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THE BEAUTY OF THE SUN 

A photograph of the sun taken during the ecl ipse of 

December 9,1929. The narrow ring of luminosity is the 

chromosphere. Prominences rise into the corona to 

heights of as much as 150,000 kilometers at several 

places on the limb. The striking feature at bottom is a 

loop prominence originating in a disturbed region of 

the sun containinga strong local ized magnet ic field. 

It shape traces lines of magnetic force that curve 

upward intothe corona and down again. 



1 INTRODUCTION 

1.1 THE SUN: 

The sun formed 4.6 billion years ago, is nearly halfway 

through its life, and will not change its properties appreciably 

until it moves off the main sequence in five or six billion years 

to become a red giant. I t is an ordinary body in the cosmic 

hlerarchy, slmilar to countless other G2 stars on the main sequence 

in its general characteristics; but it has one unique feature: it 

is 300,000 times closer to earth than the next nearest star. This 

closeness of the sun gives it a conslderable astrophysical 

importance. The sun also provldes us with our only opportunity to 

take a close look at a stellar atmosphere. 

1.2 THE SUN'S INTERIOR: 

Theoretical studies of stars of one solar mass have been 
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carried out by many astrophysicists under a variety of assumptions, 

and agreement has been reached regarding the general condi tions 

that exist in the interior of the sun. The temperature of the sun 

decreases from a central value of approximately 15 million degrees 

to a value of 5800 OK at the surface(Fig.l.l)and the outer regions, 

the corona is about million degrees hotl 

The density withln the sun falls off very sharply with 

increasing distance from the center (Fig.l.l). The central density 

-3 is about 150 gm cm I which is about 13 times the density of lead. 

As a result of th~ rapid falloff in the density of the sun, most 

of its mass is concentrated in a relatively small volume, 

approximately 90 percent of the sun's mass being contained in the 

inner half of its radius. The average density of the sun is 1.4 gm 

-3 cm . 

1.3 THE ZONE OF CONVECTION: 

In the deep interior of the sun the temperature rises up 

to many millions of degrees. 'In this range of temp~ratures, the 

collisions between atoms are sufficiently violent to eject many 

electrons from their orblts. Light atoms are completely ionized, 
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Fig.l.l. Temperature and density at various 

depths in the Sun's interior. The arrow indi

cates the surface. 
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while the heavy atoms loose their outer electrons, retaining the 

tightly bound inner electrons. These cannot be easily dislodged by 

absorption of a phbton. Consequently photons pass readily through 

the inner part of the sun. Close to the surface of the sun the 

temperature falls, and the heavier atoms recapture their outer 

electrons. Such atoms below the sun surface. tend to block the flow 

of photons coming from the interior. If photons are the only means 

of carrying energy up to the surface of the sun, the blocking of 

these photons will cause the temperature to drop sharply at some 

depth below the surface. Thus, layer of relatively cool gas is 

formed on the hott~r interior and a convection zone is set up. 

At depths greater than 1,50,OOOkilometers, energy is 

transported within the sun by radiation (i.e., by flow of photons). 

At this height the outward flow of radiant energy is blocked to a 

great degree by absorption of photons, and convection sets in. From 

that depth out to the surface, energy is transported partly by 

convection and partly by radiation. Above the surface, radiation 

again becomes the sole means of energy transport. 

1.4 THE PHOTOSPHERE: 

The visible surface of the sun is called the photosphere. 

4 



It is the sun's disk as observed visually or with a telescope. It 

has a uniform appearance when viewed with the eye or through a 

small telescope, but through a larger telescope and under good 

observation conditions i't reveals a granulated texture. The 

effective temperature of the photosphere is estimated to be about 

6000oK. 

1.5 THE SOLAR ATMOSPHERE: 

The region of tenuous and essentially transparent solar 

gas lying above the photosphere is called the solar atmosphere. 

The outer boundary of the solar atmosphere is not clearly defined. 

'The atmosphere extends out to a distance of 5 million kilometers 

from the sun,if its limit is considered to be a point at which the 

density of the solar gas has decreased to the density of the gas in 

the space between the planets. 

The solar atmosphere is divided into two regions called 

the 'Chromosphere' and the ·Corona'. Both regions are invisible 

under ordinary conditions because their faint luminosity is masked 

by photospheric light that has been scattered in the earth's 

atmosphere or in the telescope itself. From 60000K at the 
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photosphere the temperature, falls to a minimum of approximately 

40000K, and stays at this value approximately up to 2000 kilo-

meters. This thin region is called the 'Chromosphere'.Above 

that height the temperature begins to rise very steeply, reaching 

the million degree level at an altitude of about 5000 kilometers 

and remaining at that level throughout the inner corona(Fig.l.2). 

At the high temperature that prevail in the upper chromosphere all 

o the hydrogen and helium atoms are ionized, and the 6563A line and 

other emission lines of neutral hydrogen and helium disappear. 

Elements heavier than H and He also loose several electrons at this 

temperature, although they are not completely ionized. Thus, the 

lines of all these elements, which are prominent in the spectrum in 

the lower chromosphere disappear gradually as the altitude 

increases and are entirely missing from the spectrum of corona. 

1.6 TIlE CORONA: 

The chromosphere consists of countless gas jets called 

spicules which rise to a height of about 5000 kilometers. This 

altitude can be referred to as the upper boundary of the 

chromosphere. Surrounding the chromosphere is the corona. Under 

ordinary circumstances the flow of light from the photosphere 
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Fig.l.2 Temperatures in the chromosphere. 

The transition zone is highly variable and 

inhomogeneous,with spicules and interspi

cular matter. 
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overwhclms lhc very weak emissIon from Lhe higher layers of the 

atmosphere which therefore remain hidden from the direct view. At 

the time of solar eclipse, however, the moon passes in front of the 

sun and blocks out the light from the photosphere. When the disk 

of the moon completely masks the solar disk a white halo 

(Fig.l.3)of tenuous gas appears beyond the edge of the moon, 

stretching a vast distance out into space. 

Corona. 

This is termed as 

As seen during an eclipse, the visible corona extends out 

from the edge of the solar disk many millions of kilometers. 

When viewed from the ground, the luminosity of the corona fades 

into the background of scallered light- from the sky at a distance 

of roughly 10 million Kilometers from the sun. But the photographs 

taken from a balloon at high altitudes, where the sky is darker, 

show a visible corona out to 30 solar radii. Other measurements 

made from satellites and space probes suggest that the corona has 

no outer boundary. A stream of wind called the solar wind flows 

out of the corona and into the solar system at all times, 

continuously immersing the earth and the planets in the tenuous 

gases of the solar atmosphere. 

The morphology of the corona undergoes dramatic changes 

during the course of solar cycle but similar basic elements can be 
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Fig.l.3 The Solar corona 30 seconds after the 

start of totality during the eclipse of March, 1970. 

Features are visible at a distance of 4.5 solar 

radii or 3million kilometers. 
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distinguished throughout. The most distinctive coronal features 

are the radial plumes generally appearing in polar regions, and the 

low, bright, domed structure called condensations. Above the 

condensation the dome is often pulled out into a ray or into a set 

of rays, which are longer lived than the polar plumes and are known 

as streamers. Coronal material flows outward along the streamers 

into the wind. 

The magnetlc field in the solar corona where the magnetlc 

forces greatly outweigh the thermal forces, is assumed to be 

relatively uniform.. The solar corona is highly structured. Well. 

away from the active regions are formed more or less radial rays. 

These occur over extended regions of the sun where the field in the 

underlying photosphere is scattered and predominantly unipolar. 

These regions are called coronal holes and are found usually at the 

solar poles. Over the rest of the solar surface, the basic 

structural component of the solar corona is the coronal loop. Some 

loops are vast features linking different active regions. 

These typically have temperatures 6 
2-3 x 10 K and densi ty of 

about 10-12Kg m-3 • Loops of similar scale but somewhat lower 

temperatures arch across quiet regions and presumably link the 

dispersed fragments of active regions. The corona above active 

regions themselves is characterised by coronal condensations,which 

is now thought to represent the collec~ive effect of a complex loop 
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system linking areas of opposite polarity. The properties,physical 

conditions existing in the loops, the morphology of the cool loops, 

hot loops and flare loops are discussed in chapter 2. 

Little can be said about the most important physical 

quantity of the corona, the magnetic field. The field strength as 

inferred from the observations of radio waves emitted by hot 

coronal gas suggests a value of 30 mT at an height of 15000 

kilometer dropping to lmT - 0.3mt at 70000 Kilometer. However 

these values are subject to a considerable uncertainty. Th~ 

alignment of the fine structures of corona indicates the direction 

of the field, i.e., loops trace the magnetic field linking regions 

of opposite polarity whilst coronal rays delineate 'open' field 

lines which stretch outward from the corona and close in the 

interplanetary medium. Coronal magnetic field models and model 

equations for coronal plasma are discussed in Chapter 3. 

1.7 PRESSURE STRUCTURE IN SOLAR CORONAL LOOPS: 

The loop or arch like configurations of the solar Q~~~Y~ 

regions have been seen in the emissions at UV,EUV and X-ray 

wavelengths (Foukal,1978). The current carrying plasma in the loop 
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supports a helical form of magnetic fluid. 

Typically, magnetohydrodynamic stability theory has 

been perturbation theoretic,proceeding from linearized equations of 

motion around quiescent (velocity V=O)equilibria. One either 

follows the evolution of small perturbations or attempts to find 

exponentially growing normal modes by variational methods (the 

energy pr inciple) . Some advantages of linear stabUi ty analys i s 

are (1) the knowledge of growth rates of instabilities and (2) 

insight into the nature of whatever growing modes may exist. Some 

disadvantages are (1) the difficulty of treating realistic spatial 

profiles,and an almost infinite variety of these profiles. One can 

keep on calculating stability by changing the profile,and (2) the 

impossibility of determining the effects of instabilities once they 

have outgrown the linear regime. 

The turbulence literature emphasizes the important role of 

the quadratic integral invariants of the nondissipative,ideal 

magnetohydrodynamic model:total energy.magnetic helicity and cross 

helicity. Because the value of these invariants cannot be directly 

modified by nonlinear effects,their wave number spectra give 

valuable information about the state and dynamics of the turbulent 

magneto fluid. 
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In the statistical theory of MHD turbulence, from scalar 

numbers, the average total energy, the average magnetic hellci ty 

and the toroidal and poloidal magnetic fluxes suffice to determine 

the level of excitation of every mode in the system for an 

ini tially quiescent system. The quiescent limit is one in which 

all of the excitation is locked into the extremal heliclty state by 

the simultaneous constancy of the magnetic helicity and total 

energy. I t is the state of minimum energy for given magnetic 

heliclty. It is a single Chandrasekhar-Kendall mode and so is a 

force- free state, (Montgomery et. al,1918). 

The steady state pressure structure of a solar 

coronal loop can be studied using the theory of MHD turbulence in 

cylindrical geometry. The magnetic and velocity fields are 

expanded in terms of Chndrasekhar-Kendall functions using the MHD 

equations, the pressure profile is then calculated as a function of 

the velocity and magnetic fields. The radial and axial variations 

of the pressure in a constant density loop are calculated. These 

variations are found to conform to the observed features of cool 

core and hot sheath of the loops as well as to the location of the 

temperature maximum at the apex of the loop. It is found that 

these features are not present uniformly all along either the 

length of the loop or across the radius. The possible oscillatory 

nature of these pressure variations and the associated time periods 
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have been explored. 

In order to study the temporal behavior of the fields and 

the pressure one has to put in the dynamics, which is described by 

a set of infinite, coupled, nonlinear ordinary differential· 

equations which are first order in time for the expansion 

coefficients of the velocity and magnetic field. Since obtaining 

the full solution of these equations is a formidable task, we plan 

to represent the loop behavior by a superposition of the three 

lowest order C-K functions. One Justification for doing so is that 

these functions represent the largest spatial scales and therefore 

they may be the most suitable states for comparison with the 

observed phenomena. This system reduces to a set of six equations, 

three for velocity and three for magnetic field. Numerical methods 

will be needed to solve these equat ions. However analytical 

progress can be made in two simplified cases: 

(1) When the system is disturbed linearly from its state of 

equili br i um and 

(ii) when one of the three modes has an amplitude much larger than 

the other two, known as the Pump approximation. 

Pr'cllmlnary work indicates that the three mode system 

exhibits sinusoidal oscillations when perturbed linearly. This 

work is to be perused in more detail, checking the response of the 
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system under different initial conditions. This will help us to 

determine the temperature,the velocity field and the magnetic field 

in the loop plasma of constant density. The knowledge of these 

parameters and their variation wi th space and time enables the 

explanation of varying emission in other electromagnetic bands at 

which the loop plasma emits. The description of small scale 

variations in terms of the global invariants of the MHO system 

g1 ves a very important handle on the dynamics of plasma. The 

transformation of linear to nonlinearity needs to be studied. The 

spatial evolution of three dimensional solar coronal loops is 

dicussed in Chapte~ 4 and temporal evolution in Chapter 5. 

The fluid theory description of a plasma is sufficiently 

accurate to describe the majority of the observed phenomena. 

However, there are some phenomena for wh1ch the fluid treatment is 

In adequate. For such cases we need to consider the veloci ty 

distribution function f(v) for each species. This treatment is 

called Kinetic theory. The Vlasov description admi ts the 

Investiga tlon of kinetic process like heating and radiation, and 

unlike a fluid description it does not require an equation of state 

to determine the individual variations of temperature and density. 

A Vlasov-Maxwell description of the ubiquitous solar coronal 

structures is discussed in Chapter 6. 
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Future work shall include four-mode interacting system. 

One could then generalize to the case of many modes with initial 

amplitudes chosen to fit Kolmogoroff spectrum. Finally it is hoped 

that it will be possible to compare the theoretical studies with 

the observations on coronal loops. A knowledge of ordinary and 

partial dlfferential equations, numerical methods to solve them and 

basics of magnetohydrodynamics are required to pursue these 

objectives. Suitable programs have to be developed to solve the 

multi mode equations. 
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2 SOLAR CORONAL LOOPS 

2.1 INTRODUCTION: 

Visual observations of prominences were the first to 

reveal the existence of well defined loop structures arching 

upwards from the s~rface of the sun high into the overlying corona. 

Regular visual observation of prominences obtained. during total 

eclipses of the sun have revealed more information about the 

coronal loops. Young and Seechi have concluded from a number of 

observations that prominences could be classified into two main 

types, 'quiescent' and 'active'. They are also called as 'cloud' 

and 'flame' prominences respectively, An active prominence is what 

is referred to as a loop prominence. They assumed the shapes to be 

parabolic, since they supposed that the material was ejected from 

the surface and was then subjected to purely gravitational forces. 

The true shapes of the loops have however been known only recently. 

With the invention of spectroheliograph, spectrohelloscope 

birefringent fllter, observations were obtained in Hand K lines of 
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the singly ionized calcium and latter in the H line of hydrogen. 
ex 

These observations reveal structures in the chromospheric region 

which are termed as 'cool' loops. The temperature of the loop 

plas~a in this 6 region is In the range of 20,000 to 10 K while 

6 plasma loops with temperature greater than 10 are termed as 'hot 

loops'. Based on the film of the corona taken in the ~ 5303Ao line 

Dun (1971) arrived at this general conclusion: 'some coronal' scenes 

look "open" ... and some look to be all loops and arches or "closed". 

The differences are presumed to be due to the magnetic field 

structure. The coronal structures are related to the magnetic 

field i.e., they ar~ said to map the magnetic field. This is in 

contradiction with the force free calculations according to which 

the field should uniformly permeate the entire area and not merely 

lie in the loops. It is therefore apt to say that the corona 

defines particular flux tubes. The arches and loops can be 

considered as very basic coronal structures, since many scenes 

appear to contain nothing else. Satellite observations in the 

Extreme ultraviolet (EUV) and X-ray region of the spectrum provide 

a weallh of information on lhe loop struclure of the corna. Though 

there has been SUbstantial achievements from the ground based 

observations in the visible coronal lines, there has been very 

little scope for further elucidating the structure of the active 

corona. The overwhelming brightness of the photosphere at these 

wavelengths makes it impossible to observe the corona against the 
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solar disk. It is reasonably assumed that the observations in the 

EUV and X-ray regions could reveal the structure of the low corona 

of the disk as well at the limb, because in this region the 

contribution of the photospheric layer virtually vanishes and the 

radiation comes from the overlying material at the chromospheric 

and coronal temperatures. This region of the spectrum has a number 

of strong resonance lines emitted by many of the abundant ions of 

various elements in various stages of ionisation which are formed 

4 7 in the temperature range of 10 to 10 K. The soft x-ray region 

below 10nm is dominated by emission lines of very highly ionised 

stages of a number of elements superimposed over a weak continuum 

of coronal origin. 

2.2 COOL CORONAL LOOPS: 

Coronal loops are a phenomenon of active regions and they 

are believed to be dominant structures in the higher levels of 

(inner corona) the sun's atmosphere. As already mentioned, loop 

6 plasmas which are in the range of 20,000 to 10 K are referred to as 

'cool loops'. Some properties and physical conditions in cool loops 

based on the observations in H and other visible and near visible 
IX 

lines, as well as in the EUV region are mentioned briefly for 
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better understanding. 

Limb observations in the H has established that the « 

individual loops were anchored to underlying sunspots, though this 

aspect is brought out well in disk observations. Figure 2.1 1s an 

example of an active region loop system in which most or all of the 

loops are anchored to sunspots (Bumba and Kleczek; 1961). Other 

photographs of interest of Lhe active region loops are of Lategan 

and Jarrett(1982,Fig2a) and foukal (197B,fig2). The number of 

loops in a single system may range from Just one up to perhaps ten 

or 50, an upper limit is hard to establish from limb observations. 

Though various observers have given projected height to the loop, 

true heights cannot be determined from the limb observations unless 

the loop geometry is known. 

Generally three types of motion.are associated with active 

region loops (1) flow down both legs starting at the top of the 

loop (Kleczek; 1963) (2) a flow up one leg and down the other 

(Martin; 1973) and (3) a mainly horizontal back and forth motion of 

the whole loop (oscillations) (Vrsnak; 1984). Two methods are 

generally adopted to measure the velocity and acceleration of the 

material observed at the limb. The first method is to determine 

the Doppler shift of a suiLable line like II which will give the « 

line of sight velocity and can be converted into true velocity 
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Fig.2.1 H 
a 

active region loop system (Bumba & 

Kleczek, 1961).Most or all of the loops are anchored 

to sunspots whose locations were established with 

the aid of auxi I iary data. 
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along the loop if a suitable geometry is assumed. The second method 

is to measure the projected motion in the plane of the sky using 

condensations or knots which are prominent features of the loop 

photographs. The true velocity is determined from the geometry of 

the loop, with the assumption that the apparent motions of the 

knots represent the genuine motion of the loop material and not 

changing conditions of excitation. Measurements of the velocities 

-1 of the loops observed on the disk vary from 20 - 150 Kms. The 

acceleration measurements both in the limb and disk observations 

reveal that accelerating and decelerating forces other than the 

gravity operate on the material in the loops. 

2.3 MAGNETIC FIELD IN CORONAL LOOPS: 

A measure of the magnetic field of prominences has been 

most difficult. However a number of concordant results have been 

obtained using Zeeman or Hanle effect. Athay et al (1983),measured 

the linear polarization in two resolved components of the He I D3 

line and obtained complete Stoke's profiles for thirteen 

prominences, mostly quiescent ones. They used the Hanle effect to 

interpret the resul ts, obtaining the vector magnetic field at a 

number of locations. From the observations and analysis, they found 
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that one of the prominences (prominence N)had two arches extending 

down from the main body to the chromosphere. In this prominence, 

the total field B in the loop ranged from 4 to 46 Gauss. Since the 

polarization depends on the scattering angle, the Hanle method is 

found to be sensitive to the assumed geometry of the prominence. The 

Zeeman method has been more widely used than the Hanle method even 

though it yields only the longi tudinal component of the field 8U,' 

Vrsnak(1984) has estimated the total field 8 in H loop, by 
« 

measuring its bodily oscillations (mainly horizontal}in the plane 

of the sky. He found the period to be 8 minutes. Assuming that the 

motion was controlled by the magnetic field he showed that the 

observed period was consistent with a value of B = 45 Gauss. 

2.4 DISK OBSERVATIONS OF CORONAL LOOPS: 

On the disk, an active region loop appears in the H line 
0: 

as thin,curved dark feature linking a sun spot with another spot or 

area of opposite magnetic polarity. Observations of H active « 

region loops on the disk indicate that l~ops occur only during the 

most active stages of complex groups (Ellison; 1944). Though loops 

and small flares tend to occur in active regions at times of high 

activity, it does not imply a direct association between a 
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particular loop and a particular small flare. H loops terminate 
ex 

in or near sunspots at one or both ends(El1ison; 1944, 

Tandberg-Hanssen; 1974, Bray and Loughheed; 1983) Two types of flow 

are observed: (1) a unidirectional flow along the axis of a loop 

1. e. ,ascent in one leg and a descent in the other; according to 

Ellison, the direction of the flow is independent of the magnetic 

polarities of the spot(s)involved; this type of flow 15 a commonly 

observed characteristic of loops in new and complex active regions: 

(2) a down flow from the top towards both foot points. The 

appearance of single or double loops is quite common while, the 

appearence of a complex loop is rare . 
• 

The motion along a loop may continue up to several 

hours (Ellison,1944)wh1ch 1s roughly the same interval over which 

loop systems are observed to persist. However, Tandberg-Hanssen 

(1977) give 15 minutes as a representative figure for the life 

time of a single loop, while Martin (1973), has shown evolutionary 

changes in a long lived loop over a period of one hour. 

The diameter of the cross section of a loop, 1. e., its 

thickness, is typically only a few seconds of arc and may be much 

smaller (Loughhead and Bray; 1984). If the cross section is 

circular, measurements of loop thickness are 'carried out on the 

(projected) image of loop recorded on a high resolution fl1tergram. 
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The thickness varies from 930 to 2100 Km (Loughhead,Bray and wang 

1985) . 

Measurements of velocities and acceleration indicate 

that ascending material in the loop fs subject to a force which 

accelerates it to highly supersonic veloc!ties,while the descending 

material suffers a retarding force. 

2.5 OBSERVATIONS OF CORONAL LOOPS IN EUV LINES: 

o . 0 
Below 1500A, up to about 100A, the spectral region is 

called EUV. In this region, the contribution of the photospheric 

layers to the solar spectrum vanishes and the radiation comes from 

the overlying material at chromospheric or coronal temperatures. 

The solar EUV spectrum is dominated by emission from resonance 

lines of H I, He I,and He II, of intermediate stages of ionization 

of C,N,a,Si and 5 of highly ionised stages of Si,Ne,Mg and Fe. It 

is also characterized by the Lymann continuum and He I and He II 

continua. Under the conditions of formation normally assumed to. 

apply, the intensity of any given line is a sensitive function of 

the electron temperature T peaking at some particular value 
e 

T (referred to as formation temperature) and falling of sharply on 
e 
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either side. 

The observation of warmer lines than He II reveal the full 

three dimensional structure of the active regions. An active region 

is seen to consist of a complex system of bright loops arching 

between areas of opposite magnetic polarity. Photographs of active 

regions near the limb help identify these structures as loops in 

the geometrical sense. The individual loops are oriented in many 

different directions and frequently overlap one another. The 

clarity and sharpness with which a loop is seen depend both on the 

temperature of the, line used in the observation and on the spatial 

resolution achieved. 

Foukal(1976), after a thorough analysis of EUV emissions 

over 22 large sunspots, found that the emission is often brighter 

there than elsewhere in the active region (Brueckner and 

Bartoe, 1974; Sheely et al.,1975 and Dere,1982). However,the 1nten-

sity and distribution of radiation above the spots change markedly 

with time and as a consequence a large umbra can remain invisible 

in the cool EUV for as long as several days. Figure 2.2 is an 

illustration of the three dimensional structure of active regions 

seen in the EUV. This is a photograph of McMath region 12628 at 

the west 11mb taken in the line 0 VI A 1032 A 0 (f 5 = 3.2 10 K). 
e 

From the photographs, it is evident that the region 1s composed 
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Fig.2.2 A photograph of McMath region 12628 at the west 

limb taken in the line 0 VI ;\1032. The region consists 

basically of a number of separate loops lying in planes 

inclined at widely differing angles to the Solar vertical. 
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basically of a large number of separate loops lying in planes 

inclined at widely varying angles to the solar vertical. Some loops 

are nearly vertical, while others are almost horizontal. 

2.6 PROPERTIES CORONAL LOOPS: 

Due to an inadequate spatIal resolution of the available 

EUV observation and paucity of systematic analysis of these data, 

little information. is available about the morphological and 

dynamical properties of individual loops, yet the following 

properties can be associated. 

Like all other solar features; cool EUV loops are always 

observed in projection of the plane of the solar disk or of the sky 

beyond. Limb observations indicate that most loops are essentially 

planar. The inclination of the planes containing the loop may vary 

from nearly vertical to nearly horizontal. The estimates of the 

heights attained by well defined loop prominence are typically of 

the order of tens of thousands of kilometers. Cheng(1980),has given 

a value ranging from 51,000 Km in Ne VII to 61,000 Km 1n Mg IX 

indicating increase of loop height with temperature. The width of 
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the c,ool EUV loops increase only slowly with height, Foukal (1976); 

Cheng (1980). On the other hand,loop width increases with 

temperature. The foot points of cool EUV loops are observed to be 

generally located on the peripheries of the two areas of op~osite 

magnetic polarities in a bipol~r active region as shown 1n figure 

2.3. (Sheely,1980). Loops observed 1n cool EUV lines, beyond the 

11mb, show a strong contrast with respect to their surroundings. 

The intensity of the background emission is weak but increa,ses wi th 

temperature. Loops observed In cool lines evolve appreciably in 

just a few hours (Levine and Withbroe;1977.Cheng et al 1980), Spot 

associated loops are found to be more stable than other cool EUV 

loops (Foukalj 1976 has published 'photographs of a large spot loop 

near the limb whose basic form remained relatively uachang~d over a 

period of 27 hours.) The pat tern of flow Is analogous to that 

observed in the H active region loop. 
a. 

2.7 SPATIAL RELATIONSHIP BETWEEN LOOPS SEEN IN DIFFERENT LINES: 

Though an inspection of the EUV spectrohellogram gives the 

idea that the same coronal loops in lines of widely cUssimilar 

formation, temperature are seen, Foukal (975) has concluded that 

these loops are coincident and has hypothesized that a loop 
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Ne VII 465 
100 000 kill 

MClfll H !tonr:nn Nov. ;,lH, 'l3 14:bO FI! X V?i:<! 

Fig.2.3 Bipolar active region on the disk observed almost 

simultaneously 
o 

1\.465A and Mg 

EW line Fe XV 

in the two cool 

IX 1\.368Ao,as well as 

A284Ao (Sheely, 1980). 

