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ABSTRACT

This thesis is a study of cunvectivn in relation
to solar magnetic flux tubes, The two specific

problems investigated are defined in chapter 1.

The first problem concerns the interaction of
magnetic flu> Ctubes withh their turbulent environment.
This is dealt in two ways. First, the dynamics of
gas uwoving al..ag a ﬁagnetic field of imposed time~
dependent geometry is counsidered (chapter 2). 1t is
found that the gas is accelerated along the field in
the direction of increasing lateral velocity of the
field lines. When the lateral velocity has a depth-
dependence similar to that of the vertical component
of the photuspheric granulation significant downflows
are generated. Secondly, the response of slender
magnetic flux tubes to extermal pressure fluctuations
is also examined. The response is maximum when the
period of the imposed pressure fluctuations matches
witits the time taken for 'tube waves' to traverse one
scale length of these fluctuations. 7This maximum

response is in the form of an oscillatory flow.

The second problem considered is the convective
instability within slender magnetic flux tubes., First,

the nonlinear evolution of wvelocity and magnetic field
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in a tube, which is imitially in a convectively
unstable equilibrium, is nuwmerically followed assuming
adiabatic motions (chapter 4}, The initial magnetic
ield is found te have a stabilizing influence on the
tube. The boundary concditions are seen to exert a
significant intluence on the development of the insta-
bility. Next, the elfect of heat transport on the
instakility is studied (chapter 5). When lateral
exchange of heat alone is considered, the flow and the
magnetic field are found to be oscillatory. The ampli-
tudes of oscillation increase with decreasing radius of
the tube. When longitudinal heat transport with
constant radiative conductivity is included, the
frequency of oscillations is twice that in the previous

case and the amplitudes are smaller.

After discussing the limitations on the applica-
bility of the above results they are applied to the
kilogauss magnetic flux tubes in the solar photosphere
(chapter 6). 1t is pointed out that granular buffetting
of magnetic flux tubes could drive significant down-
flows compatible with the value of the downflow
observed at higher layers of the photosphere. 1t is
also pointed out that heat transport would make the
convective collapse of flux tubes an oscillatory

phenomenon.



1. INTRODUCTION

lo1 Interaction of convection with magnetic flelds

in the sun:

Convection is one of the modes of heat transport
in a fluides It occurs as a result of convective
instabilitye In stars this instability arises in two
different ways. In the hotter, early type, stars
convective instability is created because of the
concentrated nature of the energy sources in the central
regions, In cooler, late type, stars it arlises because
of the blocking of radiative tramnsport im their outer
envelopes. The sun, being a typical late type star
of spectral type G2V, possesses an outer convective
envelope. This envelope influences the large ascale
dynamical structure of the star. The sun rotates on
its axis once every 27 days. 7This rotation interacts
with convection to produce a differential rotation viz.,
an angular velocity which depends on the radial distance
from the centre of the sun and also on the latitude
(Gilman, 1981). A combination of large scale velocity
fields like differential rotation and the smaller
scale velocity fields of convective turbulence are
believed to maintain the global magnetic field of the

sun.



The interaction of convection and magnetic fields
proceeds on smaller scales as well, One such pheno-
menon is the magnetic network observed on the ;olar
surface, There are two separate facets of this
particular case of magneto-convective interaction.
First, the supergranulation presumably pushes the
magnetic flux to the boundaries of the supergranular
cells to form the enhanced magnetic network (Leighten
et al 1962). Secondly, the same network is seen to be
coincident with enhanced chromospheric emission (Simon
& Leighton 1964), This was explained as due to
enhanced generation and focussing of quadropole and
dipole acoustic radiation off convective turbulence in
a magnetic field (Stein, 1981). Yet another example
of interaction on a similar scale is the inhibition of
convection in the strong magmetic fields of sunspots,

as suggested by Biermann (Cowling, 1976).

On & smaller scale, we have the tiny magnetic flux
tubes with kilogauss fields which interact with small
scale convective eddies like the granulation, as shown
by observations (Dunn & Zirker, 1973; Mehltretter, 1974).
The main characteristics of these small scale photospheric

magnetic fields can be summarised as follows:

i) Most of the magnetic flux observed with arc-second

resolution is concentrated into small elements (fiux



tubes) of field strengths =~ 1000 G to ~ 1700 G and

inferred sizes ¢ 1" (Stenflo, 1976).

ii) The smaller elements tend to cluster into
larger structures which can act cohesively so that a
broad spectrum of sizes of magnetic structures is
observed, in "quiet" as well as "active" regions of

the sun,

iii) 1n "quiet™ regiomns, magnetic flux tends to
cluster in a network pattern which coincides with the
boundaries of the supergranule cella, There is,
however, increasing evidence for the existence of an
unknown amount of flux inside the cells with fields
less than 500 G in strength (Livingston and Harvey
1971) which have come to be called "inner network

fields".

iv) Both network flux tubes and active region flux
tubes have the same field strength with a denser
population of the tubes, in active regions.v The width
of the Ca' K line emission from the two types of tubes
differ (Bappu & Sivaraman, 1971), indicating a difference

in their intermnal structuares.

v) The size of magnetic elements increases with
increasing height and the field strength also decreases

rapidly with height.



vi) Systematic downdrafts are associated with
magnetic fields. These downflows have a mean value
of ~ 0,5 kms-'1 at the height corresponding to the
core of the 61058 line (Giovanelli & Slaughter, 1978)
and = 2.2 kms“1 deeper in the photosphere where the

wings of the 156488 1ine (Harvey & Hall, 1975) are

formed.

1.2 Some problems concerning small scale solar

magnetic fields:

Each one of the above properties of small scale
magnetic fields raises certain fundamental theoretical
questions., We have first the problem of the formation
and confinement of these elements with magnetic pres-
sure approaching the external gas pressure. Once the
mechanism is identified, then a further question arises

as to why it does mnot work for the inner network fields.

Secondly, the mechanism which drives the systematic
downflows in tiny magnetic elements as well aa the
source of mass flux to maintaln the downflow are mnot

well underxrstood.

Finally, we have yet to fully understand the
coalescence of tiny magnetic flux tubes to form larger

aggregates of magnetic flux like sunspotas or active

reglions,.



Considerable theoretical effort has gone into
some of these problems. Weiss and his collaborators
in a series of papers (Weiss, 1966; Proctor and
Galloway 1979; Galloway & Weiss 1981) have shown that
circulation patterns of velocity resembling convective
flow would concentrate an initially uniform magnetic
field into narrow structures with mean fields a few
times the equipartition value. The asymptotic structures
predicted by these calculations preclude motions within
these structures and this is contrary to observations.
The alternative ways of concentrating field by hydraunlic
means e.g. by turbulent pumping, 'kneading', 'massaging'
of the flux tubes (Parker, 1974a,b) yield field inten-
sities which are in "equipartition" with the extermal
turbulence., These, in general, are insufficient to
produce kilogauss fields. Parker proposed another
mechanism which is calls the "superadiabatic effect™
(Parker 1978a). This mechanism is based on the "frozen
field" approximation that the magnetic field prevents
the gas within the tube from mixing with the surround-
ings laterally, and hence isolates the gas. In the
absence of heat exchange, any downflow would cool this
isolated gas adiabatically. The reduced temperature
would cause the gas to sink and enhance the downflow,
until the higher visible portions of the tube are

evacuated. This evacuation leads to the collapse of
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the tube to a state of an intense field in equiparti-
tion with the gas pressure outside the tube. The only
problem with this mechanism is the assumption of
complete thermal insulation of the tube. Parker
recognizes the possibility of lateral heat exchange
with the surroundings by radiative diffusion but
neglects it at large depths on the ground that it is
small compared to convective cooling along the field,
However, at the photospheric level the lateral heat
exchange is indeed considerable especially for thin
tubes (Spruit, 1977) and may well compensate for the

adiabatic cooling.

Following a slightly different approach, Webb &
Roberts (1978) showed that the slender flux tube would be
subjected to a convective instability which would result
in either a dispersal of the field if am initial upflow-
ing perturbation is applied or to a collapse if the per-~
turbation were to be a downflow. This was followed by
calculations of the linear global stability of slender
flux tubes embedded inm a realistic model of the comvection
zone (Spruit & Zweibel, 1979). This analysis showed that
tubes weaker than a critical field were unstable., The
marginally stable fields corresponded well with observed
fields in magnetic elements. From such linear analyses
finite amplitude effects cannot be probed. Spruit (1979)

performed a nonlinear calculation of the final collapsed



hydrostatic state of the tube corresponding to a given
initial unstable state and demonstrated the collapse
for the visible portions of the tube., However, one
does not know whether in reality the collapsed state

will be hydrostatic or hydrodynamice.

To understand the final outcome of a convective
instability Hasan (1982) assumed an initlal hydrostatic
equilibrium of the tube embedded in a realistically
stratified medium and calculated numerically the
subsequent evolution of fthe instability., He obtained
final hydrodyvamic states of the tube which were inde-
pendent of the initial state. The initial magnetic
field had no stabilizing influence on the convective

collapse.

Deinzer et al (1982) calculated static flux tube
models by following the dynamical evolution of wvertical
s8labs of magnetised gas where the amount of inhibition
of convection in the magnetic field is considered as =
parameter. Nordiund (1982) simulated the 3~D collapse
of photospheric flux tubes and arrived at the conclusion
that the superadiabaticity is an important parameter for
the collapse and also that the flux concentrations are
transient in character. Such studies indicate that the
convective instability of magnetic flux tubes could be

an important physical process alding the formation of

kilogauss fields.



The second problem of the association of down-
flows with magnetic elements is clouded with the
uncertainties regarding the observations themselves,
The most severe problem is that of the spatial resoclu-
tion., The downflows always appear to be co-spatial
with magnetic flux concentrations regardless of whether
they occur in the quiet region network (Simomn and
Leighton, 1964; Tannenbaum et al 1969; Frazier, 1970)
or in active region plages (Beckers & Schroter, 1968;
Giovanelli & Ramsey, 1971; Sheeley, 19713 Howard, 1971,
1972). The next question is about the velocity field
structure, Skumanich et al (1975) find a proportiona-
lity between the apparent velocity and apparent magnetic
field, However, velocities larger than 1 kms“'1 are
ruled out by the observations of Harvey et al (1972).
Indirect evidence supports the view that velocity
structures are more extended than magnetic structures
(stenflo, 1976). Such being the status of the observa-
tions, one can only use them as broad guidelines for

theoretical modelling.

Finally, with regard to the problem of coalescence
of flux tubes, Parker (1978b) proposed an explanation
in terms of the Bermoulli force between rising flux
tubes. However, this might not account for continued
coalescence of flux tubes after their emergence

(Sspruit 1981a).



1.3 The problems studied in this thesiss:

So far, there has been no attempt to identify
the driving mechanism for the systematic downflows
within magnetic elements, although steady state models
have been constructed (Unno & Ribes, 1978). Two
possible classes thmechanisms can be thought of. The
first is the class of external driving mechanisms
where the flow relaxes back to hydrostatic equilibrium
when the forcing terms cease to exist., The second is
the class of spontaneously generated flows which come
about as a result of some dynamical instability. In
the case of the solar photosphere and convection zone
the only horizontal forces on the vertical tubes are
those due to the constant buffetting by convective
turbulence. Similarly a likely mechanism capable of
spontaneously generating flows in solar magnetic flux
tubes is the convective instability, In this thesis,
we therefore study idealised versions of these two
processes. In the first case (chapters 2 and 3) we
examine the response of a thin tube embedded in a
stably stratified polytropic atmosphere to external
perturbations which are modelled to simulate the

observed behaviour of granulation,

The second problem that we study (chapters 4 and 5)
is the development of convective instability in a thin

tube embedded in an unstably stratified polytropic
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atmosphere,

In all these calculations a numerical version of
the method of characteristics was used to integrate
the equations forward in time. Compared to other
direct and explicit schemes like finite difference
methods, the method of characteristics has the advan-
tage of allowing the use of proper boundary conditions
and does not break down near shock like discontinuities.
It is, however, very slow compared to the direct schemes
because of the necessity of iterations for convergence
to a point of intersection of all the characteristics.
For more than one space dimensions, it also becomes
very arduous to programme. It must be mentioned here
that only one-dimensional unsteady flows are studied in

this thesis.

In chapter 2, the equations of magnetohydrodynamics
for motions in a magnetic field confined to a single
plane are first written using a pair of curvilinear
coordinates, one along the field line and one across the
field line. The equation of motion normal to the field
line is replaced by a prescribed form for the velocity
transverse to the field. The equations are further
transformed to a frame of reference moving with the
field lines. These equations are integrated by a backward

marching scheme based on the methed of characteristicse.
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In chapter 3, we utilize the slender flux tube
approximation, where the thickness of the tube is
assumed to be negligibly small compared to the scale
length of variation of the tube diameter. The problem
again reduces to that of an unsteady one-dimensional
flow. We first comsider the case of a uniform tube
under linear approximation and obtaim  am analytical
solution, We then numerically study the nonlinear
behaviour for a stratified tube subjected to external
pressure fluctuations that vary monotonically in space
and oscillate in time, We also study the response of
the tube to wave-like disturbances of different

frequencies.

In chapter 4, we consider the convective instabi-
lity of slender flux tubes embedded in an unstably
stratified polytropic atmosphere for adiabatic variations.
We follow the development of the instability for
different initial values of po , the ratio of gas
pressure to magnetic pressure, We consider the
effect of two different sets of boundary conditions
as well as the effect of the direction of initial

velocity perturbation.

In chapter 5, we first see the effect of lateral
radiative heat exchange with constant radiative

conductivity on the convective flow within a thin flux



tube. Next we extend this calculation including the
longitudinal heat transport. We also study a case of
temperature dependent opacity. In this case, the
initial stratification outside the tube cannot be
polytropic in general. Hence, we first calculate the
equilibrium stratification satisfying the energy

eguation and the equation of hydrostatic balance. We

i2

use this equilibrium state as the initial state for the

time dependent calculation.

Finally, in chapter 6, we discuss the combined
significance of the results of all these calculations
in relation to the small scale convection and magnetic

fields omn the sun.
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2, INTERACTIUN OF MAGNETIC FLUX TUBLS W.LTH THEIR
ENVIRCHNMENT

I. Response to imposed lateral motions

2.1 Introduction:

The study of the interactiom of an imposed
velocity field with an initially dispersed magnetic
field has received much attention in the past. One
of the earliest of such studies was initiated by
Parker (1963). He examined the effect of an imposed
velocity fleld with a circulatory patterm on an
initially uniform magnetic field. It was seen that
there would be anlimited amplification of the field at
the boundaries of the velocity cell where the down-
flows converge. A subsequent numerical study by Weiss
(1966) showed expulsion of field from the centres of
two~-dimensional cells and concentration of fields at
the boundaries. This study was followed by a series
of investigations of increasing sophistication (e.g.
Proctor & Galloway, 1979; Galloway & Weliss, 1981) with
inclusion of dynamical effects in the later work,

The asymptotic states of all these numerical simulations
are quali%atively very much similar to that predicted
by Parker (1963). Differences arise only in the factor

by which the field is amplified at the boundary of the
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J|

2
min the earlier work of Weiss

cell, ranging from o~ R
(1966) toy R,, in the simulations of Galloway &

Weiss (1981). Here l{m denotes the magnetic Reynolds

number,

The results of the afore-mentioned studies could
be used for a preliminary understanding of the inter-
action of velocity fields and magnetic fields on the
sun. OUne could, for example, consider the magnetic
network as a conseguence of the interaction of super-
granulation with an initially weak, uniform magnetic
fields The structures predicted by the aforementioned
studies preclude motions within the intense fields., In
the case of the Sun, however, such structured fields
are constantly buffeted by smaller scale velocity
fields like waves and granulation. These in turn would
set up transverse motions of the field lines, In this
chapter we consider the effects of such lateral motions
of field lines on the dynamics of the gas constrained
to move with the field (Hasan and Venkatakrishnan, 1980).
Further, we also describe an application of these
results to the interaction of granules with magnetic

flux tubes (Venkatakrishnen and Hasan, 1981).

