qpv, (in dimensionless units) as a function of Q7g.

time 7r. The solid line depicts the real part whereas the dashed line represents the
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imaginary parts of Opy. Note that for 27 > 10, Qv reaches a constant value of 0.5
( corresponding to the adiabatic limnit). On the other hand, as Q7g — 0, Re(Qgv)
< 0.1. Thus in the isothermal limit, flgy which-is the higher cutoff frequency for the
g— modes is very low, tlie consequences of this will be taken up again when we discuss
the properties of g-- mode: in detail. Figure 4.3 also reveals that the imaginary part of
Qg is significant only for Qip ~ 1.

The general solution of equation (4.8) can be expressed in terms of Meijer functions

(Zhugzhda 197¢) as follows:

=6l (i 0L P) Ghelok iR, w9

His
where
(141

fri2 = {;,'l(‘y")w paq = LK, (4.10)
ayg = u _‘i@ ) (4.11)

2

22
o= fae , (4.12)

5
¢ = \/—a? + 4K2(1 - O3, /). (4.13)

These solutions are very similar in nature to the purely adiabatic case (see Appendix B).
Once () is known, it is fairly straightforward to determine the corresbonding solutions
¢ from either of equations (4.4) or (4.5). The complete solutions satisfying the re-

quired boundary conditions can be constructed as linear combinations of Eg‘) and §§“).

4.3 Solutions for X — 0

For physical reasons and also for the purpose of mode classification it is instructive to
consider first the limiting case K — 0. ;From equations (4.4) and (4.5), we find that
in the limit K = 0, &, and ¢, become decoupled. It is fairly straightforward to see that

as K — 0, there are two sets of solutions (HC):
o = c1do(26) + .Yo(20), £ =0, (4.14)

£, =M 67 £ =0, (4.15)
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where o = (40%/7 — 1)*/2,¢; (i = 1,2,...) are constants, and Jp and Y, are the
Bessel functions. The asymptotic limit of equation (4.14) corresponds to the slow
MHD waves for arbitrary field strength and this solution is the same as in the case of
purely adiabatic propagation. Thus the radiative diffusion does not affect the slow MHD
waves discussed in Chapters 2 aud 3. Un the other hand, equation (4.15) represents
a vertically propagzating wave approximately when |Q| exceeds the cutoff frequency Q.
(which in dimensionless vnits is \ﬂi—}/)) In the limit Tq — o0, §); reduces to the
adiabatic acousti~ modes in an unmagnetized plasma. In the general case of a finite
cooling time, thie solutions of equation (4.15) are affected by the radiation field compared
with the purely adiabatic case. The properties of these modes w I be taken up in the

next section.

4.4 Solutions for K - o©

In the limit K — oo, it can be easily seen that equations (4.4) and (4.5) reduce to the

following differential equation (Moreno-Insertis and Spruit 1989; see also HC)

d2 1 & de. 1 & 2 . 2
4G Loade TGy G, 4 T =0, (4.16)
dz? H Ackdz  H*E vy Yyt

where ¢r denates the complex tube speed given by

2 G (4.17)
‘r =z z :
1Cs + va

When cg/vy > 1, e — va and equation (4.16) becomes

d?¢, 1 %

dz? _1?753:

(Q*—-0%,)6.=0. (4.18)
equation (4.18) admits the solutions

E. = dyJo(¥) + daYo(¥) , (4.19)

where d; and d, are constants and

b=\~ (4.20)

For propagating wave solutions, 0 > Qpv. Such solutions correspond essentially to

MHD waves, modified by gravity. They will be discussed in greater detail in §4.5.1.1.
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4.5 Normal modes in a weak magnetic field

4.5.1 Rigid boundary condition

We now determine the normal modes of a stratified atmosphere including nonadiabtic
effects (approximated by Newton’s law of cooling). We examine the same atmospheric

modes as studied in Chapters 2 and 3.

To calculate the normal modes of the system let us first consider rigid boundary condi-

tions, viz.
(=6 =0 at 2=0 and 2z=d. (4.21)

The asymptotic properties of the solution in the purely adiabatic limit are presented
in Appendix B. Following the same line of treatment using equations (4.9)-(4.13) and

applying the boundary conditions given by equation (4.21) one can derive the following

dispersion relation in the weak field limit

2 A ~
("STI:“ - }\’2) sin 0 Sill(h’z 1)) = 2 '?'S%GDM{KZKQ[COSh(D/‘i)COSHCOS(KZD) _ 1]
Y
~ 02 9 1 1 €
+sinh(D/4) cos O sin(K, D)[M(— — K*) - K*(—= - —)]} +0(53)s (4.22)
g o2 )
where K? is given by )
K?= L K*(1— %V—) 2 (4.23)
r = :Y ﬂz 41
and o
1
_ gty L (4.24)
M=K 0z 16
For € << (1, the dispersion relation to lowest order in ¢/{) becomes
2 ~
(9: — K*)sin@sin(K.D) = 0. (4.25)
5
equation (4.25) admits the following solutions
sin(K,D) = 0, (4.26)
sinf= 0, (4.27)

Q= ﬁ K. (4.28)
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We first consider the solution given by equation (4.26) which implies that K,D =
nm, where n is an integer and denotes the order of the mode. Using this condition

equation (4.23) yields,

%—4 - QXK + i) +KQpy =0 (i=p,9), (4.29)
where K} = K* + K?. Note that equation (4.29) looks very similar to the usual
relation for p— and g— modes (sec Eq. 2.36) apart from the factor 7 and modified Qgv.
Because of the presence of these two factors, properties of these modes have changed
drastically. Figures 4.4a,b give an overview of the behavior of the g— and p— type
modes respectively. Their properties are reflected in these two K —{) diagrams produced
by solving equation (4.29) for different values of the relaxation time 7r. Figure 4.4a
clearly shows that the gy — mode has been pushed down to the low frequency part of
the diagnostic diagram with decreasing value of 7r. As 7 — 0, the g;— mode tend to
disappear, because Qlgy — 0. On the other hand, Figure 4.4b shows that inclusion of
radiative exchange has not greatly changed the behavior of the p;— mode, apart from

a decrease of the acoustic cutoff frequency.
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Figure 4.4: Diagnostic diagram for non adiabatic modes. Panel (a) for g;— mode and (b) for
p1— mode. Different line styles correspond to different radiative relaxation time 75 as labeled.