EUV 1 ines Ne VI I 

in in the hot 

Whi te and black 

patches on the ki t t Peak Magnetogram del ineate 

areas of positive and negative polarity respectively 

in the underlying photospheric magnetic field. 

The elongated bright features radiating outwards 

from the central areas of bright emission represent 

the lower ends of coronal loops. 
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consists of a cool core surrounded by a concentric sheath each one 

filled with material hotter than that in the adjacent inner sheath. 

This does not describe the relation between cool and hot EUV loops. 

They are not known to be coincident. 

2.8 PHYSICAL CONDITIONS IN COOL LOOPS: 

Loughhead,Bray and Wang (1985) have given a complete 

description of the, physical conditions in a loop observed on the 

disk in H. From observations, it is possible to determine the 
a 

electron temperature T and electron density N, the gas mass 
e c 

density p and pressure P, the Mach number M if the axial flow speed 

along the loop V is known. 
o 

The observations reveal a striking variation in density: 

there is distinct compression near the top of the loop and 

rarefactions in both the ascending and descending legs. The 

variations in the pressure is even more marked. If these 

variations point to the evidence for the presence of a wave in the 

loop, then, the wavelength will roughly be equal to one half of the 

length of the loop. The var ia tlons in p, P, T 
e 

and V plot ted o 

against the distance along the loop indicates the presence of node 
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at the highest point of the loop. These condi t ions in the loop 

inferred from EUV data are in very good agreement with observation 

in visible and near visible regions. 

Roussel-Dupre et al(1984) on the basis of their results 

concluded that the EUV emission from the loop originates in very 

thin sheaths of materials surrounding an(assumed) cool core. Each 

sheath is isolated from the others by the magnetic field in the 

loop and radiates at the temperature giving the maximum abundance 

of the particular ion involved. The observations in the cool loops 

both in the visib~e and EUV regions indicate that the electron 

density extends over a wide range of several orders of magnitude 

while the gas pressure is restricted to a much smaller range 

(single order of magnitude). This indicates that the stability of 

a 100PI whatever its temperature depends on the maintenance of 

approximate pressure equilibrium with the surrounding coronal 

medium. Further it is evident that all cool loops appear to have 

similar properties with exception of temperature and can be 

regarded as manifestations of the same basic physical structure. 

2.9 PHYSICAL CONDITIONS IN 1I0T LOOPS: 

Observations made in the visible and EUV lines provide 
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extensive information on the large scale systems of loops which 

dominate the structure of the lower corona above the active 

regions. These lops are assumed to trace out closed magnetic fleld 

lines which emerge from beneath the photosphere and expand to fill 

the whole coronal volume above an active region. Though the loop 

system gives some insight into the three dimensional configuration 

of the magnetic fLeld ; the picture is not complete. Hence, 

observations of hot loops which are filled with material at coronal 

temperature of a million degrees or more, seem to be more 

pertinent. 

Loops observed in the visible region of the spectrum have, 

° generally been observed in the Fexlv A5303A line. The following Is 

the summary of the properties associated with the active region 

loops from the descriptions of Kleczek(1963) and Dunn(1971).These 

refer to both flare and non-flare loops. 

2.10 PROPERTIES OF HOT LOOPS: 

Loops in A 5303Ao region occur as systems of loops in 

a single active region. with typical heights of up to 50,000 -

100,000 Km. Larger loops may connect two active regions and the 
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system appears to be rooted in the sunspot groups or in plage 

areas. The larger loops are generally more uniform in intensity 

along their widths and lengths and smaller loops are less uniform. 

Loops are more act1 ve when they are small, they tend to grow in 

situ, then fade, and others grow at higher elevation. Larger loops 

are very stable. Loops are found to be planar structures. The 

smaller loops last for hours while larger loops last for days. The 

high temperature EUV emission from the sun Is confined very largely 

to the active regions and the loops emanating from them. Individual 

hot EUV loops are distinguished by their broad and irregular and 

less loop like app~arance as compared to those visible in the cool 

EUV loops. Unlike cool EUV loops the hot loops are never observed 

to brighten progressively along their length but appear to brighten 

and fade in situ. All hot loops appear to be basically similar in 

their properties regardless of the wavelength region in which they 

are observed. All loops extending outwards from an active region 

necessarily return to the same vicinity. The spectrum of the core 

is harder than that of the rest of the active 

region,implying, that, if the emission is thermal in origin, the core 

is hotter. The X-ray loops associated wi th an active region are 

similar in general appearance to those seen in hot EUV lines. Hot 

loops, especially some of those observed in the X-rays, can attain 

much greater he1ghts than cool ones. Both hot and cool loops 

exhibit a wide range of lengths but certain classes of X-ray loops 
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are much longer than cool loops observed in H or cool EUV lines. 
a:. 

Hot and cool EUV loops have the same diameter but cool Hand L 
a:. a:. 

loops appear to be much thinner than any other class. In general 

hot loops last longer than cool ones. It is difficult to compare 

the electron densities in hot and cool loops since, both cover a 

large range, with undesirable overlap. The gas pressures have a 

smaller range and the values for both hot and cool loops are of the 

same order. In general hot loops tend to be thicker, longer, higher 

and longer lived than cool loops. Other morphological and physical 

properties except temperature are also similar. 

2.11 SPATIAL RELATIONSHIP BET~EEN HOT AND COOL EUV LOOPS: 

Foukal (1915) inferred that the peak emission from a cool 

loop coincides wi th a drop in the level of the hot EUV emission, 

which then rises to a low peak on either side. Foukal interpreted 

the observation as implying the existence of concentric sheaths of 

increasingly hotter material around a cool core; so that what is 

seen as a hot EUV loop Is really Cl sheath of hot gas surrounding a 

cool EUV loop. This idea was subsequently elaborated by Levine and 

Wlthbroe (1917) by s ludylng the variation in the physical 

conditions in a loop as a function of distance from the axis. Hot 
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and cool EUV loops, although obviously related, are regarded as 

separate physical structures (Dere;1982, Cheng et al; 1980). 

2.12 FLARE LOOPS: 

Much of the knowledge of flare loops is from the 

photographs obtained on the disk and beyond the limb in the 

H line. Disk observations throw light on their relationship with 
(X 

flares,while the .1imb observations yield information on the 

structure,dynamics, life time and evolution (Bruzek,1964). Figure 

2.4 shows a typical well developed loop system photographed 

o simultaneously in Hand ;>"S303A at the Mees Solar Observatory, 
ex. 

Haleakala (McCabe, 1973). A number of loops is seen to be present, 

although it is not possible to count them. 

Solar flares are remarkedly diverse and complicated 

phenomena involving transient heating of the localized regions of 

the corona and underlying chromosphere wi thin an active region. 

The sudden release of energy is accompanied by the emission of 

electromagnetic radiation over a very wide span of the spectrum, 

ranging in extreme cases from a-rays to kilometric radio waves. In 

almost all cases,flares seen in the chromospheric 
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Fig.2.4. Loop prominence system photographed simultane

ously in H (upper) and A5303Aoof Fe XIV(lower) at the 
a 

Mess Solar Observatory, Haleakala(McCabe, 1973). The loop 

details appear sharper in H than in A5303Ao. a 
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produce an increase in the flux of soft X-rays. Both H and soft 
(X 

X-ray emission pertain to what is called the 'thermal' or 

'quasithermal' component of the flare; i.e. they originate in 

plasmas where the distribution of electron velocities is believed 

to be Maxwellian. All flares pass through at least three 

phases: rise, maximum and decay (Moore et al. ,1980). These phases 

are easily recognizable in curves showing the variation of the H 
(X 

intensity and soft X-ray flux over the life time of a flare. The 

physical properties of a flare change markedly over its lifetime. 

The morphological and dynamical properties of H loops of 
(X 

both flare and non-flare loops are the same or nearly the same. 

However, compared with non-flare loops, H flare loop system appear 
(X 

to be slightly higher and lasls longer, as do the individual flare 

loops. EUV flare loops are also similar to those of EUV non-flare 

loops. EUV flare loops appear to 11e some what lower, but the 

ranges of values overlap. In the microwave region,data are 

inadequate to make comparison between flare and non-flare loops. 

In the soft X-ray region,both flare and non-flare loops reach very 

great heights,but the non flare ones appear to reach greater 

heights. Comparison of the physical conditions of the flare loops 

with hot non-flare loops indicate,that independent of the 

. wavelength region, the flare loops are approximately an order of 
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magnitude hotter compared with non-flare loops. Further,except in 

the EUY region, the electron density of the flare loops is also an 

order of magni tude grea ter. Thus, it 1s reasonable to arrive at 

the conclusion that the gas 
, 

pressures in flare loops is 

approximately two orders of magnitude greater than in non-flare 

loops. The value of the total magnetic field B in the microwave 

region is bigger for flare loops than for non-flare loops. Unlike 

hot flare loops the value of T for cool flare loops in Hand 
e oc 

other visible region lines is similar to that of cool non-flare 

loops. 

Thus,hot flare loops are distinguished from hot non-flare 

loops by their different physical conditions rather than by 

morphological differences.On the other hand,cool flare loops can be 

distinguished from non flare cool loops only by characteristics 

other than their morphological and physical properties. 

2.13 SUMMARY: 

Though, there is a storehouse of information on the 

observed properties of coro'nal loop structures,in different regions 
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of the electromagnetic spectrum, there is no physical model which 

is valid for all types of loops. One of the reasons for this 

situation is the insufficiency of data on coronal magnetic 

fields,which govern the morphological and dynamical properties of 

all types of loops. Coronal magnetic field models are discussed in 

Chapter 3. A three dimensional modeling of the spatial and 

temporal evolution of coronal loops is discussed in chapters 4 and 

5 respectively. 
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3 CORONAL MAGNETIC FIELD MODELS 

3.1 INTRODUCTION: 

In the previous chapter the observed properties of coronal 

loops were described. To interpret the observed properties and to 

provide an accoun~ of the physics of coronal loops, some of the 

models that have been established are discussed in this chapter. 

There is very little empirical knowledge of the strength of the 

coronal magnetic field and almost none of its topology. Hence, a 

relationship between the plasma loop properties, physical 

condi lions in them and the coronal magnetic field is based on 

theoretical models. The models governing the structure of magnetic 

fields are inferred from measurements of the magnetic field made in 

the solar photosphere, the only region where such measurements are 

at all reliable. This method provides a basis for comparing the 

structure of the observed plasma morphology with that of the 

extrapolated and inferred fields. 

Despite the inability to measure the field in the corona 
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with any precision a simple calculation establishs its importance. 

The spatially averaged magnetic flux density in the solar 

photosphere ranges from about O.4mT in the quietest regions to over 

30mT in the active regions. The minimum mean square field strength 

can be obtained by assuming the field to be uniform; hence the 

:2 
magnetlc pressure B /Iloranges upwards from about O. IPa in qUiet 

regions to well over 400Pa in active regions. In the low corona 

which are at heights of 2000Km or so, these estimates will not be 

significantly different since this distance is small compared to 

5 the radius of lhe sun (7xlO Km). On the olher hand, empirical 

estimates of the gas pressure in coronal active regions lie in the 

range of 0.1- IPa. Hence,the magnetic pressure greatly exceeds the 

gas pressure. 

The magnetic field in the corona cannot be measured with 

precision, however,by calculations as mentioned above it is found 

that the magnetic pressure greatly exceeds the gas pressure. The 

solar corona is a low ~ gas (~ is the ratio of gas pressure to the 

magnetic pressure) while the sub surface region is a high ~ gas. 

In a low (3 system the field controls the gas, while for a high /3 

gas, the gas dynamics controls the field. In low [3 systems, the 

field either can simply expand in response to unbalanced magnetic 

can adopt a static configuration in which magnetic pressures or 

stresses balance one another- a· 51 tuation in which the field is 
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said to be force free every where. A field which is force free 

throughout a given volume must experience stresses on some bounding 

surface in order to maintain it. In the case of the solar corona, 

the field cannot simply expand away because it is anchored by the 

gas dynamical stresses exerted on the sub surface portion of the 

field. These stresses are, of course, continually varying and 

produce in the corona a state of constant evolution. However, the 

observed changes to the overall structure of the coronal loop 

systems are generally slow, which suggests that as a first 

approximation the variations can be ignored and a static magnetic 

structure can be ass,umed. 

3.2 FORCE FREE FIELD: 

In order to focus on the geometric properties of the 

magnetic field, a model in which the field is static and is 

determined solely by the distribution of its own stresses, free 

from any considerations of the gas that must be present is adopted. 

Thls assumption reduces Lhe problem to Lhat of finding solutions of 

the Maxwell's equation for which the Lorentz force vanishes 

everywhere with in the coronal volume. i.e .• 

J x B = 0 (3.1) 
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subject to the appropriate conditions at the lower bounding surface 

that reflect the determining influence of the sub surface field and 

current distributions. Equation (3.1) to be true, requires that 

either current density j should be parallel to the magnetic 

induction or it should vanish. Hence, 

~ j = «(x,t)B (3.2) o 

~o is the permeability of free space. Current free case 

corresponds to a. = O. If the field is a.ssumed to have attained a 

static configuration, the parameter a. becomes a function of 

position alone. Hence, using Maxwell's equation for a stationary 

system 

~ x B = II j 
"'0 

(3.3) 

or, Q x B = « (x)B (3.4) 

In the integral form equation (3.4) can be written as 

J (V x B).dS = J a. B.dS (3.5) 
s s 

where,s 1s any surface within the volume 

44 



By Stokes theorem the surface integral can be transformed to 

J (VxB).dS = i B.dl (3.6) 
• c 

where, c is the curve bounding the surface sand dl is a line 

element of the curve c. If s is assumed to be a flat disk c will 

be its perimeter. The RlIS of the equation (3.6) represents the 

component of the field around the circle and the RHS of equation 

(3.5) the component of the field normal to the disk. Thus,« 

determines a measure of the degree of twist of the field. When «=0 

there is no current and no twist. Such a field configuration is 

known as a potential field. 

Taking the divergence of equation (3.3); it is found, that in the 

steady state 

V.j = 0 (3.7) 

Equation (3.7) indicates that like a magnetic fleld,a steady 

current cannot end in space. 

Taking the divergence of equation (3.2), 

(B.9)« + a V.B = (B.9)« = 0 (3.8) 
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which implies that the value of a does not change in the direction 

of the field and so remains constant' along a field line. If the 

field line crosses the boundary into a force free region, it 

maintains the value of a set by the boundary condition throughout 

the volume. 

The solution to the equation, 

(3.9) 

is non linear. The equation may not have a guaranteed solution and 

if it has,lt may n9t be necessarily unique. Construction of general 

force free models for the coronal magnetic fields is a 

mathematically intractable problem. 

The difficulty associated with general models (existence 

and uniqueness of the solution) is overcome if, a is deemed to be a 

constant within the volume under consideration. This will ensure 

the invariance of a between foot points. The solution of equation 

(3.4) when a is a constant are the eigenfunctions of the curl 

operator. Instead of solving this equation directly, Chandrasekhar 

and Kendall (1975) took curl of both sides to produce the Helmholtz 

equation for each cartesian component of B 

-2 2 
(V + a )B = 0 (3.10) 
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This equation 1s linear in B for a given IX so that the solution 

will describe a linear force free field. 

Seehafer(1978)j Alissandrakis(1981); Chen & Chen(1989) 

have adopted linear force free fields to the modeling of the 

regions of the finite horizontal extent, such as an active region. 

The solutions are not however unique if normal component of the 

magnetic field B is specified only on the ·lower boundary (Chiu & 
n 

Hilton,1977). Most observations furnish only the normal component 

of the field at the photospheric surface. Compar i son of the 

structure with observations of the morphology of active regions are 

arbitrary because they are based upon models .in which the value of 

IX is adjusted to provlde the best agreement between the observed 

morphology and the field. Since, observations give no indication 

whether thls procedure is Justified, the validity of the constant IX 

model for coronal field is doubtful. 

Heyvaerts and Priest(1984), provide a Justification for an 

approximately constant IX force free field in the solar corona. 

Since, it is assumed that the coronal magnetic field evolves 

through quasl-slaL1c cqu ill br lurn strucLures as the fleld at the 

photospheric boundary changes slowly. During the time interval over 

which equilibrlum is achieved, the changes in the boundary 

condi tlon may be neglected and it may be supposed that the field 
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structure changes only wi thin the volume where the field must be 

force free. Under these ci rcumstances Wol tJer( 1958) has proved 

that in the limit of infinite electrical conductivity (ideal MHO), 

magnetic heliclty 'is conserved for each field line as the field 

evolves within the volume V. Magnetic helicity is defined as A.B 

where A is the vector magnetic potential (B = V x A). Like a. the 

magnetic helicity is also a measure of the twist of the field, but 

unlike a, the heliclty of a potential field does not necessarily 

vanish. If hellcity is conserved for each field line, the total 

helicity in the volume 

K = fA.B dV (3.11) 

v 

will be constant throughout. The total magnetic energy 

(3.12) 

v 

will however change. The lowest possible value occurs when the 

field adopts preclsely that constant a force free configuration 

having the prescribed normal 

(Sakurai,1979). 

component B on 
n 
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Although a minimum energy state exists, the system has no 

means of evolving to this state when there is no dissipation, i.e. 

when electrical conductivity is infinite. If dissipation 1s 

allowed by introducing the conductivity to be finite, helicity will 

no longer be conserved on each field line 

3.3 MODEL EQUATIONS FOR THE CORONAL PLASMA: 

3.3.1 MHO APPROXIMhTION: 

At the high temperatures and lo~ densities, characteristic 

of the corona, the atoms of the coronal gas are almost all ionized. 

The long range electrostatic forces between the charges govern the 

small scale motion of the particles. Any medium in which this is 

the case is said to be a plasma. It is the basic property of 

plasma that the strength of the electrostatic interaction 

precludes any permanent large scale separation of opposite charges. 

The aver"agc charge dcnslly ls cffcclively zero everywhere, so that 

large scale dynamics of a plasma is controlled by the magnetic 

field. Magnetohydrodynamics and plasma physics both deal with the 

behavior of the combined system of electromagnetic fields and a 
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conducting liquid or gas. Conduction occurs when there are free or 

quasi free electrons which can move· under the action of applied 

fields. Unlike a solid in the case of a fluid the field acts on 

both electrons and ionized atoms to produce dynamical 

effects, including bulk motion of the medium itself. This mass 

motion in turn produces modifications in the electromagnetic 

fields. The distinction between plasma and magnetohydrodynamics can 

be established by considering the relation J = (TE. In conducting 

liquids or dense ionised gases the collision frequency is 

sufficiently high even for very good conductors that there is a 

wide frequency range over which Ohm's law in its simple form Is 

valid. Under the action of applied fields the electrons and ions 

move in such a way that,apart from the high frequency Jitter,there 

is no charge separation. Electric field arises from the motion of 

the fluid which causes a current flow, or as a result of time 

varying magnetic fields or charge distributions external to the 

fluid. The mechanical motion of the system can then be described in 

terms of a single conducting fluid. At low frequencies the 

displacement current is neglected in Ampere's law. This 

approximation is called magnetohydrodynamics. 

In a less ionised gas lhe collision frequency is smaller. 

There may still be a low frequency domain where the magneto 
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hydrodynamic equations are applicable. Astrophysical applications 

fall in this category. At higher frequencies the charge separation 

and the displacement current cannot be neglected. The separate 

inertial effects of the electrons and ions must be included in the 

description of the motion. This domain is referred to as "plasma 

physics". At higher temperatures and lower densities,the 

electrostatic restoring forces become so weak that the length scale 

of charge separation becomes large compared to the size of the 

volume being considered. Under such circumstances the collective 

behavior implicit in a fluid model is gone completely. A plasma is 

an ionised gas in y.,rhich the length that divides the small scale 

individual particle behavior from the large scale collective 

behavior is small compared to the characteristic lengths called the 

1/2 Debye length (which is numerically equal to 7.91(T/n) cm,where T 

is the absolute temperature in degrees Kelvin and n is the number 

of electrons per cubic centimeter). For length and time scales 

larger than the charge separation scales the plasma may be treated 

as a fluid and the magnetohydrodynamic descr iptlon Is used. In a 

fluid, the transport processes of diffusion, viscosity. heat 

conduction and electrical resistance can all be modeled in terms of 

the local thermal and dynamical properties of the gas,the 

temperature T,the pressure P and bulk velocity V together with the 

macroscopic magnetic induction B. 
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3.3.2. MHD DESCRIPTION OF LOOPS: 

Consider a nonpermeable conducting fluid in 

electromagnetic field. Le t it be descr i bed by a matter dens ity 

p(x,t), a velocity v(x,t), a pressure p(x.t) (taken to be a sclar), 

and a' real conductivity ~.The hydrodynamic equations are the 

continuity equation 

ap 
at + V. (pv) = 0 

and the force equation: 

dv 
P dt = -Vp + _1 (J x B) + F 

c v 

(3.13) 

+ pg (3.14) 

In addition to the pressure and magnetic-force terms viscous and 

gravitational forces have been included. The time derivative on 

the LHS is the convetive derivative which gives the total time rate 

of change of a quantity moving instantaneously with the velocity v. 

+ v.V (3.15) 

For an incompressible fluid the viscous force can be written as: 
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-2 
F = r,'V v 

v 

where r, is the coefficlent of viscosity. 

(3.16) 

Neglecting the displacement current, the electromagnetic fields in 

the fluid are described by 

v x E + 
1 
c 

aB = 0 at 

VxB= ~J 
c 

(3.17) 

(3.18) 

The condition V.J = 0, is equivalent to the neglect of displacement 

currents. From Faraday's law (alat) V. B = 0 and the requirement 

V.B = 0 can be imposed as an initial condition. With the neglect 

of the displacement current, it is appropriate to ignore Coulomb's 

law as well. To complete the specifications of dynamical equations 

the relation between the current density J and the fields E and B 

are to be specifIed. For a one component conducting fluid,Ohms law 

can be written as: 

v 
J = ~ (E + - x B) 

c 
(3.19) 

The equations (3.13), (3.14), (3.17), (3. 18)and (3.19) together with 
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an equation of state for the fluid, form the equations of 

magnetohydrodynamics. 

3.4 STEADY STATE STRUCTURE OF LOOPS: 

The model with the coronal plasma in magneto static 

configuration (V=O) is the simplest case for a theoretical 

discussion. This implies finding a solution for the equation 

- Vp + p V~ + JxB = a (3.20) 

allowing a small Lorentz force to be balanced by equally small 

pressure and gravitational forces. Along with this, the following 

equations 

V.B = 0, VxB = j.l.J' o 
(3.21) 

and, an energy equation are required. 

In the steady state alat = 0 and pressure balance condltion is 

v (-p + p~ ) + jxB = a 

54 



When the density is treated as an independent scalar field. it is 

possible to find fully three dimensional solutions that have the 

geometry of the system of loops(Low,1982) or a large scale coronal 

structures (Bogdan & Low, 1986). According to Priest (1978) , the 

separate requirements of force and energy balance are incompatible, 

and that a system of loops cannot be in magneto static equilibrium. 

Staedy state structure can also be discussed without assuming the 

flows V to be = O. This will be discussed in Chapter 5. 

3.5 LOOP MODELING: 

The historical development of modeling outer stellar 

atmosphere has followed two principal directions: emission measure 

(or empirical) analysis and energy-balance modeling. The former 

line-of-attack focuses directly upon the observations to generate 

2 -1 the expected differential emission measure Q(T)= N (dT/ds) along 
e 

the instrument line of sight in the atmosphere, and uses this 

resul t to deduce the parameters characterising the atmosphere, as 

well as the required mechanical heating to maintain energetic 

equilibrium(Withbroe,1975; the review by Gabriel,1976a;and the 

detailed analysis in Craig & Brown ,1976). The second approach is 

based upon the solution of a local energy balance equation,together 
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with relations specifying momentum and mass balance and an equation 

of state: these together with boundary conditions that are used as 

adjustable parameters and integration over the model 

atmosphere. yield expected radiative fluxes that are compared with 
, 

observations. wi th parameters varied as to obtain a "best fit" (cf 

Kopp & Orrall.1976; and Rosenner and Vaiana.1977 for application to 

coronal hole modeling). The two analysis techniques generally 

adopted are l)Emission measure analysis and 2)Energy balances 

analysis which are considered to be alternative means of modeling 

the solar atmosphereCcf Gabriel. 1976a; Orall & Kopp,1976 and 

'Withbroe & Noyes • .1977}. Due to the strong coronal structuring 

provided by high-spatIal-resolution observations. the two methods 

mentioned above become complementary,thus providing answers to 

somewhat different questions about the atmosphere. These modeling 

techniques have been most fully developed in the context of 

homogeneous atmospheres,particularly for the quiet sun. 

By regarding coronal loops as plasma volumes relatively 

isolated by the magnetic field that defines them, each individual 

loop structure can be characterised by two coordinates specifying 

displacement along the length of the loop(s) and radial 

displacement from the loop axis(r). In general, the equations of 

motion of the plasma is solved within the loop subject to the 

boundary conditions at the foot points and at the "surface" of the 
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loop, wi th the additional constraints upon the internal transport 

process imposed by the magnetic field. A complete treatment then 

includes the effects of plasma upon the coronal magnetic 

field, providing a full MHO description of the coronal structures. 

Current modeling has attempted to lay the groundwork by 

investigating separately long! tudinal and radial temperature and 

density structure of coronal loops. Since the magnetic field 

defines the longitudinal loop coordinate,these studies have further 

segregated themselves into; longitudinal analysis using energy 

balance arguments,while radial studies emphasises the emission 

measure analysiS. 

3.6 RADIAL STRUCTURE OF THE LOOPS: 

Extensive studies of the radial structure of coronal loops 

by (Foukal,1975,1976,1978) using EUV line intensity data from the 

HCOS-055 spectroheliometer and emission measure analysis techniques 

have revealed that coronal loops undergoing dynamic change (such as 

posL flare loops) arc characLerised by a non slallonary. "inverted" 

temperature structure, in which the core is cool relative to a 

substantially hotter surrounding sheath. It has not been possible to 

correlate these EUV observations with simUltaneous soft X-ray data; 
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for example the event studied by Levine and Withbroe in which case 

4 a small soft X-ray loop was observed to flare ~ 10 sec before the 

inltiallon of EUV observat.lolls at the locallon of the EUV event, but 

no temporaly overlapping data was obtained. A question that 

remains unanswered Is whether such complex loop structures are a 

norm, or they reflect the consequenceS of occasional, significant 

departures from quiescent condl tlons. Foukal (1978) has studied 

5 
long lived (~ 10 sec) cool loops at least one of whose foot points 

emerges from sunspots,and has shown their observed size, low 

temperature and life time taken together, to be inconsistent with 

simple hydrostatic ~qullibrium. Therefore he has suggested that 

these structures are in dynamic stationary equilibrium ,with 

observed downward mass flow along the loop axis(and field) balanced 

by mass inflow across the field, whose energy balance is largely 

controlled by the mass flow rate. 