2.2 The basic eguations}

Let us consider a magnetic field that 1s invariant

under a translation in some direction, which we can
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call the x-directiom without loss of generality. The
magnetic field varies in the y~ and z-~directions., We
shall assume the z-direction to be opposite to the
direction of gravity. In the case of curved field lines
it is convenient to transform from cartesian coordinates
(y,2) to a system of curvilinear coordinates (3, 7)
where 5 is the distance measured along the field line
and 7t denotes the distance measured along a normal
curve (in the same plane). Following Kopp and Pneuman
(1976) we see that the unit vectors é and ﬁ satisfy

the following geometric relations:

4

d 28
ot 2t
= 8 -
5 (2, 1) = |2)(2o2),e
3
an .

where 6 is the angle the field makes with the z-axis.
For inviscid and infinitely conducting gas, the equation

of motion along a field line camn now be expressed as

9 Vo + V33 V, + Vp@ Vy, = -1 3 —
ot - “an SAP Jor®

')'5

+V,8 8+ VnVs2 8 +Vv 20 , (2.2)

at 24 2N
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where Yé is the gas velocity parallel to the field,
Vn the velocity normal to the field, p the gas
pressure, f) the density and g the acceleration due
to gravity. Let us now consider a frame of reference
fixed to the field line. Such a physical identifica-
tion of a field line is possible in the infinite con-
ductivity approximation. The space and time derivatives
in such a frame will be denoted by D and 12

D3 Dt
respectively. These derivatives satisfy the following

operator relationships:

D = 3 4+ Vo3 (2.3a)
Dt 3t ™ 3In
and
D = 3 (2.3b)
DA 3 A
From equations (2.2) and (2.3) we have
QV»&*\’&QVA:—_‘_@_P—gme
Dt DS P DA
+ VaD 8 + V_V,D 8 (2.4)
0t DA

In a similar manner, the equatiom of comtinuity takes

the form (Kopp and Preuman 1976)1

D (psAY + D (PVySA)— PV, 8AB g =0 , (23
:th) 5/5(F3 ) F n 3

a
aA
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where §A is the cross-—sectional area of an infini-
tesimal flux tube surrounding the field line. It has
been assumed in the above equation that 5A-<<IF
where L is some typical scale length of variatiom of
the physical quantities along the field, Thus all
flow variables in the infimnitesimal tube can be
assumed to be constant in a directionm mormal to the
field line. The evolutiom of the magnetic field,
assuming infinite conductivity, is given by the induc-

tion eguation

@ B = VX(NXB) | (2.6)
ot ™ ~

which can be resolved into the components
_a__ B = -—-Q_ V,,B (2.7a)
Jt an( "B,

along the field and
B3 & = 2 (V,;'B) , (2.70)

Jat oA

normal to the field respectively. Using the condition
for flux conservation in an infimitesimal flux tube
(B §A = constant) and the geometric relation for the

rate of change of the angle 6 wviz.
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2 e = Q VTL (2.70)
Dt 23 ¢

we can rewrite equations (2.7a) and (2.7b) as:

]

Vley

D (In$A) V., (2.74)
Dt

and

D ( In SA) = d 9 (2.7e)
D3 2N
respectively. Eliminating §A between equations (2.74d),

(2.7e) and (2.5) we have

D V,+D (! +V, D (¢
D3 'ﬁt(nP> bﬁa(n}))+VA—a@‘ne

V. = 0 . (2.8)

n

“V'np_ 0 +§.
D4 N

We relate density and pressure by a polytropic law

P/fr = constant , (2.9)

where [ is the polytropic index, We thus have three
equations (2.4), (2.8) and (2.9) in the four dependent
variables P ’ )o ’ V‘S and Vn respectively. The
equation of motion normal to the field provides the

fourth equation, In this chapter, this fourth equation
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is replaced by a prescribed form of V%_, as in Kopp and
Preuman (1976). The resulting flow is then studied

with the aid of the rest of the eguations.

2.3 Method of solution:

Equations (2.4), (2.8) and (2.9) form a system of
hyperbolic partial differential equations and hence
possess real characteristics. Omne can recast these
equations in characteristic form using standard
procedures (Sneddon, 1957). The reduced egquations are

as follows:

DY, = M(A + B/a) Dt abmgDs =V,4a (5100

DE =TM(A-B/a) Dt along %t/!):VA-a_ , (2.10D)

where

DY, = Dnp ,—;_E DV, , (2.10¢)
A= -Vy3 6 +V,88_38V_, (2.104)
an 95 an
(2.10e)
= - V,d ®©
B goose + Vﬂ::_gie + V., 24,
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and

a = (F’P/F)I/Q_ (2.101)

We solved these equations as an initial wvalue problem by
prescribing the state at time t = 0 and then integrating

the equations forward in time.

The existence of the source terms A and B precluded
any analytical solutions and héence we resorted to a
numerical procedure., In this method all the flow
properties were determined at pre-specified grid points
using an inverse marching method (Zucrow and Hoffman,
1976). For illustration, the procedure for determining
the velocity and density at a point 'd' on a later time
line 1 = t£-+ A{Z is described, provided one knows these
quantities at three points 'a', 'b' and 'c¢' on a
previous time-line -to (see figure 2.1). If we draw
straight lines along the characteristic directions at
'd' towards decreasing value of t, then these will
intersect the previous time line at two points, say 'e'
and 'f' respectively. Let us denote all flow properties
along the right rumnning characteristic (that which goes
from lower values of .8 %o higher values of 8 as L
increases) by a '+' subscript. Those on the left
running characteristic is likewise given a '~' subscript.

A further subscript like 'a'!, 'b' etc. denotes the
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Fig.2.1 (top): The backward marching scheme for an interior
point'd' given the values at 'a', 'b' and 'c',

£ig.2.2 (bottom left): Effect of finite boundaries on the
solution of an initial wvalue problem,

Fig.2.3 (bottom right): The motion of a point fixed on a
field line moving with normal velocity V.
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values at points 'a', 'b' etc. If we cast the

equations (2. 10) in finite difference form, we get
A=A, = At (Ve +a, ) , (2.11a)

d” ’3{— = At (V4 — a—,) ’ (2.110)

{n (Fd, /Pe) + [7( Vgy - Vbe)/a+=4-[; y+’(2.11c)

f.’fL(PA_}P{) ‘—F(V,ac[’ V‘s;)/a_=At \f_,(2.11d)

where

Y =P(Aft31/at3 (2.11e)

t

and At is the time step. We chose A1 so as to be
within the Friedrichs - Courant - Lewy stability limit,

viz,

At £ 1 (2.12)

m———,

Ab - (lv,s, -+ Iﬂ.l)mx )

Since the flow properties and the locations of points
'e! and 'f' are not known, these equations must be
solved iteratively. An Euler predictor-corrector method
was used for the iteration, For the predictor algorithtﬁ

the following initial choice was madet

(o) (')
Vee = VAd. J '3_,_0 = Fa. J
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Vv (o) W (o)
A - = AC j P = P j-

- C

and likewise for the geometric parameters, These were
used in equations (2.11a) and (2.11b) to obtain a first
guess for the location of points 'e' and 'f'. The flow
properties at these points were determined by interpo-
lating between the values at points 'a', 'b' and 'c'.

For subsequent iterations in the predictor we assumed:

(m) (m-1 (n) (m-1
V,a+ = VM_ 7 ’9+ = Pe ;
(n) (n-t) 73
v _ - { B (-1
s LR R N

where the superscripts denote the order of the iteration,
When the calculated value of‘be and 5§ converged within
a specified tolerance, the latest values of Vbt" and Ft
were used to calculate the properties at point *d' ferom
equations (2.11c) and (2.11d). In the present study, a
relative convergence within 10-4 was found to be

generally attained within five iterations,

Next, the corrector was applied to the above
predicted wvalues of Vbd, and Pi « For the corrector,

the following scheme was assumed!

Vor = (Vae ¥ Vad) 5 b= (p +by) ;
2 Z

Ve = (V4§+ VAJ.)
2

o
T
TN
v
4
o
a
St
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Here too, an iterationm is reguired to locate points 'e'
and 'f' as well as to determine the flow properties.
However, during this iteration, the wvalues of bgd and

Pa (which were determined by the predictor) are not
changed. After obtaining convergence for ,56 and 5{ ’
v&i and F& are redetermined. To improve the accuracy,
these corrected values of ng and Fu were substituted
back into equations (2.11) and the same steps were
followed. It was seen that a maximum number of 5
predictor jiterations and 3 corrector iterations yielded

sufficient accuracy.

2,4 Initial and Boundary conditions:

In this chapter and in the next one, we present
results obtained from an initial stratification which
is in convectively stable hydrostatic equilibrium, A&
discussion of the flow that is’produced as a result of
convective instability is postponed to chapters 4 and 5.
The initial magnetic field was chosen to have a potential
configuration and hence magnetic forces did not have
to be considered for the equilibrium. The energy
equation was replaced by a polytropic equation of state,
P‘ﬁ Fr'. One can thus study a variety of situations
ranging from the case where heat exchange is so rapid
as to maintain isothermal equilibrium (F = 1) to the

case of adiabatic equilibrium ([ =7) where there is no
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heat exchange. One limitation of the work described in
this chapter is that pressure and density were related
by the same polytropic law for t> 0O as well. This
restriction has been relaxed to varying degrees in the
subsequent chapters, Mathematically, the initial state

can be represented by

i

Vn(,%) 0, (2.13a)

Vy (5

i
<

, (2.13p)

-0
T R P ey S
a® (o)

p(2) = P(f’){f’(’”/P(“)Ir; (2.134)

where
atcor = T p/pun . (2.13e)

Although the initial magnetic field, being potential,
does not affect the equilibrium stratification, it

defines the stream geometry and will be described in
the next section. At time t = O, a non-zero Yn was

introduced and the equations (2.11) were integrated as

described in the previous section.
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However, the scheme described im section 2.3 can
be applied only to an interior point. It is well
known for time-~dependent initial value problems solved
by the method of characteristics, that the number of
boundary conditions, sufficient and necessary to solve
the problem uniquely, is m -« n, where n is the
number of characteristics crossing the boundary from
an interior point and m is the number of dependent
variables, If one has fewer boundary conditiomns, there
is no unique solution. If one imposes more than m - n
boundary conditions then any incompatibility of the
extra boundary conditions with the characteristic
equations will lead to spurious boundary effects which
can propagate into, and influence, the interior solution.
The choice of physically meaningful boundary conditions
becomes increasingly important as one integrates for
longer time intervals. This is because beyond some
critical time t, say, all characteristics drawn backward
from any interior point P (figure 2.2) will not reach
the initial time-~line but will terminate at either
boundary. The hatched region in figure 2.2 is known
as the 'domain of influence' of the initial state. Thus,
at large enough times, the flow will depend more on the
boundary conditions than omn the initial condifions. In
the present study we tried the following two different

conditions for the left boundary in figure 2.1 (1Lower
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boundary of the flow region)

Vo(o) = a (1 - exp-t/T) | (2.14a)

or

F)(Q) = constant. (2.14b)

For the right boundary in figure 2.1 (i.e. top boundary
of the flow region) Vg was prescribed as the value
extrapolated from the values at two preceding space
points. This boundary condition assured that no kinks
were produced at the end point in the spatial velocity
and pressure profiles. The equation relating Vb and F
along the "missing" characterilstic is replaced by the
boundary condition which prescribes either Vé or P .
The remaining variable is then determined from the rest

of the equations (2.11).

2.5 The Field Geometry!

At t = 0, we assumed a potential magnetic field

with components

B, - '330 exp (-kz)aine | (2.15a)

B_ - :Bu.exp(~kz)cobe (2.15b)
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and

Q

ky (2.15¢)

where lQ is a constant. At later instants of time, the
field geometry is completely determined by Vn . The
coordinates of a given point on the field line at
different instants of time can be determined from the

following eguations (see figure 2.3):

Q Yy = Vnces6 (2.16a)
Dt
Dz =-V_ _48ine (2.16b)
Dt
D 8 = 4 V -

and o S50 (2.16c)

If one chooses the velocity as

V., = Vb(t)/&inkg /bi’n kgb(t) s (2.17)

where Vb(t)is the velocity of the base point yb(t) .
then the relation (2.15c) will be maintained for all

times. Thus equations (2.16) are unnecessary in this

case and the gunantities O @ and d & can be deter-
on 0438
mined directly ast
Q 9 = "-e AgcC k‘j (2- 18&)
omn
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g

7
and g 8 = Ikcse kY . (2.18b)

C.

We did a few calculations with Y, in the form (2.17) in

which Vb(t) was chosen ass

V, (1) = Y, sinky () cos ky (1) /amkybm , (2.19a)

Yo (1) = 2 Y Tan™ (exp-V,(t-1,) /9,), (2-19%)

Yo = Y, () [7m 4 ty=0, t< T, (2.19¢)
and

Je = Q‘jb('c’)/‘ﬂ , LT, t>T. (2.194d)

Such a behaviour of Hb(t) simulated a rapid motiom for
small times and a subsequent decrease of velocity
asymptotically approaching zero. We chose this form to
approximately represent a rapid onmset of some instability
and its subsequent quenching due to, for example, the

enhancement of the magnetic field.

In order to keep the study sufficiently gemneral,

we also tried another form for Vn viz,

Vn = \/o (t) e.xp/b/H 3 (2.20)
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where H is a constant which can be positive or negative,
Here too, we chose Voﬁﬁto behave with initial large
rate of change and asymptotic approach to zero velocity.
In one calculation Vg(t) was made to oscillate in time
(see section 2.8). For the general form (2.20) the
angle B must be calculated for each time step, We
calculated this by integrating equations (2.16) from to
to toi-At using an Euler predictor-corrector method,
where At is the time step for the equation (2.11),
Moreover since the prescribed lateral velocity stretched
the field lines at every instant of time, grid distortion
can occur. We compensated for this by calculating the
net change in the position of a fixed point omn the field

line given by

Z2(t,+4t)
As = d.EEr/C-M)G . (2.21a)
% (ty)
Similarly, the value of @ 6 at the new displaced point
94
is given by
9 6 = cosed @ . (2.21b)
a3 A=

We performed the integration and differentiation in
equations (2.21) using Lagrange 3-point interpolation
formulae (Abramowitz and Stegun, 1965). Having obtained

the coordinates (y,z) and geometric parameters at the
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displaced points, we determined the corresponding

guantities at the original spatial grid points again
by Lagrange 3-point interpolation. In this way, the
problems involved in a moving grid (like non-uniform

step size) were eliminated,.

2,6 Description of Results:

We Tirst expressed all guantities in dimensionless
units. The basic unit of length was taken as TQ_T* /g
where TR is the universal gas constant, T* is a refer-
ence temperature and g , the acceleration due to
gravity. The unit of velocity was (RTy) ' and,
therefore, time was measured in units of (ﬁZT*)|ﬁﬁ/g o
The density was expressed In units of the density P*
at the base of the field line and likewise the temperature
in terms of base temperature T&:' This decided the unit
of pressure as ¢2p*fT*. which is nothing but the pressure

at the base for a perfect gas.

First we solved the equations (2.11) using the form
for Vn given by (2.20). 1n this form the spatial
dependence of the velocity is either monotonically
increasing with 8 ( H > 0) or decreasing with 4 (H<O0).
Figure 2.4 shows that a positive value of H leads to
an upflow whereas a negative value of H leads to a down-

flow. Here the value of \HL at the base is 1.0 units
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for H = ~1.0 and 8.0 units for H = +1,0. In the case
of H = +1.0, the large value of Vﬂ_ = 8.0 was chosen
with a view to model the flows in solar spicules (cf.
Hasan & Venkatakrishnan, 1981). We notice that inspite
of the great difference in the base value of Kn for
the two cases, the resulting magnitudes of Va are not

much different in these two cases.

The short time behaviour of the flow for different
values of the polytropic index [ can be seen in
figure 2.5. Here the spatial velocity profile is shown
at a time t = 0,32 dimensionless units. It is seen
that the response of the flow to the lateral motions is
stronger for largervalues of [" or in other words for

"stiffer"® eguations of state.

Consider now the other form of Vn given by (2.17).
The parameters quantifying the lateral motions are Vb ’
the amplitude of base velocity and k, a measure of the
curvature of field lines. We studied the effect of
each quantity separately. The effect of curvature can
be seen in figure 2.6. It is seen that the peak velocity
of the parallel flow increases with curvature., The
decline of the flow after the rise to the peak value is
simply an artifact of the imposed lateral flow which

ceases after 0,25 time units.
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The effect of magnitude of base velocity V; can
be seen by a comparison of figure 2.7 and 2.8, In
figure 2.7 the spatial velocity profile is plotted at
three instants of time for V; = 8.0, A similar plot
corresponding to VO = 6.0 is seen in figure 2.8. It
can be clearly seen that even at very early epochs (e.g.
t = 0.03) the velocities of parallel flow are larger in

figure 2,7 than in figure 2,8 .