The solution corresponding to equation (4.28) can be recognized as a modified Lamb
mode (compare with Eq. [2.33]). Thus we expect a frequency shift of the adiabatic Lamb
mode. Consequences of this frequency shift will be taken up later. Turning our attention

to the solution given by equation (4.27), we find that these modes are the same magnetic
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modes present in the adiabatic conditions. Thus these slow modes are not affected by

the inclusion of radiative losses in the weak field limit. This result complements the

result of Bogdan & Kndlker (1989), where it wag conjectured that the uniform magnetic

field reduces the temperature perturbations associated with these waves and therefore

suppresses the radiative damping of these disturbances. This aspect will taken up later

when we discuss the numerical solutions.
4.5.1.1 Numerical results

The behavior of the MAG waves is reflected in their properties in the K ~ () diagram.
Figures 4.5 a,b show respectively the variation of the real and imaginary part of the
complex frequency with horizontal wave number K, for 7 = 0.05. The solutions
were obtained by solving the equation (4.8) numerically, using a complex version of
the Newton-Raphson- Kantorovich scheme (Cash and Moore, 1980). The atmosphere is
characterized by I = 1, ¢ = 0.01, and y = 5/3. Figure 4.5 depicts a portion of the K~
diagram for < 0.5 where the magnetic modes are strongly influenced by the Lamb
mode. The short-dashed curve represents the purely adiabatic Lamb mode, whereas the
long-dashed curve represents the non-adiabatic Lamb mode solution given by 0 = /AK.
Figure 4.5 also reveals that the frequency of the Lamb mode is changed due to damping.
The separate dispersion relations for individual modes (Eqs. [4.26] -[4.28]) enable us to
identify the elementary wave modes and discern the effects of radiative heat exchange
on the general properties of the modes. Firstly, the real parts of the frequencies of
the magnetic modes are not affected by the inclusion of radiative losses, as expected
from asymptotic solutions (Eq. [4.27)). However, the avoided crossings have shifted
because the pure Lamb mode has been modified. Another interesting feature, shown in
Figure 4.5b, is that we have a substantial increase in the imaginary part of the frequency
in that portion of the K — § diagram where there is an avoided crossing between the
modified Lamb mode and the magnetic modes. It appears that damping is enhanced in
those parts of the K — ) plane where the modes behave predominantly as Lamb mode.
The even ordered m— modes, which behaves predominantly as a magnetic mode starts
out with comparatively low Im((). At the avoided crossing of Re((2), the two modes

; imagi encies.
exchange their nature, leading to a crossing of the imaginary parts of the frequ
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The alternation between narrow and broad avoided crossings of the real part of Q in
Figure 4.5a gives risc to an asymmetry in the behavior of the imaginary part of () as a
given mode changes between being predominantly a m—mode and a Lamb-mode. This
is closely analogous to the results of the asymptotic analysis of Chapter 2, concerning the
bebavior in the vicinity of nearly degencrate modes: in the present case of nonadiabatic
wave propagation, we again find that ‘even’ crossings are typically much narrower than
the ‘odd’ crossings.

A striking difference, compared with the adiabalic case, is the lack of an upturn
in @ (in Fig. 4.5a) as a function of K for the m;— mode at the highest K considered
(compare with Figure 5 of HC). As discussed in HC, this upturn probably arises be-
cause of the interaction with the lowest-order g— mode; otherwise, the low-frequency
g— modes, with frequencies below the m;— mode, appear to be eliminated. With New-
tonian cooling, the eflective Brunt-Vaisala frequency, given by 02y, = (v* = 1)/y7" (in
dimensionless units), decreases with decreasing Tr and is zero for Tr = 0. The same is
therefore true of the frequencies of pure (i.e., non-magnetic) g— modes. Indeed, in the
case of a non-magnetic atmosphere it was shown (Mihalas and Mihalas, 1984; Bunte
and Bogdan, 1994) that if cooling occurs on a sufficiently short time scale, gravity waves
cannot exist. Physically, this is not surprising: the buoyancy force that drives' grav-
ity waves, arises solely from horizontal temperature fluctuations, which vanish when
™ — 0. This explains the lack of effect of the g— mode interaction in Figure 4.5a;
indeed, we note that the real part of Qgv, evaluated at Q = 0.5, is about 0.072 for
this value of 7. We conjecture, however, that the comparatively rapid increase of the
imaginary part of the frequency of the m;— mode with K (in Fig. 4.5b) might be re-
lated to a beginning influence of the low-frequency g— modes for larger values of K.
Now let us increase the the value of 7 and look for the influence of the g— modes.
Figure 4.6 shows the low frequency part of the K- diagram for large values of K, with
7r = 0.5 (compare with Fig. 5b of HC). Now we can observe the upturn in {} as a
function of K for the low ordered magnetic modes at large K. This clearly indicated
the influence of the g— modes as expected. The m— modes begin to acquire a g— like
character for K >> €. For moderate K, the various modes, corresponding to solu-

tions of equations (4.26) —(4.28), become decoupled. As a result, the solution neither
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Figure 4.6: Diagnostic diagram showing the interaction between the magnetic modes with
gravity modes, for a dimensionless rdiative relaxation time 7r = 0.5 at moderate to large K.