3.7 LONGITUDINAL STRUCTURE OF LOOPS: 

Longitudinal loop structure due to the anisotropies 

Intr()duc~d by t.h~ r;oronnJ mar.n~Ur; field cmphnsi7.cs energy balance 

arguments. Landini & Monslgnorl-Foss1(1975) have refined the work 

of JOf'(Jant1C)'/5) and have p,Iven a detaIled descdpllon of the 
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temperature and densi ty structure of the individual coronal X-ray 

loop. Using the temperature as the independent variable, it has 

been possible to derive an analytical descriptio~ of the variation 

of temperature and density within the loop,and a sequence of loop 

models by varying the base pressure and maximum coronal 

temperature, based on the hypothesis of acoustic heating. Such work 

based on the emission measure analY$is techniques has led to the 

essential result that X-ray structures could be identified in a 

quantitative manner with regions of enhanced temperature and 

density and hence enhanced energy deposition. However,there is no 

details regardIng thc rclallon of thc s1ze of the loop structul"e to 

its other attributes in these works. 

The technique of Landini and Monsignori-Fossi has been 

extended by Rosner,Tucker and Viana(1978) to show that stable 

qUiescent X-ray loop structures must have their temperature maximum 

at their apex, resul t1ng in scaling laws for the loop temperature 

and heating rate. 

3.8 ONE DIMENSIONAL MODELS: 

One dimensional models of coronal flux loops account only 
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for mass,momentum and energy balance along the field lines. Also 

the geometry of the field line is assumed, so that the dynamic and 

thermal properties of the loop can be analysed without reference to 

the field. 

Steady state models have been classified into two classes, 

one which is truly static 1. e., without any gas flows, and the 

other which allow a steady, time independent flow along the loop. 

The observations of the emission measure from loops and ensembles 

of loops are consistent with simple loop(static) models, though 

there 1s very liltle conslraint on the free parameters of the 

model. However, the model allows insight to be gained into more 

complicated structures. 

The assumption that loops are static is invalidated by 

their observed properties. The apparent life times of the loops 

suggest that they are maintained for times at least comparable to 

the time for a sound wave or Alfven wave to propagate along 1 ts 

length. Steady flows from one foot point of a loop to the other are 

inevitable if conditions of perfect symmetry on the geometry of the 

magnelic field are violaled. In hot loops, the flows are 

relati vely slow and cause little change to the overall 

structure. But as the maximum temperature of the loop decreases, 

the flow speeds tend to increase throughout the loop and the 
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asymmetry between the two legs becomes much more pronounced. In 

cool loops the emission characteristics models are more in line 

with observations. 

One dimensional loop models appear to be stable not only 

to infinitesimal perturbations but also to very large finite 

amplitude disturbances. However, a one dimensional analysis allows 

only necessary conditions for stability. Sufficient conditions can 

be found only by examining all possible perturbations, including 

those that produce transverse disturbances of the loop. For this a 

MIlD model of the coronal loop is needed. In the one dimensional 

model the thermodynamic structure and plasma motion in the 

direction of the field lines may be analysed without regard to the 

magnetic field. Since loops have transverse structure as well as 

longitudinal, the properlles of the loops vary over their cross 

section and from one another. 

3.9 SUMMARY: 

The early view, which is still regarded as the appropriate 

one, corwldcrs the exlcndcd alrnosphcre, and corollo in purllcular, as 

the simple, direct byproduct of convective "noise". Inspl te of the 
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differences about the nature of coronal heating mechanism, there is 

a general agreement that the turbu.lent fluid motions at the 

photospheric level as the source of energy supply. The solar corona 

appears to correlate its intensity not with the level of local 

photospheric convective activity but rather with the topological 

nature of the magnetic field. These circumstances raise an 

interesting question as to whether the formation of corona as 

opposed to the extended atmosphere as a whole is at all related to 

the level of surface convective activity. The role of the magnetic 

field is a further correlate to this question. 
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4 THREE DIMENSIONAL STEADY STATE STRUCTURE OF 

SOLAR CORONAL LOOPS 

4.1 INTRODUCTION: 

Solar active regions are found to be magnetically, 

spatially as well as temporally complex, the complexity being 

manifesled lhrough emi ss ions al optical UV, EUV and X-ray 

wavelengths. The solar corona is highly structured. The most 

common geometrical form observed in the active regions looks like a 

loop or an arcade of loops essentially outlining the local 

magnetic field configuration. These loops are believed to contain 

current carrying plasma and therefore have a helical form of the 

magnetic field (Levine and Altschuler,1974;Poletto et al. , 1975; 

Krieger et al.,1976; Priest,1978; Hood and Priest, 1979.). The MHD 

equilibria of coronal loops have been investigated by Tsinganos 

(1982). Inspite of the continuous pumping of magnetic and velocity 

field flucluallons into lhe coronal plasma, the loops exhibit a 

fairly stable and well configured geometry. The steady state 

pressure slruclure 1 s the ['esul L of var ious manifes laLlons of the 

balance of inertial and magnetic forces. High spatial resolution 
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observations of lines of C II,e III.O IV,Ne VII and Mg x indicate 

that in the steady state, a typical loop consists of a cool central 

core with temperature increasing towards the surface which merges 

with the hot corona outside. 

From purely statist ical treatment of the magneto

hydrodynamics of an incompressible fluid subject to the invariance 

of total energy, magnetic heliclty and magnetic flux, a steady 

state configuration of the magnetoplasma including turbulence has 

been derived by Krishan (1982). Krishan (1983a,b) have al~o 

discussed a steady state model of ~ctive region coronal loops using 

statistical theory of incompressible magnetohydrodynamic 

turbulence described by Montgomery et al (1978). The ~ethod adopted 

follows that of Montgomery et al (1978), wherein the steady state 

is described by the superposition of Chandrasekhar-Kendall (C-K) 

functions which are eigenfunctions of the curl operator. The force 

free magnetic fields (V x B = OCS) and the Beltrami flows (V x V = 

uV) represent the minimum energy state of a magneto-fluiq. A single 

C-K function represents these configurations of the magnetic and 

velocity fields. The magneto-fluid in the coronal loop is believed 

to be in an approximate state of the force free fields wltQ small 

departures from the current free fields of the photospl1eric 

fluid. Though a single C-K function represents a force free state, 

superposl tion of these functions Is not force free. By 
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representing the fields as the superposition of the C-K functions, 

we can maneuver these departures in a systematic and quantitative 

manner. Thus,in general the steady state may have small departures 

from a force free state and it is possible to account for the 

discrepancies in the observed and the model force free state by the 

addition of more than one such states. This approach differs from 

the usual MHD stabi 11 ty theory In the sense that it does not 

involve small perturbation expansion and therefore is fully 

nonlinear. The main features of the theory consists of using the 

MHD equations for an incompressible fluid. The magnetic and 

velocity fields are expanded in terms of C-K functions. The 

completeness of these functions has been proved by Yoshida and 

Giga(l990). The pressure profile of the plasma is obtained from a 

poisson equation for the mechanical pressure as a function of 

velocity and magnetic fields. 

Further,following Montgomery et al (1978),the toroidal and 

poloidal magn~tic fluxes are introduced as additional invariants. 

This results in several states being accessible for a fixed value 

of the ratio of toroidal and poloidal fluxes and for a fixed value 

of the axial and azimuthal mode numbers (n, m) respectively. The 

lowest mode state (m=n=O) has accounted for the radial temperature 

profi.le of a cool core wi th a hot sheath loop. This has been 

extended to the study of thc statistical distribution of thc 
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velocity and magnetic fields in the state m=n=O by Krishan 

(1985). The results of this method sets the trend for studying the 

nature of magnetic field and velocity field fluctuations, their 

interrelationship, their correlations and the temporal behavior in 

the solar coronal loops. The superposition of the two C-K 

functions brings in the three dimensional spatial variations 

(r,e,z) in the plasma parameters and the state does not 

correspond to a force free state. The study has been restricted to 

two dimensional variations (r, z) of the plasma temperature as 

observational resul ts on the azimuthal variations are not 

available. The r~sul ts indicate that the radial variation of 

pressure corresponding to the larger spatial widths of the hotter 

lines does not exist all along the length of the loop. A twisted 

configuration of plasma is obtained. The pressure or temperature 

is maximum at the top of the loop but only near the axis. On 

smaller spatlal scales,the radial pressure variation exhibits 

oscillations. 

It is evident from the above discussion that there has 

been no attempt made so far to study the three dimensional spatial 

profile of the coronal loops. The constraints have been due to 

difficulties 1n observation and whatever has been known is only in 

a two dimensional plane. Hence, the present study, is an extension 

of the earlier work of Kr1shan (1987). The earlier work has been 
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extended to include the three dimensional variations of pressure 

in coronal loops by representing the ~elocity and magnetic fields 

as the superposition of three C-K functions. This brings in the 

three dimensional spatial variation (r,9,z) in the plasma pressure. 

Though the individual C-K functions represent a force free state 

the super position does not. The three mode representation, 

besides exhibiting a chaotic behavior admits temporal behavior of 

the fields in its most basic form. A truncated three mode 

configuration has been explored by Chen,Shan and Montgomery (1990) 

and their results qualitatively agree wlth the predlctions as well 

as with computation~ obtained using the numerical code (Dahlburg et 

al 1986,1987,1988 and Theobald et al 1989.). 

4.2 DERIVATION OF THE PRESSURE PROFILE 

The cOl'onal loop plasma 1s rcpr'cscnlcd by a cyl1ndr1cal 

column of length 'L' and radius 'R', The equations describing an 

incompressible ideal MHD turbulent plasma in terms of fluid 

velocity V and the magnetic field Bare 

VP 
p = (V x B)xB _ (V.V)V _ 8 V 

p at 
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Vx(V x B) - aB 
at = o 

(4.2) 

where P is the mechanical pressure and p is the mass density. The 

force due to gravity has been neglected. Equations (4.1) and 

(4.2) preserve In time the constraints 

v . V = 0 and (4.3) 

" . B = 0 (4.4) 

Using the identity 

(V.V) V = (V xV) x Y + 1/2 Vy2, 

equation (4.1) reduces to 

-[ 2] __ [(VXpBhB _ (;::;-xY )xV ] -a aVt " Pip + U(2)V v (4.5) 

In the steady state Bv/at = 0 and for a force free 

t ti f the magnetl·c field and for a Beltrami flow i.e., represen a on 0 

for VxB = aB and VxV = aV, we find, 
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v [ Pip + 1/2 V2 } = 0 (4.6) 

Equation (4.6) also holds good where there is equiparti don of 

energy between velocity and magnet1c fields. is i.e. ,when Ivl = 

IBl/p. 

In cylindrical geometry, with a rigid perfectly 

conducting, impenetrable wall at a radius r =R, the boundary 

conditions on B and V at r= R are V (r :::R)=O and B (r= R)=O. A 
r r 

periodic boundary condition with period L in the z direction is 

assumed. Identifying L with the major circumference of a torus 

enables to include the case of a toroidal boundary~with curvature 

neglected.. The z or the axial direction is referred to as the 

II toroidal" direction and the a direction as the "poloidal" 

direction. 

Following the procedure adopted by Montgomery et al(1978), 

the velocity field V and magnetic field B in the loop plasma are 

represented by the superposition of Chandrasekhar-Kendall 

functions. They are eigenfunctions of the curl operator. They are 

the solutions~ of the eigenvalue problem v x a = Aa, where A 

1s real. Individually they are force free fields although the sum 

of two or more of them is not, in general, force free. The 
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complete dynamics can be described by a set of infinite coupled 

nonlinear ordinary differential equations which are of first order 

in time for the expansion coefficients of velocity and magnetic 

fields and it is a formidable task to find solutions to these 

equations. Hence-, the fields are represented by the superposition 

of the three lowest order C-K functions. Another Justification for 

doing so is that these functions represent the largest spatial 

scales and therefore may be the most suitable states for compari~on 

wi th ObSeI"Ved phenomena. 

The elgen functions of the curl operator can be written as: 

a 
(n.m, q) 

v.p x e + fj x [fj x 
(n.m.q) z 

.. ] ... 
el/J I /i\ ( z (n.m.q») (n.rn,q) 

(4.7) 

where .p Is a solution of tbe scalar wave equation 
(n.m.q) 

[V 2 + i\2 ].p = 0 
(n,m,q) (n,m,q) 

(4 .. 8) 

I/J :: J (~ r) exp(lm9 + lk z) 
(n,lII.q) a r-.q n 

{4.8a~ 

where i\ = :t (./ +k2) 1/2 
(n,lIl,q) nmq n 

(4.8b) 
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Here,k = 2nn/L, where n = a,±1.±2, .... 
11 

The integer m takes on the values m = 0.±l,±2, ......• 

r~ > a and is determined as that solution which makes equation 

(4.7) satisfy the boundary conditions at r=R. J (1' r) is the • nlDq 

Bessel function., 

Written 1n detail equation (4.7) is 

~ [ 1m ikn -2 ] 
I/J a = e -- + (n,m,q) r r A Br (n,m,q) (n,III,q) 

;a[- 8 mk 
] n 

I/J + 8r - rA. 
(o,m,q) 

(n,m,q) 

+ ;z [ 
A.2 _ k2 

] (n,III,q) n 
I/J (4.9) 

A (n,m,q) (n, _,q) . 

For the inequallty 2 2 m +n >0, the condition R = a at r= R, requires 
r 

rue "( J' ("( R) + mA. J ("( R) = 0 
n nmq .. nmq (O,III,q) m nmq 

(4.10) 

The eigenvalues for m=n=O are not determined by fhe 

radial boundaFY condition, since R =0 for n=m=O. 
r 

A. is 
(O,O,q) 

determined using the fact that for each Individual(O,O,q) mode the 

ratio of the toroidal magnetic flux VJt to the poloidal flux I/Jp is 
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tpt 
- == 

R I A(O,O,q) I J' ('1 R) ____ 0 OOq 
(4.11) 

L i\(O.O.q) Jo ('10OqR) 

Where tp and tp are defined as follows: 
t p 

Using the vector potential A,for which B=VxA. and it obeys 8A18t= 

Vx(VxA}+V~. Writing the z and e components at r=R and integrating 

over one period(As there is no contribution from the 'Vx(VxA 

term). t/J t and t/Jp have the dimensions of magnetic fluxes. 

r == R, 

I/J • t 

R 
L t 2n 

dz J 0 de Ae == Constant, 

tp = - 2nR \' ~ '1 C J' ('1 1) 
t L (0,0, q) OOq (0, D. q) 0 OOq 

q 

I/J "" 2nL \'~ ;\ C J (r r) 
p L (O,O,q) (O,O,q) (O,O,q) 0 00q 

q 

r == R 

Since both t/J and t/J ai-e constants of the motion, it is 
t p 

natural to determine ;\(O,O,q) from equation (4.11) as: 
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J' (ty R) 
o OOq = 

J (ty R) 
o OOq 

(4 12) 

for all q = 1,2,3 •...... q=l is the eigenmode corresponding to the 

lowest IA(O,O,O) I The choice of equation (4.12) guarantees the 

orthogonallty of all 2 2 pairs of modes. For n +m >0, the modes occur 

in pairs, so that if A is an eigen value -A is also one, 

correspondlng to the opposite sign of m or n. 

A is the norma11zed a such that 
(n,m,q) (n,m,q) 

3 • Jd x A .A = 0 0 0 
(n,m,q) (n' ,m'q') nn' mm' qq' 

(4.13) 

<> = <> = 0 = 1 if, n = n', m = m' and q = q' and =0, if 
~' ~' qq' 

n,m,q are not equal to n' ,m' and q' respectively. 

The normalizing constant that relates A to a is given 
(n,m,q) (n,m,q) 

by A = C a 
(n,m,q) (n,m,q) (n,m,q) 

(4.14 ) 

Using equation (4.13) in (4.14) 
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• a . a d\ = 1 
run nm 

In cylindrical coordinates, 

c2 = l/J a . 
nm run 

• a rdr da dz 
run 

(4.15) 

(4.16) 

The limits of integration are:r = 0 to R, e = 0 to 2n and z =0 to L 

Eigen values of A for n = m not equal to zero are obtained 
om 

from equation (4.10). For the mode n = 1. m = 1, equation (4.10) 

yields: 

2 nR J' ( R) "II J ( R ) = L '111 1 r ll + 1\11 1 '111 
o , or 

(r R) J'(r R) = 
11 1 11 

A R 
11 

= [ 2R2 + ( ± '1 11 

A L 
11 

2n 

2nR 
L 

J (r R) = 
1 11 

(A R) J ('1 R) 
11 1 11 

(4.11) 

where the ratio of the radlus H to the length L of the cylindrical 

loop has been taken to be : R/L = 0.1 
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The value of r R satisfying equation (4.17) is ~ 3.23 
11 

Similarly for the mode n = 1, m = 0, from equation (4.10), 

J' (r R) = 0 = - J (r R) o 10 1 10 

The value of r R satisfying the equation (4.18) Is 3.85 
10 

For the mode n = 0 m = 1, from equation (4.10), 

(4.18) 

A J (r R) = 0 or J (r R) = 0 (4.19) 
01 1 01 1 01 

The value of r R satisfying equation (4.19) 1s 3.85 
01 

The corresponding values of A's are 

A R = 3.29 
11 

A R = 3.85 
10 

and A R = 3.85 
01 

The values of normalisation constants are found to be: 
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c = 2.922 L 
11 

C = 1. 0198238 L 
01 

(4.21) 

C = 0.1278097 L 
10 

The magnetic field B and velocity field V can be expanded in terms 

C-K functions as: 

B = L ~ A A (4.22) 
(n,m,q) (n,m,q) (n,m,q) 

nmq 

V = L 1) A A (4.23) 
(n,m,q) (n,m,q) (n,m,q) 

nmq 

where1)'s and ~'s are the expansion coefficients and are functions 

of time. 

Since, B and V are real, by symmetry condition the expansion 

coefficients ~ (n,m,q) 
and 

~ = ~ (n,m,q) (-n ,-m,-q) 
so that 

1) 
(n,m.q) 

must 

~ and 
(O,O,q) 

be such that 

1) are real 
(O,O,q) 

for all values of q. In the truncated triple mode representation: 

V = A 1) (t)A + A 1) (t)A + A l) (t)A 
aa a bb b cc c 

(4.24) 

B =Al;(t)A+Al;(t)A +Al;(t)A 
Ill) I) bb b cc c 

(4.25) 

l)'s and ~'s are in general complex. 
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The functions a sat1sfy 'iJ x a = ;\ a . 
run nm nm nm 

'( have been 
run 

determined from the boundary conditions for a 

perfectly conducting and rigid boundary since the observations do 

show very well defined loop structures aligned with the magnetic 

field across which there is little or no transport. Thus the 

radial component of the velocity and the magnetic field vanish at 

the surface r = R. 

In this chapter the study is confined to the steady state 

solul1on to the pressure For the steady state a/at [l), t;;J =0, 

and ~ =~. From equation (4.6), 

which implies 

2 
Pip + 112V = constant (4.26) 

At the origin where r = 0 and z = O,let the pressure be PO. Then, 

'2 . the constant of integration comes out as = P Ip +1/aV, where V 
000 

is the veloclty at the origin. lIence, equation 4.6 reduces to 

P Po -=--
P P 

+ _1_ V2 
2 0 

_1_ v2 
2 
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In this configuration the total energy E of the loop 

plasma is given by 

E = ~ A2 ( 2+ C 2 ) 
L 1 1)1 <:'1 (4.28) 
l=a,b,c 

Though there is some estimate of the total energy of a 

typical plasma loop, there is no obvious way of fixing the relative 

magnitudes of the three modes. Two considerations which are 

generally used to fix the relative strengths of the three modes 

whenever such three mode interactions are involved are : 

(l)Pump approximation,in which one of the three modes is considered 

as the strongest as compared to the other two. 

(2) The mode strength is assumed to vary in proportion to their 

spatial scales. Equation (4.27) will be discussed in the light of 

these two considerations. 

4.3 PUMP APPROXIMATION: 

The spatial variation of pressure as already mentioned 

earlier Is discussed for a cylindrical column of plasma for which 

the RlL ratio is assumed to be 0.1. and the ratio of the toroidal 
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to poloidal flux I/J / I/J 
l P 

as 0.1. Two triads (a be) and (a be) 
. 111 222 

are chosen such that they represent the largest possible spatial 

scales, as well as sal.lsl'y lhe cond1tion a = b + c. (as w 111 

be evident in time dependent case discussed in Chapter 5). The two 

triads chosen are, 

a = 0, 1), b = (1, 0) and c = ( 0, 1) 
1 1 1 

a = (0,0), b = (1,1) and c 2 = (-1,-1) 
2 2 

The corresponding, values of r'a and A'S are obtained from 

equation (4.10) as explained earlier. The values are 

r R = 3. 23 , r R = 3. 85 , r R = 3. 85 
abe 

A R = 3.29 , A R = 3.9, A R = 3.85 
abc 

for the triads a ,b ,c and, 
111 

r R = 1.44 , r R = 3.23 , r R = 3.23 
abc 

A R = 1.44 , A R = 3.29 , A R = 3.29 
abc 

for the triads a ,b ,c 
2 2 2. 
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CASE 1 PHESSUHE STnUCTUHE Pl ron rHE THIAD al = (1,1), bl = (1,0), 

and c 1 = (0, 1 ): 

4.3.1 RADIAL VARIATION: 

The mode 'a' is assumed to be the dominant or the 

strongest mode and it is called the pump. Since the conservation 

condition requires a = b+c the pump is assumed to share its energy 

with the other two modes. Therefore, let 

and >t2 .,,2 > >..2 .,,2 (4.29) 
a ace 

For the triads (a ,b ,e ) i.e. for modes (1,1), (1,0) and (0,1) 
I I I 

< = 0.8435 and < = 0.8659 

We choose 
., 

11/ I = 1 0 ilnd 
al 

6 8 x 10 , so lhat the 

pump approximation is valid. The expression on the RHS of 

equallon(4.27) has been averaged over a full cycle of O. Figure 4.1 

is a plot of pressure (P -P ) as a function of ~ r for different 
lOa 
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values of axial dislance z' [z'=(z/L)xl0]. P is the value of o 

pressure at the origin. The plot indicates that the pressure or 

temperature at any height increases along the radius towards the 

surface. The radial variation of pressure is the maximum at the 

foot points of the loop and it is minimum at the apex. This is in 

conformity with the result of Levine and Withbroe(1977), who have 

established that the coronal loops undergoing dynamic changes 

are characterized by a temperature structure in which there is a 

cool core relative to the substantially hot surrounding sheath. 

4.3.2· AXIAL VARIATION OF PRESSURE: 

Figure 4.2 is a plot of pressure (P -P ) against the axial 
1 0 

distance z' for various values of (r r). The plot indicates that 
a 

the axial variation,of the pressure is maximum at the axis and 

minimum a t the surface. The maximum value of the pressure 1s 

attained near the apex for all values of (~r).This is in agreement 
a 

with the results of Rosner et al. (1978). 

4.3.3 RADIAL VARIATION OF PRESSURE AT DIFFERENT AZIMUTHAL ANGLES: 

Figure 4.3 is the plot of radial variation of pressure for 
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differenl azimuthal angles 0 = O,n/4,n/Z, and n when the pressure is 

averaged over z. The pressure is found to increase uniformly for 

all values of '1 r:S 2. O. 
a 

The dependence of the pressure on the 

azimuthal angle is significant for r r > 2. 
a 

4.3.4 AZIMUTIIAL VARIATION OF PRESSURE AT DIFFERENT RADIAL DISTANCES: 

Figure 4.4 is a plot of the azimuthal variation of the 

pressure for different values of 1 r > 2.0.The plot indicates that 
a 

the pressure exhibi~s an oscillatory behavior which Is predominant 

near the surface. 

4 .. 3.5 CONTOUR AND DENSITY PLOT: 

Figure 4.5 is a contour plot of pressure as a function of 

the radial distance 1 r and azimuthal distance z· when the pressure 
a 

is averaged over e .. 

Flgure 4.6a and 4.6b are the dens 1 ty plots of the 

pressure as a function of radial distance r r and azimuthal 
a 

dislance z' when 0 Is aver'aged over a full cycle. In the plot the 

darker shade squares correspond to minimum pressure regions. while 
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the lighter shade regions correspond to maximum pressure. 

Figure 4.6a corresponds to the case of 11 >11 • It 
c 1 bl 

is further 

observed that the shades become llghter on nearing the apex 

indicating that the region of maximum, pressure exists there. 

Figure 4.6b is the density plot of the pressure as a 

function of r rand z' when 11 > 11 • 
a bl cl 

As compared with the 

previous case of 1)cl > ~blthe region of maximum pressure is found 

to have moved up. The density plot indicates that the region of 

maximum pressure ne~d not necessarily be at the apex. 

CASE 2 PRESSURE STRUCTURE P2 FOR THE TRIADS a2 = (O,O),bz = (1,1), 

and c = (-1,-1): 
2 

Consider the pair of triads a2 5: (0,0), b2 5: (1,1), 

C - (-l,-l),which represent the largest spatial scale and satisfy 
2 

the condl Lton a = b + C • The values ITla21 = 2xl07 , 11Ibzl == 8xl06 == 

I~C21 obtained from the inequality (4.29) satisfy the condition 

for pump approxlmatlon 
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4.4.1 RADIAL VARIATION: 

Figure 4.7a is the plot of radial variation of pressure P 
2 

for e = n/4 at different axial positions. Unlike the case of P1 

(Figure 4.1 )where the maximum pressure was noticed at the foot 

points, in this case the maximum pressure as well as the maximum 

variation in pressure both are at z=L/4. 

Figure 4.7b is the plot of radial variation of pressure P 
2 

for e = 3n/4and for different axial distances z= 0, L/4. LIZ and L. 

The maximum pressure as well as the maximum variation in pressure 

is found to be at the foot points, in sharp contrast to the case for 

8 = n/4.where it was found to be at one fourth the height of the 

cylinder i.e.at z = L/4 

4.4.2 AXIAL VARIATION: 

Figure 4.8 is a plot of the axial variation of pressure 

P for the azimuthal angle e=n/4 and for different radial distances 
2 

'l r = 0, 0.72, and 1. 44 The pressure shows an oscillatory 
a 

behavior at the axis of the loop more predominantly than near the 

surface. 
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4.11.3 AZIMUTHAL VAlUATION: 

Figure 4.9 is the azimuthal variation of the pressure Pa 

at the apex of the loop for different radial distances from the 

axis. The behavior of pressure is oscillatory and the maximum value 

is attained at the boundary. 