The choice of boundary conditioms influences the
transient behaviour of the flow. In figure 2.9, we see
the spatial profile of pressure corresponding to the
velocity profile of figure 2.7. Here, the boundary
condition (2.14a) (prescribed time-dependent velocity)
was imposed. A small kink can be seen propagating down-
stream with a velocity o 2.5 units. At later times a
second kink is also seen, The first kimk represents the
initial impulsive onset of the lateral motion of the
field 1line. The aecond kink is created because the
boundary condition (2.14a) forces V, at £=10 to
increase even after the cessation of the lateral motion
of the field line. The halt of the lateral motion
reduces Vz at all other points. The velocity gradient
thus produced causes a compression wave to propagate
upward from the. base. The spatial pressure profile for

a different boundary condition (2.14b) is shown in
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figure 2.10. Here we see only one kink propagating
upwards with a velocity of ¢ 2.0 units which is the
initial impulse. Apparently there is no corresponding

impulse travelling downwards.

Figure 2.11 and 2.12 show the temporal behaviour
of the wvelocity and pressure at two different space
points with boundary conditions (2.14a) and (2. 14b)
respectively. Im both cases thére is a rise to peak
velocity followed by a decline. The peak velocities
are different since the initial values for V, at the
base are different (8.0 and 6.0 respectively). We find
that smaller starting values for Vn produce smaller
parallel flows. 1t is also to be noticed that the
velocity variations at two spatial points are more in
phase than compared to the pressure variations at these
points. The decline of the parallel flow is on a time
scale comparable to the acoustic travel time over the
length of the field line participating in the lateral
motion, For a total length of 2.0 for the field line,
the time scale of decline is approximately 0.85 units.
When a larger length was assumed ( 4,0) the relaxation
time iz ¢ 3.0 as seen in figure 2,13 where the behaviour
of the lateral flow V, is also plotted alongside for

the sake of illustration.
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2.7 Discussion of the results:

Physically one can think of two mechanisms which
can accelerate the gas along the field line. The first
is a “séueezing“ action much as one squirts a flaid
from a tube-~like container. An upper limit for the
acceleration can be estimated by considering an incom-
pressible fluid. In this case the acceleration D Vg

Dt
can be approximately written as -—Végtgn $A where SA is
the area of the tube. From equation (2.7d) this can be
further simplified as - V‘!’g Vn « This in turm, depends
on the rate at which V“' ch;;ges in time. There is
another mechanism for acceleration which is more effec~
tive in the present study., The non-uniform lateral
motion of a 1ine'element imposes on the associated
fluid element: (1) a translational motion of its centre
of gravity along a cur;ed path and (2) a rotation around
the centre of gravity. The centrifugal acceleration
due to the rotation of the line elements cancel out when
integrated over the field line. The centrifugal
acceleration due to the translational motion along the
curved path, however, will remain. In the present study
this is given by VYV, %te which can further be simplified
to Jig'b V.,: using equation (2.7¢). It is thus seen
that this acceleration is independent of the sign of Vﬁ

but depends on the rate of change of its magnitude along
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the field 1imne. This fact explains several of the
results obtained in this study. First of all, it
explains why the gas is always seen to be accelerated
along the direction of increasing amplitude of the
lateral velocity., Since, for the case of € = ktjj
type of flow, the acceleratiom is'given by k Vnzcoée)
the increase of parallel velocity with increasing
carvature and with increasing amplitude of lateral base
velocity for such flows can also be readily understood.
A comparison of é gzsvnl with the “squeezing" term
- \/AQ Vo shows that even if one assumes g_ Vi

to bgjcomparable with gévn , the vanishinglyT:mall
value of V& at t = 0 makes the squeezing term negli-
gible at the beginning of the squeeze, Moreover, since the
sign of the "squeezing"™ acceleration depends on whether
the lateral motion is compressive or expansive, such
terms will mot contribute a net acceleration in the case
of oscillatory motion., This is not the case with the
centrifugal term which maintains its sign irrespective
of the sign of Vﬁ « Thus such an acceleration will
persist even in an oscillation of the field line provided
the longitudinal gradient does not reverse its sign.
This term is of great dynamical importance since even

a small persistent acceleration can generate significant
flows along the field after a sufficiently long period

of time.
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Finally, the increase of response with increase
in the "stiffmess" of the equation of state could be
because of the faster propagation of signals in "stiffer"
media leading to closer communication between the
extremities of the field line. The importance of the
equation of state is thus seen even imn a simple change
of the polytropic index., More attention will be paid
to the energy equation and the eguation of state in the

subsequent chapters.

2.8 Application to granule -~ flux tube interaction

on the sun:

At photospheric levels, granulation forms a
velocity pattern which has a typical length scale of a
few thousand kilometers and a time scale of a few
minutes. There are also concentrated magnetic flux
elements in the photosphere which undergo "buffeting"
by the granules. In fact, there exists an earlier
cbservational study of granule-flux tube interaction
(Dunn and Zirker, 1§73). In that study the very fine
structure of rosette centres was resolved and was named
solar filigree. It was seen that filigree are joatled
about by granules with lateral velocities & 1.5 kms—1,
which is considerably larger than the rms vertical

velocity of granules. The filtergram observations by

Ramsey et al (1977) seem to have resolved the magnetic
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elements into their filigree components. More

recently, high resolution observations (Daras —
Papamargaritis & Koutchmy, 1983) do show the
association of filigree with strong magnetic fields.
Similarly, other elements of enhanced brightness,like
the calcium bright points have been identified with
magnetic elements (Sivaraman and Livingston, 1982).

Thus one could reasonably assume that magnetic elements
are indeed laterally displaced with velocities ® 1.5
kms-I. What is more important to the purpese of this
study is a knowledge of the variation of the magnitude
of the jostling with height in the solar atmosphere.

In the absence of direct observational information,

let us assume a form for the lateral motion of the

field lines which is related to the observed form of the
granular velocity field. Observations of the granular
velocity variation with height in the solar atmosphere
(Durrant et al, 1979) indicate a decrease of the rms
vertical velocity with height. The scale height of the
variation is & 500 km. The life time of the granule
varies between 2 to 15 minutes. The time variation of a
single granulation flow can, therefore, be approximated
by a sine function with a half period egual to the
granule life-time, More specifically, one can represent

the granular velocity Vé as
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4 ) . s . .. B E
V8 =V, exp(-%[H)2in(nt/T), (2.22)
ln the present calculation the form (2.22) was assumed
for V, with V, = 0.7, H = 2.0 and T = 3.5 in dimension-

1, 500 km and 120 s

less units corresponding to 0.5 kms
respectively for a reference temperature 71*= 6000 X.

The initial magnetic field was chosen to be purely
vertical and the gas was assumed to be initially strati-
fied with a polytropic index of | = 1.064. This value
of | was chosen to fit the Harvard-S5mithsonian Reference
Atmosphere (Gingerich et al 1971) for a height of 500 km
above the photosphere which also corresponds to the

height range in which downflows have been observed in

tubes (Giovanelli & S$laughter, 1978).

The results are shown in figure 2.14 where the
variation of the fluid velocity component along the
magnetic field is plotted as a function of the distance
along the field at different instants of time. The
flow begins as a downflow and remains as such throughout
the life time of the lateral velocity field. The
magnitude of the velocity along the field initially
decreases with height, but at later instants of time,
it increases with height. The observations of
Giovanelli & Slaughter (1978) actually show a decrease

of velocity with height. However, the present
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calculations do not include the back-reaction of the
field on the flow and assume that the lateral motions
are directly proportional to the granular velocity
field. One cannot, therefore, make detailed comparisons
with observations especially for durations of time
larger than the Alfven travel time over the length of
the field. For a field of strength ® 1000 G and length

& 500 km, this works out to approximately 60 s.

A more detailed discussion of these points is
postponed to chapter 6. It is sufficient to note here
that one can expect significant downflows to be generated
within flux tubes as a result of the jostling of these
tubes by granulation, If the jostling decreases
monotonically with height, then the flows would be

downflows at all times.
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3. INTERACTION OF MAGNETIC FLUX TUBES WITR THEIR
ENVIRONMENT

II. Response to external pressure fluctuations

321 A magnetic flux tube in a turbulent fluid:

The previous chapter dealt with the result of
bending motions produced in the tube by external tur-
bulence. It is easier to excite such kink modes than
the sausage or squeezing modes in a tube (Spruit, 1981b).
in the case of a compressible fluid one does not know
a priori what fraction of the energy from the "squeezing"
agency goes into the increase of the intermnal energy of
the fluid and what fraction is actually used for driving
fluid motions. ©On the other hand, if one squeezes a
tube containing an incompressible fluid, the entire
energy of the squeeze will be converted into the

kinetic energy of the fluid flow along the tube,

The response of thin tubes containing incompres-
sible fluids to extermal turbulence has been studied by
Parker (1974b). He considers two aspects of this
problem. In the first case the tube walls are assumed
to move in a prescribed manner. This results in a
change in the magnetic field due to flux conservation,
The fluid velocity is also affected due to mass conser-

vation. The changes in the magnetic and velocity
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fields influence the gas pressure inside the tube due

to momentum conservation. The time average of the
solutions of the equations of continuity, motion and
flux conservation yields an expression for the mean
magnetic pressure enhancement which is equivalent to

the dynamical pressure f)V;L caused by external
turbulence. By assuming Ve o 3 lq.m.s'" and )o o~ 10_73 rrn‘3,

Parker obtains fields of the order of 600 G.

Parker also considered the case of the massaging
of a flux tube by external turbulence (Parker 197ka).
He idealises the effect of eddies advected downward
along the tube walls in terms of a moving constriction
travelling downwards with the speed of the intergranular
downflow. Even in this case he obtains fields'of the

order of the "equipartition™ wvalue of about 600 G.

The response of a flux tube containing a compres-
sible fluid to external pressure variations was studied
by Roberts (1979). He obtained a resonance when the
time scale of the external pressure fluctuatioms matched
with the time taken for a "tube" wave to travel across
one wavelength of the fluctuation. Roberts concluded
that the tube could absorb energy at the resonant
frequency from the wide spectrum of frequencies incident
on the tube. He suggested that this could be the

driving mechanism for spicules. It should be noted that
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the motions produced by this mechanism are oscillatory.
Furthermore, it is not known whether nonlinear effects
wounld smosther the resonance, The response of a flux
tube to extermal pressure perturbations has also been
suggested as a diagnostic for estimating the thickness
of the tube (Venkatakrishnan, 1979). The analysis of
the interaction of a flux tube with its environment can
be simplified by considering the slender flux tube
approximation which shall be described in the following

sectione.

3.2 The slender flux tube approximation:

The slender flux tube approximation rests on the
assumption that the radius of the tube varies on a
length scale much larger than the radius itself. This
approximation enables one to study dynamical phenomena
within tubes which are stratified by gravity. Suach
studies have been reviewed by Venkatakrishnan (1981) and
more recently by Spruit & Roberts (1983). The rigorous
derivation of the equations of a slender flux tube is
given in an appendix by Roberts & Webb (1978)., It is
based on a perturbation expansion of all variables in
powers of (T JA ) where T is the radial distance from
the axis of the tube and A is some measure of the
length scaie of variation of the tube radius. By

formally equating the terms independent of 1?/[\ ’
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Roberts and Webb (1978) obtained the following equations

of zero order in v [ A

gt(/D/B) + é_a,z(p\r/B‘)= o, (3.1)
3 L3 b - '3,
R A EE R
g - s % 3 b (7
L5eP thgt’f} +v{ 2P (?P)ng’}
= - (7V-D)v.F) , (3.3)
B = 8n(p.-p), (3.4)

where P ,/3, V" and B are the pressure, the density, the
fluid velocity along the tube axis, and the magnetic
field inside the tube,respectively; Pe is the gas

pressure outside the tube, and F is the energy flux.

The static equilibrium solution of this system of
equations was actually first obtained by Parker (1955)
in a different context, OUne can comnstruct a family of
static solutions in terms of two functions 9 (Z) (the
ratio of the temperature at a depth = outside and
inside the tube) and F}(z) (the ratio of gas pressure
to magnetic pressure inside the tube). The equilibrium

soluation is then written as
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H

04

o
n

* gnigoe/cl+ﬁ)’ (3.6)

Poi = P B/ C'+P (3.7)

Poi = @/’oeﬁ,’(wm. (3.8)

In addition, F'oe and Fm’. must satisfy the equation of

hydrostatic balance. 1Inside the tube this equation is

i

d by = - fug (-5

Substituting for Pc.i, and )Doi. in equation (3.9) we have

the following identity,

X

g (“’\"{.i'ﬁ) = '—(9-1)(%/8)&;_5

Hence there exists an extremum for ﬁ /(H"/B) at @ = 1.
Furthermore if 6 = 1 at all = , then /B is also
independent of # , Let us now perturb any dynamical
variable by a small amouant q which is of the form

9 = Go (&) e_xp iwl . Then the linearised form of

the equations (3.1) through (3.4) reduce to a single

49
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second order ordinary differential egquation in one

variable (Roberts & Webbs, 1978), viz.

2
agd UV o+ a,dvasa;=o, (3.10)
1

d =z d*

where &a’ a" and 4, are in general, functions of = .,

By means of suitable transformations, this equation can

be written in the cannonical form

‘—l—zaﬂ +F(@'ix) Yy = 0. (3.11)

dx
The curve - (uli: L) =0 separates the "propagating"
and “"evanescent" regimes in X for a given w .
Conversely it represents a "local" dispersion relation
for df' separating "propagating® and "“"evanescent®
frequencies at some XL , Alternatively, it represents
a sufficient condition omn le for the existence of

bounded solutions.

1f one solves egquation (3.1?) subject to boundary
conditions on j at two point X, and X, , we obtain
an eigenvalue problem for cﬂi « For adiabatic varia-
tions d;' is real, leading to oscillations when it is

positive and instability when it is negative.

The case of instability will be discussed in

chapter 4, In the case of oscillations, it is seen
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that only one mode exists as opposed to two in the case
of an unbounded medium. This "suppression of modes"
has been noted and discussed by Cram and Wilson (1975)
and will occur only if T = T ., (koberts, 1981a,b). The
phase velocity of the “allowed" mode is smaller than the
minimum of either the Alfven velocity or the sound
velocity, it is called the "tube" velocity in the
literature and is given by

[

c. = (425_: (3.12)
A%+ 52

where A and S are the Alfven and sound speeds respectively.
"Tube™ waves in thin tubes are essentially the counter-
parts of "slow" waves of finite tubes. The properties

of tube waves have been well studied (Roberts & Webb,

1978; Spruit, 1981a,b; Rae & Roberts, 1982). In the

next section, we reduce the nonlinear equatiomns to the
characteristic form with a view to use them in our

computations.

3.3 The characteristic equations for a slender flux tube:

If one mneglects the heat source terms in equation
(3.3) then the system of equations (3.1) throungh (3.4)
is a hyperbolic system of partial differential egquations
and will, therefore, posseas real characteristics.

Equations (3.1) through (3.3) can be rewritten as



o + A3) - b 3.13
( 9t oL y ( )
here
e Lo o v 0 ofp
I=fono 5 A - o vopeist)
o o 1
1/p o v
b e 2 2
Y - f J b - a/s?] and Q= C; (S£Pe+v§zP€}/A y
v -9
Multiplying equation (3.13) by G'T, the transpose of
S,
6', where @ = (0:‘> is any arbitrary constant vector,
95

we have:

* T
¢ 3 + ¢ A3 . o7 (3.14)
Let >‘n be the 7T th eigenvalue of the equation
1
Ao, = ), o, (3.15)
where f_n is the corresponding eigenvector. Then
(3.14) transforms to
U _ e T (3.16)
7. (g‘t"')\“%*)v‘ T b .

If %n is such that



where § _(Z,1t) = constant is some curve in the L-2

plane, then equation (3.16) reduces to

+ +
e 4dY: o b (3.17)
n = m J
d.t
along the curve ‘gn = constant, If the original system
of eguations were fully hyperbolic, then there would be
M real eigenvalues where T is the number of elements

T
in \‘ . In the present case, the )\nxs are given by

. .2 1. Ya . \ ; .
where CT = $A /( S5¢ AT is the velocity of

"tube waves, with
{ i
ol 0 ¥ =z gl -§

PCT "‘f)C'r 0

where § is an arbitrary constant., The compatibility

Q
Q

(]
%

egquations are, therefore,

dp + plrdv (o0+ p1dl aleng )

t
n

U+ (3.18)

Co(-jﬁ)d,'t a.tong A:=VU-Cr> (3.0

H

d_P — FCTCLV’
and
dp - (%JD) dp = 0@ glng A=V, (3.20)



where

Ad= amnd i.g :—/[3 C'rg‘ .
It is interesting to note that there are normally 4
characteristics for one-dimensional unsteady flow in
an unbounded magnetic field (Pai, 1962). The fact that
the number in the present case is 3 is again remini-
scent of the "suppression of modes" referred to in the
previous section., Eguation (3.18) through (3.20)
cannot be solved analytically in general and we will
resort to the numerical method described in chapter 2.
Before proceeding we present an analytical solution
representing the linear response of a uniform tube to

external pressure perturbations.