resemble pure m— modes nor pure g— modes, but a combination of the two. As K
is increased further, there is a tendency for the lowest modes to run in parallel with
a small frequency separation, similar to the behavior in the purely adiabatic case (see
Fig. 2.3b). We might note that superficially similar phenomenon have been obtained
armongst the energy levels of hydrogen atom in a magnetic field (Friedrich an(i Wingen,
1989). The striking effect of finite 7g 1s the frequency shift of the gy, which marks the
upper bound on the g— mode frequencies in the non-magnetic case. Figure 4.6 reveals
that this upper bound has shifted to around § = 0.42 for 7r = 0.5, as compared to
the adiabatic case, where Qlgy = 0.49 for v = 5/3 (see Fig. 5 of HC). This result is
in agreement with the analytic solution discussed in §4.4. Let us concentrate on the
magnetic mode and the modified Lamb-mode interaction in Figure 4.7a for different
values of 7n, the dashed line representing the pure adiabatic Lamb mode. This shows
the effect of different relaxation time scales on the modes. As 7r increases, i.c., a8
we approach the adiabatic limit, the avoided crossing shifts towards the left and the
modified magnetic mode approaches the dashed line (behaves more as a pure adiabatic

Lamb mode). Hence the general effect of a finite cooling time is the shift of the avoided

intersection point. It is instructive to consider a single mode, which we choose 33 the



Chapter 4. Effects of Radiative Cooling on Waves 121

02— e ——

a)
b)
0.006 /|
/4l Ta=l
///iAT / p
0.004 [ P ~
AT -~
Im(Q) ~ 5 H\)' R™ e ,’/
TR= f /II - ,'”/ = 2 o~
0.002 | // /’ || “ Te=005  _-7 St
2% ,\/lf\‘ T T
/;,;/ b '( ’;;\-:__:_;_:__":,,/——’j”_ ———————————————————
0 1” N e T O - L o
0 0.1 0.2 0.3 0.4
K

Figure 4.7: Region of interaction between m- and Lamb-type solutions for different val-
ues of 7r as labeled. Variation of (a) real part and (b) imaginary part of the frequencies

with K.



Chapter 4. Effects of Radiative Cooling on Waves 122

first magnetic mode m,—, and follow its behavior as it interacts with the Lamb mode.
Figure 4.7b depicts the variation with K of the imaginary part of the complex frequency,
for different values of Tg. The figure clearly reveals that for 7 > 5 and g < 0.05 the
imaginary part of () approaches zero, which further indicates that in these limits there
is no dissipation. However, for intermediate values of 7r there is mode damping. As
seen above, the damping is largest where the modes take on the nature of a Lamb
mode in the avoided-crossing regions. Another interesting feature is that in the range
0.05 < Tr < 5 we have a considerable increase in the imaginary part of  for large
values of K; as before, this indicates a growing coupling between g— modes and the

m~ modes which allows the modes to decay faster.

0.0025

0.002 |

Figure 4.8: Variation of the imaginary part of Q with K for 7 = 0.5. The different line styles
corresponds to different ¢ values (which is a measure of magnetic field strength) as labeled.

Now we turn our attention to the effect of the strength of magnetic field on the
damping of these waves. To delineave the influence of the magnetic field, we choose the
mz— mode, which is predominantly magﬁetic in nature. Figure 4.8 shows the variation
of the imaginary part of frequency (which is a measure of the damping) with K for fixed

#r = 0.5. The different line styles corresponds to different € values. It clearly reveals
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that as we increase the value of € (increasing magnetic field strength) the imaginary
part reduces, indicating less damping of these wave modes. This result is in agreement
with the conclusions drawn by Bogdan and Knolker (1989), that the magnetic field
suppresses radiative damping. For horizontal magnetic field Biinte and Bogdan (1994)

have also reported a “stiffening” of the atmosphere with increasing ¢ values.

4.5.2 Zero-gradient boundary condition

If we use zero-gradient boundary condition (Eq. [2.29]), in addition to all these modes
we find another wave mode, namely the gravity-Lamb mode. The dispersion relation

for this mode is given by

1

KZ+ =0 (4.30)

Combining equation (4.30) with (4.23) yields
O — 502K 4 3K, = 0. (4.31)

This equation has the solution

~ xr2

(22:7
2

()2 1/2
BV
14 (1 - 41‘,2:7) ] . (4.32)

The solution resembles a modified gravity mode on the lower branch and a Lamb mode
on the upper branch. In order to see this, consider the limit K — oco. The smaller
solution in equation (4.32) has the limit Q ~ Qgy, which is the dispersion relation for
a modified g—mode for large K; the larger solution has the limit Q ~ /7K for large
K, which shows that the mode behaves like a modified Lamb wave.

Thus the separate modes have changed their behavior in the diagnostic diagram in
the non adiabatic case. It is important to know how these modified modes interact with’
one another in the presence of radiative losses. Mode coupling in the non adiabatic case
will be different as compared to the adiabatic case studied in Chapters 2,3. In fact the
right hand side of equation (4.22) contributes to the coupling

Let us now consider the moderate magnetic field strength case, Figure 4.9 shows a
region in the diagnostic diagram for € = 0.1 (B ~ 240 G) and 7r = 0.5, subject to
the zero-gradient boundary condition (compare this figure with Fig. 2.8b). The mode
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Figure 4.9: Region in the diagnostic diagram for moderate field strength (¢ = 0.1) and
7r = 0.5, where there are modified Lamb mode, magnetic mode and gravity-Lamb mode as
indicated. Results for zero gradient boundary conditions.

coupling in this case is much more complicated because we have three mode interaction
regions as indicated.