4.5 MODE STRENGTIIS VARYING IN PROPORTION TO THEIR SPATIAL SCALES: 

CASE 1: PRESSURE STRUCTURE P FOR THE TRIADS a = (1,1), b = (1,0) 
1 1 1 

and c = (0,1): 
1 

This is the second of the physical considerations in which 

the mode strengths are assumed to vary in proportion to their 

spatial scales. It is assumed that the mode with the largest 

spatial scale may be the strongest. For the set of triads chosen a 

=(l,l),b =(1,0) the spatlal scale in the z' direction is same and 

is smaller than that of the mode c = (0,1). In this case 'a' and 

'b' are assumed Lo be of equal sLrength and less than the strength 

of 'c'. So that 

and 

9S 



45.00~==~==~--~--'---~--.---~---r--~---, 

0 
0 

21.00 
....-
X 

;---., 
0 

Q.. 

I 
C'I 

0... 
"-'" 

~ -27.00 
::l 
(I) 
(I) 
Q) 
L 

0... -51.00 

0.62 1.24 1.86 2.48 

Azimuthal Angle 8 

Fig.4.9. Azimuthal variation of the pressure P2 

for different radial distances. 

96 

3.10 



Choose I T} I 
a 

8.4 x 106 and IT} I 
c 

7 
= 1.6 x 10 , 

so that the conditions prescribed in equation (4.29) are satisfied. 

4.5.1 RADIAL VARIATION: 

Figure 4.10 is the radial variation of pressure for 

different axial positions. The pressure and hence the temperature 

at any height increases along the radius towards the surface. The 

radial variation of. pressure is maximum at the foo.t points of the 

loop and is minimum at the apex, for z=O and L. This result is 

similar to the pump approximation case for the same 

triads, (Ref.Figure4.1). However, for other values of Z',the 

pressure tends to decrease initially and after a certain radial 

distance, increases monotonically. This is contrary to the 

pressure profile indicated in Figure4.1, where there is a 

monotonic increase of pressure for all values of Z'. 

4.5.2 AXIAL AND AZIMUTHAL VARIATION: 

Figure 4.11 is a plot of the axial variation of pressure. 

with axial distances at different radial positlons,and 4.12 1s the 
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radial variation of pressure for different azimuthal angles. 

The results in both the cases are more or less comparable to that 

obtained In the pump approximation case (Figure 4.2 and 4.3). 

CASE 2: PRESSURE STRUCTURE P FOR THE TRIADS a = (0 to) , b = (1, 1 ) 
222 

and c = (-1.-1): 
2 

In this case the mode a = (0,0) corresponds to the largest 

spatial scale and therefore if this is assumed to be stronger than 

the other two modes. This leads to 

arId ,21/2 > ,,21,2 I 1 1 Id Ll 1 l II i ti 1\ 1\ WI Clare en ca 0 Ie pump approx ma on 
a ace 

case for the triads (a, b, c). The pressure profile is therefore 

similar to the one in Figures 4.7,4.8 and 4.9. 

4.6 SUMMARY: 

The rcprcsclllaLion of veloclLy and magnetic fields by a 

three mode Chandrasekhar-Kendall functions, brings out the three 

dimcnsional features of Lhe prcssur'e proflle. The choice of the 

triads representing the variations of velocity and magnetic fields 
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on the largest spatial scales permitted by the system, provides a 

fairly realistic description of the loop plasma. Though the 

pressure slruclure is a slrong function of lhe relative amplitudes 

of the modes, the trends, like an increase of pressure towards the 

surface and the existence of maximum somewhere along the length of 

the loop emerge as the general features. The superposition of C-K 

functions has produced results which are in general agreement with 

the observed cooi core and hot sheath features of the coronal 

loops. However the discussion 1n this chapter were purely 

restricted to the spatial variation of pressure. An attempt at the 

study of temporal evolulion hus been made and the same is discussed 

in the next chapter. 
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5 TEMPORAL EVOLUTION OF PRESSURE IN SOLAR CORONAL LOOPS 

5.1 INTRODUCTION: 

As already mentioned coronal loops are dominant structures 

in the hIgner levels of the solar atmosphere and they exhibit 

stable and well configured geometry inspi te of the magnetic and 

velocity field fluctuations in plasma. Such a steady state ~s the 

resul t of various manifestations of the balance of inertial and 

magnetic forces. The structure of the velocity and magnetic fields 

plays a pivotal role in determining the hea.ting. stabUi ty and 

evolution of the plasma in coronal loops (Athay and Klimchuk.1987; 

Prlest,19B2; ICrlshan.19S3 and 1985), In the previous chapter the 

steady state structure of the pressure of the loop plasma 'Was 

delineated using Chandrasekhar-Kendall representation of the 

velocity and magnetic fields. This was done under the steady state 

assumption and therefore no information on the temporal behav~or of 

the fields and of the pressure could be derived. 

In this chapter the study is extended to include time 
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dependence of veloci ty, magnetic field and pressure and thereby 

study their evolution. As before, the 'dynamics of the velocity and 

magnetic fields are s ludied uslng . the MilD equations and 

Chandrasekhar-Kendall representation. The complete dynamics is 

described by a set of lnrini te coupled and nonlinear ordinary 

differential equations which are of the first order in time for the 

expansion coefficients of the velocity and magnetic field. Slnce 

the evolution equations are coupled and nonlinear .the dependence 

of their solution on the initial condltions is expected to reveal 

chaotic behavior. Towards this end, an investigation is done on 

the existence of chaos in the evolution of pressure in coronal 

loops by studying the power spectrum of the data generated by the 

soluLlon of the MilO equations and' by evaluating the invariant 

dimension especially the second order correlation dimension of the 

attractor D of the system. 
2 

The representation of the fields by the superposition of 

the three lowest order C-K functions reduces the system to a set of. 

six equatlons. three for veloci ty and three for magnetic field. 

Analytical solutions can be arrived at in two simplified cases: 

(l)when lhe system is disturbed linearly from its slate of 

equilibrium, and, 

(2) when one of the lhree modes has an amplitude much larger than 

the other two, referred lo as the pump approximation. 
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In the first case,it is found that the disturbed fields undergo 

sinusoidal oscillations with a period which 1s a function of the 

equillbr IUm ampilludcs of the lhree modes. Thls may be one of th~ 

ways of explaining the quasi-periodic oscillations observed in the 

X-ray. microwave and EUV emissions from the coronal loops 

(Aschwanden. 1987;Svestka,1994 and references therein). 

In the second case, for special values of the initial 

ampli tudes, the system exhibi ts sinusoidal oscillations. However 

under general initial conditions, the velocity and magnetic fields 

go through periods, of growth, reversal, decay and saturation in an 

apparently random manner. 

In the most general case, with arbitrary initial 

conditions, the set of six equations can be solved numerically. 

The velocity and magnetic fields show a rather complex temporal 

structure which can be interpreted on the basis of chaotic 

phenomena. The evidence of chaos is established by evaluating the 

invariant-dimension, especially the second order correlation 

dimension of the attractor D of the system. A fractal value forD 
2 2 

IndIcates lhe exlslence of delerministic chaos. In evaluating the 

invariant dimension the following informations are obtained: 

(a)Is there an allraclor and if lhere exisls one, is it regular or 

strange? 
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(b)Is there only a single allraclor or are there more than one? 

(c)What is the embedding dimension so that in describing non 

linear process characterised by the set of given equations, whal 

should be the dimensions of the phase space to describe the 

dynamics of the system. 

The algorithm proposed by Grassberger and Proccacia (1983) has been 

adopted in this chapter, 

5.2. DERIVATION OF THE PRESSURE PROFILE: 

As mentioned in the previous chapter the coronal loop 

plasma is represented by a cylindrical column of length 'L' and 

radius cR', lbe equations describing an incompressible ideal MHO 

turbulent plasma in terms of fluid velocity V and the magnetic 

field B are: (This section upto equation 5.21 has already been 

discussed in chapter 4. However,for easy reference the 

being repeated here), 

rJ P 
P 

= (rJ x B)xB _ (V,rJ)V 
p 

a V 
at 
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same is 

(5.1) 



- aB 
~x(V x B) - at = 0 (5.2) 

where P is the mechanical pressure and p is the mass density. The 

force due to gravity has been neglected. Equations (5.1) and 

(5.2) preserve in time the constraints 

~ . V = 0 (5.3) 

~ . B = 0 and (5.4) 

P = nKT (5.5) 

n is the number density of particles , K is the Boltzmann's 

constant and T is the temperature. The equations (5.1) to (5.5) 

form closed set of equations in B.V,p and T. 

Using the identity 

(V.~) V 
- - 2 

= ( ~ xV) x V + 1 12 ~v .. 

equation (5.1) reduces to 
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av 
at (5.6) 

In the steady state aVI8t = 0 and for a force free representatIon 

of the magnetic field and a Beltrami flow,l.e. ,for VxB=ocB and 

VxV=aV , we find 

v [ PIp + 1/2 V2 ] = 0 (5.7) 

Equation (5.7) also holds good where there is an 

equipartition of energy between velocity and magnetic fields, i.e. , 

Ivl = IBllp. 

In cylindrical geometry, with a rigid perfectly 

conducting, impenetrable wall at a radius r = R, the boundary 

conditions on B and V at r = R are V (r=R)=O and B (r=R)=O. A 
r r 

periodic boundary condition with a period L in the z direction is 

assumed. Identifying L wi th the major circumference of a torus 

enables to include the case of a toroidal boundary with the 

curvature neglected. The z or the axial direction will be referred 

as the "toroidal" direction and the e direction as the "poloidal" 

direction. 
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Following the procedure adopted by Montgomery et aq 1978). 

the velocity field V and magnetic field B in the loop plasma are 

represented by the superposition of Chandrasekhar-K(~ndall 

functions. They are eigenfunctions of the curl operator. They are 

the solutions of the eigenvalue problem V x a = Aa, w~ere A 

is real Individually they are force free fields although the sum 

of two or more of them is not,in general,force free. The complete 

dynamics can be described by a set of infinite coupled nonlinear 

ordinary differential equations which are of first order in time 

for the expansion coefficients of velocity and magnetic fields and 

it is a formidable task to find solutions to these equations. 

Hence, the fields are represented by the superposition of the three 

lowest order C-K functions. Another Justification for doing so is 

that these functions represent the largest spatial scales and 

therefore may be the most suitable states for comparison with 

observed phenomena. 

The eigen functions of the curl operator can be written as: 

a 
(n,III, q) = 'i] '" x e + (n,m,q) :z: 

v x [; I/J 1] I A 
2 (n,m,q) (n,m,q) 

(5.8) 

where "'< ) is a solution of the scalar wave equation n,m,q 
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[Q2 + A2 l~ = 0 
(n,m,q) (n,m,q) 

~ = J (7 r) exp(im9 + ik z) 
(n,m, q) m nmq n 

Where 

~ ± (7 
2 +k2 )112 = 

(n,m, q) nmq n 

Here,k = 2nn/L, where n = O,±1.±2, .... 
n 

(5.9) 

(S.9a) 

(5.9b) 

The integer m takes,on the values m = O,±1,±2, ..... , 

7 > 0 and is determined as that solution which makes equation 
runq 

(5. a) satisfy the boundary condi tions at r=R. J (7 r) is the 
m nmq 

Bessel function. written in detail equation (5.8) 1s: 

[ 1m ik 

a~ ) e -- + n 
~ a = (n,m, q) r r ~ (n,m.q) 

(n, m, q) 

+ ;9(- 8 
mk 

) ~(n,m,q) n 

ar rA 
(n,m,q) 

+ ;z ( 
A2 _ k2 

) "'(n,m,q) 

(n,m,q) n (5.10) 
~ 

(n,m,q) 

For the inequality 2 2 m +n >0, the condi tion R = ° at r= R, requires r 
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Rk '1 J' ('1 R) + mA J ('( R) = 0 
n nmq m nmq (n,m,q) m nmq 

(5.11) 

The eigenvalues for m = n = 0 are not determined by the 

radial boundary condition, since R = 
r 

o for n = m = O. A 
(O,O,q) 

Is 

determined using the fact that for each individual (O,O,q) mode the 

ratio of the toroidal magnetic flux ~ to the poloidal flux ~ Is 
t p 

= 
R Ii\ 1 J'(l' R) 

(0,0, q) a OOq (5.12) 
L i\ J ('1 R) 

(O,O,ql OOq 

Since both I/J and I{l are constants of the motion, it Is 
t p 

natural to determine i\ from the equation (5.12) as : 
(O,O,q) 

L A I{l 
(0,0, q) t 

R I\o,o,q) I I{lp 
(5.13) 

for all q = 1,2,3,...... . q=l is the eigenmode corresponding to 

the lowest Ii\ I The choice of equation (5.13) guarantees the 
(0,0,0) 

orthogonality of all pairs of modes 2 2 For n +m >0, the modes occur 

in palrs, so that if i\ 15 an eigen value 

corresponding to the opposite sign of m or n. 

A 
(n,m,q) 

15 the normalized a 
(n,m,q) 
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-x is also one, 



3 _. -
Sd x A • A , " = (5 (5 (5 

(n,m, q) (n,m,q) nn' nun' qq' 
(5.14) 

o = 0 = 0 = l,1f n = n' ,m = m' and q = q', and = 0 If 
nn' mm' qq' 

n,m and q are not equal to n' ,m' and q'respectively. 

The normalizing constant that 

is given by 

A = C a 
(n,DI,q) (n,m, q) (n,m,q) 

Using equation (5.14) in (5.15) 

• a .a 
nm nm 

In cylindrical coordinates 

C2 = liS a .a· rdr de dz 
nm nm run 

relates to 

(5.15) 

(5.16) 

(5.17) 

The limits of integration are :r = 0 to R, 9 = 0 to 2n and 

z=o toL. 

The values of '" R, 'V R 
fI 11 Q 10 
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and r Rare 3.228998 .3.85 
01 



and 3.8S. respectively. 

And, that of A R, A R and A Rare 3.28956 3.85 and 
11 10 01 

3.85 respectively (Refer Chapter 4). 

Using these values of A'S and'r's the normalisation 

constants are found to be : 

c = 2.922 L 
11 

C = 1.0198238 L 
01 

C = 0.1278097 L 
10 

The magnetic field B and the velocity field V can be expanded in 

terms of the C-K function as: 

B=L ~ A A 
(n.m,q) (n,m,q) (n,m,ql 

nmq 

V=L T) i\ A 
(n,m,q) (n,m,q) (n,m,q) 

nmq 

(5.18) 

(5.19) 

where II'S and ~. s arc the expansion coefficients and are functions 

of time. Since B and V are real, by symmetry condi lion the 

expansion coefficients ~ (n.m,q) 
and 
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t; = t; so tha t t; and l') are rea I 
(n,m,q) (-n.-m,-q) <O,D,q) (O,D,q) 

for all values of q. In the truncated triple mode system 

v = A l') (t)A + A l') (t)A + A ~ (t)A 
a a a b b bee c 

(5.20) 

B = A ~ (t)A + A ~ (t)A + A t; (t)A 
aa a bb b cc c 

(5.21) 

~'s and t;'s are in general complex. 

The functions a satisfy 'fJ x a = A a . 
run run nm nm 

r have been determined from the boundary conditions for a 
nm 

perfectly conducting and rigid boundary since the observations do 

show very well defined loop structures aligned with the magnetic 

field across which there is little or no transport. Thus the 

radial component of the velocity and the magnetic field vanish at 

the surface r = R. 

The dynamics can be described by taking the inner products 

• of curl of equations of (5.1) and (5.2) with A and integrating 
om 

over the volume. The resul ting six complex, coupled, non-linear 

ordinary differential equations are: 
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S.2.t.DERIVATION OF THE DYNAMICAL EQUATIONS: 

BV Equation (5.1) is, Bt + (V.V)V = -VP + (VxB)xB 

Taking curl on both sides and rewriting, 

av Vx at =-Vx (V.V)V - VxVP +Vx (VxB)xB (S.la) 

av a [/\ Tl A + /\ TJ Ab +/\TlAl Vx at = Vx at a a a b b c c c 

al/ 
,\2 

a1l an 
,\2 ~ A + b ,\2 _c A [Using VxA M] = at Ab = 

a at a b e at c 

• Dot multiply by A and integrate over the volume. Taking 
a 

fA-. (A x A )d3 r = I and using VxA = /\ A, 
b c 

f[ " av) • d 3 r 
vX at . A a 

(VxB)xB = [VX (1\ ~ A + A ~ A + 1\ ~ A ) 1 X 
aaa bbb cec 

(/\ ~ A + 1\ ~ A + A ~ A ) 
aaa bbb ccc 
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• Dot multiplying by A and integrating over the volume 

• 3 J[ ('ilxB) xB]. A d r = A A A [h -A] I f; t; 
a abc be be 

(S.le) 

Using, (V.'il)V = -v x ('ilxV) + 1/2'ilV2 

Taking the curl on both the sides 'ilx (V.V)V = V x(-V x (VxV» 

v x (Vx (VxV) =V x (h T/ A + i\ 1) Ab + A 1) A ) x 
aaa bb eee 

(!iJx i\ .,., A + h T/ Ab + i\ 1) A ) 
aaa bb eee 

• Dot multiplying with A and integrating over the volume. 
a 

• 3 J[VX (VxV)].A d r = i\ A h T/ 1) I(A - i\) 
a abebe c b 

(5.1d) 
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Combining equations (S.lb),(S.lc) and (S.ld) and using, 

VxVP = 0 

8l} 
A,2 -.! = A A A [A -A J I I; I; -+ A A A TIl} I(A - A ) 

a 8t abc b e b cab c b c c b 

A A 
= ~ .c [A -A J I [I; ~ - T) 71 ] 

I\. be be be 
(5.1~) 

Equa tion (S. le) is same as (5.22). Similarly other equations 

(5.23) and (5.24) can be derived. 

Equation (5.2) rewriten is, 8 B 
8 t 

= Q x (V x B) 

v x (V x B) 

[A ~ A + A ~ A + i\ I; A ] 
a~a bbb cce 

= V X[[AaAb~~~b(AaXAb) - i\~AbT)b~a(AaXAb)]-+ 
[A A ~ ~ (A xA ) - A A T) ~ (A xA )] 

~ cae 4 cae c a a c 

[ A i\ ~ ~ (A xA ) - A A n ~ (A xA )]] 
b C b c b C bee b b C 
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* Dot multiply by A 
4 

and integrate over the volume. 

fA·. (A x A )d3 r = I and since, VxA = A A 
b e 

J['iJ'x (VxB»)'A*d3 r -;\A [1)(;: -T}t:] AI 
a - b C b .... c c"'b a 

• Dot multiplying the LHS by A and integrating 

r 8B * 3 
J at·Aa d r 

a = - A E; at a a 

a 

combining equations (5.2a) and (S.2b) 

Taking 

(5.2a) 

(S.2b) 

(S.2e) 

Equation (S.2e) is the same as equation (5.21). Similarly other 

equations (5.28) and (5.29) can be derived. The p in the dynamical 

equa tions can be absorbed by using ~ = ..Jp/~' . 

d1) A A 
dta - ~ C (A - A ) I [1) 1) - ~ ~ Ip] 

f\ e b be be 
(5.22) 

a 
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• 
~ ~ /pJ 

c a 
(5.23) 

(5.24) 

d~ 

dta - AbAc 1 [~b~C - ~C~b] (5.25) 

(5.26) 

(5.27) 

where I = fA- . (A x A ) d3r 
abc 

and,the (n,m) values of the modes (a,b,c) satisfy the condition 

n = n + nand m = m + m. Equation (5.6) with the representation 
abc abc 

of V and B as given by cquution(5.20) and (5.21) can be manipulated 

to yield: 
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v (~ +-i- L L~lhJ~l~J A1Aj) 
1 j 

1,J=a,b,c 

= \' A ~ [~ - A] ( ~l ~ j - Tl ~ ) (A xA ) 
L. 1 J 1 j P 1 J 1 j 

l=a,b,c 
j=b,c,a 

_ \' aT'll A A 
L. at 1 1 

(5.28) 

The expansion coefficlents Tlland ~i can be solved 

numerically from the dynamical equations (5.22) to (5.27) which 

when substi tuted in equation (5.28)dEltermines the pressure as a 

function of space and time. 

5.3 DYNAMICAL ASPECTS: 

The temporal evolution of the pressure for a 

cylindrical column of plasma of length "L" and radius "R" and for a 

toroidal to poloidal magnetic flux,~ I~ ratio of 1/10 Is discussed 
t p 

1n this secllon. As menlloncd earlier .lr1ads a, b. c are chosen to 

represent the largest possible spatial scales and also satisfy the 
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condition a = b+c; a = 0,1), b = (1,0), c = (0,1). 

The values of 7 and A found from the boundary conditions as 
1 1 

mentioned earlier are: 

r R = 3.23, r R = 3.85, '¥ R = 3.85, and 
abc 

A R = 3.29, A R = 3.90, ~ R = 3.85 
abc 

The total energy of a loop plasma in a given configuration (a,b,c) 

is given by : 

E = L A~ (~~+.~~) 
l=o,b,c 

There 1s no obvious way of fixing the relatIve magnitudes 

of the three modes even though we have some estimates of the total 

energy of a typical loop. There are two physical situations under 

which equations (5.22) to (5.27) can be solved analytically. 

(l)The linear case, and, (2)The pump approximation. 

5.4.THE LINEAR CASE: 

In this case the time evolution of the small deviations of 
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the velocity and magnetic fields from their equilibrium values. 

i. e. , when, 

supposed. From the equation of state ~ = ~ . o 0 

Assuming both ~ (t) and ~ (t) to have time dependence through 
1 1 

we can obtain a dispersion relation whose solution is: 

(5.29) 

St e , 

Thus, the system exhibits marginal stability since the 

perturbed quantities have sinusoidal oscillations with a period 

which depends upon lhe equilibrIum values of the fields. 

5.4.1 TEMPORAL EVOLUTION OF PRESSURE: 

Figure 5.1 is a plot of the temporal evolution of pressure 

[P(t)] at an axial point of the coronal loop when the initial 
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values of veloci ty and magnetic field coefficients II and ~ are 
1 1 

very nearly equal. The values of n and ~ chosen are : 
I 1 

Inal = 1. 0, I lib 1 = 2.0, 

I~al = 1.1, It;b l = 2.1, 

111 I = 3.0 
c 

I~cl = 3.1 

Figure 5.2 is a plot of power spectrum corresponding to 

Figure 5.1. The plot is a .discrete spectrum wh1ch clearly indicates 

that the pressure prof lle has a finite number of frequencies when 

the magnitude of the velocity and magnetic fields are approximately 

equal in1 tially. Thi!? marginal stabil tty exists only for the time 

scales for which the linearlsation is valid. The skylab, UV and 

microwave observations do indicate that the loops are in a state of 

quasi periodic pulsations. (Aschwanden 1987) 

5.S PUMP APPROXIMATION: 

In the pump approximation one of the three modes is taken 

to be the strongest. For example,here,since the conservation 

condition requires a = b + c, we can take 'a'to be the dominant 

mode and call it the pump which shares its energy with the other 

two modes. The time evolution of the two weaker modes does not 

123 



110.00 ,..---....---r---.,....---r----.--.,.---...,---.,....---r----, 

.,-... -"---'" 
96.00 

0... 82.00 
w 
a::: 
:::J 
(/) 

~ 68.00 
a::: 
0... 

54.00 

40.00~--~--~~-W~~~~~----~--~--~----~~ 
2.00 3.00 4.00 5.00 0.00 1.00 

TIME (t) 

Fig.S.t. Temporal evolution of pressure P(t) at an 

axial point of the coronal loop when the initial 

values of the velocity and magnetic field coeffl

cinets are very nearly equal. 

124 



,,--.., 
::3 

'-.../ 
if) 

75.00r---~--'---~---r--~---.----~--~--~--~ 

60.00 

45.00 

30.00 

15.00 

o.oo~~J_,~--~--~--~----~--~--~--~--~~~=-~ 
0.00 1.30 2.60 3.90 5.20 

Frequency (w) 
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T~ -11 T -lwt 12 T So e P(t)dt corresponding to the time var-

iation of pressure shown in Fig.5.1. 
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produce any significant change in the pump (stronger) mode and 

hence, we can neglect all time variations .in(ija'~a) and they remain 

constant. The system of six equations (5.22) to (5.27) therefore 

reduces to four (Equations (5.22) and (5.25) are automatically 

satisfied under the pump approximation since both sides of the 

equations are vanishingly small). With the additional assumption 

ij =~ and takes the following simplified form which can be solved a ij. 

analytically. 

(5.30) 

dij A A 
cab • • • dt = -,.- (Ab - A) I [ 1) - ~ ] 11 

1\ .. b· b II. 
(5.31) 

c 

d~b ••• 
dt - A A I (1) - ~ ] ij 

ace c II. 
(5.32) 

d~ ••• 
dt

C - A A I [t; - 11 hl 
a b b b II. 

(5.33) 

Derivative of (5.30) w.r.t t keeping 1}a as constant, we get 

dijb2 A A • 
- c a (A - A ) I 

dt2 - \ a C 

• 
[ 

d1)c 

1)a dt 

• 
d~c ] 

dt 

126 



Complex conjugate of equations (5.31) and (5.33) gives 

(5.34) 

• 
d~ • 
~ = A A I [C - .... ]-ro 
d tab "'b "b" a 

(5.35) 

The difference between equation (5.34) and (5.35), gives 

• • 
d~ d~ A A 

c c abC A'+A)I *[ t:] dt - dt - -A- ,i\b - a c ~a l)b - "'b (5.36) 
c 

Time derivative of equation 5.30 along with equation (5.36) can be 

written as 

(5.37) 

= A2\I121n \2(A - A )(A - A - A )(1) - ~ ) 
a a b a abc c c 

(5.38) 
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Equations (5.37) and (5.38) can be written as 

= P 1J + P2 1 b 

= P'1) + P' 
1 c 2 

where, 

P' = P 
1 1 

I = 1) -
b bO 

(A - A ) 
a c 

A 
b 
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I =.,., + 
c cO 

(:.\ -:.\) 
b a 

i\ ~co 
c 

Integrating equations (5.39) and (5.40), we get 

A ~ + B -~ P2 
~b = e 1 e 1 - ~ 

1 

P' 
2 

-P-
1 

(5.41) 

(5.42) 

where A,B,Q and R are to be determined by the initial conditions. 

Equations (5.41) and (5.42) show that all the four field 

coefficients ~, .,." ~ and ~ exhibit growing and decaying modes. 
b c b c 

This is to be expected since there is an infinite capacity pump 

mode n , ~a in the system at the expense of which.,., , ~ • .,., and ~ 
a b bee 

are grow lng. Thus, 1n the case of pump approximation analytical 

solutions to the system can be found. 