3.4 Linear response for a uniform tube to external

pressure perturbationsi

The linearised version of equation (3.18) through

(3»20) can be written as
L3 kb +2 p, +P2 Vi =
A a2t 2L ' 2%
I - B
+1 S, Pe ﬁ,‘j‘g}zg‘i(l’o( oJ, (3.21)

)Dog'\}:+%tﬁ'= A (3.22)



3 - (YE)) O = _ 3 -7 (3.23)
gq:Pl (7%?)51f% tﬁ (azfﬁ> -%? gif%)’

where the subscript '1' denotes perturbed quantities
and ‘o' denotes unperturbed quantities. For a wniform

tube these simplify to

+a P] fPOEW =

12 (3.24)
L S.b re, 2V = nd Pa

/°o—- r 4 p =0, (3.25)

GRS

a
with P' = S f, . The characteristic directions

in the (t-z) plane are given by

;\ = Ci27 = j: C .
dt T

Let us now transform to the characteristic curves given

by

T(z,t) = 2-C;t and q(z,’c): Z2+Ct.

The equations (3.24) and (3.25) now become

Wi

5(1 P~ PoCr V) = — 3 P (3.26)

&Al at
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and g (P +pCrvy) = . C é’at Pe, . (3.27)

+ C a d (3.28)
3:'/-%—; 51 PEI 1
and
,:"/OOCT\J;: {'R—CTD
ja b&l A'E 7 (3.29)
where :F and —f-;_ are a.rbltra.ry functions.
Hence
Pl = :F(EH"S‘:,C'D + C'r ja bel (d‘fl c,.g) (3.30)
=8
and
i=fim—hho 1 (5 d (3.31)
' Q)aoct 4_/‘;:‘A, Pel (dvl + E)
However,

dqn+dg = adz and cL'1~cl§ = aC dt.

Thus equations (3.30 and (3.31) reduce to

P, = Filz-CH+faeeen 4 R 3 byt (3:32)
2 — =]

and



(3.33)

2 p,Cr ape A ) Bt

Let us assume the following farm for Pe' :

Pe = Peo exp -2 sinwt .

Then equations (3.32) and (3.33) further reduce to

b, = fiz-O +faE+c® , cf be, (3.34)
1 2A3

and

U= {:F. (2-C ) - f;3 (=+ CT+-)} /a,a,, ¢,

Applying initial conditions P’ (0) = ]:;m () and

\].‘ (o) = \r}o (Z) y we have

.36
P, (2) = F (&) + £, (2) (3.36)
-

and

U, (2) = {,c, (2)-Fa(®} /2 p

_ o} Feo exp- (3.37)

2f B

x|y

Hence

£8 = p 2+ f.,c,.{v,'ocz;



+ - wH - 5 -
Byt Feo €xp £ j (3.38)
and
F2l8) = b (2 - poc, { Vie ()
+ ©H exp - % . (3.39)
2 fo A% Feo H }
Let
Pto CF)= 0 and Vo (®) = 0.
Then
AT H
and
- H - E l
famy s — GO p exp o2 (3.41)
AA*
Thus
{{l, (Z-C8) + 5 (F+C )] [a
_*
= GoM b, e Haimh (crt)
and 3/}2 H

[Ficx-c0- fucae ) [apus

= @H b e R zoai»(c_rt).
2 fo A H

Finally,
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2 -2
]o,cz,th _C_T,joeoe ”(rsiﬂwf+e=_ﬂ&nhcrt) (3.42)
aar” v Cr H

and

o F (cosh Gt coswl) . (3:43)

W (z,t) =Qﬁ£}3€o H

©

it is thus seen that both P' and U'l have an oscillatory
component as well as a monotonically increasing compomnent
which grows on a time scale of approximately H/CT « Since
the above analysis is valid only for small amplitudes,

one cannot say whether the growing component persists in
the presence of nonlinear terms. The next section deals
with a numerical study of the nonlinear problem with the

additional feature of a stratified tube.

3.5 Nonlinear response for a polytropic tube to external

pressure perturbationst

We noy present the results of numerical solutions
of the mnonlinear equations (3.18) through (3.20). We
assumed an initial hydrostatic equilibrium with a poly-
tropic stratification and space independent IQO « The
time dependent calculations were performed only for a
single wvalue of PO = 2,0, In the solar photosphere,

this value of /Bo corresponds to & 1800 G which is
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approximately the value of the field within intense
magnetic flux tubes. Since the magmnetic field imparts
a kind of M"rigidity"™ to the associated fluid, weaker
fields would imply a "softer" equation of state for the
tube and, therefore, ome would expect smaller values
for the resulting longitudinal flow as compared to the

response for a tube with stronger fields,

We chose the value of the polytropic index M= 1.1
for matching with the Harvard-Smithsonian Reference

Atmosphere as has been mentioned in section 2.8.

The choice of the form of the external pressure
perturbation needs some consideration. There are in
general three possible classes of forms., There are the
propagating disturbances produced by progressive waves,
A second class is the standing wave patterm and finally
we have an evanescent wave patterm. I1n the solar
atmosphere large power has been observed to exist in
the five minute oscillation and in the granulation. The
former can be considered as an example of a standing
oscillations (Leibacher & Stein 1981) while the latter
has been observed to have an rms velocity distribution
that decreases with height (Durrant et al 1979). The
amount of power existing in progressive waves is not

well known but the meagre information that is avallable
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(Deubner 1976) indicates that this power is not very
significant. It is, therefore, adequate to consider
only the second and the third forms of the external
pressure perturbation. We, therefore, studied the
response of the tube to the following two forms of the

external pressure perturbation:

hﬂl = beo_exp-_g-. sim 0t (3.44)
H T
and

where }36’;0 is the amplitude of pressure fluctuation, H
is the scale height, T is the period, k is the wave

number and <0 is the angular frequency.

Observations can yield only the approximate scale
height of the variation of vertical rms velocity., To
convert velocity fluctuations to pressure fluctuations

one can use the equation of motion to write approximately

EI ~, o) \)“z
Po (k,+9g/8") T2

where k!- is some measure of the vertical velocity

variation. If hi’- L L g/S" (as is the case for



62

granulation) then

Polhbe v 22V, & &7 v, .
9 T3

<l

Using typical values for T « 300 4, 9 2x10 Tem g™
\ -1 !
and V7, = 105 cms corresponding to granulation, we

have
bli#vma'i-

This estimate is an overestimate since it assumes
axially symmetric perturbations to act coherently at
all depths on a single flux tube, In reality the
buffetting of the flux tube would proceed in an inco-
herent manner thereby reducing the efficiency of
conversion of velocity fluctuations into pressure

fluctuations.

We treated this efficiency factor as a "fudge"
factores In particular, we assigned a modest value of
O.1 to this factor in the present calculations, thus
teking P‘/ h) = 0,01 which in dimensionless units

implied ;,e = 0,01.
0

We first present the results corresponding to
the pressure perturbations given by equation (3.44).
In the calculation, T = 3.0 in dimensionless units and
three values of H = 1.0, 0,1 and 0.01 were tried. For

~

a temperature of o 6000 K, the unit of length is
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® 250 km and the unit of time is 305 .

The time dependence of the longitudinal velocity
near the midpoint of the tube (= = 0.48) is shown in
figure 3.1 for the three values of H mentioned above.
1t is evident from the figure that the response is
more vigorous for the case of H = 1,0, than for the
other two cases. The reason is that H = 1.0 corresponds
to the slowest decline of the pressure fluctuations with
height. TFor the other two cases the pressure fluctua-
tions become vanishingly small at 2 = 0.48, The fact
that the response for H = 0.1 is not very different from
that for H = 0.01 is again a reflection of the Fact that
at Z = .48, the direct effect of pressure perturbations
is so small that numerically it is difficult to distin-

guish between the two small quantities,

An interesting point to note is that the wvelocity
fluctuations for H = 0,1 and H = 0.01 vary on a time-
scale larger than the period of the external pressure
fluctuations. There is an increase'of downflow till a
time & 2.5 and then one sees a very gradual decrease
of the downflow. The maximum of the pressure fluctua-
tion occurs at the bgse of the tube and hence the delayed

response at Z = 0.48 can be understood in terms of the

time taken by tube wave to propagate over half the length
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of the tube. The magnitude of this propagated compres-
sion would be larger than the in situ compression owing
to the small values of H. We can, therefore, under-
stand the change of slope in the response curve in
figure 3.1 at t & 2.5. The effect of the dilatation
would also be delayed in a similar manner but the compu-

tations were not followed to such times.

Une can contrast such a behaviour with that for
H = 1.0, Here we see that the velocity is in step with
the extermal pressure fluctuation. The slower spatial
variation of the external pressure fluctuation in this
case maintains the in situ pressure fluctuation at a
larger magnitude than the advected component and hence
the latter component does not show up. Figures 3.2, 3.3
and 3.4 show the spatial profiles of the velocity at
different times for the cases H = 1.0, 0.1 and 0.01
respectively. In all these figures omne sees that the
velocity profile consists of both a downflow and an
upflow with & node at the centre for t & 1.0. In the
case of H = 1.0, the node disappears and we see downflow
at all  when t = 2.45, This profile changes to ome
of almost uniform velocity at t = 3.40. Finally, at
t = 4.85 we see upflow at all points. In the other two
cases of H = O,1 and H = 0,01, the phase of upflow at

all = is not seen to be attained after a similar lapse
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of time. This is entirely due to the predominence

of the advected component of the response as mentioned
earlier. ©Omne is, therefore, led to believe that if

the external pressure perturbation is confined to the
base regions of the tube and if the time period of the
perturbation is small compared to the tube travel time,
then unidirectional flows can be maintained for longer
times, For the case of granulation, however, the
vertical scale height of variation of wvelocity field

is @ 500 km and the time scale of variation T 3004,

Un the other hand, the tube travel time for a tube 500 km
long is = 1004. Thus one would expect the response to
be more like the case of H = 1.0 in figure 3.1, i.e,

the resulting longitudinal flow would be oscillatory
rather than steady. The maximum magnitude of this
velocity turms out to be & 0.01 in dimensionless units
which corresponds to m 100 ms | at a height where the
sound speed is w© 10 kms—1. 1f the efficiency of conver-
sion from velocity to pressure fluctuation is increased
one would expect the magnitude of the longitudinal

velocity fluctuation to increase correspondingly.

Let us next consider the results for pressure
fluctuations given by equation (3.45), The time behaviour

is given in figures 3.5 for various values of A , where

A= wf ke,
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Here the wave number iQ was kept constant at 7%
This corresponded to two antinodes of the Pressure
fluctuation at the ends of the tube. The frequency
was then chosen as different multiples of ’QCT e« As
can be seen in figure 3.5, there is a distinct 'resonant'
behaviour at X = 1, i.e. W = R(.. This confirms
Robert's (1979) prediction of a resonance from a linear
analysis. Unfortunately the calculations were not
followed long enough in time to see whether the ampli-
tude saturates or continues to build up until shocks are

produced.

The mean velocity in the ‘'mnon-resonant' cases shows
a tendency to drift to megative wvalues although the
computations are not extemnsive enough to confirm this.
This tendency for drifting to negative velocities is
also seen in the spatial velocity profiles as given by
figures 3.6 to 3.10. The only exception is figure 3.7
which corresponds to the 'resocnant! case. The skewness

of the profiles is also less for this case,

The magnitude of longitudinal velocity for the
resonant case is also interesting. The maximum value
reached is @ 0,1 which corresponds to %1 xms~ | when
sound speed is = 10 kms-1. This is only a lower limit

since the saturation value was not reached in the’
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calculation., Moreover, one does not know whether this
value will be further increased consequent to an inc-

rease in the amplitude of the external pressure fluctua-

tion.

On the whole, it seems that the resonance would
lead to observable effects in real flux tubes on the
sun. The flow would, however, be oscillatory with a

time scale corresponding to the tube travel time.

In summary, one sees that the maximum response to
external pressure fluctuations of both standing and
evanescent forms occurs when the tube travel time is
of the order of time scale of the fluctuations and in
either case this maximum response is oscillatory rather
than steady. In relation to observations of the solar
magnetic flux tubes, this would mean that the observed
systematic downflows are unlikely to be due to the

external pressure fluctuations.



4. NONLINEAR DEVELOPMENT OF CONVECTIVE INSTABILITY

wiTHiN SLENDER FLUX TUBLS

I, Adiabatic Flow

L.1 Convection in a magnetic field:

The influence of magnetic fields on convection
and vice versa depends on several parameters, The
destabilizing effects depend on the superadiabatic
temperature gradient. Countering this are the stabili-~
zing effects of the magnetic field and the various
dissipative processes arising from the thermal
conductivity, wviscosity and electrical resistivity
of the fluid. Consequently various dimemsionless
numbers exist in the literature which are ratios of

some of these properties of the fluid,

According to Cowling (197¢9, it was Walen (1949)
who first suggested that convective instability may be
strongly affected by a magnetic field unless the dimen-
sions of the convective elements im the directiom of
the magnetic field are sufficiently large. Walen
assumed the fluid to be ideally conducting and neglected
other dissipative effects as well., By equating the

force produced by the bending of field lines into a
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curve of radius A, to the buoyancy force produced by
heating of the liquid from below, he obtained the

minimum ATnbelow which convection cannot exist as

A

L (mBapqupr'l

Here B is the field strength, /3 is the density of the
liquid, X is the coefficient of volume expansion , /3
is the temperature gradient and g is the acceleration
due to gravity. The onset of instability in a
Boussinessq fluid with finite thermal conductivity,
electrical resistivity and viscosity has been studied
in great detail (Thompson, 1951; Chandrasekhar, 1952,
19613 Danielson, 1961; Weiss, 1964; Gibson, 1966), For
a plane layer of depth d, the stabilising effect of a
uniform magnetic field is represented by the dimension-

less Chandrasekhar number
a A
Q = B 4 [/8npnY

where v is the electrical resistivity and V is the
kinematic viscosity., The other dimensionless numbers
which describe the configuration are the Rayleigh
number R = (X/Bgd«q‘/xv , where > is the thermo-~
metric conductivity; the Prandtl number o = » [

and the magnetic Schmidt number T =« x’/q . If

¥ < " , linear instablility sets in as in ordinary
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Rayleigh-Benard convection when the Rayleigh number
exceeds a critical wvalue R(e). This value of R(e)
increases with Q showing the stabilizing influence of
the magnetic fields However, when JK.)TI the instabi-
lity can also set in as a growing oscillation which is
variously called overstability or oscillatory convection,
For « sufficiently large the overstability can set in

at a Rayleigh number R(O) which can be smaller than R(e).

iln the case of a compressible fluid without dissi-
pation, a local condition for stability was obtained by
Gough & Tayler (1966). The fluid is convectively stable

if
(d.ﬂ:ﬂ . (c}}ﬂ\) < B
d bnp dlnp /oy B+ envp

1t can be seen that strong magnetic fields can inhibit

the onset of convection, though such conditions do not
commonly occur in stars (Tayler 1971) except in small
scales like in sunspots, Some efforts have been made to
combine the effects of compressibility and dissipation
(Kato, 1966; Syrovatsky & Zhugzhda, 1968a,b; Antia, 1979) .
If the Alfven speed is small compared with the sound
speed, the slow magnetosonic oscillations become over-
stable; if the Alfven speed is large, the fast magneto-

sonic mode can be destabilized (Cowling, 1976b).
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Considerable efforts have gone into the under-~
standing of large amplitude evolution of the instability
(see the review by Proctor & Weiss, 1982). Developments
in bifurcation theory have aided the description of
finite-amplitude behaviour in the neiéhbourhood of
critical points of the onset of instabilities. A few
cases of subcritical convection have been discovered
(Busse 1975). (Quasi-hydrodynamical calculations using
truncated model expamsions (Knobloch et al 1981) as well
as numerical solution of the full set of non~linear
partial differemntial equations on a computer (Weiss,
1981a,b,c) have revealed interesting behaviours 1ike
the formatiomn of structured magnetic fields. Little
is known about nonlinear compressible magnetoconvection
when the Mach number becomes finite. For instance, one
does not know what limits the field strength in isolated
flux tubes, especially when these are stratified by
gravity. However, certain approximations have rendered
tractable the problem of the stability of thin tubes.
An account of the current understanding of convective
instability within slender magnetic flux tubes will be

given in the following section.