As K increases, the m;— mode begins to acquire the character of a modified Lamb
mode as before. Figure 4.10 a, which shows the vuriation of imaginary part of the
frequency of the m;— mode with K also reveals that, there is an enhancement as it
approaches an avoided crossing (near K = 0.8) followed by a suppression due to mode
transformation. Upto K = 0.8 this mode behaves as a magnetic Lamb mode and after
the mode transformation it becomes a magnetic type. This process is repeated at higher
frequency (around K = 2). Note the large drop due to magnetic field suppression.
Figure 4.10 b shows the variation of imaginary part of the frequency of the m;— mode
(of Fig. 4.9) with K. The two peaks corresponds to modified Lamb and m— mode
coupling and modified gL— and m— mode coupling respectively. Note the steep rise

of the imaginary component after the avoided crossing which indicates the effect of
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Figure 4.10: Variation of the imaginary part of 2 with K for moderate field strength (¢ = 0.1)
and g = 0.5 Panel (a) shows the n;— mode and panel (b) the m;— mode.

gravity mode. Figure 4.9 also shows the lower branch of the modified gravity-Lamb

mode (indicat,ed as S~2g1/) which was absent in Figure 2.8b.

4.6 High magnetic field case

We now consider a situation which is more realistic as far as the solar atmosphere is
concerned. We consider an isothermal atmosphere extending over several scale heights
for which v4 > ¢s over most of the atmosphere. This situation is somewhat similar to
the atmosphere in sunspots.

It is well known that periods of oscillations above a sunspot’s umbra range between
100 and 200 s. Upto now, a lot of ncw measurements in different spectral lines have
been made (Thomas et al. 1984, 1987; Gurman, 1987; Alisandrakis et al. 1992). Recent
observations (Kentischer and Mattig, 1995) of umbral oscillations in the middle and
upper chromosphere show pronounced power at frequencies between 5 and 9 mHz.
They conclude that the first peak at 5.9 mHz consists mainly of upward propagating
waves traveling with sound speed. There are indications that these waves have their
origin in the photospheric resonator. The second distribution is located at 7.5 mHz and
oscillations involved here are standing waves which are confined to the chromosphere

(chromospheric resonator).
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The primary concern is to examine the effects of Newtonian cooling on the normal
modes of an isothermal atmosphere including radiative losses. We have seen from previ-
ous studies (Hasan, 1991; Wood, 1990; see also Chapter 3) that the slow magnetoacous-
tic modes or p— modes are the most important wave mode for carrying energy to the
upper atmosphere. We will concentrate on the properties of this mode and will also
study its interaction with other modes.

The frequencies of the slow magnetoacoustic modes or p— modes can be found from

equation (4.29) with K =0, 1.e.

0, = &(";2 + %) , (4.33)
where n denotes the order.
Table 4.1 represents the eigenfrequencies of different order p— modes from our model
atmosphere with I) = 10, 74 = 0.5 and ¢ = 0.84 (B ~ 2 kG). The relation between
the horizontal wave number and radius of the flux tube has already been discussed in
Chapter 2 (sec §2.6.2). Table 4.1 reveals that radiative cooling shifts the eigenfrequen-
cies away from the real axis. Note that the computed frequencies match ver).r well with
the ones calculated fromn expression (4.33). Also note that the p,— mode has a period
of 136 8 in the presence of radiative losses, this value is very close to the observed peak
at 7.5 mHz (Period 134 s) by Kentischer et al. (1995). This observation was reported

at layers near the temperature minimum which correspond to about 1000 km over the

photosphere (D = 10, in our notation).

Adiabatic case Radiative case Isothermal case
(Fr = 100) (7 = 0.5) (7 = 0.05)

Mode | Re(2) Im(Q) P(S) | Re(2) Im(Q2) P(S) Re(§)) Im(Q2) P(S)
3} 0.5903 0.0007 164 | 0.5203 0.0658 186 | 0.458 0.0125 211 °
D2 0.803 0.0009 120 | 0.7075 0.0895 136 | 0.624 0.017 155
D3 1.07 0.0013 90 0.94 0.119 103 | 0.828 0.0227 117

Table 4.1: Eigenfrequencies of different order p— modes for a model atmosphere with
D =10,B =2kG,7r = 0.5 and K = 0.1.

Radiative cooling leads to a temporal decay of oscillations of the form exp(—t/7p).