5.6. TIlE NONLINEAH CASE: 

Equations (5.22) to (5.27) are a set of six ordinary first 
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order differential equations which are highly nonlinear. Also the 

velocity field coefficient (Tj land magnetic field coefficient (~ ) 
1 I 

components are both coupled which adds to the inherent nonlinearity 

of the equat I nns of motion, characteristic of MHD equaUons. These 

equations in principle can be considered as equivalent Lo one 

ordinary sixth order differential equation which will manifest all 

the nonlinearlties and therefore may lead to chaotic dynamics. To 

investiga te this aspect we first determine the power spectrum of 

the system. A broad band power spectrum (Fig 5.4) is a sure 

ind~cation of the existence of chaos in the dynamlcs. The irregular 

and unpredictable time evolution of many non linear systems has 

been referred to as ·Chaos·. . It occurs in mechanical oscilltors 

such as a pendulum or vibrating objects in rotating or hot fluids, 

in Laser cavities and in some chemical reactions. Its central 

characteristic is that the system does not repeat its past behavior 

(even approximately). Inspite of the lack of regulari ty chaotic 

dynamical systems follow deterministic equations such as those 

determined from Newton's second law. 

The unique character of chaotic dynamics can be understood 

by imagining a system to be started twice, but from s1 igf1t.1y 

different initial condition. This small init1.al difference can be 

thought of as resulting from measurement error. For non chaotic 

system this uncertainty leads only to an error in prediction that 
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grows linearly wi th time. For chaotic systems, the error grows 

exponentially in time. so that the state of the system is 

essentially unknown after a very short time. Thi s phenomenon, 

which occurs only when the governing equations are nonlinear, is 

known as sensitivity to .initial condJ.tions. According to Henri 

Poincare, "i t may happen that small differences 1n the initial 

conditions produce very great ones in the final phenomena. A small 

error in the former will produce an enormous error In the latter: 

prcdlcllon becomes imposslble. If prediction becomes impossible. it 

is evident that a chaotic system can resemble a stochastic system 

(a system subject lo random external forces). However, the source 

of irregularity is quite different. For chaos, the irregularity is 

part of the intrinsic dynamics of the system, not unpredictable 

outside influences. 

Chaotic motlon is not a rare phenomena. Consider a 

dynamical sysLem described by a set of flrst order differential 

equations. The conditions necessary for chaotic motion are that 

(1) the system has at least three lndependent dynamical variables; 

and (2) the equa tlons of motion contain a nonlinear term. that 

couples several of the variables. The phase space is sufficient to 

allow for (a) divergence of the trajectories (b) conflnement of the 

motion to a fini te region of the phase space of the dynamical 

variables. and (c) uniqueness of the trajectory. The nonlinearity 
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condition is valid because solutions to linear differential 

equations can always be expressed as a linear superposition of 

periodic functions, once ini tial transients have decayed. The 

effect of a nonlinear term is often to render a periodic solution 

unstable for certain parameter choices. These conditions though do 

not guarantee chaos, they make its existence possible. 

The addl tion of a damping term to the equation for an 
, 

undamped pendulum resulls 1n an attractor at the origin where sln9 

~ 9. Further attractors are added at a = ± mr, W = O. This is 

evident by setting ,the phase velocity equal to zero and solving for 

the stationary values of a and w. These attractors are points 

where phase velocity goes to zero. The critical point will reveal 

whether these trajectories tend to go back to these critical points 

if slightly perturbed, and will their stability depend upon the 

direction of the perturbation? 

An insight into chaotic system can be obtained by 

determining the invariant parameters such as correlation dimensions 

o ,Kolmogorov entropies K ,Lyapunov exponents etc which are all 
1 I 

infinite in number. However it has been shown that of the infinite 

number of the correlation dimensions and Kolmogorov information 

entropies, the second order quantities are the most significant ones 

and hence the need to determine D2 in the present analysis. The 
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algorithm followed in this chapter is that proposed by Grassberger 

and Proccacia (1983) and later developed by Atmanspacher and 

Schinegraber (1986) and Abraham et al(1986). 

Let {Xo(t)} be the original time series with the data 

being taken at constant interval. These data set can be rearranged 

so as to get (d-l) additional data sets as 

X(t) ................... X(t) 
o ION 

X (l +IlL) ................ X (l +IlL) o ION 

x (t +d6.t). . . . . . . . . . . .... X (t +d6. t ) 
o ION 

The transpose of the above maLr ix can be considered as consisting 

of N vectors hay ing d components in a d dimensional space. The 

general vector can be written as 

x = (X (t ) .......... X (t +dll t ) ) 
l 0 1 0 l 

where,l = 1 ... N and X is a point in the constructed d dimensional· 
l 

space. With this the correlation function can be evaluated. 

IJJ 



C (r) = Lt 
d 

L O(r - !X1-Xjl) 
1,J=1.N 

where a is the Heaviside function defined as sex) = 0 for x < 0 and 

unity for x >0. This implies t:t:at if the absolute value of the 

vector difference !X1-Xjl is less than r.it is counted as unity and 

is zero if it is greater than r. Small boxes of side rare 

constructed in the phase space.and the vector tips that lie in this 

box are counted. This is referred to as box counting. It is seen 

v that as r becomes smaller C (r) - r ,so that 
d 

log C (r) - v log r 
d 

As r -->0 and d -->00, v takes a definite value which is called the 

second order correlation dimension. i.e. 

o - lim 
2 

r~ 0 

log C (r) 
d 

log (rl 

The correlation integral C(r) is calculated for Sl!vt~I'al 

values of r wi th respect to each particular dimension d of lhe 

constructed phase space. For each dimension d a curve of log Ca(r) 

Vs. log (r) is drawn. The slope v of the linear part of the curve 
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is obtained using least square fit. The finite value to which v 

conver'ges for higher values of d is denoted by D An integer value 
2 

for D indicates that the system is regular and a fractal value 
2 

that the system is chaotic. 

The equations (5.22) to (5.27) have been numerically 

solved for arbitrary initial values of the field coefficients. The 

time evolution of pressure at an axial point of the loop for 

initial values 

I'll I = 10.0. 
c 

and, 

11.0,1~ 1= 
c 

14.0 

is shown in Figure 5.3. The time variation is found to be highly 

complex. The corresponding power spectrum is shown in Figure 5.4. 

The power spectrum is found to be fluctuating and has a broad band 

indicating the presence of chaos. A set of 500 data points 

corresponding to this chaotic evolution of pressure was used to 

evaluate the information dimension D by the box counting method 
2 

described above. 

Figure 5.5 illustrates the converging and from which the 

value of D is found to be 1. 732. For the. same initial conditions 
2 
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Fig.S.3 .. The variation of pressure at an axial 

point of the loop when the initial values of the 

fieldcoefficients TJ • TJ ,TJ are much different from 
abc 

those of ~a'~b and ~c respectively. 
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Fig.5.4. Power spectrum sew) corresponding to the 

time variation of pressure shown in Fig.5.3. 
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Fig.5.5. The slope (v) of the linear part of the 

loge (r) vs log(r) curves, obtained using 
d 

least-squares fits are plotted against the dimension 

d of the constructed phase space. The two asymptotic 

valu e s of the slopes are 1. 39 and 1. 73. This is 

corresponding to the chaotic evolution of pressure 

at an axial point of the loop; 
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when D is evaluated at a surface point, the slope does not seem to :a 

converge to a limiting value (Figwe5. 6). The fractal value of 

D2 is clear evidence for the existence of deterministic chaos. 

In a chaotic regime the system can either dissipate to an 

attractor stage or can follow a stoc.hastic(random) flow. As the 

dimension d of the constructed phase space increases the s lope v 

may converge to a limiting value. In this case the flow wi 11 be 

confined to a geometrical object called attractor. The converglng 

vall,:e of the slope is the dimension D of :a the attractor.The 

dimension of the attractor measures the minimum number of 

independent parameters needed to describe the system dynami es. In 

other words if DOl exists, there 1s a properly defined, dynamical 

system. The steady increase of slope v with d (Figure 5.6)evldently 

shows that it cannot converge and consequEmtly the ~umber of 

degrees of freedom of the system is increasing. Then the complexity 

of the sys tem increases and it tends to a more di sorder'ed 5 ta te 

indicating that system behavior is stochastic. 

5.7 SUMMARY: 

In the equilibrium state 'lla = ~~ • 'llb = l;b' l1c = l;c' When the 
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of pressure at a surface point of the loop, the 

slopes (v )of the linear part of the 10gC vs log (r) 
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curves are plotted against the dimension d.The 

slopes do not converge to any limiting value. 
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system is slightly disturbed from the equilibrium state, the time 

evolution for small departure from equilibrium condition reveals 

that the system exhibits sinusoidal oscillation with a period which 

depends upon the initial values of the field coefficients. In other 

words, when the system is perturbed from a state where the magnetic 

2 2 energy B 14n and the kinetic energy (l/2)mv are nearly equal, it 

exhibits marginal stability. The microwave and· X-ray observations 

of coronal loops show quasi periodic oscillations with time scales 

ranging from a fraction of a second to tens of minutes. (Aschwanden 

1987,Svestka 1994 and references therein). These oscillations are 

usually interpreteq in terms of magnetohydrodynamic waves in loop 

plasma. (Roberts, Edwin and Benz 1984). The observed power spectrum 

of pulsations actually exhibits a more complex behavior(e.g.fig.1d 

of Svestka 1994) which appears quasi periodic only if we ignore 

finer variations. Thus, quasi periodic behavior is expected only 

near equilibrium as 1s shown in the above study and the linear wave 

analysis studies. Under large departures from the equilibrium, a 

loop shows a complex temporal structure which can only be described 

in terms of objects with fractal dimensions in the phase space of 

the veloci ty and magnetic field. Coronal loops being continuously 

subjected to external forcing through their foot points and through 

their interaction with neighboring regions are most likely to be in 

a chaotic state of pressure fluct~ations. Therefore ,when there are 

large deviations from equilibrium i.e.. for initial values of 
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~ ,ij,~ much different from those of ~,~,~ respectively, the 
abc abc 

system is nonlinear and so is the corresponding time evolution of 

the pressure. In this case each individual mode becomes 

distinct,stronger and mode-mode interaction can take place. In the 

pump approximation case since the var~atlon of the strongest mode 

is negligible when compared wi th other modes, the interaction is 

between less number of modes of oscillations and the system showed 

oscillatory behavior,whereas the chaotic behavior is caused by the 

superposition of more than two modes of oscillation and due to 

strong nonlinear coupl ing between them as is indicated in the 

nonlinear case abov~. This fact Is evident in the evaluation of D . 
2 

Figure 5.5 shows the determination of D at an axial point. It is 
2 

interesting to note that there are two asymptotic values. one at 

1.39 and the other at 1.73. This could be interpreted as the 

existence of two strange at tractors with embedding space of 

dimension 7 and 18 and lhe lr-uJcctory call land up on cl ther of 

these at tractors. The fact that these are strange attractors 

(because of fractal dimension) the trajectories could jump from one 

to the other. This clearly shows the complexity of the situation. 

The curve of slope v vs dimension d at r=R does not show any 

saturation and that the curve is more or less centered on the 45° 

line showing the presence of randomness or white noise as shown in 

Figure 5.6. Thus, as we proceed from the axis towards the surface 

the dynamics show the development of strange attractors ending up 

142 



in complete randomness. 

In figure 5.5 and 5.6 even though the ini tlal values 

of ~'s and ~'s are the same, those of pressure P at (r=O,t=O) and at 

(r=R,t=O) are not same. This difference in Figure 5.5 and 5.6 is 

due to the different ini tlal values of pressure at axial and 

surface points. The transition from a strange attractor state to 

randomness requires a much finer analysis. In conclusion the time 

scale over which the system is stable or otherwise can be inferred 

only by evaluating the Lyapunov constants which are sensi t1ve to 

the ini tial condit~ons. Inverting the problem by specifying the 

lyapunov constants, one can possibly evaluate the class of initial 

states which can give the observed life time of the loops. 
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6 VLASOV MAXWELL -EQUILIBRIA OF SOLAR CORONAL LOOPS 

6.1 INTRODUCTION: 

The fluid theory that has been used so far in the previous 

chapters is the simplest description of a plasma. This approximat

tion is sufficiently accurate to describe the majority of observed 

phenomena. However, lhere are some phenomena for which a fluid 

treatment is inadequate. For such cases we need to consider the 

velocity distribution function f(v) for each species. This 

treatment is called Kinetic theory. In fluid theory,the dependent 

variables are functions of ?nly four independent variables: 

x, y, z· and t. This is possible because velocity distribution of 

species is assumed to be Maxwellian everywhere and can therefore be 

uniquely specified by only one number, the temperature T. Since 

collisions can be rare in high temperature plasmas,deviations from 

thermal equilibrium can be maintained for relatively long times. 

Exact nonl inear solutions to coupled fIeld theories are 

generally rare. For the Vlasov-Maxwell system describing a 
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collision less plasma the list of reported exact solutions are: (1) 

the electrostatic solutions of the Bernstein-Green-Kruskal(BGK) 

type (2)the magnetic solutions of the type obtained by 

Pfirsch,Laval,Pellat and Vuillemin, Marx and Harris. The magnetic 

solutions were constructed to model the behavior of laboratory 

plasma containment devices. It was assumed that only the plasma 

density was a function of space while plasma temperature and 

current are taken to be spatially uniform. The process leads to 

the well known Bennet pinch density, profiles in the cylindrical 

geometry, 2 and to the strongly localised sech x/o (where 0 is some 

appropriate length) profiles in the slab model. A more realistic 

description of the current laboratory plasmas, however, would 

require the inclusion of the temperature as well as the current 

gradients (i.e .• gradients in current which are in addition to the 

automatic gradients resulting from the density dependence of 

current). It is with this idea that in this chapter a 

vlasov-Maxwell description of the ubiqui tous solar coronal 

structures is discussed. It is found that an equilibrium plasma 

configuration can live with spatial gradients in density. 

temperature, current and drift speeds of the charged particles. 

The stability study is carried over this inhomogeneous equilibrium 

state. The Vlasov description admits the investigation of kinetic 

processes like heating and radiation and unlike a fluid 

description, it does not require an equation of state to determine 
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the IndIvIdual varIations of temperature and density. 

6.2 DERIVATION OF THE VLASOV EQUATION: 

A kinetIc equation is any equation of the form 

(6.1) 

where M is a known functional that maps F 
1 

onto functions 

(p,x,t;F }.The generic form for all kinetic equations is, 
1 

(6.2) 

of 

in dimensional form. To obtain a kinetic equation from this 

equation some approximate form must be inserted for F. 
2 

or 

equivalently, F must be expressed as some known functional of F . 
2 1 

F = F (1,2: F ) 
2 2 1 

(6.3) 

Inserting equation (6.3) into (6.2) gives the kinetic equation 
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aF PI aF 
1 + 1 

at m aXI 
= 

1 a 
-v ap J d2G F (1,2; F ) 

12 2 1 
1 

(6.4) 

The equation that emerges for F in an expansion about vanishing 
1 

correlation is (dimensional notation), 

aF PI aF 
1 1 

at + m ax 
1 

+ -vl 88P J d2G F (1) F (2) = 0 
12 1 1 

1 

(6.5) 

This equation is known as Vlasov equation. The vlasov equation may 

be put in a more conventional form using the fact that the number 

density n(x,t) can be expressed in terms of F as 
1 

n(x,t) 1 --v J F dp 
I 

If the mean force G(x) at the point x Is defined as 

G(x ) - J n(x ) G (x ,x )dx 
1 2 12 1 2 2 

(6.6) 

(6.7) 

then, the integral in equation (6.5) may be written in terms of G 

and F 
1 
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a = ---a F (l).G(x ) 
p 1 1 

1 

(6.8) 

Equation (6.5) 1s equivalent to 

aF + l 
at m 

aF 
ax + 

8F 
8p . G = 0 (6.9) 

G(x) = [G (x ,x ) n(x ) d3x 
1 12 1 2 2 2 

(6.10) 

vn(x ) = f F (2) d3P2 
2 1 

(6.11) 

Vlasov equation represents the dynamics of a single 

particle influenced by a smeared out or average force field. This 

average force field is the average of the two particle interaction 

over the density of remaining particles. The G in the vlasov 

equation is a functional of F through the equations (6.10) and 

(6.11). 
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6.3 THE MEANING OF fey): 

In kinetic description the density is a function of four 

scalar variables n = n(r,t). When velocity distribution is 

considered there are seven independent variables: f = fer, v, t). 

3 This implies the number of particles per m at the position r and at 

time t with velocity components between v and v + dv, v and v 
x x x y y. 

+ dv , and v and v + dv . is 
y z z z 

f(x,y,z,v ,v ,v ,t)~v dv dv. 
x y z x y z 

Theintegral of this can be wr it ten in anyone of the ways as 

shown below. 

OJ OJ OJ 00 

n(r,t) J dv J dv J dv f(r,v,t) 3 = = J f(r,v,t)d v 
x y z 

-OJ -OJ -00 -00 

00 

= J f(r,v,t)dv (6.12) 
-00 

dv is not a vector; but it represents a three dimensional volume 

element in velocity space. If f is nor~alized so that 
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(I) 

f f(r,v,t)dv = 1 (6.13) 

f is called the probability distribution function. 

So that f(r,v, t) = nCr, t)f(r,v,t) (6.14) 

f Is still a function of seven variables, since the shape of the 

distribution, as well as the density, can change with space and 

time. 

A particularly important distribution function is the 

maxwe llian: 

3/2 2 2 
f = (m/21l K.T) exp (-v Iv 

m th 

and V 
til 

5: (2KT/m)1/2 

(6.15) 

(6.16) 

For an isotropic distribution like a maxwellian, another function 

g(v) which is a function of the scalar magnitude of v such that 

(I) 00 

J g(v) dv = J f(v)d3v (6.11) 
a -00 

can be defined. 
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For a maxwellian the function g(v) will be of the form. 

g(v) (6.18) 

6.4 EQUATIONS OF KINETIC TIIEORV: 

The fundamental equation which f(r.v,t) has to satisfy is 

the Boltzmann equation: 

af - F af (8f) at + v.Vf + m . 8v = 8t c (6.19) 

F is the force acting on the particles, and (aflat) is the time 
c 

rate of change of f duc to collisions. V represents the gradient in 

(x, y. z) space. 

velocity space: 

a a 
= x Bv 8v 

x 

The symbo 1 818v or 'iJ stands for the gradient in 
v 

(6.20) 

In a sufficiently hot plasma, collisions can be neglected. Further 

the force F is entirely electromagnetic and hence, the equation 
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(6.19) takes the form and if E and B are self consistent fields, 

af q 8f at + v. ~f + m (E + v x B) . 8v = 0 (6.21) 

This is Vlasov equalion. 

6.5 VLASOV-HAXWELL EQUILIBHIA: 

The coronal . loop plasma will be represented by a 

cylindrical column with current density J along the axis of the 
z 

cylinder and with no gravi ty. The actual geometry of a coronal 

loop consists of the two ends (the foot points) of a cylindrical 

plasma embedded in a sub phoLosphcric region. A small twisting 

mollon of the foot pOints may introduce a small amount of azimuthal 

current J o which 1s neglected for the present. The subphotospheric 

region contains a high-/3 plasma, where (3 is the ratio of gas 

kinetic pressure to magnetic pressure. As a result the magnetic 

field lines move on a time scale much longer than the coronal 

time-scales. This line tying reduces the region of unstable 

excitations, especially those of long wavelength. The neglect of 

gravity reduces the coronal loop to an essentially horizontal 
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cylinder. While studying the stability of an equilibrium. the end 

effects, gravity and curvature are to be properly taken into 

account. 

The particle density n,the temperature T and the particle 

drift speeds u are in general, spatially varying quantities. All 

spaUal variations are allowed only in the radial direction as 

there is observational evidence in support of it. The plasma is 

assumed to be embedded in a uniform magnetic field B. The relevant 
. 0 

equation for an equilibrium system (with alat = 0), i.e., Boltzman 

equation for electron and ions describing the conservation of 

particles in phase space of position and momenta are: 

8f v __ c 

r 8r 

8r 
V __ l 

r 8r 
+ 

e 
m 

c 

e 
m 

I 

(6.22) 

(6.23) 

Equations (6.22) and (6.23) are Vlasov equations which are valid at 

high temperatures when Coulomb collisions are neglected. 

In addition, the fully ionized plasma is assumed to 

experience only electromagnetic forces. All non electromagnetic 
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forces such as gravity are neglected. For loops of smaller length 

than the density scale height,axial dependence of particle density 

is also neglected. 

Ampere's law is: 

V :x B = 1 BE + 4n J 
C at c 

and for the case (alat = 0) 

(6.24) 

V :x B = 4rr J (6.25) 
c 

Writing in cylindrical co-ordinates: 

(V x D) = 
r 

1 
aB 

-r 

aB 
r 

az 

(V x B) = 
z: 

7. 

8B 

r ae 

'in 
= -- J 

c r 

= 
4n 
- J c z 
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(6.27) 

(6.28 ) 



(\7 x B\ = 0 and (\7 x B)e= a implies that the self consistent 

magnetic field has only e component. For this to be true B should 
r 

be zero, B = constant. Hence, the axial component of Ampere's law 
z 

will be: 

= 4n J 
c z 

Poisson's equation is: 

V.E = 4np 

(6.29) 

(6.30) 

In equilibrium study the charge separation occurs over 

extremely short time scales. Hence, it is justifiable to assume 

zero charge separation. Under such a condition 

V.E = 0 (&.31) 

Faraday's law is: 

v x E = 
1 aB 
C at 

For steady state fields the equation reduces to 

lSS 

(6.32) 



'OJ x E = 0 (6.33) 

The plasma current density J in terms of the particle distribution 
% 

function for the electron and ion is 

J% = - e Jd:V v (f - f ) 
z e I 

(6.34) 

Let a displaced Maxwellian of the form 

(6.35) 

be the distribut ion function for the particles providing a self 

consistent solutions for the equations (6.22).(6.23),(6.29),(6.311 

(6.33) and (6.34). Whu!'c, 

n is the ambient density, 
o 

v = [ZT 1m ] 1/2 is the thermal speed, 
e,l e,l e,l 

and e,l 
U 

z 
is the drift speed, 

T is the temperature, 
e,1 

m is the mass and 
e, I 

g(r) is the density profile factor, which is the same for electrons 

and ions under conditions of no charge separation. 
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6.5.1 DETERMINATION OF DENSITY AND MAGNETIC FIELD PROFILES: 

Let g(r) describe the entire spatial variation of density. 

The density prof He can be found assuming f to be a function of 
e 

g(r) . 

Equatlon (6.35) can be wrltten as: 

r = k g(r) and f = k g(r) 
eel 1 

where k = 
e. l 

__ n_o_ exp [-(V _ ue • l )2/v2 ] 
3/2 3 z e, l 

n v 
e, l 

Hence, 

Br 2k g(r) 
_0._ IV _ uOJ 

2 z 
v 

e 

V 8r 
- x (B + e B ). 
C z 0 

e 

8r 
E e -

• 8V -

8V 

2k g(r) 
e 

2 
V 

e 

= 
2k g (r) 

e 

2 
v C 

e 

[E v J 
r r 

ue v Be ] 
z r 
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(6.37) 

(6.38) 

(6.39) 



(6.40) 

substItuting equation (6.38)9(6.39) and (6.40) in equation (6.22) 

1 dg 2 e 
[_ue. Be] z 

0 g dr + = 
2 C m v 

(6.41 ) 

e e 

1 dg e e 
Ba b or g dr = u = 

T c :z 
(6.42) 

e 

where b = (6.43) 
e 

where,e is the charge on the electron and c is the speed of light. 

From equation (6.29) 

4n J 
c z 

= 4n: en [g ue _ g u l ) 
C 0 e z 1 z 

Making use of equation (6.43), this reduces to 

1 8 [ r 8r 
rbc:e] = 
eu 

z 

4ne n 
o 

c 
u 

z 
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1 
U 

z 
Il --

e 
and, 2 T =CiI2)m v in equation (6.45) 

e e e 
U 

z 

1 d (rb) 2 
= - - g 

c/o 
(6.46) 

where 0 1s the characteristic length scale in the solutions of the 
e 

Vlasov-Maxwell system which will be estimated using the parameters 

chosen f ['orn 11011 wcg ( 1981 ), a lld 

and ,the electron plasma frequency 

w = 
pc 

(6.47) 

(6.48) 

The self consislent solutions for equations (6.22),(6.23), 

(6.29), (6. 31), (6.33) and (6.35) when g(r) describes the entire 

spatial variation are found to be 
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g(r) = ]

-2 

4:: 
e 

(6.49) 

Figure 6.1 is a plot of densi ty profile function g(r) 

versus x = rio .The graph shows that the density profIle is peaked 
e 

at the axis with a characteristic length scale 0 and a sharp fall 
e 

in density away from the axis is obtained. This is reminiscent of 

the condensations often observed at the axis of the loop. 

Using equation (6.49) in (6.42), we obtain 

r 
b = 

[1 2 

] 0 2 r 
+ -,~- ..... _-

e 40 2 

(6.50) 

e 

Or, bo = - (r/Oe l [l + ~rl e 
402 

(6.51 ) 

e 

Figure 6.2 is a plot of the variation of the magnetic 

field profile function (bo ) verses x = rio corresponding to the 
e c 

above equation. This graph also indicates the magnetic field 

profi Ie peaking at the axis similar to the density profile case. 

Thus, from these two graphs it is found that the current density 1s 

maximum on the axis. 
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Fig.6.t.Variation of density profile function g(r) vs 

x = r/o 
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6.5.2 ESTIMATION OF CHARACTERISTIC LENGTH a : 
e 

Coronal loops, a bipolar structure is characterized by an 

10 12-3 electron density n .... 10 - 10 cm ; a temperature range varying 
° 

from a few tens of thousands to a couple of million K, a radius of 

108 - 109 , and a length of 109 to 1010cm with an axial magnetic 

field of a few gauss. The current flows essentially along the 

axis of the cylindrical plasma column and produces an azimuthal 

component Be of the magnetic field. Observations in the· EUV 

region shows that the loops of different temperatures are coaxial 

and this has led to the identification of cool core and hot sheath 

type loops (Foukal 1978; Krishan 1983,1985). The X-ray 

observations has further reinforced the inhomogeneous nature of the 

underlying heating mechanisms. According to Holl weg (1981). the 

resonance absorption of surface MHO waves, as well as the Joule 

dissipation of high density current sheets in addition to the 

ubiquitous mini magnetic reconnections are some of the factors 

responsi ble for the heating of the solar corona in gener-al. and 

coronal loops in particular. Assuming typical parameters from 

Hollweg 0 is estimated as follows: 
e 

Electron density in the sheath n = l09cm-l; 
Q 

Electron temperature in the sheath T = 2.5 x 107K; 
e 
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9 -1 Electron thermal speed V = 2.7 x 10 cm s : 
e 

7 -1 Electron drift velocity u > sound speed • 4.5 x 10 cm s ; 
e 

The magnetic·field Be produced by the current density Jz 1s 10 G, 

and the thickness (~) of the current sheet turns out to be - 103 

em. 