4.2 Review of linear analyses of convective instability

within slender flux tubes}
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In the preceding section we briefly reviewed the
theoretical effort in understanding the onset of con~
vective instability in a fluid permeated by a uniform
magnetic field and the evolution of this instability
to a finite amplitude. 1In this connection, a class
of solutions obtained by Weiss and his collaborators
(Weiss 1966; Galloway and Weiss, 1981) for an incompres-
sible fluid leads to a common feature of narrow intense
magnetic structures, There also occurs a mutual
exclusion of magnetic fields and velocity fields. It
is matural to ask the gquestion whether such concentrated
magnetostatic structures can result even in compressible
fluids stratified by gravity and heat transport. A
direct way of answering this questlon would be to assume
an equilibrium model for the structured field and then
examine its stability, However, stability analysis of
two dimensional structures is fraught with the impossi-
bility of the separation of linear perturbations into
their normal modes, It is here that the slender flux
tube approximation, described in chapter 3, becomes
invaluable, by reducing the egquations to those of a
single dimension. As mentioned there, it was Roberts &
Webb (1978) who rigorously derived the basic equations
in this approximation., Here we rewrite their equili-

brium solution for convenience of further discussion.



77

Such a sclution can be constructed from any given
arbitrary stratification of the pressure ,l:ecz) s the
density p, (2z) and the temperature 7T_c¢z) outside
the tube along with an arbitrary magnetic field _'Bo(i-) .

The equations then become

bq(z_) - Pe(z)_Boalg‘n‘J (’4‘.1)
Pol2) = poz) + L d 3_3_1 (4.2)
9 d= an
ana T, (2) = PP b oc2)[p (2, (4.3)

where the subscript ‘o’ denotes the guantities within

Io

the tube, (R 1is the gas constant and P-(fao,"") is

the mean molecular weight., If one further assumes

Teo [P, To)=Te|t(p,, Te)at all heights then one

obtains a simple relation between Fo and B_ viz.,

bo | enB = B, , (4.4)

where Po is independent of = , With the further
assumption that ’“L‘ = constant, the linearised equations

reduce to ( Webb & Roberks , 1978) ,

{0’(2) EL_ V} +{u>1:r(z)- qc*t)};/\r. o, (4.5)
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where

T(2)= Polr (B, , T(2)=f/B,

92 = LTINS o d (B, g)+ (B3 ) (G0,

B, o d2 B, ¢ B & oot 3

a 2
Cl(i") {3 Ao CT (2) = C; (o) /\O(%)//\.(o)’

o]

Y

Ng (=)

]

{ 2 2 2
(ﬁ)(fi_‘qul\o), Creo= Vo
e Cf(o)-;- V;(o)

Vi) = By [ump, (o), A= pTe(»/Rg

,\ .~

and y = U (Z) cxp-u.ot' is the amplitude of the wvelocity
perturbation Vv (z) « This equation (h.5) together with
one boundary condition each at 2 = 0 and &= = -d
constitutes the standard form of the Sturm-Liouville
boundary-value problem, For boundary conditions such

-\ *Al Q
that [s(2)V*Y'] £ 0 ,  Webb and Roberts (1978)

-d

obtain a sufficient condition for stability as

2

(=]

Jel + a_% (Bo/{'.Bo“i‘Q/C:)
z

N

+ (Bo’]BoJrg/c:)(c_:{/c:-Nf/g) 7o, (4.6)

4‘97 - d. < *= < 0.

—



79

For the special case of Te =T, , this reduces to

/
o > - No — (—b/ ]) 3
"’""‘“T
which is the usual condition for convective stability

in the absence of a magnetic fields, For the case of

constant Bo in the tube,equation (4.6) reduces to

2 2 / _
B[ (B +8TTPR) ) = A, - (1’;;-’);

throughout —d. < 2 £ 0 , which is the same as the
condition obtained by Gough & Tayler (1966) for an
uniform laterally unbounded magnetic field. When the
equilibrium stratification is in the form of a polytrope
with b, o PeP and Tp = T, then it is
possible to obtain the necessary and sufficient condi-
tion for stability as (Webb & Roberts, 1978)

b (= e A(X 4 &)

d 2 VR

v A v,

+ ("*”“,\17& 7o. (&7
=2

[}

A
This last result was for the boundary conditions V =0
]
_ ! /2
at #=0 and 2— —oo . For -(’C;/)) /\o>,_g+(%)

a a )
there is a critical value of Cg /VA given by

Col -Y [ 2
©)s s

J
it H ()
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below which the solution is stable. Thus, a sufficiently
strong field can render the tube stable. On the other
/ /2
hana, if A, < -3 4 (1) then the tube cannot be
2 d
stabilized by any finite value of the magnetic field,

however large.

For a different boundary condition at the bottom

of the tube viz., Q = 0 at £ = -~d, Webb & Roberts find
that with a given value oflﬂ0 and AO{, there exists a
critical depth :i* , such that for d < d*_the perturbation
is always stable. They finally suggest that a photos-
pheric flux tube of moderate field strength (a few
hundred gauss) is convectively unstable. The result of
this instability is either the dissolution of the tube
with the field being dispersed; or an increase in the
field strength until a stable equilibrium is once again
possible, They also suggested that the instability would
generate a downflow thiough not necessarily a steady one,
Spruit & Zweibel (1979) assumed a realistic stratifica-
tion of the medium surrounding the tube based om the
convection zone model of Spruit (1977) with T /i*(foqg)=
—rel P-(PCJ'Te7 . In this case, we have seen that

the ratio ‘ﬂo of the gas pressure to mggnetic pressure

is independent of height., Their treatment includes the
effect of ionization on the thermodynamics of the gas.

The linearised equations used were the same as in
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Webb & Roberts (1978). However, the coefficients of the

final second order differential equation for the
velocity perturbation in this case depend on the wvariable

thermodynamic properties of the gas. Thus this equation

becomes
2 N A
d v 4+ La(it+aerdy
d\.%q 2 dz

+.ch[332 (2 + B,) + (Q6~€)(‘+P»’]=°: (5.9)
2 +

ga
where

o b"llh’ ’ EZL%’)< l‘+}:}o"f/-7) J

g = (dlmT /dlﬂ)o)_ ( dinT [dlnp)ayg ;

‘Gtz | = (efnp [ T)p R =1 + (3mp[olop)y
and

Y = CPO /(Cch) -

Spruit & Zweibel (1979) solved the equation (4.9)

numerically subject to the boundary condition

3 (_%o) = 0 (*l‘ = 0 (L"'"))

3

at depths =, and E, . This is an eigenvalue
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problem for u;- . Since no dissipative processes were
included, col was real, For instability) uggaq where
M is the growth rate. That value of il for which
M= 0 then represents the state of marginal stability.
They found that the tube is unstable for ﬁb Y 1.83

with the corresponding eigen mode having no nodes in

the middle of the tube. When Z, wvas changed from

5000 km to 195000 km, the marginal value of ﬁv
corresponding to the fundamental mode changed to 1.51
showing that the deeper layers of the convection zone
contribute very little to the Instability. These values
oi“ﬁo correspond to a magnetic field B = 1000 G, Thus
this detailed study confirms the earlier work of Webb &
Roberts (1978) that convective instability sets a limit
on the minimum field strength for a stable tube,
However, these results of Spruit & Zweibel (1979) differ
from those of Unno & Ando (1979) who find only one
unstable mode with marginal stability at B, = 0.026.
Spruit & Zweibel (1979) attribute this difference to
Unno & Ando's inappropriate choice of boundary condition
at the top. Spruit (1979) calculated the new equili-
brium states corresponding to initially unstable states
for different values of the initial ﬁ% » The final
states showed maximum collapse in the region of maximum
superadiabaticity, thus confirming the role of convective

instability in the collapse.
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There are several gqguestions to be answered before
one fully understands the process of convective collapse,
The first question is whether the magnetic field does
inhibit convective instability when nonlinearities are
taken into account. The second is whether the final
state of the unstable tube depends crucially on the
direction of the initial perturbing flow. A third
question is about the dynamical status of the final statee.
These questions can be answered only by studying the time
dependent evolution of the instability to large aunpli-~
tudes from an initial unstable state. Hasan (1982)
performed such a calculation for a tube with an initial
equilibrium similar to the zero order state assumed by
Spruit & Z4weibel {1979). He found that the tubes evolved
to a final steady hydrodynamical state. Moreover, these
final states were all independent of the initial state
and the instability occurred no matter how large the
initial magnetic field was. This result would imply
very large fields for the collapsed tubes, as also
extremely high flow velocities for the gas within the
tubes., Such large velocities are not observed and it is
unlikely that such high fields exist either. In this
chapter we present results of similar time dependent
nonlinear calculations (Venkatakrishnan, 1983), however,

with an initial polytropic stratification. This
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stratification strictly satisfies the equations of
motion, continuity and energy. Thus any flow resulting
from these calculations can be unambiguously attributed
to convective instability., A limitation of our calcula-
tions is the assumption of a short length (= 1 pressure
scale height) for the tube. However, as seen in Spruit
& Zweibel (1979), it is only a very short height range
in the convection zone that contributes to the instabi-
lity. Thus the secular behavliour of ‘'short' tubes can
be expected to be not much different from that of longer
tubes with realistic stratification. Moreover the
slender flux tube approximation is likely to fail in

the solar convection zone for lengths larger than the
height of a convective eddy. This can be seen by
visualising the 3-D juxtaposition of different eddies.
If field lines are comncentrated at the junctions of
converging flows and dispersed at centres of the convect-
ive cells, then the area of cross-=gection of a tube
would increase abruptly between different layers of

the eddies.

.3 Initial and boundary conditions for the nomlinear

calculations:

The derivation of the nonlinear equations for a

slender flux tube by Roberts & Webb (1978) was given in
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chapter 3. The characteristic form of those equations
was also derived there. We now describe the initial
and boundary conditions used in the numerical infegra-
tion of the resulting characteristic equations for the
present case of convective instability, It is conveni-
ent to work with dimensionless guantities, For the
calculations presented in this chapter, we chose the
unit of length as the pressure scale height at the
bottom of the tube. The unit of velocity was chosen

as the isothermal sound speed at the bottom. This fixed
the unit of time as the ratio of these two quantities,.
The temperature, pressure and density were measured in
units of the temperature, pressure and density at the
bottom of the tube. The unit of magnetic field was
chosen such that the corresponding magnetic pressure
equalled the gas pressure at the base of the tube. For
a depth of ™ 200 km below the photosphere in Spruit's
(1977) model, these units become 2 300 km for length,

~ 9 kms—1 for velocity, s 308 for time,=10h K for
temperature, 3 x 107 dynes cm™? for pressure and o
HEx 10-7 g r:m-'3 for density respectively., The depth
of ¥ 200 km corresponds to the place where it is also

approximately equal to the pressure scale height.

We chose the configuration of the tube at t = o,

to be polytropic with equal temperatures inside and
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outside the tube. In this case it is known that the
magnetic field also varies with a scale height that is
twice that of the pressure scale height. The ratio of
the gas pressure to the magnetic pressure is thus a
constant denoted by /%:' In terms of the units mentioned
above, the initial values of temperature Ty density/% .

pressure Po and magnetic field B are given by
o

To = I - ..E:_I..'Z' >
¢
/)a = _T‘OF:l ’
r
Pn T A ? .
2
30 = ( Pa /ﬂn)

where [ is the value of polytropic index. As was
mentioned in chapter 2, the boundary conditions exert
significant influence on the flow especially for large
times, The choice of boundary conditions in the calcu-
lations of this chapter was dictated partly by consi-
derations of ease in programming and partly by relevance
to physical situations. For instance, a boundary
condltion like constancy of mass flux (= f>UYB) and the
condition of compatibility with the interior solution
together lead to the solutiom of a gquadratic equation

in one variable given the other two variables. This
would in general necessitate a choice of the proper
root lending a certain amount of ambiguity to the global

solution. In the present study we chose two alternative
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sets of boundary conditions at the top and base of the
tube. In one set, called “"closed-closed" boundary
conditions, the Eulerian pressure was kept invariant
in time at both ends of the tube. In the other set the
Eulerian pressure was constant at the base while the
Lagrangian pressure was maintained constant at the top.
This latter set was called "closed-open" boundary

conditions.

in the case of "closed-closed" boundary conditions,
the horizontal pressure balance implied that the local
field intensity was constant in time., In the slender
tube approximation, this meant that the flux tube was
constrained to maintain a time-independent area of
cross—section at both ends. Such a constraint could
perhaps be valid atr;ase of the tube if the external
flows are strong enough to maintain a constant radius
for the tube, Furthermore, the calculations of Spruit
(1979) show negligible change in field strength at
deeper layers after the collapse. However, it is
difficult to imagine a2 similar confinement at the top
of vertical tubes. For a tube that bends back to the
photosphere at low heights, the rigidity of the tube
as well as the pressure of the ambient atmosphere will
tend to prevent changes in its cross section at its top.

Thus, the "closed-closed" boundary condition could be
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considered as simulating conditions within such bent

tubes,

The boundary condition at the apex of the tube for
"closed-open™ set is equivalent to covering the mouth
of the tube with a movable piston on which is placed a
constant weight. Such a condition implies that gas
moves up and down without leaking out horizontally from
the top of the tube. It is hoped that this boundary
condition simulates the condition in vertical "open"
flux tubes on the solar surface. As mentioned imn
chapter 3, the time dependent equations (3.18) through
(3.20) were integrated in time using a backward marching
scheme by the method of characteristics., In the present
calculation external pressure is comstant in time and
therefore, o = (C:/Aa) (v dpcldi) in equations (3.18)
and (3.19) respectively. Since the scheme is essen-
tially an explicit one, the time step was chosen to be
small enough to satisfy the Courant-Friedrichs-Lewy
stability criterion. The spatial step length was chosen
to be 0,02 times the total length of the tube (assumed
to be of unit length) which is supposed to yield a
numerical accuracy of & O0.04%. One particular case
was recalculated with step sizes of 0.01 and 0.005
respectively. The solutions at large times differed

only by 10% and 15% respectively from the solution for
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step size = 0,02, Hence all farther calculations were

performed with the same step size of 0,02,

.4 Results of the nonlinear calculations:

The various parameters of the calculations are the
superadiabaticity & , the ratio of gas pressure to
magnetic pressure f% y the length of tue tube, the
magnitude and direction of the initial perturbing flow
and the two sets of boundary conditions. Our calcula-
tions largely concentrated on the effect of different
values of /30 . A few calculations were performed for
different values of ¥ keeping | and B, fixed. The
effect of the direction of the perturbing flow was
also studied, as well as the effect of boundary condi-
tions. For the purpose of understanding the evolution
of the instability, the time profiles of the various
fluid dynamical variables are of interest. The spatial
profile must alsc be constantly monitored to check on
the validity of the slender flux tube (SFT) approxima-
tion. If R, is the observed radius of the collapsed
tube and B, is the observed field stremgth, then flux
conservation implies that the initial radius at t = o
be given by

/2

R' = 'RDQBOI:BQD .

v
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HerefBe is the equipartition field which is taken as
the initial field before collapse. For Be » 7006,
B, » 14006, R, » 100 km, the initial radius R, is
~ 170 km at the top of the tube. The scale length of
variation of the tube radius is 4 times the pressure
scale height for the initial equilibrium. If the
temperature at the base of the tube is g 104 K and
if ' = 3 then the pressure scale height at the top is
N 100 km and hence the scale length of variation of
the tube radius is = 40O km. Thus, at t = o, the SFT
approximation is satisfactory at the top and quite good
at greater depths. However, for t 3 o, the behaviour
subsequent to the development of large curvatures in the
field lines should be accepted only after verifying the

validity of the SFT approximation.

We noi present the results of our calculations.
First we will briefly describe some general features of
the behaviour of velocity and magnetic fields in the
tube., We see that the variation of flow velocity and
magnetic field are related. The field attains a maximum
value when the magnitude of the velocity attains a
maximum. Hence, a description of the time profile of
either quantity serves to describe that of the other,

In general the development of the imstability occurs in

two stages. Initially the flow velocity increases
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approximately linearly with time. When it attains a
value e-times that of the initial perturbation, there
is a rapid change of slope in the velocity versus time
diagram. We shall call the initial slow rise of
velocity as the linear phase and the subsequent fast
increase as the nonlinear phase. Let us now look into

the linear phase.