The frequency eigenvalues of the four modes are listed in Table 4.2 for different mag-
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netic flux tubes together with the ratio of characteristic decay time 7p =Im(w)~! and
oscillation period = 27 /Re(w). One should not attach a great deal of significance to
any flux tube model (see Table 4.2 ); rather these structures have been chosen to il-

lustrate a wide variety of possibilities. In the presence of Newtonian cooling all four

| Structure [ K | Radius (km) [ Re(®) | Im(Q) | P(S) [ 7o(S) /P |
Sunspot... 0.06 5000 0.520 | 0.0659 | 186 | 233 | 1.25
0.605 | 0.0767 | 160 | 200 | 1.25
0.706 | 0.089 | 137 | 173 | 1.26
0.820 | 0.104 | 118 | 148 | 1.25
Magnetic knot.. | 0.37 850 0.52 | 0.0682 | 186 | 226 | 1.21
0.604 | 0.080 | 160 [ 192 | 1.20
0.704 | 0.089 | 137 | 173 | 1.26
0.819 | 0.103 | 118 | 149 | 1.27
Magnetic element.. | 1.57 200 0.523 | 0.067 | 185 | 230 | 1.24
0.608 | 0.078 | 159 | 197 | 1.24
0.709 | 0.091 | 136 | 169 | 1.24
0.821 | 0.104 | 118 | 148 | 1.25

Table 4.2: Eigenfrequencies (corresponding to different magnetic structures) of different
p— modes for a model atmosphere with D = 20, B = 2kG, 7r = 0.5.

modes are damped by a factor e™! within two oscillation periods. Let us now find out
the importance of mode coupling on mode damping. Table 4.3 shows eigenvalues of
two coupled modes for a model atmosphere with D = 10, 7 = 0.5 and B = 2kG. It
shows that the coupled modes are heavily damped. Thus mode coupling enhances the

damping.

Mixed mode | K | Radius (km) | Re(2) | Im(?) | P(S) | 7p/P |
p & MgL | 0.85 370 0.536 | 0.09 | 180 | 0.95
p2 & MgL | 0.7 450 0.6723 | 0.11 | 144 | 0.96

Table 4.3: Eigenfrequencies of different mixed modes for a model atmosphere with
D =10,B = 2kG, 7gr = 0.5.
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4.7 Conclusions

We have presented new solutions for magnetoatmospheric waves in an isothermal atmo-
sphere with a vertical magnetic field in the presence of radiative heat exchange based
on Newton’s law of cooling. Radiation can radically alter the dynamical properties of
wave modes in a fluid. This radiative heat exchange gives rise to a temporal decay
of oscillations with a characteristic dimensionless decay time 7y = 1/ (O, where §); is
the imaginary part of (). Depending on the value of the radiative relaxation time g,
the modes are effectively damped by the radiative dissipation in as short a time as
two oscillation periods; however, in the limits of very large or very small 7g, corres-
ponding to nearly adiabatic or nearly isothermal oscillations, the modes are essentially
undamped. The existence of mode damping in the presence of radiative exchange is
hardly surprising; however, a new feature of our analysis is that the damping is signific-
antly enhanced by the mode coupling in the regions of avoided crossing. For small-scale
magnetic structures on the Sun, such mechanisms might be very important for wave
leakage.

Now we would like to critically evaluate the merits and demerits of using Newton’s
law to model heat exchange. At sufficiently low frequencies, the wavelength of a dis-
turbance is so long, that it becomes optically thick (no matter how transparent the
material is), and the Newtonian cooling approximation no longer holds. Conversely, at
high frequencies the wavelength of a disturbance becomes so small that it is optically
thin (no matter how opaque the material) and the Newtonian approximation holds good.
Biinte and Bogdan(1994) have already pointed out that radiative effects on oscillations
in photospheric and higher layers are clearly important. Radiative dissipation based
upon Newton's cooling law is clearly an oversimplification of the problem; nevertheless
it allows us to assess the effects of radiative damping on the modal structure. It also
enables us to look at the full frequency spectrum and the interaction amongst various
modes.

One should bear in mind that in a nonisothermal atmospkere, the use of the New-
tonian cooling approximation provides a simple but unfortunately inconsistent method
for studying the interaction between linear waves and the radiation field. Part of the in-

consistency arises from the fact that we consider wave propagation in medium which is
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not in radiative equilibrium. The physical mechanisms that determine the temperature
structure is still largely unknown.

We expect this study to contribute to the investigation of heating in active regions.
The present comprehensive treatment based on an asymptotic analysis allows us to

understand the behavior of the normal modes in the presence of radiative heat exchange.



Chapter 5

Concluding Remarks

In this Chapter we summarize the important findings of the thesis with a brief outlook
on future projects. This Chapter is divided into two subsections corresponding to the
two parts of the thesis viz., Energy transport to the solar corona by magnetic kink waves
and magnetoatmospheric wave propagation in the solar atmosphere. In the first part
we take resort to thin flux tube approximation and in the later our analysis pertains to
homogeneous fields. The main thrust of our investigation is to examine the physics of
wave propagation in a stratified atmosphere with a vertical magnetic field. It is also

one of our objectives to examine the modal structure and see how it is influenced by

field.

5.1 Magnetic kink waves

It 1s known for a number of years that the magnetic flux tubes acts as “windows” to
the solar atmosphere, through which the wave energy generated in the solar convection
zone is carried by various types of waves (longitudnal, transverse and torsional - see
Spruit 1982). In the first part of the thesis we show that the magnetic kink waves
generated by the motions of photospheric footpoints of the coronal flux tubes can supply
adequate energy for heating the corona. Though footpoint motions with granular time
and velocity scales may not be sufficient for providing adequate energy, observations
clearly show that horizontal velocities as large as 3 km/s occur in the solar photosphere
(Muller et al. 1994). Velocities of this magnitude or higher has also been reported by
Berger and Title (1996). A rough estimate of generated wave energy flux by Muller et al

(1994) also demonstrate that the amount of wave energy available for heating is sufficient

130
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to sustain the mean level of the observed radiative losses from the corona. These
observations are also found to be in good agreement with recent theoretical advances.
Time-dependent numerical simulations of the solar convection zone (Norduland and
Dravins 1990; Cattaneo et al. 1991; Steffen 1993) indicates the presence of motions
with horizontal velocities larger than 2 km/s near the top of the solar convection zone.