The characteristic length scale which is 

v c . e _ r.::--;;::;-o ... - -- (1 + vT IT ) 
e W U 1 0 

pc 0 

works out to be = 1.04 x 103cm for To ~ 1 1, and, 

= 0.9 X 103 cm for T = 
o 

Thus, we find that current profile of small widths are the outcome 

of exact solutions of the Vlasov-Maxwell system. 

6.5.3 VARIATION OF MAGNETIC FIELD PROFILE WHEN TEMPERATURE 

VARIATION IS ALLOUED IN ADDITION TO DENSITY VARIATION: 

In this case in addltion to the density gradient; spatial 
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variation of temperature is also allowed. The drift speeds 

are stUl homogeneous. MahaJan(1989) has shown that a series 

representation for the distribution function gives a valid solution 

of the inhomogeneous Vlasov-Maxwell system. The expansion parameter 

for the series being (u/v) , the ratio of drift and thermal speeds. 

This is very much appropriate for the consideration in the coronal 

loop. Using the smallness of (u/v), the distribution function is 

written in the form 

f = 
e.l 

n g(r) 
o 

1[3/2 (v e, I", . ) 3 
o c, I 

1 + 

c. I 
2U CIO 00 

--v-:-'-I-II~lm~Ot c nm ( 
o 

v 
z r ( __ v __ ) 2m 

ve,l ve,l I/J 
() 0 c, I 

(6.52) 

where t/J describes the spatial variation of electron temperature 
e 

and ye the thermal speed on the axis (r=O). Since the equilibrium 
o 

solutions are of interest it is assumed that '" = ~ = ~ and ~ = 
e I e 

Q i.e., the electrons and ions have identical temperature 
I-' I' 

profiles. Since the densi ty variation is generally steeper than 

tempera ture variation {3 = (3 = -(3, where c = 1 and c = -(3. 
c I 10 11 

This equation converts Ylasov equations into ordinary differential 

equations In g and .p. in addition to providing relations that 
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determine all c in terms of the plasma parameters. c 
run run 

Using u Iv « o 0 
1 which is true for high temperature 

laboratory fusion plasma, the series is truncated keeping terms 

only to order u Iv . 
o 0 

Thus a simplified distribution function Is 

obtained. 

n g 
[ 1 + 2 

u {t + (3ex( 
y )} ] f 

0 o(x 
V = ex 7[3/2 (V )3 3 v2 z y t/J(X o(x "'ex o(X oex 

2 

x Exp { - V
2 

} + o { :~ } (6.53) 
y2 '" 2 

O(X <X- 0 

Since plasma has current only in the Z direction the self magnetic 

field has only the Be component. The,equilibrium Vlasov equation 

Is : 

v 
r 

8r 
+ 

8r = 0 (6.54) 

All variations are allowed only in the radial direction. For f as 

defined in equation (6.52), 
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8r = VF + eF 
8V 1 2 

(6.55) 

Using this in equation (6.54) 

af q ,.. Be 
v 

r ar + - (V x ea c ) . [ V F + e F = 0 (6.56) m 1 z 

or 

8r q 
V 

r ar + VrUe F = 0 (6.57) mc 

Using equation (6.5~) • 8f/ar and F are calculated as follows: 

8r 
= K 8r 

g 2 di/J ] 
t/J3 dr x 

00 00 

2~: L L c~ (~r ( vv~ r 1 
n=1 m=O 0 0 
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2m dr.jJ 
-",- dr (6.58) 



F = K (6.59) 

Substituting for af/8r and F in equatlon(6.57), for n = 1 and m = 0 

d 
dr 

q 
--B me e 

g 
z +---

",3 v2 
o 

g 2u o 
--c tIP yZ 10 

o 

2 dl/l

",3 dr 
x 

2u Z o g 

= 0 

Equating the terms independent of V 
:z 

+ 
q 
--8 me 0 

And for n = 1 • m = 1 we get 

g 2u o 
--c ,,? V'l. 1(!) 

o 
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V 
+ z 

C 
10 V 

o 

(6.60) 

= 0 (6.61) 



= 0 

Equaling the coefficLents of (-V~~-J' 

g 2 dt/J q g 2uo 
----+-----B e =0 
",3 ~ dr me ~3 V2 9 11 

o 

From(6.61) 

where T 
ao 

2 
= 1I2mv o 

= 

and c 
10 

= 1 

The above equation on simplif1cation yields 

1 
g 

dg 
3 

dr - ~Q'. = -

169 

(6.62) 

(6.63) 
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Using equation (6.63) and c =-~ 
11 

2 dI/J 
IX 

combining equation (6.64) and (6.65) 

.1. [-2/~ + 3] 
g = ." IX 

using the value of g from (6.49) the profile function 

- 2(3~ - 2)/(S~ - 2) 

1 
(X. « 

4:: 
eff 

-1 (rio ) bo = {_S_{3_ -1} -,.. ___ e_C_f--.-

eff 2 [1+ r2/4e/ J 
eff 
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(6.65) 

(6.66) 

I/J and g are 

(6.67) 

(6.68) 

(6.69) 



where <3 eff = (20/5(3 - 2) 

The temperature 

-4(3/5(3 - 2 2 [ 2 2] T oc I/J = 1 + r 14<3 err (6.70) 

The current density 

(6.71 ) 

The pressure 

2 
P oc gl/J = (6.72) 

The plot of variation of density profile g(r), magnetic 

field profile function b<3 
e 

2 
and temperature profile function I/J 

versus )( = rio for ~ = 0.5, 0.8 and 0.2 are shown in Figures 
e 

6.3,6.4,6.5;6.6,6.7,6.8 and 6.9,6.10 and 6.11 respectively. The 

graphs indicate that depending on the (3 value the radial variation 

can be positive or negative. Thus for (3 > 2/3, both density and 

temperature fall away from the axis as in Figure 6.9 and 6.11. 
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Whereas for 2/3 > (3 > 2/5 the density increases and temperature 

decreases away from the axis as in Figure 6.6 and 6.S. For ~ < 2/5 

the temperature increases towards the surface as in Figure 6.11. 

This Is very much reminiscent of the cool core and hot sheath type 

loops observed by Foukal (1918) and Krieger, de Fei ter 8. Vaiana 

(1976) and modelled through variational principle in MHO by Krishan 

( 1983. 1985) . The parameter a which characterises the spatial e . 

variations is related to the skin depth. The measure of 0 
e 

determines the steepness and the extent of the current densi ty 

profile. This satisfies the requirements laid down by the joule 

heating of the loop, plasma. 

6.5.4 VARIATION OF CURRENT DENSITY IN THE PRESENCE OF DENSlTY AND 

DRIFT SPEED GRADIENTS: 

In this case gradients in density and dr ift speeds are 

also allowed in addition to g. The drift speeds of the particles 

become a function of the radius r. 1. e. ,u == u tjJ (r), where rp (r) 
:z zO e e 

is the prof lIe of the electron, and u is the drift speed at the 
zO 

center. The temperature T is 
e 

kept independent of r. The 

Maxwellian of the form given by equation (6.35) with u dependent 
e,1 

on r will not allow a solution in the velocity space because 

v (BfIBr) has additional terms, which are quadratic in the velocity 
r 
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variables, which cannot be compensated by the force term. The 

compensating term is generated by introducing a temperature 

anisotropy: the particles have different temperatures in the 

direction along the current (T ). and perpendicular to the current 
z 

(T not equal to T ). 
z 

This allows the distribution function to be 

assumed as: 

f = ex. 

n g (r) 
o 

3/2 2 e, I 
1( V V 

II, I z 

2 2 
V + V 

.. 0 
2 

V 
e 

:z: Oz II 
(V - U e, 14» ( r ) ) 2] 

(6.73) 

Equation (6.73) represents a neutral plasma (g = g = g) carrying 
e I 

a current in the z direction. Here it has been assumed that rJ> = rJ> = 
e 1 

q, with rJ>(r=O)=l, and g(r=O)=1. Substituting equation (6.73) 1n the 

equilibrium Vlasov equation (8/c3t=O), and carrying out the usual 

algebra, the following set of coupled nonlinear ordinary 

dlfferenllal equallons 1n lhe variables g and rJ> are obtained. 

1 c3 
rar 

2;\ 
- - exp 

02 
[ ( Uv~eZ ) 2 ] (q,2 _ 1) (6.74) 

e % 

[ ( UvOcCz)2 ] g(r) = exp (~2 - 1) (6.75) 

z 
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where, 

T - T 
= 

e ez 
h = = 

t::.T 
e 

2T 
e 

2 v 
e (6.76) 

The numerical solution of the· equation (6.74) yiel,ds a 

rich variety of profiles as A is varied. Since the spatial behavior 

of the density, the magnetic field and the current density are 

essentially a function of the dl.mensionles·s parameter h, there 

is need only to provide appropriate normalization. For coronal 

loops,t~e anisotropy parameter 

e 

2 
V 

e 

For 1\ = 5 

t::.T 
= 1. 8 x 10 

3 e 

t::.T 
e 

T 
e 

T 

-3 = 2.7 x 10 which is reasonably small. 

A plot of the variation of the density (Ref. Mahajan, 1989) 

profile function g(r) versus x = rIo ,indicates that indicates that 
e 

g decreases monotonically with x,starting from zero, raises to 

a maximum at x=2 and then slowly goes to zero, For larger values of 

h. g becomes oscllla :.".lry with the wavelength of the oscillations 
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decreasing with A. The fact that densi ty becomes less and less 

peaked indicates loss of confinement, a direct consequence of the 

fact that the confining magnetic field (oscillatory) becomes 

considerably smaller than its X = 0 value. 

A plot of the variation of the current profile function 

(gue) versus x = r/o. 
eo 

The proflles indicate that the current 

densi ty appears in the form mul tisheaths for large values of the 

anisotropy parameter (for X=5) while the corresponding density 

profile is almost flat. (Ref MahaJan, 1989). 

SUMMARY: 

A Vlasov-Maxwell description of coronal loop plasma admits 

a variety of equilibrium spatial profiies of mass density, current 

density, the temperature, and the magnetic field depending upon the 

type of inhomogeneities allowed. The profiles vary from being flat 

to spiky and resemble the ones derived from EUV and X-ray coronal 

observations. The current froflle of small widths are the outcome 

of the exact solutions of Vlasov-Maxwell system. The multlsheath 

current profiles derived in this chapter complement the 

magnetohy.drodynamic study of current sheet formation well. Further 

184 



from the above discussion it is found that the Vlasov description 

allows the determination of density and temperature profiles 

individually unlike in the fluid description where equation of 

state is required to study the separate variations of density and 

temperature from the pressure profile. 
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7 SUMMARY OF THE RESEARCH 

7. 1. STEADY STATE STRUCTURE: 

The loop or arch like cQnfigurations of the solar active 

regions have been seen in the emissions at UV, EUV and X-ray 

wavelengths, (Fouka~,1978). The current carrying plasma in the loop 

supports a helical form of the magnetic fluid. The steady state 

pressure struclur'c of Cl solar coronal loop was studIed using the 

theory of MHO turbulence in cylindrical geometry. The magnetic and 

velocity fields were expanded in terms of C-K functions using the 

MHD equations assuming the plasma as a incompressible fluid. In 

chapter 4, the study was confined to the steady state solutions to 

the pressure i.e., alat(~,~) = 0 and ~ =~, where ~ and ~ are the 

expansion coeffiecients. The pressure profile was discussed under 

two considerations: 

l)Pump approximation; where one of the three modes was considered 

as the strongest, as compared to the other two, and 

2)The mode strength varying in proportion to their spatial scales. 

The plasma was assumed to be a cylindrical column of length Land 
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radius R. 

The analysis of the results indicate that the radial 

variation of pressure is found to be maximum at the foot points of 

the loop and is minimum at the apex (See fig.4.1). This result is 

in conformity with the results of Levine and Withbroe(1977). 

wherein they have indicated that the coronal loops undergoing 

dynamic changes are characterised by a temperature structure in 

which there is a cool core relative to the substantially hot 

surrounding sheath. 

The axial variation of pressure indicates, that the 

maximum values of pressure is attained near the apex for all radial 

positions (see fig. 4. 2). This is in agreement with the results of 

Rosner et al (1978). The pressure is found to increase uniformly 

for all values of lhe radial distance at different azimuthal 

angles(see fig. 4. 3). The azimuthal variation of pressure for 

different radial distances indicate oscillatory behavior, which is 

predominant near the surface. 

The density plots fig 4.6a and 4.6b indicate that the 

region of maximum pressure is not necessarily at the apex. Further 

it is also an indication of the observed cool core and hot sheath 

features of the coronal loops. 
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Even when the mode strengths is assumed to vary in 

proportion to their spatial scales. the results like an increase of 

pressure towards the surface and the existence of maximum somewhere 

along the length of the loop emerge as the general features of the 

loop. In all cases it was found that the representation of the 

veloci ty and magnetic fields by a three mode C-K functions bring 

out the three dimensional features of the pressure profile. The 

choice of thc triads reprcsenting the variation of velocity and 

magnetic fields on the largest spatial scales permitted by the 

system, provides a fairly realistic description of the loop plasma. 

7.2. TEMPORAL EVOLUTION OF PRESSURE: 

In chapter S, thc vcloclty and magnetIc fields were 

allowed time dependence to facilitate the study of their evolution. 

The complete dynamics was described by a set of infinite coupled 

and non linear ordinary differential equations which are of the 

first ordor in time for the expansion coefficients of velocity and 

magnetic fields. Since the evolution equations are coupled and 

nonlinear, the dependence of their solution on the initial 

condition was expected to reveal chaotic behavior. An important 

tool in the investigation of Lhls was the study of power spectrum 
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of the data generated by the solution of the MHD equations and to 

evaluate the invariant dimensions especially the second order 

correlation dimension of the attractor D of the system. 
2 

The analysis of the results indicate that when the values 

of velocity and magnetic field coefficients 11' s and ~. s are very 

nearly equal, the spectrum is discrete indicating that the pressure 

profile has a finite number of frequencies. The marginal stability 

exists only for the time scales for which the llnearisa tion is 

valid. Though microwave and X-ray regions observation show a 

quasi periodic os~illations, the observed power spectrum of 

pulsations actually exhiblts a more complex behavior if finer 

variations are ignored. The quasi periodic behavior 1s expected 

only near equilibrium. 

Under large dopartun!H from lhn (~qulllbrlllm ,n loop shows 

a complex temporal structure which can only be described in terms 

of objects wi th fractal dlmensions in the phase space of the 

velocity and magnetic f leid. Coronal loops be i ng continuously 

subjected to extcrnal forcing through thcir foot points and through 

interaction with neighboring regions are likely to be in a chaotic 

state of pressure fluctuations. Hence, when there are large 

deviations from equilibrium the system and the time evolution of 

the pressure is non linear. 
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In the pump approximation case, since the variations of the 

strongest mode is negligible when compared with other modes the 

interaction is between less number of modes of oscillations and the 

system shows oscillatory behavior, unlike the non linear case 

where chaotic behavior was exhiblted by the superposition of more 

than two modes of oscillations and due to strong nonlinear coupling 

between them. This fact is evident in the evaluation of D2 (see 

f1g.5.S). As one proceeds from the axis towards the surface. the 

dynamics shows the development of strange attractors ending up in 

complete randomness (see fig. 5. 6). . This requires a finer analysis. 

Thus the time scal,e over which the system is stable or otherwise 

can be inferred only by evaluating the,Lyapunov constants which are 

sensitive to the initial conditions. Inverting the problem.by 

specifying the Lyapunov constants, it may be possible to evaluate 

the class of initial states which can give the observed life time 

of the loops. 

7.3.VLASOV-MAXWELL EQUILIBRIA: 

Vlasov-Maxwell equilibria of solar coronal loops was 

discussed in Chapter 6. The resul ts of the study indicate a 

complex type of radial variation profile of dens1ty,magnetic field 
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and tempera ture. Temperature prof !les are found to increase 

towards the surface reminiscent of the cool core and hot sheath 

features in the coronal loops. The current profile of small widths 

are the outcome of the exact solutions of the Vlasov-Maxwell system 

as is evident from the discussion in chapter 6. Further,it is found 

that a Vlasov-Maxwell description of coronal loop plasma admits a 

variety of equilibrium spatial profiles of mass denslty, current 

dcnsity,tcmperature and magnc l 1c fIeld depending on the 

inhomogeneities allowed. Also this description allows the 

determination of the density and temperature profiles 

individually, in contrast to the fluid description where the 

equations of state is required to extract the separate variations 

of density and temperature from the pressure proflle. 
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SUMMARY 
A Vlasoy-Maxwcll description of the ubiquitous solar coronal structures is 
presented. It is found that an equilibrium plasma configuration can live with ~p::llial 
gradients in density, temperature, current and drift speeds of the charged particles. 
Any stability study must be carried over this inhomogeneous equilibrium state. In 
addition, the Vlasov description admits the investigation of kinetic processes likl.' 
heatill!! and radiat ion and unlike a fluid description. it docs Tlot require (Ill equal iOIl of 
state to determine the individual variations of temperature and density. 

1 I:"lTRODlICTlON 

Solar cormlal J()OPS havc been studied conventionally 
through magnctohydrodynarnic processes, since their shapes 
hetray the underlying magnetic fields. Coronal loops are 
especially favoured for their ahility to pick up energy from 
the C<lnvection zone and deposit it in the corona. The foot 
points of the loops suffer cOlltimwus turning and twisting, 
producin[!. complc:x ma!,!netic geometry in which current 
sheets haw been shown tll form. One helieves that ohmic 
uissipatioll of currl'nt In thcse sheets can maintain a - 1 (II' K 
corolla. Attt'rnrt~ to silow the formation of extfemely small· 
~L'ak current .,IW(.'h have hccll ("'arricd out hy Parker (Il)H3. 
1l)r;7!, Low iI91-:71.1.1)\\ & WolI'" . 119SKi. Vall Balkgtloijell 

'.1 ()i'\:\ llJi'\(, i. l\.arpcll. Antioch()s & Lk V(lVC 11l)l)O) and 
many more. The Mill) l'yuilibria of coronal loops IHlve heen 
irwl'sligatl'd b~' Pri,'sl 11 I)X I l. Hood & Prit:st ( 197(1), Vaianll 
8.: RO~\ler I 197H!. Tsilll!.<I1l0S (198:2), Krishan (Il)X3. 19!\S) 
and "'!'ishall. Ikr~cr <~ Priest (J lJt-;H). In Ihis paper. we 
l'xplorc a Vlus\1v-Maxwcll treatment uf U l;urrent-c4Irrying 
cylindrical plasma. In this description, it is possible to derive 
11K' "patial profiles of cquilibrium phlsma parameters ~md the 
exa,·t partick- vdtlcilY distributions without invokiol,!. 
equlll1oosof stall.: ami the CXlICt particle velocity distribution 
functions. It is {(lund that the system develops strongly
peaked current density profiles under very commonly 
occurrin[! conditions. It is perhaps the disturbance of these 
current density cunfigurations that leads to the heating and 
acceleration of particles in coronal loops. 

2 VLASOV-MAXWELL EQUILIBRIA 

Wl' will c\(lscly follow the recent work of Muhajan (1989) 
on Vlas()v-Maxwcll equilibria for several systems. the 

exemplary cases being Z pinches and T(lkamaks. A. cowml\ 
loop will be represented by a cylindrical column of plasma 
with current density Jz along the axis of the cylinder and with 
no gravity. The actual geometry of a coronal loop consists of 
the two ends (the foot prints) of the cylindrical plasma 
embedded in a sub-photospheric region. A smlill twisting 
motion of the foot points may introduce a small amount ()f 

azimuthal current J// which we neglect tll present. The Sl1h

phntosphcric region contains a high-P plasma where {~ is the 
flU;. I of gas kinetic pressure t<1 magnetic pressure. As a result 
the, magnetic field lines muve on a time-scak lllllch IOIl)!rr 
than the c()f()nal timc-scalc~. This line tyin!' n'dllc<,.~ tht.' 
region {If unstnl>le excitations, especially t h. I~l' (If I( )llP W<lW' 

length. The neglect of gravity n~duc('s Ih~ ~m()llal hillp III ;111 

esscntiHlly h()rizontul cylinder. Of course. whik slutlYIII,I! thl' 
stability ()f an equ ilihrium, the end effccls. )!.rilvitv alld l'\Il'ViI

lure must he properly taken int(l account. TIll' partid.: dcn
sity II, the temperature T. ami the panid.: drift spct:d" II arl' 

in general, spatially varying quantities. lien' \\'L' all.)w all 
spatial variati<lns only in the radial directioll sincl' tiler..: i~ 
observational evidence for such variations. Thr plasma is 
embedded in a uniform axial magnetic field. JIll' Till' rdcvlIllt 
equations for an cquilihrium system (with a/or ==·0) nn' 

V af. e [ V ( • ] oj, ,--- E+-x B+e.B) ._=() or m, c ,(I oJ' 

aj; e [V ] oli V -+- E+-X(B+e.B) . -=() , or mj C ,II of 
1 iJ 4.n 
.... -(rB 8)=-). 
r ar c' 

(1 ) 

(2) 

(3) 

(4) 



.I -- .- (' J d \ Ii'. I Ie. --./; J 

(5) 

(6) 

where ./;.,. arc the singl..: particle distrihution functions. (Ii, Il) 
an: thl.: self consistent fields. l:qUlltions (I) and (2) arc coI
I i.,illil k~s Bolt zman cq lI .. lt i( \lIS ror dcctwns ami i()(1s c.Iescrih
il1~ th~ l"Ol1scrvatioll of paflich:s in phase space of positions 
and nHll1lenta. The"l~ an: also known as Vlasov equati(.)I\s 
whieh arc valid at hig.h temperatures when Coulomb colli
~ions Clll1 he.: ncgkcted. 111 addition the Cully ioni~ed plasma 

. n msid~'rcd h~'rc cxpcrknces (mly electromagnetic forces. All 
llon-el<:ctrOlll<lgnetic forces, such as gravity. arc neglected. 
Further, the axial depcnLh.:nce of particle density is neglected. 
This is v"lid 'fOf loops (If kngth smaller than the density scale 
height. Equation (3) i .. t·he axial component of Ampere's law 
describing stcady state fidds. Equation (4) is Poisson's equa
tion undcr the condi.tion of zcrn charge separation which is 
.iu~tified for an equilihrium study since ch~lrgc separation 
occur. over cxtn:mcly short time-scales such as those of 
electron plasma oscillation. Equation (5) is Faraday's Law 
fnr stcmly fields. Equation (Il) dd'ines current in terms of the 
particle distribution fum:tioll for electrons and itms. Let II 
displ~t~cd M'l.~wcllhlll of the form 

. 
/ . 'III I""" 1 ( ) . '.' = -- i'5- .j""- ex\, - (l - II." )"/1': .• g r 

.iT I' \'.1 " . 

(7) 

pm\'id~' " sdl-t·,)nsistcllt solution for eqtwtions ( 1)-(6). Ilere 
II" i:-. th~' amhient density, 11~,i = 2 7~,;/I1I' .. i and 1I~,j are, 
rc~pel:ti\"c1y. the thermal speed and the urift speed, 1~.i and 
m, .• arL' the t~ mpcratule and nHiss and g(r) is the density pro
fik fa!.''')r which is same for electrons and ions under the 
as~ull1pti()11 of IlO charge separation. 

( ·£1.1'(' / 

The ~l.!If-C()llsi~h;1lt s()lutiollS of equations ( 1)-( 7) for the case! 
when ~(r), dcs(:ribing the cntire spatial variation arc found 
to he 

,1;''') =- [I + ,c,q();l 

ami' 

( r) , 'I M, ~ -_. ) 11 + ").l(~:.1 
( ,. 

where 

,!ilL! 

,II = (lI~jll;J 

(tl ) 

(9) 

( 10) 

IllTe (' i~ the ch<lrge. (" is the.: speed of light and wpe = (41tne 2j 
mJw i~ thc electron pl.lsma fre'-!uency. Thus one obtains a 
dt:nsity pwfilc pcak • .!d at the axis with a characteristic length 
'>calc D, which will h.: <!stimutcd in a lllt(!r section. 

( ·lIIt' Jf 
Here, in addition 10 density r:;radient, the spatial variation of 
tempt:rature is also allowed, The drift spl!cds l/~" arc still 

V!asov--Maxwe!l ('lfl1i!i/J]·ill :'1'r7 

h(lIlmgcncOllS. It hilS hL'l'll ~hllwn (Milhajan 1 tiK')) that ;\ 
series representation for the di~trihuti(}11 fllnClilll]s give" ,I 

valid soluti()Jl of the inhomogeneous Vlmov-Maxwdl 
system, the expansion parameter for th~ series hl'ing (II /1' l, 
the ratio of drift and thermal spe.:eds. This is appropri.ltc for 
the considerations in coronal loops as discllssed later. Using 
the smallness of (II /1'), we write for the d iSlrihut ion fu I)(:t ion 
as 

(II) 

where We describes the spatial variation of c1eetwn tcmpera
ture and tift is the thermal speed on the .lxis (r=()). Since 
we are interested in equilibrium solulions. we a~SlllllC 
1/Jc =1/Ji = 1/J and p~ = fJi' i.e. the electrons and ions have ide'n
tical temperature profiles, With the assumption that density 
variation is generally steeper. than telllpcralUrl.! vnriatioll, olle 
can take tic - fJi == - /1, where ('10 = \ and (' II = II. 

Using equation (11), and retaining terms only lip to (II/I'), 
one finds the profile functions <IS 

1/J =( 1 + r2/40 :lft2fli~P-"2 

g'" (1 + rZ/4o;I1)- 2(~~ - 2)/1;11- 2 

where 

O~r'" (20tf5fJ - 2). 

The temperature 

Toc 1pz -= (1 + ,2/40 £rr)- 4fl/5fl-: 

The current density 

J,ocg"rp2_(1 + r2/4o~u)-2 
The pressure 

pocg1jJ2==(l + r2/40;ft)-l 

( 12) 

(U) 

( 1:;) 

( I ()) 

( 17) 

One observes th"t, uepcmling upon the value or /J, Iht' 
radial variation can bl.! positive ()I" neg.lltivc. Thlls for Ii;> .;, 
both density and temperature fall away from the axis, 
whereas for J> P >~, the density increases and tempera! un~ 
decreases away from thc·axis.}-(.lI" {3<; the temperature 
increases towards the surface and this is very much remi
niscent of the cool-core- and hot-shcuth-typt: loops (lb~crved 
hy Foukal (1978) and Kriegl.lr, de I-cite)' & Vniulla (1l)76), and 
modelled through variational principle in MH D by Krishan 
(1983, 1985), The other parameter, on which chamcterizcs 
the spatial variations, is related to the skin depth. We shall 
see in a later section that tnc measure of 6., which dl.!termines 
the steepness and extent of the current density profile is com
mensurate with the requirements laid down by the joule 
heating of the loop plasma_ 

Ca:;dll 
Here, iwe allow gradients in density and drift speed. It is 
found that the presence of telllperature anisotropy permits u 
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dlsplal'l'd i\lax\\ellian solution of the system where the dis-
trihlltillll l'Ulll'tillIlS art.' ~ivcn by 

(18) 

lIere. we havc taken ¢c = ¢i = ¢ with ¢( r = 0) = 1. and 
g( I' = ()) = I , The equations rclating thc density profik. g( r), 
and the drift speed profilc, ¢. arc found to he 

1 cJ (a¢) 2A. [(U~I.)2 2 ] - -:- I' - = - .., exp ~ (¢ - 1) 
r ()r ar c);: ll~ 

(19) 

and 

[ (II::.)" , ] g(r)=cxp . ~,;: (¢--J) (20) 

whel'l' 

(21) 

Equation ( 1<,)) has been solved numerically and here we will 
reproduce some of thc figures from Mahajan (1989), since 
the spatial hehaviour of the density, the magnetic field and 
the current density arc esscntially a function of the dimen
siol1\t:ss paramcta A. 