Figure 4.1 shows the variation of velocity with
time at % = U,5880. The different curves are for
different values of ,ﬁo and common values of [ = 3.0
and ¥ = 1.95. The boundary conditions are "closed-closed"
boundary conditions., For brevity we call such tubes as
closed tubes. 7The growth to the e-folded velocity is
generally oscillatory with a period of one tube travel
time, which is the time taken by tube waves to travel
over the length of the tube. It is seen that these
oscillations are more prominent for smaller values
Of‘/ﬁo and are more or less absent for 1argef values
of Po. These oscillations arise purely because of the
initial perturbations at t = 0, Since we neglect
viscosity and heat exchange, one would expect the
oscillations to be undamped for all t » o, unless the
mean state changes so fast that it swamps the oscilla-
tions. Another interesting tremd seen in figure 4.1

is that the time of onset of the nonlinear phase increases
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with decrease of}ﬁo . This is due to the stabilizing

influence of the magnetic field,

This stabilizing influence of the magnetic field
can be seen more clearly in figure 4.2, Here, the
time T of the onset of nonlinear behaviour is plotted
against ﬁo' The curve changes slope and bends towards
larger values of T for smaller values of‘ﬁo. Thus T
approaches infinity as /30 approaches a finite value.
From a practical view point one can then assume that
tubes with smaller values of /BO are stable. The solid
curve of figure 4.2 represents the values of T for
M= 3 and ¥ = 1.95. A few calculations were also made
for different values of ¥ . Such points are represented
by filled circles. 1t is clearly seen that tubes with
smaller values of 7 show greater inpétability, as

()

expected.

Figures 4.3 and 4.4 show the evolution of velocity
and magnetic field respectively in the nonlinear pbhase.
The initial development in the nonlineaxr phase consists
of a rapid increase of downflow and magnetic field
followed by a less rapid change. The nonlinear phase
could not be calculated for the caselﬂo = 7.5 and
‘ﬂo = 10,0, In these cases, transient pressure enhance-
ments occurred at the base of tube at early stages of

‘the evolution. 7These made the gas pressure inside the
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tube locally exceed the external gas pressure invalida-
ting the SFT approximation. In reality such a pressure
enhancement will be contained either by the tension
forces set up by the local dilatation of the tube, or
by the damping of the pressure enhancement due to
accustic radiation from the tube. For smaller wvalues of
ﬁo €.g. po = 6.0, 5.0 and 4.0 no steady state was seen
even after several teéns of time units. This, however,
does mnot rule out the possibility of a steady state at
a very large time., To confirm the destabilization by
superadiabilicity, we next used a smaller value of ¥ .
Figures 4.5 and 4.6 show the time behaviour of velocity
and magnetic field for ¥ = 1.5 and ﬂa = 4,0, As compared
with the behaviour for v = 1.95 (with A, = 4.0) the
motions are mord violent and the onset of nonlinear phase

occurs earlier.

To study the role of the direction of initial
perturbation we calculated the evolution of an initial
updraft for ﬁo = 6.0 and two values of ¥ (1.5 and 1.95)
Figure 4.7 shows the linear regime while figure L.8
shows the nonlinear behaviour. The onset of nonlinear
phase occurs earlier for smaller value of ' 4 showing the
increased instability for larger superadiabilicity. The
nonlinear phase, as shown in figure 4.8, is interesting

in that a steady hydrodynamic state with large upflows
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and no dispersal of the field is seen in both cases.

We now go on to the case of the "clésed—oPen“
boundary conditions. Figure 4.9 shows the time
dependence of flow velocity for‘/L::Z.O and ¥ = 1.95.
Here we see an interesting manifestation of overstabi-
lity. The violet phase does not set in even after 40
time units. We see no significant change of phase in
the oscillations at different values of z . Hence,
these seem to be standing oscillations with a greater
amplitude of the oscillation at Z = U.5880 then at

Z= 0,2880,

When a larger value of g was chosen (/8°= 4,0),
the resulting velocities were smaller than in the
corresponding case of "closed-closed" boundary condition.
Figure 4,10 shows the linear phase., In figure 4.11
which depicts the nonlinear phase we see the saturation
of flow and field to steady values. There is amplifi-
cation of the field with greater emhancements at larger

he ights .

Figures 4.12 and 4.13 show the result of starting
with an initial updraft for B, = 6.0. We see that
instead of any monotonic increase, there are time
dependant fluctuations, The updraft turns into a

downflow, then reverts to an upflow of larger amplitude
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than the initial perturbation. 1t then reverses sign
and goes over once again as a downflow. We have noted
in our computer outputs that during this excursion into
the domain of negative velocities, the gas pressure at
the top of the tube decreases until it vanishes. This
is purely a numerical artifact caused by the boundary
condition at the top of the tube. A similar behaviour
is seen when an initial downflow is introduced at t = o,
In this case, however, (not shown in figure) the down-
flow reverses sign into an upflow and then becomes a
downflow once again. For this reason, numerical break-
down (i.e. vanishing of pressure at the top) occurs at
an earlier epoch than for the case with the initial

updraft.

4.5 Discussion of the results

These calculations were not fully comprehensive
on two counts. First each case was followed for only
limited lengths of time. Secondly a finely spaced grid
of'ﬁu.was‘not explored. Inspite of these two limitations,
one can draw some general conclusions regarding the
development of convective instability within slender

flux tubes.

Two quantities influence the course of the insta-

bility. One is the initial value of magnetic field
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represented by'ﬁ . The other is the set of boundary
0

conditionse.

Let us first discuss the case of "closed-open"
boundary conditions. We see a range of behaviour, like
overstability at ﬁ% = 2,0, the evolution to a steady
flow atlﬁo = 4,0 and a large amplitude unsteady behaviour
at g = 6.0. This shows that the magnetic field exerts
considerable stabilizing influence on the COnvecfive
instability. A little more of discussion of the over-
stability at ﬂo = 2,0 is in order. Linear theory
generally does not ﬁrovide for any overstability in the
absence of dissipation. An exception to this rule is
the effect of rotation on convection in a slowly rotat-
ing star (Ledoux and Walraven 1958). There one obtains
oscillatory convection with frequencies of the order
of the rotatiomal frequency and growth rates correspond-
ing to convective growth rates. An explanation to the
present overstability perhaps lies in the nonlinear
terms. These nonlinear terms might not be very large
because of the stromng stabilizing influence of the
magnetic field. However, they could lead to secular
behaviour on time scales larger than the dynamical time
scale. Hence, we conjecture that these secular terms
feed energy into the oscillations leading to over-

stability.
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The boundary condition of constant Lagrangian
pressure at the top allows for the sharing of a portion
of the kinetic energy of axial flow with energy of dilata-
tion of the tube. Such a sharing of energy is prohibited
for the tube with constant Eulerian pressure at the top,
Thus one might expect less wviolent behaviour for tubes
with "closed-open" boundary condition because of the
damping of the axial flow by additional oscillations of
the tube's radius than for those with "closed-closed®
boundary conditions, We do see smaller axial velocities
for "open" tubes in our calculations. In the case of
tBO: 4,0 for example, the "open" tube attains a steady
state, while the "closed" tube has already moved into

the regime of large-~amplitude unsteady behaviour.

An interesting feature is the response to an
initial upflow. Whereas the flow reverses sign in the
open tube it monotonically increases to a steady value
in the case of a closed tube, This indicates the
greater instability of the closed tube, The fact that
forﬁ° = 6.0 in a closed tube, an upflow attains steady
value while downflow leads to an unsteady behaviour,
suggests that upflows are less destabilizing than down-
flows. There is no reason to expect this on the basis
of linear theory and hence seems to be an essential

result of nonlinearity. A second point is the absence
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of dispersal of the tube following an upflow. This
could perhaps be due to the fact that the boundary
conditions do not prevent mass flux at either end of

the tube. Thus any downflow does not lead to an evacua-
tion of the tube, while an updraft does not inundate

the tube, Hence, the question of dispersal of tube

does not arise in the case of an upflow with continuing

mass flux.

In summary, one sees that the magnetic field and
boundary conditions determine the wvarious kinds of
instability. The stronger fields prevent direct insta-
bility but overstability sets in at some /Bo. For
smaller fields the instability evolves into a steady
state, while for still smaller fields, unsteady states

are seen at later times,

The flow velocities which arise as a result of the
instability are quite significamnt. 1f these velocities
really exist in the thin solar magnetic flux tubes then
they would cause an immense drain of the photospheric
material into the sun. However, radiative leak into
the tubes might not be insignificant at the top of the
convection zone. Such radiative exchange of heat with
the surroundings may help in reducing the flow velocity.
In the next chapter we study the problem of heat leak

in some detail.



106

5. NONLANpAKR DEVELOPMENT OF CONVECTIVE INSTADALITY

wilTHIN SLaNDER MAGNETIC FLUX TUBES

11, The effect of radiative heat transport

5.1 Effect of thermal dissipation on convective

instability in a laterally unbounded vertical

magnetic field.

The famous Schwarzschild criterion‘for convective
instability is based on the fact that the dynamical
timescale is much smaller than the time scale of
thiermal relaxation. A convective bubble rises
buoyantly on the dynamical time scale and hence its
heut exchange with the surroundings 1is gemerally
negligible. Therefore, it expands adiabatically. If
the ambient fluid has a temperature gradient which is
greater than the adiabatic gradient, the density inside
the rising bubble continues to be smaller than the
surroundings. This leads to a runaway process viz. the
convective instability. The thermal diffusion time-
scale is proportional to the square of the eddy length
whereas the dynamical timescale is determined by the
Brunt-Vaisala frequency which is independent of the
eddy size. One can, therefore, imagine the existence
of a critical eddy size below which convective insta-
bility will not exist for a given value of thermal

diffusivity.
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The presence of a vertical magnetic field has a
stabilizing influence on a stratified medium. The
early investigations of magneto-convection with heat
diffusion did not take compressibility into account,
(e.g. Chandrashekar 1961). Instead, the effects of
viscosity and electrical resistivity were included,

It was seen that whenever the resistivity TL was greater
than the heat diffusivity A , convective instability
sets in as a monotonically growing instability at a
critical value of the Rayleigh number R(e). This wvalue
of R(e) increased with increasing Chandrasekhar number
@, thereby demonstrating the stabilizing influence of
the magnetic field. In stellar interiors the radiative
heat diffusivity is generally much larger than the
electrical resistivity of the fluid. In such a situa-
tion, Chandrasekhar (1961) proved that for a viscous
Boussinesq fluid permeated by a sufficiently weak
vertical magnetic field, overstability would set in at
a Rayleigh number R(O) which is less than R(e), the
critical Rayleigh number for onset of the overturning

convection.

Kato (1966) gave a mathematical treatment of
convective instability in the presence of a magnetic
field in a thermally conducting inviscid, fluid of

zero electrical resistivity. The main thrust of his



work was to demonstrate the effect of compressibility,

A compressible fluid can support more modes of waves
than a Boussinesq fluid. The pure wave modes possible
in a uniform compressible magneto-~fluid are the Alfven
mode, the fast mode and the slow mode. For a super-
adiabatically stratified fluid, the Alfven mode and

fast mode are not affected by the superadiabatic
temperature gradient, but the slow mode is comnsiderably
modified. Kato (1966) calls the modified mode as the
convective~slow mode which is oscillatory when the
magnetic restoring force is stronger than the destabi-
lizing buoyancy force and which turns into a non-oscilla-
tory convective mode for small values of the magnetic
field. In the case of an inviscid Boussinesq fluid, any
adverse temperature gradient was shown to lead to
overstability irrespective of the value of the magnetic
field, wWhen compressibility is included, a regime of
damped oscillations exists for Q:)Q(d) where Q(d) depends
on the Rayleigh number. Thus for sufficiently weak
magnetic fields in the absence of finite electrical
resistivity or fluid wviscosity, the instability always
sets in as an overstability. The effect of compressi-
bility was to admit the possibility of the damping of
these oscillations at sufficiemntly large values of the

magnetic field.,
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Ihe above analysis of hato was a local analysis
which did not take into account the effect of boundary
conditions. The classification and behaviour of the
linear modes of a polytropic fluid with vertical
magnetic field and imposed boundary conditions have
been explored in detail by Antia and Chitre (1979).
With increasing magnetic field they find that the
convective~slow modes tend to be stabilized. For
higher values of thermal diffusivity, the fast modes are
destabilized and their growth rates are seen to increase
with magnetic field. Thus for low magnetic field the
slow modes would dominate over the fast mode while at
moderate values of the magnetic field, the fast modes
would begin to dominate. The growth rate of both the
series of modes showed a maximum with respect to the
horizontal wave number, which gave a preferred

horizontal length scale for overstable modes.

The investigations described so far were based omn
linear theory. Moore & Spiegel (1966) have presented
results for a mnonlinear oscillator which is jointly
operated by a destabilizing force and a restoring
force and which loses heat in accordance with Newton's
law of cooling. -The main parameters of the oscillator
were R, the square of the ratio of the heat loss time-

scale to the timescale defined by the destabilizing
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force and T, which is the square of the ratio of heat
loss timescale to the timescale defined by the restor-
ing force. Kelaxation oscillations were analytically
demonstrated for weak restoring forces and small heat
loss. Moore and Spiegel also explored numerically
several regimes in R-T space and a wide variety of
behaviour was shown, They concluded that even a single
destabilizing mechanism would lead to a variety of
phenomena in the nonlinear domain. However, their
results afford only a general picture of the various
possibilities and specific cases will have to be treated
in greater detail, The effect of lateral boundaries
would be the next logical factor to consider especially
because of the structured nature of solar magnetic
fields. “The investigations of the effect of lateral

boundaries will be reviewed in the next section.

5.2 Thermal effects in laterally bounded magnetic

fieldst

The presence of lateral boundaries has important
thermodynamical consequences especially for magnetic
flux tubes in the solar convection zone. The strong
magnetic fields of the tubes inhibit overturning
convection and thereby reduce the efficierncy of

convective transport of heat along the tube axis,
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The high electrical conductivity of the fluid precludes
exchange of gas with the surroundings preventing also
the lateral heat transport by convection. Therefore,
the only process by which the tube exchanges heat with
its surroundings is by radiation. In particular, tubes
of small rudius are significantly influenced by lateral
heat exchange as demonstrated in the flux tube models
of Spruit (1977). From an observational point of view
the most important effect of the lateral heat exchange
in these models is the angle dependent radiation emana-
ting from the tube. Spruit used this feature to make
certain predictions for the centre to limb variation
of the continuum contrast. Ffrom comparison with obser-
vations he could also estimate the magnetic field and

size distribution of the tubes,

Lf we sacrifice the details reéulting from the
finite tube thickness, we can make progress in estimat-
ing the effects of thermal dissipation on the stability
of magnetic structures by using the slender flux tube
approximation. Webb & koberts (1980) studied the
effect of thermal dissipation on tube wave propagation.
In the 1limit of both large dissipation (isothermal limit)
and small dissipation (adiabatic limit) these authors
showed that the waves are temporaxlly damped. For waves

of given freguency it was shown that evanescent waves
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become propagating in the presence of thermal dissipa-
tion. Similarly progressive waves are spatially
damped when heat exchange is considered. These conclu-
sions were obtained assuming optically thin disturbances.
in the next section we formulate the energy equation

for an optically thick slender flux tube exchanging

heat with the surroundings.

5.3 The energy equation for an optically thick

slender flux tube exchanging heat with its

surroundingst

The complete energy equation for a slender flux

tube is (Roberts & Webb, 1978),

(g prVve p)- (Tj—f)(g—t?* e f)
. - V.F . (5.1)

If heat transport is by radiation, we have in the

optically thick case,
F=- KVT, (5-2

where K =166 T3/33<,P is the radiative conductivity
with ) as the opacity per unit gram and 6 as the
Stefan-Boltzmann constant, Such a "diffusion" approxi-

mation may not be strictly valid for very thin tubes
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at the photosphere (Unno & kibes, 1979) but we will
assume in what follows that the tube has sufficient
optical thickness, In the computations reported in

the earlier chapters, we have neglected the radial
dependence of the dynamical wvariables in the slender
flux tube approximatiomn, Such an omission is mnot
correct when radial heat transport is to be studied,

in section 5,2, we saw that radial heat transport is
indeed important. It would also exert a significant
influence on the convective instability of thin tubes
in particular. For example, a downflow initiated by
convective instability tends toc cool the tube., This
would be offset by heat entering the tube from outside,
This heating would inhibit the further sinking of the
displaced gas and thereby inhibit the downflow, In
order to understand such effects in a more quantitative
way let us assume the following profile for the radial

temperature digtribution, viz.,

T T P TR T

where AN is the scale length of the longitudinal

variation of the tube radius. After substituting

equation (5.3) in (5.2) with

F=-K(2 ;o0 ) T (v, 2) (5.4)

, 2
or oz
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and multiplying the resultimg equation by (w’//\), we

have, upto first order in T /A :

S NN ERN TERE- T AL

+K(4Ti+aT)-— 2 (a +V'Q)/3
Aa QE? (r—1  at Dz

(—~ )(}’)(d +va )F] = 0. (55)

Equating the coefficients of each power of T to zero,

A
we have
KT, //\a =0 (5.62)
and . 2
. 3 4+ 0 K
{(%) *(gzmj (5‘ 5‘# F)
N
HK 4;'1 N 595 (—ra)( éaz)}j
BB+ VeI (5-62)

The equation {5.6a) yields

(5.6¢)
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Substituting equation (5.6c) in (5.6b) gives

3T d +0°p3 YK 4T + 2T YK
(a ) (a1‘+ UT'DP) * ( Ai.+ 3532)

_()M‘) (& +\r8 )}3 +(1—£,)(£’)(§{+v§z)f = 0. (5.6a)

Finally by setting T = ’J.‘.1 at ¥ = o we obtain T = T,
o i

and by setting T = Te at Y = 13 we have

T, = ( Te-T;) /\1/"‘,JL (5.6¢)

2 J

where 1; is the radius of the tube. Substituting

equation (5.6e) in (5.6d4) we have the final energy

equation:

(8,+vEOP - (%#)(gﬁ 5z )P

2
=(~r~n[K{4<Te-Ta)+gT¢}+(gT¢) 8 +23p2 )k].(5.7)
—a >z 227 0T 3T 2p
]
In what follows, we study the effect of heat transport
given by eqguation (5.7) on the instability of a

slender flux tube.