Another assumption in our analysis is to neglect the non-linearities which must
become important in the higher regions where the amplitudes are large. One should
calculate the wave energy fluxes in the non-linear regime. Ulmschneider et al. (1991)
have shown numerically that the excited transverse tube waves are non-linear. Some
portions of their energy will be transformed to longitudnal tube waves via the process of
non-linear mode coupling. In general, this process may lead to damping of transverse
tube waves during the propagation along magnetic flux tube and to heating of the local
medium. We conjecture that this problem can be handled analytically in the non-linear
regime. In that case the flux carried by the non-linear waves could be of the order of 10°
ergs/ cm? s which can account for the observed enhanced heating in the chromospheric
network. We hope to study this in near future.

One more assumption in our calculation is to neglect the merger of the neighboring
flux tubes above the chromosphere (Spruit 1984). We wish to look at this aspect also

in a future study.

5.2 Magnetoatmospheric waves

The second part of the thesis deals with the MAG wave propagation in a stratified
isothermal atmosphere permeated by vertical magnetic fields. In Chapter 2 we concen-
trate on the effects of magnetic field on solar oscillations. On the basis of quantitative
calculations, our analysis has brought out many features of waves in a stratified media.
For the most general case, the problem of mode classification is extremely difficult,
especially when v4/cs changes by several orders of magnitude over the vertical extent
of the atmosphere. The stratification causes variation in the structure, which leads to
mode conversion; hence when analyzing MAG waves in terms of elementary modes, one
should bear in mind that their behavior described in this way may be a local property.
We have largely concentrated on weak field limit, when v4 < cg throughout the layer.
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The advantage of our asymptotic analysis is that it enables us to obtain the normal
modes of the system. The general solutions involving Meijer functions are complicated
and provide few clues about the physical nature of the waves. We have derived a dis-
persion relation which allows us to understand the nature of the modes and construct
the K — Q diagram. The insight gained from the asymptotic analysis in the weak field
limit has proved useful in extending the computations from the moderate to strong field
case.

Our solutions do not exhibit accidental degeneracy when frequencies of different
modes approach each other. This can be explained while looking at the dispersion
relation. At such frequencies the lowest order approximation breaks down and the
higher order terms, which couple the modes have to be considered. This coupling is
responsible for avoided crossings.

The new feature of our analysis is the occurance of an additional mode, namely the
magneto-gravity-Lamb mode. To our knowledge, the identification and interaction of
this mode has not becn done carried out earlier. We find the relevance of this mode in
umbral oscillations.

The present calculations also demonstrate that the change of boundary condi-
tions has a striking eflect on the mode coupling between different modes. The zero-
displacement boundary conditions provide real solutions for the frequency ) at all
wavenumber K; in contrast, calculations with zero-gradient boundary conditions at
both or one of the boundaries lead to complex conjugate pairs of roots for (1, when K
is in the vicinity of some avoided crossings. We explain this behavior in terms of an
asymptotic analysis near the avoided crossings.

To understand the physical details of this we concentrate on the behavior of the
modes pear avoided crossings in Chapter 3. It appears that the boundary conditions
permit the phase relationship between the modes to be changed in a manner so as to
allow the wave to leak out from the boundary, thereby leading to a loss of energy from
the cavity. We explore the implications of this kind of wave leakage from a adiabatic
system, where no explicit energy loss mechanism is not taken into account, in context
of umbral oscillations. We conjecture that the observed peaks at different frequencies

(Abdelatif et al. 1986), could be due to mode coupling between different modes. We



Chapter 5. Concluding Remarks 133

explicitly show that without taking any pon-adiabatic effects into consideration, the
mixed modes present in magnetic structures can decay within two oscillation period
because of mode coupling. The variations of eigenfunctions and various components of
energy densities associated with a single mode allow us to study the general behavior of
the individual and coupled modes and thereby enable us to identify potential candidates
for heating the outer atmosphere.

Oscillations in a realistic stellar atmosphere are affected by radiative dissipation
and energy loss at the boundaries. So it is natural to include some non-adiabatic effects
into our theory of MAG wave propagation. Following Biinte and Bogdan (1994), we
incorporate Newton’s law of cooling through introduction of a complex ratio of specific
heats, as indicated by equation (4.3). In the weak field limit, we derive a dispersion
relation which allows to study the effect of radiative dissipation on the normal modes of
the system. A finite Newtonian cooling time leads to complex frequency eigenvalues and
hence the oscillation decay in time. A significant contribution of our analysis is to show
that the mode coupling alters growth of mode damping. In places of K — €} diagram
it enhances the mode damping, whereas in some places it suppresses damping. We
explicitly show that the presence of magnetic modes suppresses radiative dissipation.
This result is in agreement with the conclusion drawn by Bogdan and Knolker (1989)
and Biinte and Bogdan (1994).

These new solutions, although highly idealized, could be used in the studies of in-
fluence of magnetic field on p— mode oscillation frequencies on the sun. So we have
applied our results for the interpretation of umbral oscillations. The observed frequen-
cies by Kenitscher et al. (1995) match quite well with our computed frequencies. The
assumption of constant 7r over the entire atmosphere was a oversimplification, but it
enabled us to derive an analytic dispersion relation. We hope to extend the scope of
our analysis to more realistic atmospheric conditions by including variation of 7g with
height in a future study. Another challenging task could be to determine the influ-
ence of magnetoatmospheric waves on spectral line profiles. We expect the waves to
produce line shifts and assymetries. These lines which are used as a diagnostic for vari-

ous heights of the atmosphere could be then used for identification of the wave modes

present in those layers.