( '/lrUIIII/ 11111/1.1 

( 'ol'Onall()o(l, ,I hipolar structure is characterized by an elec
tron density " 11 - lOlli-lOll cm-"; a tcmperature varying 
from it i'cw tl'll!>. of I hlllisands to a couple of million K" a 
kngtil of It)"- I (JIll l'1ll and a radius or J ()K_I ()Y cm with an 
a xial III agll\'l it' I!dd~ ()f a kw Gauss, The currcnt flows essen
ti;dly ;Iioll), tht' ;I\i~ (If till' cylindrical plasma column and 
pr()dlln'~ all :l/illlllth,iI component nil of the magnetic fidd. 
()h~cr\'atil1l1~ in LUI' has shown that loops of different tcm
pl'fat\lrc~ arc coaxial and this has led to the identification of 
cool-cure and hot-sheath-type loops. (Foukal 1978; Krishan 
19H3. 19H5). The X-ray ohservations further reinforce thc 
inhomogencous naturc of the underlying heating mechan
isms. Resonance ahsorption of surface MHD waves, as well 
as the joule dissipation of high-den~ity current sheets (in 
addition to thc uhiquitous mini magnetic reconnections) are 
S(lme of the favoured candidates for heating of the solar 
corona in general, and coronal loops in particular (Hollweg 
II.)H 1). Here we find that the exact solution of a Vlasov
Maxwell systcm naturally admits the peaked spatial profiles 
of current density and magnetic field, and we believe it is this 
elluilibriul11 configuration, which when disturbed, gives risc 
to sporadic tlaring phenomena, acceleration and heating. It 
has bccn shown by Rosncr et af. (1978) and Hollweg (1981) 
that I'm thc joule dissipation to provide enough heating to 
halallcl' thc radiation losses for thc typical conditions of elec
t 1'011 lknsity. ma~nt:tie field and temperature, the currcnt 
sheath IIlU~t have a thicknl'ss of a fcw hundred to a thousand 
em, alld anomalolls instead of the collisional resistivity must 
be llpl'rativc. The latter givcs us a clue to the relative elec
t wn-ioll drift velocity. that must exist to excite ion-acoustic 
lurbulence which may be responsible for anomalous rcsis-

tlV1Iy. The typical parameters in this scenario arc ChllS.,:1I 
from IlolI\\l:1!- ( I ()H l)~ 

eil'ct\'(lll ,knsily in tlK' ,i" :lth-II ,1 = 1(1" elll .\: 
electron tl'mperatllre in the sheath - 'l~, = 2.5 :< I (I' K: 
electron thermal specd- 1/, = 2,7 x 10'1 cm s' I; 
electron drift velocity /I, > sound speed - "" 4.S x I () '/ em s' I. 

The magnetic field Ho product.:d by the current density J .. is 
10 G, and the thickncss (6.R) of the current sheet turns (lut to 
be - \OJ cm, We recall from thc previous section that b, j~ 
the characteristic length-scale in the solutions of tlK' 
Vlasov-Maxwell system. Let us estimate it: 

= 1.04 x I OJ em for T, ~ T" 
=O,9x IOJemfor 7~=9 T,. 

0,20 
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Figure 2, Variuti\'11 "I' magnelic -fidd profile rUlicli,'\l i h <\ I \'el WS 
,\ ,. rIb,. fill c",t: 1 (\.'4ualioll') I. 
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(e) P=0.8 

0.36 ~~ 

"------O. 20 L-_~--''--~_--J. ___ --'-___ -"--=:::':::::=-J 

Thus we find that current profile of smull widths arc the 
outcome of the exact solutions of the Vlasov-l\laxwcll 
system. Here we present a few examples of spatial vari:ttions 
of plasma pammeters. The variations of density and 
magnetic-ficJcJ profile factQrs (g and b, rcspeetivdy) for ca~c 
1, where only the density is space dependent. ate given by 
equations (8) and (9) and shown in Figs (1) and (2). A sharp 
fall in density away from the axis is obtained. This i~ remi
niscent of the condensations often observed at the axis of a 
loop. The current density is therefore found to be maximum 
1m the axis. The spatial profiles for case II allowing tempera
ture variation arc given hy equations ( 121. ( 13) and ( 141. and 
arc shown in Figs (3). (4) and (5) for three v,t1ues of the 
parameter fl. In this case the temperature increase (equation 
15) away from the axir4 for p < 2/5. Case III gives very inter
esting profiles where the current density appears in the form 
of multisheaths (Fig. 6) for large valth':s of thlo' anisotropy 
parameter; the corresponding density profile (Fig. 7) is 
almost tlat. These profiles arc reproduced from Mahajan 
(19H9). Since all functions, as well as the variahles. arlo' 

,. 

0.00 .3.00 6.00 9.00 12.00 15.00 
x 

Figure"* - ("()llIil1l1l'ti 

(0) 
(3=0.2 

8.63 

7.10 

5.58 

·\.0:' 

OJ t, 
~. J..; / 

" '0 
.0 

(b) 
{3=O.2 

O.OO"---~-'---~-"---~-"'--"---r--~---' 

-0.60 

-0.80 

\ .. 
I lIl) ._" ____ -"-_~ _ _'_ ___ _'_ ___ _'_ ___ ...J 

lUlU /..91 5.94 8.91 11.88 14.85 
_1.0(lL_~-~---~-----,----~----' 

0.00 2.97 !:>.94 8.91 11.1>8 14.85 

x x 

(e) 
(:1=0.2 

-~-r---"--.or--'--"'." .. ' --r .. _---, --'---"1"-

0.80 

0.60 

0.40 

0.20 . 

0.OOL---'---........ -5-"-.::::===-----1J...8-8-~-,--l4.85 
0.00 2.97 .94 8.91 1 . 

x 

'Fi~lIr~ 5. Variation of lC!l1lperature profile function ""l versus x = rj b, for II = 0.2. (\1) VlIriatioll of magn<:tic-fi<."ld profil~ function (hel,.) vel'tl~ 
.\ = ,.; b,. for Ii = 0.2.. (c) Varialion of density profile function g(r) versus x = rf (),. !"t)r ti = 0.2. 



- O.5'-_-'-__ ~_~ __ .L..._-L._--J 
021 

• 
4 6 

H~urc 6. Variation of current pHllile function (gilt') versus .~ - rfo, 
~h(lwin!:! formation (If nl\llti~h\!aths for lar!:!\! values of temperature 
anisotropy parameter A (from Mnhajnn 19S9). 

expressed in dinH:nsionless forms, wc only need to provide 
appropriate normali:/llliorl. For coronallo()ps. the anisotropy 
parameter 

Thu~ 101 it· :\ onl" tinlls (/\ 1;./'1: ) " '2.7 x 10 '. which is 
n::lsonably ~Illall. 

("ON(,LlISIONS 

A Vhls()v-Maxwdl description of coronal loop plasma 
admits a variety Ill' c4uilihriunl spatial profiles of mass 
density, current dcn~ity, the tempcmturc, and the magnetic 
Ilcltl depending upon the type 1)1' inh()lI1()!-tcneitic~ allowed. 
The profiles vary from being nat to spiky and resemble the 
\lnc~ derived frolll EUV and X-my coronal observations. 
The multisheath current profiles derived here c()mplcmcnt 
Ihe magnclohydrodynamic study of current sheet formation 
especially well. In addililm, the Vlasov description allows the 
determination of density and temrSt:rature profiles indi
vidually, in contrast tel the fluid description where equation 
of stute is rC4uircd to extract the separate variations of 
density and temperature from the pressure profile. 

Vlasov-Maxwell equilibria 60 I 
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Figure 7. Variation of density profile functi()n !!(r) vcrsu~ .t '" rJ 6,. 
for several values of the temperature anisotropy parameler A (from 
Mahajan 1989). 
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PRESSURE STRlJCTUH.E OF'SOLAR CORONAL LOOPS,·1I1 
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IlIdhlll IlI.Ililll1C t!f ASll'Ol'llysics, Bill/galore 560034, II/dia 

(Rel'ci\'\:u 6 :\lIgu~t. 11.)91; in revised form 18 May, 1992) 

,\bstraCI. The the<'ry "I' ideul tIIugl1cwhydrmlynalllic turhulcncc in cylindrical geometry is used to study the 
steady-state structure ofu cllrnnallool'. The pressure pmtilc is derived from MHD equations by rcpresent
illg the "docit)' and magnetic !ields <IS the superposition of Chandrasckhar-Kendall functions. Such a 
representation hrings out the thrcc-dimclIsiunal structure of the pressure in the coronal loop. The radi:!l, 
aZlllllltllal. anll axial variatilllls nf the pressure fm a constant density loop are discussed i'n detail. The 
rres~urc has Ull oscillatory hclHlvitlr I(lr different azimuthal angles at some radial positions. This study 
predil t, 1I1\HC Il:utllrc~ in pr~ssur~ tlWIl can bc compared with the presently available observations. 

1. Introduction 

It is well known that the solar ~monu is highly structured. The basic structural com
pOllent or the solar corolla is the eorollul loop. These loops or arch-like structures or 
thl: tll,tiw n.!~illlls Oflhc SUI! have b~'en ohscrved ill the emission Ht the UV, FUV, and 
X ·nlY wavck:ngtlls (Follk:tl, IIJ7H; l.evine nud Wilhbroe, 1977; V llianu and Rosner. 
IlJ7X) The thell!'\' of radio plll~aliolls ill comrutl l\lops has been discu:-.sed by 
l\~chwandl'll (1% 7). 

(\l\'llllal 1(0)p plasma i~ bdil'vcd to \::trry currents which result in a helical form of 
the Illtlgl1di~'licld (Levine and A\t schll \1:1', 1 t)74; PllleUo (.{ a/., 1975; Krieger, dc Fdter. 
anti Vniana, 1976; Pl'iest. 197X. 1I(IIH\ and Priest, 1(79). The M H D equilibria of wrona I 
loops have been invcslig.:I!I..'d by Pril~s! (19H I) and Tsinganos (1982). 

In ),pit~ of the continuous pumping nf magnetic and velocity field illictuatiolls into 
till' .:(\('onal phlSIlHl, the loops l!xhibit a fairly stable and well configured geometry. The 
stc,ldy-~tatl! pn.:ssun: structure is the result oj' the various manifestations of the balance 
Ill' till: in~rt ial and Illaglletit.: f'lln.:es. Krishan (19~Da. b) discussed u steady-state model 
or u.:t ive n.:gioll t.:on>nal loops lIsing the statistical theory of incompressible magneto
h)drodYllalllic lurhulent.:c described by Montgomery, Turner, and Vahala (1978). The 
main fcattlrl:s of the theory consists of lIsing the MHD equations for an incompressible 
fluid, The magnetic and velocity fields arc expanded in terms ofChandrasekhar-Kcndull 
(hen.::tlh·r referred t;; ali C-K) fUllctiolls for which, the completeness has been proved 
hj Y Ilshida and Giga (Il)\)()). The pressure profile is derived as a function of the velocity 
and magnetic Ih:lds in the form of Poisson equation. The spatial profiles oflines in active 
region loops were also studied, The statistical mechanics of velocity and magnctic ficlds 
in solar at.:tive regions was discussed by Krishan (1985). Krishan. Berger, and Priest 
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(1988) discu ssed the dynamics of velocity and magnetic fields in coronal loops. Recently 
Krishan, Sreedharan, and Mahajan (1991) have also presentedu Vlasov-Maxwcll 
description of coronal loops which is a preparation for the study of kinetic pro~esscs 
related to heating and acceleration of plasma particles. 

The force-free nwgnetic fields (fi x Ii = aB) and the Beltrami flows ('fj x V = o:V) 
rcpn!sent the minimum energy state ora mugnetolluid. A single C-K function represents 
these l!Onfigurations ofthc magnetic and velocity llelds. The lI1agnl"totluid in the clironal 
llalp is helicved to he in an approximate s(41(e of (he ron:e-frec fields with small 
depar(un.;s from the current-free fields of the photospheric fluid. Now, it is 'quile 
reasonahle to expect the coronal loop fields and !lows ttl have departures frolll the 
strictly force-free configuration. By representing the fields hy the superposition of the 
C-K fUI1l.:tions we can manoeuvre these departures in a systematic and quantitative 
ll1ann~r. 

We extend the earlier work on the ~teady-st<lte structure or the pressure in cnronal 
loops, by representing the vdm:ity and Illaglll.:tk fidds :IS the superpoliitioJl or three 
Chandrasckar-Kendall fUIlI..:tions. Thisbrings in the three-dimensional spatial variation 
(r, 0, =) in the plasma pressurc and the state is not f'or(.:e-frce, alth()lI~h individually thc 
C-K functions represent a force-free state. The Illotivation hchind the ch()ic~ of three 
(C-K) functions for vc\o(.;ity and magnetic fields is to ext~nd this study to include the 
time-dependence of pressure in coronal loops. The three-mode rcpr<;!sentation admits 
the temporal behavioral of the fields in its most basil.: form. Besides a three-mode 
representation also in principle exhibits chaotic behavior. The evolution of the rcsistive 
magnetohydrodynamic equillibria is being studied in order to understand the emergcllce 
of preferred structures, if any, by Shan, Montgomery, and Chen (1991). A truncated 
three-mode configuration has been explored by Chen, Shan, and Montgot1lery (19l)()) 

and their results qualitatively agree with the predictions of the minimum dissipation 
theory (Montgomery, Phillips, and Theobald, 1989) as wcll as with the compututions 
ohtained using the numerical code (Dahlburg ('t ,Ii., 1986, 1987, 1988 and Thcobald 
1'( ([/., \(89). We however plan to study the three-mode ideal system in order to qualify 
the variations of the velocity and magnetic t1elLis in the solar atml)sphcre, in terms or 
Ilonlinear or stochastic fluctuations. In this paper we discuss only the three-dimensional 
spatial pressure structure of coronal loops. 

In the next section, we prescnt the Mil () equations for an incompressible fluid and 
outline the pressure prolile. Section 3 deals with a discllssion 0(" the results llhtained in 
til is study. 

2. Derivation of the Pressure Profile 

The coronal loop plasma is represented by a cylindrical column oflength 'L' and radius 
'R'. The mechanical pressure P is expressed as a function of velocity Vand magnetic 
11eld jj using the MHD equations 

v p (V x Ii) x Ii - - - cV - = - - (V' 'V)V - -_. , 
p p ~ 

(ia) 
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-. a~ 
VX(VxB)- ~(), 

tl 

\\'IH:n: I) is till' mass dcnsity and the 1\lrce due to gravity has becn ncglct.:ted, 
U~illg th~ identity (i" V)'f':: (V >< 'j') x V + (l/2)'i7V2, Equation (\a) becomes 

V I P'p + ( I /~)V-l '" " - ('I X V) x V - ' , ',[CV " Ii) x Ii - - -] ''IT-
_ F' ()I 
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(I b) 

(~) 

(:'olll)\\ inl:! l\!olltgonll:ry. Turner. and Vahala (l97H), the velocity field V and 
lllagnctiL' tldd H in the loop plasma arc reprcsented by the superposition or Chandra
'l'kil,II'-K~llLlali rUIH:tion,. Tile wmplete dynamics can be described by a sd or infinitc 
",11Ipkd 1l(lillillCar ordillilry dilrcrcllti;ll eqll:ltions which arc of tin;t order in tilllC 1'01' th~ 

np;lIl\iull "(ll'llkient~ or velocity alld Ilwgndic fields and it is a f'orl1lidahle tnsk to lillti 
,pllllitln, tn tlll.:se ~qll;ltil)I1S, ) knl'c, 111.:1'1.: \I'e choose to represent the Iklds by thl' 
,Up":l pmitil III (,I' the three 1(I\\'I,;,t ord,,:r ('-K runctions. Another justilication ror d(linp. 
so is that th,~c rlllll:lions represent the largest sliatial scales and therefore may be the 
1110st suitahh: states rot' comparison with observed phenomena. 
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In the triple-mode system, 

where 

V = ..1."I'/"(I)A,, + ..1."11,,(I)A,, + A,.t/,.(f)A,. , 

Ii = A"e"(I)A,, + A."e"(t)A,, + A,.<!,.(t)A,. , 

- - [il1l ik" OJ . [ (';I Illk"J a",,,(r) = e'r - + --;;~ 1/1",,, + e(/ -;: - ....... 1/1/11/1 + 
r A.III" (I (./ rAm" _ 

1/1",,, = J",(y"",r) exp (imO + i k,,=), 

k" = 2rr.II/L, 
11 = 0, += 1, += 2, ... , 

111 ;: 0, += 1, += 2, ... , 

Ii'S and rs an: in gcncrul (;omplc.x. 

(3) 

(4) 

(5) 

140r---~--~----r---~--~----T----r----r----r--~ 

N 

a St, 

)( 

-.. 
ct 
I 
ci 56 

28 

o 2 4 
Zl 

6 10 

1··ig.2. Axial vuriatiol1 or thc prcsslire 1', ror dil1'crcl1t radial dist:lllC<!S, r. 
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Till.! fUlh;till!1S (/"", satislY V ,< lI,,,,, = i'II1"(/'UIl' i'I/I" can be determined from thl.! 
houndary \.:llJ1dition" for a perfl.!ctly conducting and rigid boundary since the obsl.!r\'a
ti,ll):; 1.11.' ~l\t,\\ \er~ \\ cn·deline,! \"I.IP strLh;tur..:s aligned with the magn..:til: lic\d aCI\ISS 

\\ hi,:h thcre i~ link ,Ir 11<' tLllbl','rt, Thu~ Ihe radi.\\ C~)tl1p\'ncnt ,It' the \'c\I.I(i\: :Il\t\ II", 
1l1.1!!nC\l( tic\d \ ;\ni~h at thc ~urral''': r '" R. i.e .. 

(h) 

I hl\\C\'L'I, for the ('/I () 11/) IlIo(\e,"', U,,' 0, and the i'oo is delcl'illilled fmlll tlte 
l'()II-;\;\lH:Y or the ratio \11' the toroidal and po\nioa\ magnetic !luxes as 

301----

.J/,(~'n"R) I? i'''<1 

.fo( j'",Jl) I_ I'on 

25r----------------------

20 127.0 

I 

Z 

1S -

10 

5r---------____ __ 

(7) 

127,0 

hg.5, COlltollr plot of the prl.'SSllrc P, as a fU'lction of ;'",r and Z' when /I is avcrugcd. 1~llch unit "f the 
axes corresponds tll ;'"," = (j,( and Z' '" OJ, respectively. 
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('"", is the normalizing 1:()I\~tant which relates A",., \0 am" hy 

..1111" '"' C,,,,,'ii,,,,, and f.·j~.",·, li"l11 d3r= D"II' bill",' 

255 

rhe dYllamics t.:an be des~Tiht:d b) taking the inner products orthe curl Ill' Equatiulls 
( I a) alld ( I b) with A~", ~\nd inll!gratin!!. over the voluille. The rt:sultin!!. si., cl)lllpk'~. 
~'tlurkll Ilonlinear ordinary dilrcrcillial equations arc 

,. 

z· 

til" ." A.,),. ( "" . [' •• / 1 
1','- 1.,.)1 '1,.'1. , .. ';"t:;" II , 

tl .1." 

(~llh :. A..J"" A )/*[ * ~*' / ] , ' •. ,. (A" -, 'I,. 'I" -1, •. "" P , ('( A" 

( i',,,r) 

.. + 
r 

--f 

Fig, (m. Density riot of the rrL'SSUrC P, os a function of ]1",1' :md Z'. 

(X) 
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(i',d r) 

Fig.6b. SUOIC .IS in Figure 6(a) fur '1,<1 > '1,1' 

(I I) 

( 12) 

(U) 

wh:n: I· J A~' (AI> X A,,) d'l" and thl! (11, IJI) values oj" tile. modes (c;, h, c) ~alisr~ tilL' 
c.:()lIdi!i()n~ 1/" = II" + 11,. and "'" = mh + III,. 

It (;<l1l hi.: ,howil lh,,! 

(V x Ii) x /I 
I·, ". It. C 

I h. ,', II 

(1-11 
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(V><V)xl"', ( 15) 
I 0, ' •• I 

;'0 I hat I h. I. ,I 

V(P/p + (1!2)1'~) c 

,. .1, Jr, " 
I II. (' .• ' 

Il1lhis p:lper \\'1.; I.'online our ;,llIdy 10 Ihe sleady-state solution \\lthe pre:-;sure. Fm Ihe 
~Ie:ldy-~Iate ('tr 11/, ~l .. 0, :md hellee, \\'e lind from EquatilHls (H) 1\) (13) 

v (/'/1) I· (I; 2 ) I"~ ) 1) , 

i.e .. !'I' I I 21'" ,',))I:-.lanl. 
Ii" Ille \alll\~ oi" /' al Ille Ilrii!in (I"' 0,:"' 0) is po. then 

"'/i ",-c Pulp I (I (2) VI~ .• (1/2) 1-1. (17) 

"hl'!'l' 1 'It is Ihe \'dndly :11 11ll' origin (I" 0.: 0: 0). 

3, Discussion 

!'Ill: :-,p:lti:t1 \'ariatiol1 or pressure is presented for a cylindrical column of plasm:1 I'or 
\\,1111.'11 thL' ratio or thc radius R 10 h:llgth /, has been takell to be R/!' " io and lilL: 
!':Itill Ill' th,' loroidal 10 poloidal !lux ~/,/t/J" '''' 0,1. 

\\'t: Iw\'c d)()~cll I wo triads ii, h. " suc.:h that they repn:sent the Iai'gesl rossihle spatial 
;"'ak:,, :IS \\ell liS salisl)' lill: condition II -, II t· C'. These are: 

(/1~c(I.I), hi =(1.0). and 
(I~ "" (0,0), "2 ,c (I, )). alld 

l'1 == (0, 1); 
c 2 = ( - 1, - I). 

Thc<':llI'n,:spllllding valucs ol'i''s and).'s arc found to be (li'om EquHtiolls (()) and (7)) 

i',Ii R ~, ~. 23. 
i.,,,R 1.~'). 

i'" .• R J .·1-1, 
i.".~R ~ "1.4-1, 

i'hll? '" ::Ul5. 
;'''1 R ,\, (l(), 

i·I..J~ 3.2,\, 
)".~R '" ,\.29. 

)'.,]R = 3.H5. 
)" IR '" 3.XS, 

l',.:!.R '" 3.23 , 
·).,~R = ,\.29. 

The tplal energy f:' of' the loop plasma in a given configuratinn (a, 11, (') is givcn hy 
I:' . 2 L:, ,1./', '. ).~ Il7. Though we have sOl1le estimate of the total energy of' a typieal !<H)P 
lill'l'c is 110 oh\'iolls \\"<1)' of' fixing the rclalive magnitudes of the three modes. Ilowevcr, 
t 11l~re arc t\\'o physical c()\lsidcrations we ean usc to fix the rdative strengths of' tile thrcl: 
l11odcs, as is usually done whencver three modc interactions arc involved. 
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Fig.7b. Radial variation of the pressure p~ for 0 ~ 3 n/4 and different axial distances. 
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Th~ tirst is the pump uppmximation under which one of the three modes is taken to hi,; 
the strongest. For example, here ~ince the conservation conditions give a = h -I- e, \\',: 
I.:an take '0' to he the dn111inanlll1nde and call it the pump which shares its energy willI 
the ntlH:r two modes, This will he!.:ol1le evident in the time-dependent des!.:riptioll. 
'r1' I'l:l'llI"e, kl ' 

3,1, I, /'1'(',1.1'1/1'(' (I', ) .~'{1'I/('1/{I'(, ;11 til(' (·(/lIfi.~lIr(lIi(/1I (ii" "" (', ) 

I-()I' till': triad (Cl" hi' ('I) 

W'.! I.:hoose 

\//01 1 = 1()"', 

(1;';) 

s() that the pump approximation is valid. The expression on the right-hand side of 
l-:quation ( 17) h<l~ been averag'.!d over a full cycle of () and pressure (P I - Po) is plotted 
as a rlllll.:tion 01" i'",r for difli.:rcnt values of:' <:' "" (:/1.) x 10) in Figure 1. It can be seen 
tilal the prcs~ure (or temperallln.:) at UllY height im.:reascs along the radius towards lhe 
surra!.:'.!. The radial vari'llion of prcs~urc is the maximum at the root points or the loor 
alld it is millimulll at til\! apl!x. This is in continuation with the result of l.'.!vinc :lIld 
Withhro~' (1'177) who Shil\\'I!U Ihallh'.! .:oronall\wps undergning uynumk i,;hanl:\L:s arL' 

o 
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hf\' K, Axial variation of'the pressure I'~ Ihr /I '" n/4 and different radial diHlances, 
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l:haracterized by a temperature structure in which there is a cool core relative to thc . 
substantially hot surrounding sheath. 

In Figure 2, (PI - Po) is plotted against z' for various values of (y",r). The axial 
vnrilltion of the pressure is maximum at the axi~ anu minimum at the surface. The 
maximum value of the pressure is attained ncar thc apex for all values of ()'olr). This 
is in agrcement with the results of Rosner, Tucker, and Vuianu (l97X). 

Figure 3 presents the radial variation of the pressure for 0;; 0, n14, n12, and n when 
the pressure is averaged over z. The pressure incrcascs uniformly for till values of ' 
)'"Ir.:s;; 2.0. t-iowcvcr. for y" Ir > 2 the dependence of the pressure on the azillluth(ti angle 
is significant. 

Figure 4 shows the azimuthal variation of the pressure for different values of 
}'" Ir > 2.0. The pressure exhibits an oscillatory behavior predominantly near the surface. 

Figure 5 depicts the contour plot of pressure as functions of Yair and :' whcn the 
pressure is averaged over O. 