First, in section 5.4 we will study the linear

convective instability in the presence of the first



term of the R+H.5 of equation (5.7). In section
5¢5.1 we will study the nonlinear development of
convective instability with only the first term of
the K.H.S of equation (5.7) and using equations (3.18)
and (3.19) with O = (C,.Si /Aa)( Vd.lbe/d.i). The
‘influence of the second term in the R.H.S of equationm
(5.7) will be included in section 5.5.2 while all the

terms would be jointly considered in section 5.5.3.

5.4 Effect of lateral heat transport on linear

convective instability in slender magnetic

flux tubest

The linearised form of the nonadiabatic slender

flux tube equations are

L (2F + 3RV )- B (2B + Vi 8B) . o

By, 2t 2% B ot oF ° (5.8)
(5.9)
oV, + .a, + 1 = 0
Fogtl DZFI Pﬁ 2

/ﬂaf.w—v(d/o-z[og,f

¥
fo 0 dz fo

d
P

_ T (5-10)
- (0K (0, - 40+ (] )(57.0 k)]

0,=Te (P, [Po= P lPo) (5.11)

and
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B, =-p, [413B, (5.12)

where Fﬁ 5 ﬁ“ , 8 and B, are the perturbations of the
zero order guantities wviz. density fﬁ: s bPressure F)o ,
temperature 7; and magnetic field jgu respectively,

In the presence of lateral heat transport alone, the
equation is

(2p -

v b
2t Po t

u) + ‘ﬂ (Ei -7 nLiﬂ
f 4k "f”f i5)

= - 4lr-ko/r* - (3:13)

We fuvther wrile K= fo C,%x,
where X is the radiative diffusivity and assume that X

is constant. Then the final energy equation is

(24 £7p, -(%h)(g;jrm

.14
v (dp - TRdR) =0, (5.14)

dz fo dz

where

T = 73z / 4 x
We choose the perturbations to be of the form
A

Substituting this form of the perturbation in equations

A N
(5.8), (5.9) and (5.14%) and eliminating g and B,



between the resulting equations we have

Ad ) = - (4 - 58S v
g, Hhe V) (4 -2 Vv
A
-s (vp+r arlT) p
g =) o+ [T
and
A A
A b= - (s+'lT)p
A& v+ [T
~(cA-938 )Y (pVi)
TarT
where

¢ = (r-v)/rv,

Transforming to a variable X given by

dx = - d.;’: //\J-
We have
A A A
d’ 4 = ov)+:Fl Il
dx(ﬂ, ) }‘(F ) P
and
d b Fo (Pot)
W ’:. f + Povl 2
d b= Pt
where
. 1. &4 . - o+ T
=3 cH\|rT / T Yo+ V[T

f]=.g-(zﬁ+ fﬁﬂlf)j fa=oh-_35

Y9 ‘73 s+ rT c+\[rT
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(5.15)

(5.16)

(5.17)

(5.18)



Eliminating kb from equations (5.17) and (5.18) we

have

L (V) d (p O
x&(fbfs (F+7)a1<ﬂ\ﬁ7

~ (42 - PO =0, (5:19)

A further transformation

Y = (P exp (prn)z
oL

yields

s -

4! ‘J—{(un) r &S] Y- o (5.20)
d,x“

1f we impose a boundary condition of vanishing vy at
two points X=0 and X=zX , then solutions of equation

(5.20) must be of the form

Y oo ax-}at:h;t (5.21)

where h:: QT\/-I. is the "wave number".
Substitution of equation (5.21) in equation (5.20)

gives the following "local dispersion relation™

ki-r (}J:‘*L)a/li- + F,f1 = 0. (5.22)



We rewrite this equation in dimensionless form in

terms of

q = s:s'(f\/gy'/fL and €T (g/A)'

The dispersion relation now reads as

S (a,tl+ by) + 66 (a8 +by)

£ €% (a8 +byd= 0, (5.23)
where 2
a_‘r = 4(1+T,60/3)/rj b‘r:lsz-l-h—l}-(li-‘r‘/eu/i)cﬁ/c.
2 ‘
a,-= ‘f(l%t_l + ﬁo)/f; bg= {8/2'A'4('+/50/2)5f/7;'
Ay = W(14pf2)) 775 byz 4 k™4 1 /4
and

A =z -aTr + V[T,
Thus there exist four modes in this case. For small
values of ¢ ome can see that two roots of equation

(5.23) would be of order € and two would be of order

unity., In the limit of vanishing € 4 the larger

are
rootslgiven by

&2 -b, Jay. (5.24)

<

These are nothing but the convective modes of an



adiabatic slender flux tube. It is worth mentioning
here that Webb & Koberts (1980) obtained only 3 modes
for the uniform zero order case. For the zero order
polytropic state they did obtain a fourth degree
equation in ¢ , but they have not commented on the
extra mode for the stratified case. An inspection of
equations (5.15) and (5.16) clearly shows that the
extra mode appears because of non-zero g. Following
the nomenclature of Defouw (1970) we shall call this
fourth mode as the thermal-convective mode. It is
interesting to mote that Defouw's dispersion relation
for a Boussinesq fluid in a uniform vertical magnetic

field also had four roots.
For small € , a perturbation expansion of ¢ as

T = &, + € 0q, + €0y, + - -

yields
< ‘
= 0, - & (ay® + by)/2a,6",  (5.25)

for the convective modes and

gz el f-byt (h=tbb,) "} /2 b1 (5.26)

for the thermal modes,

where q;a = - ‘#‘*/(14
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We thus see that when 6’0:1< 0 , the overstability is

possible provided

(a30703+ 53)/&(“*70. (5.27)

We can also see that when 0‘°2> 0, the effect of thermal
dissipation is merely to alter the growth rates of the

instability,

However, such a straightforward classification of
the modes into convective modes and thermal modes will
no longer be possible when J,— 0. In this case all
the four roots of equation (5.23) will be small and a
complete solution of the equation becomes unavoidable,
However, Q,—> 0 implies an almost neutral stratlfica-
tion which occurs only in the very deep layers ot the
solar convection zone, We shall not comsider this
problem in this thesis but move on to the mnonl inear
development of convective instability in the presence

of heat dissipation,

5.5 Effect of heat transport on the monlinear

convective instability of a slender flux tubes

We are mainly interested in the first few hundred
kilometers below the photosphere where the superadiaba-

ticity is large. In this region the radiative
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diffusivity ranges from a value of 2.33 x 1010 cm?”s"1

at a temperature of 1.003 x ‘IOLL to 3.504 x ‘IO12

em s~ ! at the photosphere (Spruit 1977). Such a
gradient in the diffusivity cannot support a hydro-
static polytropic model in general, We, therefore,
consider first the case of constant radiative conduc-—
tivity in an unstably stratified polytropic tube in
order to understand the general effect of radiative
conductivity on the instability. Iven here we proceed
in two steps. We first study the case of lateral

heat exchange alone and then include the axial heat

transport as well, in a few subsequent calculations,

5.5.1 Lateral heat exchange3

We saw in Section 5.3 that the energy equation
for an optically thick slender flux tube with lateral
heat exchange resembles that for the case of an
unbounded fluid losing heat according to Newton's
law of cooling. When the tube cools due to a convec~
tive downflow, the heat enters laterally to equalise
the temperature thereby inhibiting the downflow.
Similarly when a parcel of fluid rises in the tube,
the excess heat is radiated away laterally, thereby
reducing the forces of buoyancy, The time scale for
temperature equalisation depends both on the radiative

conductivity and on the lateral dimensions of the tube.
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We computed the development of convective instability
using equation (3.18}, (3.19) and (5.7) with only the
first term on R.H.5. 1n dimensionless units, we chose
the radiative conductivity as 1.uU x 1072 which is
representative of a layer & 200 km below the photos-
phere. Figure 5.1 shows the time variation of the
longitudinal velocity at z = 0.48 for B = 6.0 and

for 4 values of the tube radius, The boundary
conditions imposed were "open" boundary conditions as
described in section 4.3. We see an oscillatory
behaviour with a tendency for increasing gmplitude at
later times. The oscillations have a period of o 12
dimensionless time units. 7The amplitudes of these
oscillations increase with decreasing value of the
tube radius for the range of value W = o2 to 7 =
0.5. It is interesting to compare these results

with those for the adiabatlc case (vide figure 4.12).
There too, we had noticed the oscillatory behaviour
with a similar period, In the adiabatic case, however,
the computations could not be continued for t 7 22 units
because there the pressure boundary condition led to a
numer ical runaway process which resulted in spurious

negative pressures.

In the present set of calculations we introduced

a condition in the computer programme which would halve
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the time step if such a negative pressures were to
oCccur, This was expected to halt the runaway process.
Moreover, we changed the boundary condition of constant
density at the base to one of extrapolated density from
two preceding interior values. This density boundary
condition becomes necessary whenever \J° is negative,
since the third characteristic from the Eoundary no
longer communicates with the interior solution (vide
section 2.3). The spurious negative pressures were not
encountered in the nonadiabatic cases which are being
discussed in this chapter. BSince, we did not repeat
the adiabatic calculations with the new boundary
conditions, we cannot say whether it was the presence
of heat dissipation or the new density boundary condi-
tion that prevented this numerical breakdown. However,
there occurs another difficulty in continuation of
computations for small value of Y . When the radius
was changed from 0.5 to 0.46 (in dimensionless units)
the computations had to be stopped at a stage when large
pressure enhancements made the magnetic field locally
imaginary. In this case, the halving of time step was
of no use in halting the pressure build up., We,
therefore, believe that this difficulty is not a
numerical artifact. 1In a realistic situation the

pressure build up would be contained by the tension



created in the curved field lines of the dilated flux
tube., In this situation the slender tube approximation
becomes a poor approximation and further progress can

be made only by means of two dimensional calculations.

Figure 5.2 shows the behaviour of P s the ratio of
gas pressure to magnetic pressure inside the tube at
Z = 0,48 as a function of time for different values of
Y, the initial tube radius. The behaviour of /8
is similar to that of wvelocity except for the phase.

We can notice transient intensification of the field

to values of )6 as low as 1.00,

Figure 5.3 demonstrates the stabilizing influence
of the initial magnetic field. Here the velocity at
z = O.48 in a tube of radius Y, = 0.5 is plotted as a
function of time for different wvalues of FO' There
is no significant change in the period of the oscilla-
tions but the amplitudes are drastically reduced for

FO = 4.0 as compared to those in the case of larger po .

Figures 5.4 and 5.5 depict the spatial profiles of
velocity and }3 respectively at different instants of
time. We see that the spatial profiles of velocity
oscillate between states of upflow and downflow with

mixed flow at certain instants of time (not drawn in
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Fig.5.7 (bottom right): Spatial profiles of B corresponding to the
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the figure). At later times we see the development of
large gradients near the top boundary. Profiles of p
also show similar behaviour. The effect of lomgitudinal
heat transport on this behaviour will be discussed in

the next subsection,

5:5.2 Longitudinal transfexr of heat:

We now consider the effect of longitudinal heat
transfer on the convectﬂe instability. We first consider~
ed the case of coustant radiative conductivity and,
therefore, retained only the first two terms on the
R.H.S, of e&uation (5.7). In a rigorous sense the
character of the system of differential equations
changes here from hyperbolic to parabolic due to the
appeararnce of the second derivative of temperature.
However, we continued to use thelmethod of characteris-
tics to solve the time dependent initial value problem
treating the second derivative as a 'source term!'. At
each instant, this 'source term' was calculated om the
previous time line using = standard IBM subroutine for
numerical differentiation., Such a procedure does not
cause serious problems as long as the thermal comnducti-
vity is small, Figures 5.6 and 5.7 'show the spatial
profiles of velocity and the plasma—ﬁ respectiyvely at
different instants of time in a tube with B, = 6.0 and

= 0.5. It is interesting to note that the /B
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profiles show smoother behaviour at the top of the tube
at later instants of time whereas the kinks in the
velocity profiles at the top of the tube continue to
persist. Une cammot predict whether these would be
smoothened out with the inclusion of viscosity. Figures
5.8 and 5.9 show the temporal behaviour of velocity and
plasma- P in a tube with Po = 6.0 and 4.0 respectively
and with the same value of T} = 0.5. One notices three
striking facts viz., the presence of overstability, the
smaller period of osciliation and the greatly diminished
amplitude of oscillation as compared to the case with
lateral heat exchange alone. Compared to this, the
differences between the case of lateral heat exchange
alone aud the adiabatic case were rather small. This
shows that the longitudinal heat transport has a greater
effect on the convective instability of flux tubes with
T,= 09.5. In the context of solar photospheric magnetic
fields, it is also interesting to see that intemnsifica-
tion of such tubes by this process would be transient
and would be accompanied by only small and oscillatory
flows. Here the calculations were not continued beyond
t 330 and, therefore, we do not know the saturation
amplitudes of the overstability. However, t = 30
corresponds to = 1000s for tubes with base temperature
TL = 104 K., Therefore, other processes such as granu-
lation might interfere with the overstability within

this time,
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Fig.5.8 (top): Time dependence of velocity (dashes) and
(solid lines) at z = O.48 in an open tube with
heat transport and Bo = 6.0,

Fig.5.9 (bottom): Similar to figure 5.8 but for B, = 4.0.



D+5.3 Heat conduction with a realistic form of

conductivityt

As already remarked in the beginning of section
5.5, a variable conductivity is not compatible, in
general, with a hydrostatic polytropic stratification.
The sovlar plasma shows a wide range of variation in
the radiative opacity and consequently in the heat
diffusivity. A few hundred kilometfers below the
photosphere, it is the bound-free opacity of the hydrogen
atom which dominates (Cox & Giuli, 1968). The large
variation in the electron density as a function of depth
creates a correspondingly large variation in the
opacity and, therefore, in the radiative conductivity,
in order to study such a situation we first calculated a
static equilibrium model for the enviromment of the
flux tube with such a variable heat diffusivity. For

this we calculated a least squares fit for the relation
=, ( YR (Tl (5.28)
o= %0 P/ ,:’o . o ) *

using Spruit's (1977) values for )¢, # and T.
- : L
Here = 3.126 x 105 dynes cm 2, and T; = 1.003 x 10 K
°
2 .
corresponding to a depth of 1.779 x 10 km in the model.

We obtained

p= ~0.65 and V= 1.



This expression for the opacity was used in the heat

conductivity given by
K =16aT3/axp . (5.29)

The static energy equation

KdT = k, (dr)o (5.30)

dz dz

and the hydrostatic pressure balance

- {5.31)
RS

were solved simultaneocusly using an Adam's predictor-
corrector algorithm. The resulting state is depicted
in figure 5.10. It must be mentioned here that the
thickness of the layer between temperatures 1OMK and
6000 K in this model is smaller than the corresponding
thickness in Spruit's model because we have entirely

ignored the convective transport of heat.