Appendix A

Displacement of the flux tubes in the two layers

Substituting equations (1.18), (1.19) and (1.51) in equations (1.49), (1.50) and using
the dimensionless variables as given in equations (1.36), to (1.41) and (1.52), and also
recalling the dispersion relations for different ranges of w as given in the expressions
(1.31) to (1.35), we find after some extensive but straightforward algebra that the

displacement of the flux tube in the two layers are given by,

— Lt s~u? /47 2?) Xi cosh{(s—a)x;}~{r?x!+q)} sinh{(s—a)x;} sin(ur)
61 (S,T) - ™ gdue( / ) Xi coah(ax.')+(r3x:+q)ninh(ax.') u

1 s—u? /47 2?) Xigsinb{(2a—#)xi}+x? cosh(ax;) cosh{(s—a)xi} sin(ur)
+ -[due( f Pf(r’x’, sinh(ao¢; ) Y2+ {xi cosh(ax;)+¢ sinh(ax;)}? : uu

1 2 . . .
_ 1—u? far A2 (r*xE 4¢2) sinh{ox;) sinh{(s—a)x;} sin(ur)
-r[ due( ) {rix’ sinl')f(a)(.')}2+{x.' cosh{ayi)+gsinh(ax;}}? u

1 2 2 25+ sinh .
1—uld/4r ) r2xix; sinh(ax;) cos(ur)
- f due( / ) {r2x! sinh(axi)}3+{x: cosh(ax)+gsinh(axi)}? u

r

® (s—u®/47)2) Xrq sin{(2a—s)xr}+x? cos(axr) cos{(s—a)xr} sin(ur)
+ lf due réx? sin?(axr)+{xr cos(axr)+qsin(axr)}? ¥

_ e (s—u?/4mA?) (r“xf +4¢%) sin(axr) sin{(s—a)xs} sin(ur)
‘1[ due r‘)@ sin® (axr )+{xr cos{axr)+gsin(ax-)}?

_ L (s—u? JAx)3) r2x ! sin(sxy) cos(ur)
lfdue rix? sin (oxr)+{xr cos(axr)+qsin(axr)}? v (A1)

§(s,7) = & ({r due(“+v—v><i-—u’/4ﬂ’)x‘ co!}}(qﬂﬂﬁ;ﬁﬂ).inh(ax‘) .in£ur)
e S e ™
B rfl duelty=?/47) r4x} sinb? (axr;f{f;::f:i;ﬂ sinh(ax;)}? w'(wu—yx;)
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o0
_ (a+y—u? /4m)?) r2xrx} sin(axr) cos(ur—yxt)
']f due réxt sin? (axr)+{xr cos(ax,)+qsin(axs)}? u (A2)

where

X =VaE—1 (A5)
X =t -1 (A6)
y=ri(s—a) , (A7)
g=1-r* . (A8)

Kinetic energy Density

To calculate the total kinetic energy density in the whole flux tube, we need to calculate

the function F(A, a,r,7), which is given by,

1 7 r oy 3 Xi COSh{(S - a)x"}
F(),a, = o3 / / K i
(A a,r,7) 52 J ds L due COS(UT)X.' cosh(ax;:) + (r2x" + ¢) sinh(ax;)
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1
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Solution of equation (2.23)

Here we present the asymptotic properties of the solution of the wave equations in a
uniform vertical magnetic field. It was shown by Zhugzhda and Dzhalilov (1982; ZD)

that the general solution to equation (2.23) can be expressed in terms of Meijer functions

as follows

w = G (#h, le, ;‘i’ “2’ e 102) (G,h=1,...,4; i # k), (Bl)
where _

o= & ﬂ;“’), pos=+K (B2)

. (1 f; 9) (B3)

a=VI02 -1, (B4)

¢ = —a? + 4K2(1 — 0}, /02, (B5)

and Q}y = (v —1)/+? is the Brunt-Viisila frequency (in dimensionless units).
Once £ is known, it is fairly straightforward to determine the corresponding solu-
tions £ from either of equations (2.16) or (2.17). The complete solutions satisfying

the required boundary conditions can be built up as linear combinations of ¢M and ¢,

Weak-Field Solution

We now focus our attention on the limit of a weak field, for which cs/vs > 1 and

# > 1. This corresponds to the limit of small ¢, with

ez AL (B6)
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However, in addition we must require that the vertical extension d of the layer is not
too large (cf. eq. [2.22]) (for d > 0). Since the density increases for negative z, the
above restriction, of course, does not apply if d lies below the plane z = 0.

When 6 3> 1, the Meijer function in equation (B1) has the following asymptotic
expansion (ZD):

ei(29—5h)( 141 _]y_ — _Ail.) 1 emi(26- 5h)(1 M M ]

Y A Ear

o1 62 =
2,4(#’\' ) ) 02

|
T

L 1 g L -2l
+ —[S'h(l + 5 )0+ Th (1 + )07 +0(03) , (B7)
02 1 4
K2:Q2_K'21_ BV =2
: M- )-7=% (B8)
8 = w(1/4 + ), (B9)
02 1
M = Kz—h%! - 15 (B10)
K? 1 M
M= —ﬁ+—4—(2M 3), (B11)
2 2
pr o los(we +1) + 9] - K?) (512)
Zwi
1
+ = 'é + 1K, = a1, (B13)
L(¢) T(1 + pnr — a1)
Sp = : Bl4
g szl,j#h [(ar — p;) ( )
7‘}1 — F( 4¢) F(l +l‘lh - a2) (B15)

=1,7#h [(az — ;) .
It should be borne in mind that the expansion for the Meijer function given by equation

(B7) is valid as long as M/8 < 1, which restricts K to values such that K* < 02 v4/ec,.
Thus, for K ~ 1, we have the condition va/c, € *, which places a more severe
restriction on the permitted field strengths than the condition 4 > 1.