Figure 6(a) is the density plot of the pressure. The darkest region l'orreSpl1l1ds 10 Ihl! 
minillluill pressure. As we proceed towards \he apl.:x, Ihe ~h~ldes hC(;()lI1e lighter and till.: 
region or maximum prcssure is rcached. Figure (l(h) is the density plot 01" the pressure 
when /71>1 > 11,.\, It is seen that the region of the maximum pressure has moved up. 
Ilowever, when '1('1 > Y/hl' the region ~)r the maximum pressure has shifted down. Thus 
the region of maximum pressure need not neccssmily he al the apcx. 
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!'if'.. 'J. Azimllthal variation of the pressllre.: I'. ror Z .' I.i~ ailll dill'crcnt radial dislanc.:s. 
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},1.2. Pre.\·.I'III'(' (f'2) .")11'11('1/11'(' ill Ihe C(/I!/~~Ur(/li(li/ (a2, h2• ('2) 

For the triad (/2 == (0.0). "2 E (I. I), ('~ == (- 1. - I), using thc incquulily (IX) and the 
vailies 111,,~: 0: 2 x 10", ! 'II>:! I = X x 10" = 1 tl.,z I, we arrive at the following results: 

hl:!urt' 7(:1) pn.:sents the radial variation 01' the pressure ror 0 = 7[(4 and It)r dill'erenl 
axial pllsitions. In this case the maximum pressure as wcll as the maximum variation 
in pressure is found at' : = L/4. 

Figure 7(b) shows the radial variation of press lire for 0 = 3rr/4 and for: = 0, L/4, L/2, 
and L. Here, the maximum pressure as well as the maximum variation in pressure is 
al the fOOl points. in (';ontrast ttl the case for ():= rr/4. 

The axial variation or prt.,:sslire ror /I,... rr/4 and ')',,2r = O. 0.72. and 1.44 is given in 
l-'ig,lm~ (X). Tile pressure shows an oSl.:illatory behavior ut the uxis of the loop m()('l~ 

pn:tiotllinal11ly th'an towards the ~urraee. 
Figure l) Ikpil'lS the ;l/ii1ll1tl1al "arialillll or the pressure at the apex or the l(lop I'lli' 

dill"l'rl'nt radial distanL:L: I'rllillthl' axis. Illlhis easc als() thl.! osdllutory Ilutllrc of press lire 
i ... C\ idclll. The maximulll valul' is allainetl at the houndary. 

3.2.1. PrCS,I'1I1'1' (1\) SUI/rlllre illlht! Cm!fiKUrtilioll (ai' hi' c I ) 

The second physical consideration that can guide us is that the mode strengths vary in 
proportion to their spatial scales. The mode with the largest spatial scale may he the 
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stl'\lngl!st. I krl! since CI, == (I. I) and ", == ( 1. 0) have the same spatial sea\(! ill thl: 
:' -dirl!ctilln and this spatial scak: is slllal!l!r than that of the mode (' I == (0, 1), we CUll 

assuille '(/,' and 'hi' to he of equal ~(rellgtll and less than the strength of '(',', i.e., 

\\'t; chosc! '1,,11 "' 10"'. I/lb'I" X.-I x 10(" and 11/", I :: 1.6 X 107 so that the above condi· 
tions arc satislied. The radial pressure variation is presented in Figure 10 for dill'ercnt 
axial positions. The maximuill variation or the pressure is at the foot points as in 
Figure I. llo\\'ever, for other valul!s or Z' • the pressure tends to decrease initially and 
thl!n incrl!:Ises Illonotonically after a cl!rtain radial distance, contrary to the prcssun.' 
pl'lltilc givcn ill Figure I. when: Olll.! secs a monotonically incrcasing pressure for all 
valuc!i of J;'. 

The axial and azimuthal variations of the pressure urc giVCll in Figures 11 and 12, 
n.:spe-ctivdy. The !n!nd is very similar to that presented in Figures 2 and 3. 

3. 2.~. PI'I!.I',I'IIJ'(' (P ~) Structllr,> ill the C01!figul'Cltioll (l/2' h2, c2 ) 

In this case the mode a~ == (0, 0) corresponds to the largest spatial scale and therel'ore 
if this is stronger thun the other two we arrive at the conditiOllS ).3~~~2 > ).;,2/17.2 and 
).~~tl~~ > )..~~Il;~ which arc identic.::tlto the pump case for the triad (al' bl • c~) lind the 
pressure profiles have already been discussed. 

3..'~ C()N(,l.lISION 

In eOllelusilH), the represe..!ntatioll or velocity and magnetic fields by a three-mode 
Chandrase..!klwr-Kendall funetio1ls brings out the three-dimensional features or the 
pressure prolile. We hclicvc that the choice of the triads reprcsenting the variations or 
wll II'" ~ and magnetic.: fidds 011 the lurgest spatial scales permitt.ed by the system, 
proviJes a fairly realistil: descriptiiln of the loop p!asma. Though the pressure structure 
is a strong fll1lo.:tiol1 of thl.: relative- :lIl1plitlldcs of the modes, the trends, like an inc.:rease 
\11' pressure..! !\)\I'ards tile..! surface lind the existence of maximum sOJJlewhere along the 
knglh Ilftll\! loop. Cl11l.:rge as the generul reutures. The temporal evolution of the pressure..! 
is IK:illg con~idercd and will b\! re..!pnrtcd shortly. 
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TEMPORAL BEHAVIOUR OF PRESSURE IN SOLAR CORONAL 

LOOPS 
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Abstract. The temporal evolution of pressure in solar coronal loops is studied using the idc.allhc-ory 
of magnclohydrodynamic turbulence in cylindrical geometry. The velocity and the magnetic fields arc 
expanded in terms of the Chandrasekhar- Kendall (C-K) functions. The three mode representation 
of the velocity and the magnetic fields submits to the investigation of chaos. When the initial 
values of the velocity and the magnetic field coefficients are very nearly equal ,the system shows 
periodicities. For randomly chosen initial valueJof these parameters the evolution of the velocity and 
the magnetic fields is nonlinear and chaotic. Tne consequent plasma pressure is determined in the 
linear and nonlinear regi meso The evidence for the existence of chaos is established by evaluating the 
invariant correlation dimension of the attractor-D2, a fractal value of which indicates the existence 
of deterministic chaos. 

1_ Introduction 

It is well known that loops are the dominant structures in the higher levels of 
the solar atmosphere. Even though our knowledge of loops has greatly enhanced 
in recent years as a result of observations in UV, EUV, and X-ray wavelengths 
(Foukal, 1978; Levine and Withbroe, 1977; Vaiana and Rosner, 1978), we have 
little empirical knowledge of the nature of the coronal magnetic field. Therefore a 
discussion of the relationship between coronal loops and coronal inagnetic fields 
depend heavily on theoretical models. . 

Coronal loops exhibit a fairly stable and well-configured geometry in spite of 
the magnetic and velocity field fluctuations in the plasma. Such a steady slate is the 
result of various manifestations ofthebalanceofinertial and magnetic forces. Using 
statistical theory of incompressible magnetohydrodynamic turbulence discussed 
by Montgomery, Turner, and Vahala (1978), a.steady-state model of active region 
coronal loops was discussed by Krishan (1983a, b), Krishan (1985)1' Krishan, 
Sreedharan, and Mahajan (1988) discussed the dynamics of velocity and magnetic 
fields in coronal loops. A Vlasov-Maxwell description of coronal loops deriving 
particle velocity distribution functions in an inhomogeneous plasma has been given 
by Krishan, Shreedharan, and Mahajan (1991). 

Recently Sreedharan et al. (1992) have studied the steady state structure of 
the pressure in coronal loops, by representing the velocity and magnetic fields as 
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the superposition of three (C-K) functions. They discussed in detail the three
dimensional spatial variation (r, e, z) of the plasma pressure in coronal loops. 

In this paper we extend the results obtained by Sreedharan et (1/. (1992) to include 
the time dependence of velocity, magnetic field and pressure and study their evo
lution. Since the evolution equations are coupled and nonlinear, the dependence 
of their solutions on the initial conditions is ex.pected to reveal chaotic behavior. 
Towards this end,we investigate in this paper the existence of chaos in the evo
lution of pressure in coronal loops by studying the power spectmm of the data 
generated by the solution of the MHD equations and by evaluating the invariant
dimension, especially the second order correlation dimension of the attract or lh 
of the systel~ . 

In the next section we derive the pressure profile for an incompressible fluid 
llsing MHD equations. In Section 3 we give a discussion of the variolls u:-;pects 
of dynamics of the system by taking (i) the linear case, (ii) the pump approxi
mation, and (iii) the full sc.t of nonlinear coupled equations and the existence or 
deterministic chao~ hy c\'aluating the second-order correlation dimcmion which 
is :~n invariant parameter (.)f the chaotic system. In this evaluation, we obtain the 
following informations: (a) Is there an attractor and jf there exists one, is it regular 
or strange? (b) Is there only a single aftractor or are there more than one? (c) What 
is the embedding dimension so that in describing nonlinear processes characterized 
by the set of given equations, what should be the dimensions of the phase spacc 
to de~cribe the dynamics of the system. We follow the algorithm that has been 
proposed by Grassberger and Proccacia (1983). Section 4 deals with the discussion 
of results of the temporal variations and chaotic behavior of the pres~re profile. 

2. The Pressure Profile 

The pressure profile for an incompressible fluid can be expressed as a function ()f 
velocity V and magnetic field Busing MHD equations 

,:!P = (~x:8) x 13 _ (V. V'W _ 8" , 
p p at 

(1 a) 

- - - BB v x (11 x B) - - = 0 
. at' 

(1 b) 

t' . 17 = 0 and P = nkT ) (1 c) 

where P is the mechanical pressure, n is the number density of particles, J.: is 
Boltzmann's constant, and T is the temp,f!rature. The loop plasma is represented 
by a cylindrical column of length L and radius R. p is the mass density and the 
force due to gravity is neglected. The set of Eequations (1 a), (lb), and (1 c) form a . 
closed set of equations in the variables (1', B, p, and T). 

Equation (1 a) can be manipulated to yield 
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-- (I' 1 .~) [(9 x T3) x Ii - - -] iJF v - + - t - == - (\7 x \I) x V - -;:- . 
(I 2 p Vi. 

(2) 

The! vc locil), field V and magnetic field B can be represented as a superposition of 
the Chandrasekhar-Kendall functions following Montgomery, Turner, and Vahala 
(1978). ]n this study we consider a triple-mode system for the velocity V and 
magnetic field B written as 

\' == >-: A,T/t(t.)Aj, 
~ 

(]) 
, ~..:n,b.(', 

B == L _\;~i(t)Ai' (4) 
i:::(l,b,c, 

(4a) 

C"m is the nonnalizing constant J A:m . An,m', d3r = 6nn , omm, where 

_ • [im ikn a) . [. a mkn ] 
Q.nm(r) = er -;- + Anm ar 'l/Jnm = eo ar - r'\nm Wnm+ 

(4b) 

\ .-- ±("V2 + 1.2) 1/2 k 2"'",,/£ 
"'TIm - Inm "'n , 'n = ". , 

n = 0, =Fl, =F2, ... , 17'l, = 0, =fl, =F2, .',. 

The functions anm satisfy V x a == Anma:~m . Inm can be determined from the 
boundary conditions (Sreedharan et al., 1992). '7i and {i are in general complex. 

The dynamics can be described by taking the inner products of curl of Equations 
(1 a) and 1 (b) with ~m and integrating over the volume. The resulting six complex, 
coupled. nonlinear ordinary differential equations are 

(5 ) 

(6) 

(7) 
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(9) 

d~c , , 1"[ .. ~. ..~ 1 ill = Aa - I'Ib 7)o ... b - 71b<,a , (10) 

where I = J .4: . (Ab x Ac) d3r and the (n., m) values of the modes (n, 1>, c) 
satisfy the condition no = nb + ne and rna = mb + me. Equation (2) with the 
representation of V and B given in Equations (3) and (4) can be manipulated to 
yield 

(1 1 ) 

The expansion coefficients 1/i and ~i can be solved numerically from the dynamical 
equations (5)-(10) which when substituted in Equation (11) determine pressure as 
a function of space and time. : 

3. Dynamical Aspects 

The temporal evolution of the pressure is presented for a cylindrical plasma column 
of length 'L' and radius 'R'. The ratio of the toroidal to poloidal magnetic 1lux, 
It>{t.)/'tI.l(p) is taken as /0' We have chosen the triads a, b, c to represent the largest 
possible spatial scales and also satisfy the condition a = b + c, as a. = (1, 1), 
b = (1, 0), c = (0, 1). Corresponding values of "Ii and Ai are found to be 'YaR = 
3.23, ~fliR = 3.85, feR = 3.85, 'YaR = 3.29. AbR = 3.90, AcR = 3.85 for rigid 
boundary as described in Sreedharan et al. (1992). The total energy E of the loop 
plasma in a given configuration (a, b, c) is given by 

'""' ~ 2 E = 2 ~ Ai (7Ji + ~i ) . 

i=a.,b,c 

There is no obvious way of fixing the relative magnitudes of the three modes even 
though we have some estimates of the total energy of a typical loop. 

There are two physical situations under which Equations (5)-( 1 0) can be solved 
analytically. (i) The linear case, (ii) the pump approximation. 
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TIME (t) 

Fig. 1. Temporal evolution of pressure [P(t)J at an axial point of the coronal loop when the initial 
val ues of the velocity and magnetic field coefficients are very nearly equal. 

(i) THE LINEAR CASE 

Here we study the time evolution of the small deviations of the velocity and 
magnetic fields from their equiIihrium valtles, i.e., we assume 'rJ :::: ?/o + "11. (.:: 
!;o I ~, and Ilwt I/O· ,~o :Illd 1/1 ••.. ,/o, ~, .~ .. : ~o fOf 1l1l1ll(!Jt~s. A.~slJl/lillg hoth 'II (I) 
und ~I (t) have time dependence through est, we can obtain a dispersion relation 
whose solution is 

S :::: i=i III [A~()\b - Ac - Aa)2/r)bOI2 + A~(Ae - >'a - Ab? /7JcO/ 2-

-A~ (Aa - >'b - >'c)2111aoI 2Jl/2 . 

Thus the system exhibits marginal stability since the perturbed quantities have 
sinusoidal oscillations with a period Which depends Upon the equilibrium values 
of the fields. 

Figure 1 shows time variation of pressure fortbe initial values of 1li as follows 

1770 I :::: 1.0 , 

I~a I =:: I. I , 

/1lbl == 2.0, 

i';b / :::: 2. J , 

hel = 3.0 , 

leel == 3.1 , 
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60.00 

45.00 

:i 
Vl 

30.00 
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J 1 o.oO~~~--~--~---2-6~0------~3~9~O~~--~5~2~O~~~6~.50 
0.00 1.30 . . . 

FREQUENCY (w) 

Fig. 2. The power spectrum [S(w) - (constant) limT_"" T-11 J: e''''t P(t) dtl'] corresponding to 
the time variation of pressure shown in Figure I. 

The corrC~!' lilding power spectrum is shown in Figure 2. This discrete spectrum 
c]t~arly indicates that the pressure profile has a finite number of frequencies when 
the magnitude of the velocity and magnetic fields are approximately equal initially. 
This marginal stability exists only for the time scales for which the Iinearisution is 
valid. The S/..:ylab. UV and microwave observations do indicate that the loops are 

.. in a state of quasi periodic pulsations (Aschwanden, 1987). 

(ii) TH,E PUMP APPROXIMATION 

In the pump approximation one of the three modes is taken to be the strongest. For 
example here since the conservation condition gives a = b + c, we can take 'a' to 
be the dominant mode and call it the pump which shares its energy with the other 
two modes. The time evolution of the two modes does not produce any significant 
change in the pump mode and hence we can neglect all time variations in (T/a, ~a). 
The system of six equations «5)-(10» therefore reduces to four (Equations (5) 
and (8) are automatically satisfied under the pump approximation since both sides 
of the equations are vanishingly small) with the additional assumption 1)0 = ~a and 
takes the following simplified form which can be solved analytically 

d7]b >'c>'c (>. >. )J* [.. *] dt = ~ a - c 'TIc - ~c 1)0. , (I 2) 
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d7]e = AaAb (A - A )1* [ .. - '*] 
dt Ac b a 1Jb '>b 1/0. , (13 ) 

d~b \, J" [" '"'] 'dt ,= "'o/le 1]e - '>c 1/0 , (14) 

d~c \ >.I..J* [c* >OJ dt = "'Il'~ t,.b - 7]& 7]0. • (lS) 

Complex conjugates of Equation (13) and (15) gives 

d7)~ AaAb (' \ )J[ {;] .. - = --, /lb - /la 7)b - .. b 1Ja. , 
dt "'c . 

( 16) 

d~~ = A(1AbJ[~b - 1Jb]1J: 
dt . , 

(17) 

and the difference of Equations (16) and (17) gives 

d7)~ d~~ Ao.AbJ *[' '\ \] ( , ) -- -- - == -- 1Ja Ab - Aa + "'c fib - .. b • 
dt dt Ac 

(18) 

A time derivation of Equation 02) can be written as 

(19) 

We have used Equation (18) in writing (19), In a similar manner we can write the 
equation for d21Jc/dt2, 

One can therefore write these equations as 

d27Jb 
df.2 = PI1Jb + P2 , (20) 

(21 ) 

where 

AC (Ab - Aa) 
Ec = (Ao. _ Ab) (1Jc - Ic) , Ie == 1JcO + .xc ~cO , 

PI = A~(Ao. - Ab' - Ac)21112117a12 , 

P2 == A~Ab('\a - Ab - Ac) IIfl77o.l2 h , 
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P{ = n, 

Integrating Equations (20) and (21) we get 

'r/b = A. ev'PiI + B eM _ P2 , 
PI 

11' 
1Jc = Q c"/pjI + R e"'pji - -1. , 

]11 

where A, B, Q, R are to be determined by the initial conditions. This shows that 
all the four field coeffiCients. Tn. ~b, 'r/c.~c, exhibit growing and decaying modes. 
This is understandable since there is an infinite capacity pump mode 71a. ~a in the 
system at the expense of which 1]b, ~b, 7Jc. ~c are growing. Thus in the case of pump 
approximation analytical solutions to the system can be found. 

(iii)CBAOS IN THE SYSTEM 

Equations (5)-(10) are a setef six ordinary first-order differential equations which 
are highly nonlinear. It may further be reali7.ed that the velocity (7Ji) and magnetic 
field (~i) components are both coupled which adds to the inherent nonlinearity 
of the equations of motion - characteristic of MHD equations. These equations 
in principle can be seen as equivalent to one ordinary sixth order differential 
equation which will manifest all the nonlinearities and therefore may lead to chaotic 
dynamics. To investigate this aspect we first determine the power spectrum of the 
system.A broad band power spectrum is a sure indication of the existence of chaos 
in the dynamics. An insight into chaotic system can be obtained by detennining 
the invariant parameters such as correlation dimensions Di, Kolmogorov entropies 
Ki, Lyapunov exponents etc which are all infinite in number. However it has been 
shown that of the infinite number of the correlation dimensions and Kolmogorov 
information entropies, the second-order quantities are the most significant ones 
and hence we shall determine D2 in the present analysis. We shall postpone the 
determination or ]{j and Lyapunov exponents for a later occasion. We follow in 
this the algorithm which was first proposed by Grassberger and Proccacia (1983) 
and later developed by Atmanspacher and Schinegraber (1986) and Abraham eT al. 
(1986). 

Let {Xo(t)} be the original time series with the data being taken at constallt 
intl.'rval. These data sci can bt~ rearranged so as 10 get (cl -- 1) additional data M.:ts 
as 

Xo(t}), ... , XO(tN) , 

XO(t'1 + .6.t), ... , XO(tN + .6.t) , 
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X aUI + db..t), ... ,11 XO(tN + d.6.t) , 

we can considerthe transpose of the above matrtx as consisting of N vectors having 
d components in a d dimensional space. The general vector can be written as 

where i = 1, ... , Nand X i is a point in the constructed d.-dimensional space. We 
now evaluate the correlation function 

where e is the Heaviside function defined as e(x) = ° for.'1; < 0 and unity for 
:r > 0. This implies that if the ahsolute value of the vector difference IX i - X:i I is 
less than r, we count it as unity and is zero if it is greater than r. We then construct 
the small boxes of side r in the phase space and count the vector tips that lie in this 
box. This counting. It is shown that as r becomes smaller CdC r) '" rV so that 

As r .-+ ° and d --+ 00, IJ takes a definite value which is called the second-order 
correlation dimension and we get 

D., = lim log Cd(r) 
~ ,-(I log(r) 

rl-oo 

The correlation integral C(r) has to be calculated for several values of r with 
respect to each particular dimension d of the constructed phase space. ~or each 
dimension done ,thtains log Ctl (7') vs log(r) curve and the slope )1 of the linear 
part of the curve can be obtained using least-ssquare fit. If the slope I) converges 
towards a finite value for higher values of d, this value is denoted by D2. When ))2 

is an integer. the system is regular and when it is a fractal the system is chaotic. 
We have numerically solved Equations (5)-(10) for arbitrary initial values of 

the field coefficients. The time evolution of pressure at an axial point of the loop 
for initial values (l1Jal = 4.0, l'I7b) = 7.0, Incl = 10.0, I~CI = 8.01, lebl = 11.0, 
I~c I = 14.0) is shown in Figure 3. The time variation is highly complex. The 
corresponding power spectrum is shown in Figure 4. The spectrum is fluctuating and 
broad band indicating the presence of chaos.A data set of 500 points corresponding 
to this chaotic evolution of pressure is used to evaluate the inforrnation dirnension
D2-by the method described above. In Figure 5, we illustrate the converging slope 
and the value of D2 is found to be 1.732. With the same initial conditions D2 was 
evaluated at a surface point and the slope does not seem to converge to a limiting 
value. This is shown in Figure 6. The fractal value of D2 evidences the existence 
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Fig. 3. 1ime variation of pressure at an axial point of the loop when the initial values of the field 
coefficients '17., T/b, ')e are much different from those of (., (b, (0' respectively. 
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Fig. 4. Power spectrum [S(w)] corresponding to the time variation of pressure shown in Figure 3. 
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(If deterministic chaos. In a chaotic regime the system can either dissipate 10 an 
attrac.:lor stage or can follow a stochastic (random) flow, As the dimension d of the 
constructed phase space increases the slope IJ may converge to a limiting value. 
In this case the flow will be confined to a geometrical object called attractor. The 
converging value of the slope is the dimension D2 ofthe attractor. The dimension of 
the attractor measures the minimum number of independent parameters needed to 

describe the system dynamics. In other words if D2 exists, there is a properly defined 
dynamical system. The steady increase of slope v with d (Figure 6) evidently shows 
that it cannot converge and consequently the number of degrees of freedom of the 
system is increasing. Then the complexity of the system increases and it tends to a 
more disordered state indicating that system behavior is stochastic. 

4. Conclusion 

In the equilibrium state 7]a = ~a, 17b = ~b, rIc = ~c. We disturb the system slightly 
from the equilibrium state and study the time evolution for small departure from 
equilibrium. In this case the system is shown to exhibit sinusoidal oscillation with 
a period which depends upon the initial 'values of the field coefficients. In oth
e.r words, when the system is perturbed from a state where the magnetic energy 
B2/41r and the kinetic energy (~)mv2 are nearly equal. it exhibits marginal stabil
ity. The microwave and X-ray obse~ations of coronal loops show quasi-periodic 
oscillations with time scales ranging from a fraction of a second to tens of minutes 
(Aschwanden, 1987; Svestka. 1994, and references therein). The;e oscillations 
are usually interpreted in terms of magnetohydrodynamic waves in loop plasma 
(Roberts, Edwin, and Benz, 1984). The observed power spectrum of pulsations 
actually exhibits a more complex behaviour (e.g., Figure] (d) of Svestka, 1994) 
which appears quasi-periodic only if we ignore t1ner variations. Thus quasi-periodic 
behaviour is expected only near equilibrium as is shown in our studies and the lin
ear wave analysis studies. Under large departures from the equilibrium, a loop wil I 
show a complex temporal structure which can only be described in terms of objects 
with fractal dimensions in the phase space of the velocity and magnetic field. 
Coronal loops being continuously subjected to external forcing through their foot 
points and through their interaction with neighbouring regions are most likely to 
be in a chaotic state of pressure fluctuations. Therefore, when there are large devi
ations from equilibrium, i.e., for initial values of 7]a, 'T/b, 7]c, much different from 
those of ~a, ~b, ~c, respectively, the system is nonlinear and so is corresponding 
time evolution of the pressure. In this case each individual mode becomes distinct, 
str,?nger and m~de-mode interaction can take place. In the pump approximation 
case since the variation of the strongest mode is negligible when compared with 
other modes, the interaction is between less number of modes of oscillations and 
the system showed oscillatory behavior,whereas the chaotic behaviour is caused 
by the superposition of more than two modes of oscillat.ion and due to strong 
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FIg. 5. The slopes (II) of the linear pan of the log G",(r) vs log(r) curves,obtained usillg leasl-St.)uan:s 
fits are plotted against the dimension d of the constructed phase space. The two asymptotic values 
of the slopes are 1.39 and 1.73. This is corresponding to the chaotic evolution of pressure at an axial 
point of the loop. 

nonlinear coupling between them as is indicated in the nonlinear case above. Thi~ 
fact is evident in the evaluation of D2. Figure 5 shows the determination of D2 
at an axial point. It is interesting to note that we get two asymptotic values one at 
1.39 and the other at 1.73. It could be interpreted as the existence of two strange 
altractors with embedding space of dimension 7 and 18 and the trajectory can land 
up on either of these attractors. The fact that these are strange attractors (because 
of fractal dimension) the trajectories could jump from one to the other. This clearly 
shows the complexity of the situation. The curve of slope LI vs dimension d at 
7' :.:= R tloes not show any saturation and that the curve is more or less centered 
on the 45° line showing the presence of randomness or white noise as shown in 
Figure 6. Thus as we proceed from the axis towards the surface the dynamic!' show 
the development of strange attractors ending up in complete randomness. 

In Figures 5 and 6 even though the initial values of ~, and TJs are the same,those 
of pressure P at (r = 0, t = 0) and at (r = R, t = 0) are not same. This difference 
in Figures 5 and 6 is due to the different initial values of pressure at axial and 
surface points. The transition from a strange attractor state to randomness requires 
a much finer analysis which will be investigated on a future occasion. In conclusiun 
the time scale over which the system is stable or otherwise can he inferred nn ly 
by evaluating the Lyapunov constants which are sensitive to the initial conditions. 
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Fig. 6. Corresponding to the chaotic time evolution of pressure at a surface point of the loop,the 
slopes (v) of the linear part of the logCa(r) vs log(r) curves are plotted against the dimension d. 
1he slopes do not converge to any limiting values. 

Inverting the problem, by specifying the Lyapunov constants, one can possibly 
evaluate the class of initial states which can give the observed life time of the 
loops. . 
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