The model of figure 5,10 was used as the environ-
ment of a tube with T = T, and ;% = 6,0, The initial
state of the tube was then calculated as explained in
section 3.,2. This state was perturbed with a small
initial velocity perturbation and the evolution of the

flow was studied, taking the full energy equation (5-7).
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The development of the flow at two points is shown

in figure 5.11. There is once again oscillatory
behaviour with still larger fregquency and smaller
amplitude as compared to the cases described in
section 5.5.2. This calculation may mot have any
direct relevance to the solar convection =zone because
of the neglect of convective transport in the environ-
ment of the tube. It is, however, interesting to note
the competing influences of longitudinal and lateral
heat transport in this case. The conductivity varies
inversely as the 8th power of temperature. Therefore,
the heat entry from outside is enhanced whemnever the
tube cools. This tends to compensate for the cooling
due to the convective instability and thus the lateral
heat flow has a stabilizing influence. On the other
hand, the longitudinal heat tramsport is expected to
enhance the instability by means of the famous " )} -
mechanism" or "Eddington valve" mechanism. Furthermore,
since the lateral heat exchange increases inversely as
the square of the radius of the tube, one can conclude
that the lateral heat exchange would stabilize sutfi-

ciently thin flux tubes.

Finally, figure 5.12; shows the spatial wvariation
of the temperature gradient at different values of time.

It is clearly seen that there is a gradual flattening
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of the profile, which means a tendency to acquire a
polytropic state. Une does not know, however, whether
this could be the general tendency of any non-polytropic

stratification with heat transport,

5,6 liscussions

As remarked earlier a noteworthy feature of these
calculations ls the periocd of the oscillatory behaviour,
In the case of radial heat transport, the period seems
to be similar to the adiabatic case. When longitudinal
heat transport is included, the period is seen to be
nearly half of the previous one. This indicates that
the domineut modes of oscillation in these two cases
are different., 1In both cases the amplitudes are seen
to decrease with incrcasing magnetic field. 1In the case
of longitudinal heat transport, this is reminiscent of
the decrease of th: growth rate of the slow mode with
increasing magnetic field (Antia, 1979). In the
variable opacity cuse of section 5.5.3, the smaller
period might be, most probably, the result of the
shorter length of the tube considered. However, these
explanations for the increase of frequency of oscilla-
tions are only tentative and one must await the results

of more extensive calculations.,



in summary we see that heat conduction does
exert considerable influence on the convective
instability of flux tubes. The most important
results in relation to solar magnetic fields are the
possibility of time dependent field intensification
and absence of large umnidirectional flows. A detailed
discussion follows in the next i.e. final chapter of

this thesis.



6. SUMMARY OF CUNCLUSIONS AND DISCUSSION

6,1 Sumirnry of the main results of earlier chapters:

We saw that when a magnetic field line is made to
move normal to itself, with a velocity varying with
distance along the field line, the motion exerts a
centrifugal force om the gas if the latter is "frozen"
with the field., This force generates an upflow if the
magnitude of the lateral velocity increases with height.
Similarly a downflow is produced if the lateral velocity
decreases with height. We then assumed a model for the
lateral motion of field lines simulating the jostling
of solar magnetic flux tubes by the solar photospheric
granulation. In this model we assumed that the magni-
tude and spatial variation of the lateral motion of
field lines are similar to the observed variation of
the rms vertical velocity of the granulation. With this
assumption we saw that significant downflows could be

generated along the magnetic field.

Next we studied the response of magnetic flux tubes
to external pressure fluctuations in the slender flux
tube approximation. We concentrated our attention on

two forms for the pressure fluctuatiomn., In the first



form, the fluctuations decreased monotonically with
height and had an oscillatory behaviour in time simu-
lating evanescent waves. 1In the case of a uniform
tube we saw that for small times, the velocity response
to such a perturbation contains a term which is uni-
directional and growing in time, However, in the case
of a polytropic tube, the velocity response was
oscillatory when the travel time of the tube waves

over one scale height of the pressure perturbation was
large compared to the period of the perturbation. When
the travel time was small compared to this period the
response developed into a unidirectional downflow., We
also saw that for the typical parameters corresponding
to granulation, the response would be oszcillatory rather
than unidirectional. The second form of prassure was
assumed to be oscillatory in space as well as in time
simulating standing waves, In this case we confirmed
the existence of the resonance predicted by Roberts
(1979) from a linear analysis, This resonance occurs
when the period of the pressure fluctuation equals the

tube travel time over the wavelength of the perturbation.

We then investigated the nonlinear development of
convective instability within slender flux tubes, An
initial polytropic tube was chosen and the effects of

initial superadiabaticity § , initial ratio of gas
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pressure to magnetic pressure Aﬂo and of two sets of
boundary conditions were studied in the limit of adia-
batic variations, We could see a wide variety in the
time development of the instability. There is over-
stability for low ﬁ% s an evolution to steady flow for
some intermediate ﬂﬁ and large amplitude unsteady
behaviour for larger values of ﬁo « The motions were
less violent when the boundary condition permitted
lLateral expansion of the tube at the top. We explained
thiis due to the diversion of a fraction of flow energy

into kinetic energy of lateral motions.

The ef'fect of heat tramsport by radiation was next
considered, The energy equation in this case was
formulated in the slender flux tube approximation., A
linear analysis revealed the presence of four modes.

In the limit of small dissipation and moderate super-
adiabaticity, we saw that two of the modes resembled
the convective slow modes,; while the other two could be
identified as a thermal mode and a "“"thermal comnvective®
mode respectively. Wlhen the convective time scalé
approaches the thermal relaxation time scale, such a

simple classification of the modes is not possible,

From nonlinear calculations we found that lateral
heat exchange leads to oscillations. The mean amplitude

of these oscillations is larger for smaller radii of the
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flux tube. For ﬁo = 6.0, the periods of the oscilla-
tions were found to be similar to the period for the
adiabatic case. When heat transport along the tube
axis was also included, we saw that the amplitude of
oscillations was considerably reduced. Further,

this amplitude is smaller for larger values of the
magnetic field., 7The period of oscillation became
half of what it was when lateral hecat exchange alone was
considered. For PO = 6.0 the intensification of
magnetic fleld proceeded in an oscillatory manner.
However, for Po = 4.0, no intensification was seen.
When we considered the case of a realistic form of
opacity, the amplitude of the oscillations became

still smaller.

6.2 Limitations on the applicability of the results

to the solar magnetic flux tubest

The physical conditlons in the solar magnetic flux
tubes and their environment are very complex. The
various complexities include (i) the stratification
due tu gravity, (ii) the compressibility and the
partial ionization of matter, (1ii) energy losses and gains

by radiation, convection and waves, and (iv) the curvature
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of field lines. To study all these features simul-
taneously is a formidable task. There is also the
danger of swamping essential information about the
physics otf' the problem in a deluge of details., It

is, therefore, profitable to progress in small steps.
This was the philosophy behind our calculations of the
idealised cases reported in the earlier chapters.

This approach does put limitations on the applicabi-
lity to realistic situations. In this section, we

discuss these limitations.

The most severe limitation regarding the results
of chaptexr 2 is the neglect of the lateral equation of
motion, This neglect would not be a serious limitation
if we had some independent means of knowing the lateral
displacement of the field lines as a function of height.
In the absence of such data, the validity of the
results hinges on the validity for the assumed form for
the displacements. Qur assumption of a form similar to
that for granulation is wvalid only for the Alfven travel
time., If 500 km of the tube is bent locally, then
"straightening® Ly propagation of Alfven waves- 'with a
speed g2 8 km s~1 would occur after nearly one Alfven
travel time TA' which is & 60s. Thereafter, the
field line may no longer possess the assumed curvature

an the attendant centrifugal acceleration may be
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considerably reduced after such a time duration., On
the otbher hand, the axial flow will not cease imme-
diately, but will decay on the sound travel timescale
T_, which again is w 60s. Lf one approximates the
entire time profile of the velocity along the field as
a linear iacrease till ’l‘A and thereafter an exponential
decay with a time constant Ts’ then the mean velocity
of flow over the life time TG_ of the granule can be
estimated as w» a.TH (TA/-?.+T5 )/TG_ when T << TG-

in this expression, d is the mean acceleration during
the linear increase of the axial velocity. In the
calculation of section 2.8, the lateral velocity at the
base of the tube was assigned a value = ‘0.5 km 3"1. The
mean acceleration corresponding to this velocity can

be approximately taken as V*, /TA where V* is the
axial velocity attained after a time TA . For the
base of the tube d. turus out to be s 800 cm s 2
(figure 2.14). The observations of Dunn & Zirker (1973)
show horizontal motions of o 1.5 )K.ms--1 for the filigree,
Since the centrifugal acceleration depends on the
square of the lateral velocity ( section 2.7), the
acceleration d corresponding to % 1.5 kms_' is

& 800 x (1.5/.5)2= 7200 cm s~%. Substituting this
value of @ in the expression for mean velocity, we

have for Tg s:iTA 83 60s << TG'N 600s , the mean velocity

~
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V) m§ 700 ms”~ '. Thus one could reasonably expect mean
-1
downflows & 700 ms to bLe generated as a result of the
buffetting of magnetic flux tubes even after taking the

back reaction of the field into account,

in the case of the respomse of a slender flux tube
to exterual pressure fluctuations, the "fudge" factor,
viz., the efficiency of conversion from velocity fluctua-
tions to pressure fluctuations was already discussed in
chapter 3. In any case we saw that this process is
unlikely to drive systematic downflows. However, the
resonait response of the tube to standing waves will
have important implications for the heating of the solar

magnetic tubes in higher layers of the solar atmosphere.

The convective collapse of magnetic flux tubes was
studied (chapter 4) for a tube of length equal to only
one pressure scale height, This short length may appear
as a limitation especially in view of the hyperbolic
nature of the system of differential equations, which
amplifies the elf'fect of boundary conditions at large
times., However, as discussed in section 4.3, a realistic
flux tube cannot be unkinked for lengths larger than one
pressure scale height., Thus if one is to remain within
the frame work of the slender flux tube approximation,
then it would be inconsistent to consider longer tubes.

In this sense, therefore, it is the slender flux tube
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approximation which limits the range of applicability

of our results, It also hinders continnation of the
calculations for specific cases whenever at some point
the gas pressure inside the tube exceeds the gas
pressure outside. This limitation of the slender f{lux
tube approximation must be bormne in mind while generali-

sing the results to a tube with an arbitrarily varying

cross—~section.

Une encounters a related problenm while'férmulating
the encrgy equation for slender tubes (chapter 5). The
expression for the heat source term for lateral heat
exchange is 4 K(TG'T".)/T‘OZ’ where K is the radiative
conductivity, T} is the radius of the tube while Te and
T.1 are the temperatures outside and inside the tube
respectively. 1in deriving this expression one tacitly
assumes that (Te-T;)/T¢ = (To/A) 2 , where A is the
scale length of variation of ?;; This means that Te and
Ti must not differ by more than a few per cent at any
epoch, This condition was found to be satisfied during
the development of thie instability., In this way the
formulation of the energy equation (5.7) is justified a

posteriori.

1The initial state for the case of variable opacity
(section 5.5.3) has a steeper temperature gradient than

the gradient of a realistic convection zone model, The
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convective instability of such an initial state can
hardly be used to make predictions for solar magnetic
flux tubes. However, the purpose of the calculation

was merely to see the physical effects arising from a

variable opacity,

6.3 Application to the problem of downflows within

solar magnetic flux tubes:

According to Beckers (1981),.tne velocity of the
downflow within magnetic tubes is equal to or slightly
less than that in the intergranular lane which are the
most preferred sites for these tubes. uJwing to the
high electrical conductivity of the plasma, the presence
of systematic downflows within tubes raises the question
of the gas supply. The observations of Harvey & Hall
(1975) and tHarvey (1977) indicate velocities gy 2.2
]:cms"1 at deeper layers of the photosphere. This requires
a larger drain of gas than what can be supplied by the
mechanism suggested by Giovanelli (1977) viz, the
diffuslon of neutral atoms across the magnetic field
near the temperature minimum., It remains to be seen if
interchange instability, as suggested by Parker (1979)

could supply enough gas to maintain such large downflowse

We have seen that granular butfetting can drive
mean downflows g 700 msm1 even after making allowance

for the back reaction of the field (Section 6.2).
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The other processes such as the application of external
pressure perturbations (chapter 3} or convective
instability (chapter 4 & 5) produce either oscillatory
flows or downflows of wvery small magnitude. 7The values
of downflow velocity as reported by Giovanelli & Ramsey
(1971), Giovanelli & Brown (1977) and Giovanelli &
slaughter (1978) for higher regions of the photosphere
compare favourably with the value predicted by our
calculations of the granular buffetting. This value is
also compatible with the supply of the gas by the diffu-

sion process.

6.4 Application to the problem of kilogauss fields of

the solar magnetic flux tubess

Webb & Roberts (1978) as well as Spruit & Zweibel
(1979) show that under adiabatic counditions, tubes with
field strengths smaller than a critical value @ 1400 &
would be convectively unstable., They further conclude
that such an unstable tube would collapse to a more
intense convectively stable state. Uur nonlinear
calculations of eveolution from an initial unstable state
show that the presence of heat transport would introduce

the following two modifications,

First, the state of marginal stability would be

shifted to a higher values of /30. This can be inferred
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from the following facts. Uur adiabatic calculations
showed overstability for f% = 2.0 with [-7= 1.05.
When heat transport is included, however, the tube is
seen to be almost stable even with F% = 4,0 and a

larger value of M7= 1,5.

Secondly, with the inclusion of heat transport the
resulting flows and magnetic fields are not steady but
oscillatory. 7This result is perhaps not very startling
in the light of Antia's (1979) linear calculations.

There he demonsirated the existence of overstable modes,
both for convectively stable and unstable stratifications
with uniform vertical magnetic field and thermal dissi-
pation. In our nonlinear calculations we find that the
oscillatlons in the field strength have substantial
amplitudes, e.g., & 30% for B, = 6.0. The observations
of Giovanelli et al (1978) do not show oscillations in
the magnetic flux down to the limit of detectability
(w2%). Une would like to know whether observations

with higher spatial resolution would show up any oscilla-

tions In the field intensity.

1f it turns out that the field strengths are indeed
non-oscillatory, then one would require a mechanism
different from convective collapse to maintain steady
intense fields. The superadiabatic effect suggested by

Parker (1978&) appears satisfactory, for this purpose,



Parker estimates that a downflow of 10 ms-1 would

suffice to maintain kilogauss fields. From our cal-
culations, we see that downflows of considerably larger
magnitude can be driven by granular buffetting. 1t is
thus very tempting to link the flow and field within

the tube in a consistent manner. The same superadiabatic
gradient which generates convective turbulence outside
the tube, could be respomnsible for driving downflows

via granular buffetting, as well as maintaining kilo-

gauss fields via Parker's (1978a) mechanism,

There is, however, a possibility that this mechanism
would become less effective when thinner tubes are
considered. This is because heat leak from outside the
tube could decrease the cooling produced by the down-
flow. One can estimate approximately the radius below
which the mechanism would fail by eguating the timescale
of adiabatic cooling (/\/V) to the time scale of heat
leak from the surroundings (1}1/1 ). This yields the
critical radius T, as (x A/v).k, where X is the
thermal diffusivity, A is the temperature scale height
and \V is the velocity of the downflow. Forx g N)11cm$s-],
N « 100 km and V" » 1 kms~1, one estimates ¥, « 30 km,

It is interesting to note that Unno & Ribes (1979)

arrive at similar comnclusions for facular points in the

context of their hydrodynamic model of a flux tube,
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Finally, one camnnot rule out the possibility of
alternative mechaunisms for producing intense magnetic
fields, either by turbulent processes (Kraichnan, 1976)
deep in the convection zone or by sotme magnetogas-
dynamical processes at the base of the convection zone

(Gokhale, 1977a,b).

6.5 Future developments:

Several of the results presented in this thesis
need theoretical refinement as well as observational
verification., For the case of granular buffetting one
has to take into account the back reaction of the magnetic
field in a more rigorous way. Observationally one would
like to know the degree of jostling of the filigree as
a function of height, The calculation of the resonant
response of flux tubes to external perturbations must
be extended to larger times with the inclusion of
radiative dissipation. Such a calculation would aid the-*
unders tanding of the dynamics and heating of magnetic

flux tubes.

The convective instability must be studied with 2-D
or 3~D magnetohydrodynamical equations, starting from
a realistic stratification and including the effects of
radiative heat transfer in the HKddington approximation.
We intend to pursue such calculations if and when

access to sufficiently fast computers becomes available,



Such calculations would certainly improve upon the
present knowledge of convective collapse of flux
tubes. This in turn would be important for under-
standing similar phenomena on other stars as well.
Thus, theoretical calculations with more realistic
pPhysical conditions as well as observations of higher
spatial and temporal resoclutions will be needed

for a better understanding of the interaction of

solar magnetic flux tubes with comvection.
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