Using the expansion given by equation (B7), we find that ¢(M) can be expressed in
a compact form as follows |

(9 =13 W0+ Zc""f,(o (B16)
e VoS
where

C(h) Ty + S, C( ) = Ty —iSh, (B17)
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w1 m 1
C;” = 7 sindy, C;’ = T cos dj. (B18)
The function f; are
fi= G0+ Byeos K — (02 + Bain K.2 4 0(), (B19)
f2:(q1+ )smK £+(q2+ )COSKZ+O(1), (B20)
M, M
f3:( 62)c0920—--—é—sln29+0( ), (B21)
M\ . M
fo= (1 - —67) sin 20 + 5 cos 20 + 0(93) , (B22)
WhCTC Z = Z’/I] and
1T/ ~2Ks QO 2Ks
o3 () (D7) (B2)

=5 (D) -] (21
)

(0] -0K, QO 2iK,
[L; - + L} (?> } (B25)

) 1 ) [0) -2iK, 0 K,
Ay L I

It follows that to this asymptotic order the general solution £, which is a linear combin-
ation of the £(") may equally well be expressed as a linear combination of the functions
fi (7 =1,...,4). Physically, f; ; and f3 4 correspond to the non-magnetic and magnetic
contributions to the solution, respectively. In order to calculate ¢V, we assume a series
expansion in ascending powers of 1/6, similar to ¢*) but with different coefficients. It
turns out that £ can be expressed as

2
S CcMg;(6) + 93,,20“‘ g; (), (B27)

=1

!:f(h

%I'—‘

The coefficients g3 4 and g;, in equation (B27) are the corresponding magnetic and
non-magnetic contributions to ¢, respectively. These can be determined from equations

(2.16) and (2.17) respectively, rewritten as

d 1
2 202 _ 402 K2 1L O3 292 — 2
[4(0% — K*)0* — 40K + 0% +Q«9d02]§, _4iK6(~ +2d0)§,, (B28)
2 3,4, 08 o4=1 84 5
3,4 ¢ -1, 94 29
[+ 305 + Tagle = K+ (B29)
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The functions g;, (¢ = 1,...,4) are
(g4 P (s + BV 1
g =(m+ ez)cos K.Z — (p2+ oz)sm K,Z + 0(03), (B30)
92 (p]+62)31nKZ+(p2+6)cosKZ+O(0) (B31)
N
g5 = K(sin20 + 3 cos20) +0(3;), (B32)
gs = K(-—c0529+%r—sin20)+0(51§) . (B33)
Here yiK sk
K[ A AN
n=50 (z) +@& (3) (B34)
I ¢ ¢ |
KT Qn —2iK- O 2K+
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.l € €
, K [ _ 9 —-21K, Q 21K,
n=sler (3) +et (5) (B3%)
- € € o
, K 3 [9) —20K, Q 21K; 17
R=alet (5) -@ (5) (B
i € € ]
where
1 1 92
N-M+—+Z——-I—5, (B38)
L1001
ty = K, +i(— - o), (B40)
v 2
2
(w410 = K B
2wi
02
r=K2(1—~(%Y—). (B42)
1 -
+ = E(t—Qf + Q1) (B43)
It follows that the gradients can be expressed as
dﬁ(" () f:(o) L4601 L ) [f6) | df5(6)
— . 44
;C dz +\/§j§30’ | 4H + dz |’ (B44)
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To derive the dispersion relation we now apply the boundary conditions given by equa-

tions (2.29) to equations (B44) and (B45). We get a set of four equations which can be

written as
AX =0, (B46)
where
XT=(C, C; Cs Cy), (B47)
and
( h  dfh fa dfs fs  dfs Jo  dfs
2H " d:| 2T a:|, BV a| 1 @
60 90 90 00
ARl £ dR| £ df| fu | dfa
H Y@ x| Wt a| W
HD 0D 0D gD
A = . (B48)
9 d9) ¢  de| 395 dg| 39 dg
2H dz 2H dz . 4H dz . 4H dz .
00 00 00 00
9,491 9  dun| 3¢y dg) 391, dgs
2H " dz| 2H ' dz| 4H ' dz| 4H ' dz|
\ 0p 0p ?D 0p )

Here 8y = 6(0) and 8p = 6(D). The condition for equation (B46) to have a non-trivial

solution is

det[A] =0 . (B49)

Expanding equation (B49) and substituting for f; and g; (j = 1,...,4) we obtain

(% + KY)(0F — K?)sinfsin(K, D) =

= 2{2—eD/4(% + Kf){K,Ka[cosh(D/tl) cos 0 cos(K, D) — cosh(D/2)]
+ sinh(D/4)cos§sin(K. D)[(M + 5)(% ~ K?) - K3($ - %)]}

1

2 ~
+ £ ePhgin o(i- + KO{[M(M +2)(K* - 07) + 2ME*( - )~ rK ] sin(K.D)

1
Q2 v
+ 2Ku_ + (NK + %)K,) sinh(D//2) cos(K.D) + 2[(M + %)(Q2 _ K?)

e (-i- - %)(% + K N)}] cosh(D/2) sin(K,D)} + 0(5—2) . (B50)
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which is the dispersion relation accurate to second order in e. Here 6 =6p— 6o, and

M, M;, N, r, K, and uy are defined in equations (B10), (B11), (B38), (B42), (B8),
(B43) respectively.
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